Oracle® Text
Reference

10g Release 1 (10.1.0.3)
Part No. B10730-02

June 2004

ORACLE



Oracle Text Reference 10g Release 1 (10.1.0.3)
Part No. B10730-02
Copyright © 2001, 2004, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.



Contents

SENA US YOUT COMIMEBNTS oo e e et ee e ee et e et e e e e e et et et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeens

[ Y = (o1 = oo

AUAIEIICE ...ttt ettt ettt et e b e et et e e sb et e e sbe st e esseeseesbesseesbeessesbeess e beessenseessenreenteereenteeres
Documentation ACCeSSIDILIEY .......cceuiiiiiiiiiiriiiiiiiiiiiccc s
SETUCEUT. ... ettt ettt ettt et e et e b e st e e s e e st e s s eestesseessesseessenseessesaassesseensesseessesnsensesssensenseans
Related DoCUmMENTATION ......c.eciieiieiiciieie ettt ettt reetesreesaeereesbe e e e sbeessesbeessesseessesseensenses
CONVEINTIONS ...vviiivieiieeiieeieeiteesteesteesteesteeetteesteessbaeseeassaesssassseasssassseesaeassaesaeassaasssessseesssessseesessssessseensses

Volume 1

WRAL'S NEW IN OFACIE TOXE? oottt ettt es e et e st s esees s aeenesens

Oracle Database 10g R1 NeW Features..........cccovviiiiniiiniiiicccc s
Security IMPIroOVEMENtS .......c.ccoviiiiiiiiiiiiiii s
Classification and CIUSEETING...........c.oviuriiiiiiicie e
INAEXING ..ot

Language Features ...

QUETYINE ..ottt bbbt

DOCUIMEINE SEIVICES ...ttt ettt e ee ettt e e e e e eaaeeesessaaeeeeesseassaeeesssssaseeessessasseeesessnssseeesssnnnes

1 Oracle Text SQL Statements and Operators

ALTER INDEX ..ottt ettt et
ALTER TABLE: Supported Partitioning Statements .................cccooeiiiniiniie
CATSEARCH ...t
CONTAINS ..ottt ettt ettt et sae e
CREATE INDEX ..o ees
DROP INDEX ..ottt
MATCHES ..ottt ettt ettt ene e

2 Oracle Text Indexing Elements

OVEIVICW ..ottt ettt eee et e e e eeae e e e eesaa e e e e eesabaeeeeesaabaeeeeesaabasseessastaseesseensaaseessessseseeessnssrneeeeans
Creating PreferenCes ... ...



Datastore TYPES ........cooviiiiiiiec e 2-2

DIRECT_DATASTORE .....cocoiiiiiiiiiieriteie ettt 2-3
DIRECT_DATASTORE CLOB EXample........ccccevurieiiuiiiiririeicieieieicieiecieeeieeeeeeeeeeeeeeneeeeeeeenes 2-3
MULTI_COLUMN_DATASTORE ......cccocecvtrimiiiiiiiiiic s 2-3
Indexing and DML ........cccccciiiiiiiiiiicc s 2-4
MULTI_COLUMN_DATASTORE EXample..........ccccooevviimmmiiiniiniieriiiiciceeeceneeenns 2-4
MULTI_COLUMN_DATASTORE Filter Example ..........cccccoviiininiiiiiiniinnn, 2-4
Tagging BENAVIOT ........c.ouoiiiieii e 2-5
Indexing Columns as SECHONS ........c.cccueuririiiiieiiirieieiciceeeee e 2-5
DETAIL_DATASTORE  ...c.coiiiiiiiiiiiniiii s 2-6
Synchronizing Master/Detail INdeXes..........cccccovuviiiiiiiiiniiiiiiiiiiiiis 2-6
Example Master/Detail Tables .........cccccccviiiiiiiriiiiiiiieccceceeeeeeeeeeeeeeeeeeeeeeeeeenas 2-7
Master Table Example..........coiiiiiiiiiicic e 2-7

Detail Table EXample ........cccccooiiiiiiiiiiniiiiiiiiiiii s 2-7

Detail Table Example AtIIDULES .......c.cceuiiiiiiiiiiiiiiccccccecccee e 2-7
Master/Detail Index EXample ..o 2-8
FILE_DATASTORE ...ttt 2-8
PATH Attribute Limitations..........ccccceiiiiiiiiiiiieecceceeccceeeeeseseseeesceseeeenenas 2-8
FILE_DATASTORE EXamMPIe......ccecvvviimiiiiiiiiiiiiiiiii e 2-9
URL_DATASTORE .....cooiiiiiiiiciiiice ettt 2-9
URL SYNEAX 1.ttt 2-9
URL_DATASTORE AIIDULES......cvvviiiiiiiiiiiiiiiccs e 2-9
URL_DATASTORE EXQMPIE ......coviiiiiiiiiiiciiriciciec e 2-11
USER_DATASTORE .....cooviiiiiiiiciiiicte s 2-12
CONSETAINES ..o 2-12
Editing Procedure after INdexing ..........cccccoeuvieiviriiiiiiiiininiiiis 2-12
USER_DATASTORE with CLOB EXample.........ccovviniinniiiiicccccccc e 2-13
USER_DATASTORE with BLOB_LOC Example.........cccocceviiiininiiiiiiiiiennns 2-13
NESTED_DATASTORE .......cocoiiiiiiiiiiiritie ettt 2-14
NESTED_DATASTORE EXample.......ccccccoceuiiiiiiiiiiiiiiiciiicceeeeeeeeeeeeeeeeeeeeeeneeeeenes 2-14
Create the Nested Table..........cccccociiiiiiiiiii s 2-14

Insert Values into Nested Table..........c.cccccceviiiiiiiiininiiiiiiiiiics 2-15

Create Nested Table Preferences ... 2-15

Create Index on Nested Table...........cccoceeiiiiiiiiiiiiiii 2-15

Query Nested Datastore ..o 2-15

FAlter TYPES ..o 2-15
CHARSET _FILTER .....cooiiiiiiiiiiiiiiii s 2-16
UTF-16 Big- and Little-Endian Detection ...........cccccceuviviviniiiiiiiiiiiniiiiiiiicnccccices 2-16
Indexing Mixed-Character Set COIUMNS .........cccceuvuiiiiiiriririiiiccreceeeeee s 2-17
Indexing Mixed-Character Set Example..........c.cccooeuiieiiiiiiiniiiiieccc e 2-17
INSO_FILTER ..ottt sttt 2-17
Indexing Formatted DOCUMENTS .........cceueiiiiiiiiiiiiiiciiciciiccee s 2-18
Explicitly Bypassing Plain Text or HTML in Mixed Format Columns.............cccoccueuee. 2-19
Character Set Conversion With INSO .........cccccceuviiiiiiiiiiiiiniiiii 2-19
INULL_FILTER ..ottt 2-20
Indexing HTML DOCUMENES .......cuoviiieiiiiiiiiicicie i 2-20
MAIL_FILTER ..ottt 2-20



)31 S o 372) g =74 (o ) SRR 2-21

About the Mail Filter Configuration File.............cccoooooiii 2-21
Mail File Configuration File Structure..........c.cccccceeiiiiiiiiirniiiccccceceeeeenes 2-22
USER_FILTER. ...t 2-22
User Filter EXample .......cccocooiiiiiiiiiiiiiiiiiiiiici s 2-23
PROCEDURE_FILTER .....coetiiiiiiiiiiiiiciicieti s 2-23
Parameter Order ..o 2-26
Procedure Filter Execute ReqUIirements ..............ccocoeueueiiieiniiiicnicicceecce e 2-26
Error Handling ......cccoiiiiiiceceeee e 2-26
Procedure Filter Preference Example.........cccoooioiiiiiiiiiiniicccc s 2-26
LeXCT TYPE@S ..ottt 2-26
BASIC_LEXER ..ottt 2-27
Stemming User-DictioNaries ...........cooirueiiiiricieiiiice s 2-31
BASIC_LEXER EXQMIPIE ....oviiiiiiiiiiiiiicieiieecie s 2-33
MULTI_LEXER ..ottt et 2-34
Multi-language StOPLIStS .......c.coirieiiiiiiciccc 2-34
MULTI_LEXER EXQMPILE .....ocovmiiiiiiiiiiciiiiicicinie e 2-34
Querying Multi-Language Tables ..........cccccciiiiiiiiiiiccecceeeeeeceeeeeeeees 2-35
CHINESE_VGRAM_LEXER......ccoceiiiiiiiiiiiiiiiiis s 2-35
CRATACEET SEES ...ttt 2-35
CHINESE_LEXER .....ocooviiiiiiiiiiieiici s 2-36
Customizing the Chinese LeXiCOn ..ot 2-36
JAPANESE_VGRAM_LEXER .......cceiiiiiiiiiiiiiniieisnce s 2-36
JAPANESE_VGRAM_LEXER Attribute.......cccccoviiiiiiiiiiiiiciccccce, 2-36
JAPANESE_VGRAM_LEXER Character Sets........cccecveiieeiereecienieieeeenseeeesieseeseeseessesnnas 2-36
JAPANESE_LEXER.......cooiiiiiiiiiiiniicicsncieie sttt 2-37
Customizing the Japanese LeXiCOm........cccoceiiiiiiiiiiiiiniricccecceeeeee s 2-37
JAPANESE_LEXER AHIIDULE ....cooviiiiiiiiiiiic s 2-37
JAPANESE LEXER Character SEtS .......ccoceeerierieieieieieeeeetteie sttt ese e 2-37
Japanese Lexer EXample .........cccccooiiiiiiiiiiiicccecececeeee e 2-37
KOREAN_LEXER ...ooiiiiiiiiiiiiiii s 2-38
KOREAN_LEXER Character Sets.........ccocviieiriniiiciniiicieisiicieeiseiicie e seesenns 2-38
KOREAN_LEXER ATIDULES «..vveeeeeeeeeee ettt e evee e et eseeaaeesenveeessaeeseennessenneeas 2-38
Limitations ...cveveveeiiicicec e 2-38
KOREAN_MORPH_LEXER ....ccceeiiiiiiiriiiieiiniiceisiceeseiseie st 2-38
Supplied DIiCtIONATIES ......c.c.cuiuiiiuiiiiiiiicicieieieceeeeeee e 2-39
Supported Character Sets ... 2-39
UNicode SUPPOTL .....cocviviiiiiiiiiiiciiiiiii s 2-39
Limitations on Korean Unicode SUPPOTt ........cccocueuviiiiiiiiiniriniiiiicrcccceeceeeeees 2-40
KOREAN_MORPH_LEXER Atributes........ccccoviviiiiiiiiiiiiiiiicccenes 2-40
LImItations ....coccuiiiiiiiiiiciic e 2-40
KOREAN_MORPH_LEXER Example: Setting Composite Attribute ...........cccccceueueueeeee. 2-40
NGRAM EXaMPI@.....ocviiiiiiiiiiciei it 2-40
COMPONENT_WORD Example........cccccovviiiiiiiiiiiniiiiiiiiiniiniiinnssssenns 2-41
USER_LEXER.......ciiiiiiiiiiiiiec st 2-41
LAmitations «..cvevevceiiieicec e 2-42
USER_LEXER AHIIDULES .....cocvvuiiiiiiiciiiicieir s 2-42



vi

INDEX_PROCEDURE ........cccoititiitiinieeneentcenetnietntetstesteteteseseereseeseseesesaese et saesesaesessenees 2-42

ReqUirements..........cocuiiiiiiiiiiiiccc s 2-42

Parameters .........coeueveieiiieieeee s 2-42
ReSHTICHONS. ..ottt 2-42
INPUT_TYPE ..ottt 2-43
VARCHAR2 INtErface .......cccoveviviiiiiiiiiiccccce s 2-43

CLOB INtErface........ccvvvviiimiiiiiiicii s 2-43
QUERY_PROCEDURE.......cceciiiiiiiniiciiniicicirse sttt 2-44
Requirements..........cccoiiiiiiiiiiii s 2-44
ReSHTICHONS. ..ottt 2-44

Parameters ........ccoiiiiiiiiiii s 2-45

Encoding Tokens as XML ........ccccccoiuiiiiiiiiiiiiicceeeeeeeeeeeeeeee e 2-45
Limitations c.c.cveveviiieieiccece s 2-45

XML Schema for No-Location, User-defined Indexing Procedure ..........ccccooevvvrnnnnnnnes 2-46
EXAQIMIPLE. ... s 2-47

EXAMPIE ..ottt e 2-47
EXQMIPLE....oiiiiiiiiiiiii s 2-48

XML Schema for User-defined Indexing Procedure with Location............cccccceeuvueunneee. 2-48
EXAMPIE ..ottt e 2-50

XML Schema for User-defined Lexer Query Procedure ...........ccocceuvivirivviniiiniiiiniiinnnnn, 2-50
EXAQIMIPLE. ... s 2-52

EXAMPIE oottt e 2-52
WORLD_LEXER ..ottt 2-52
WORLD_LEXER EXQMPLE.....cooiiiiiiiiiiiiicc e 2-53
WOTALISE TYPE ... s 2-53
BASIC_WORDLIST ..ottt 2-53
BASIC_WORDLIST EXaMPIE .......cucuiiiiiiiiiiiiiicicicicieieieeieceeeeeeieeeeeieee e 2-57
Enabling Fuzzy Matching and Stemming ............cccceoiiiiiiiiciccc 2-57
Enabling Sub-string and Prefix IndeXing ...........ccccceeviviviniiiiiiiiininiiiiiccnces 2-57

Setting Wildcard Expansion Limit .........cccccccociiiiiiiiniiiccceceeeccceeeceeeeees 2-57
SOTAZE TYPES ... 2-58
BASIC_STORAGE .......cooiiiiiiiccritce et 2-59
Storage Default BERavior .........ccccooiiiiiiiiiiiccccc s 2-59

Storage EXample..........ooi s 2-60
Section GIOUP TYPeS......cooiiiiiiiiiicicc s 2-60
Section Group EXamMPIES .......ccccoiuiiiiiiiiiiiiiiiiicieeceeeee e 2-61
Creating Section Groups in HTML DOCUMENLES ........c.cooiiuiiiiiiinicieiiciec i 2-61
Creating Sections Groups in XML Documents..........c.cccceeueeeieieieiiieeceeeeeee 2-61
Automatic Sectioning in XML Documents............cccccvvviiiiniiiiniiiicecnes 2-62
CLaSSIfIeT TYPES ...t s 2-62
RULE_CLASSIFIER .....cooiiiiiiiiieiiniticie sttt 2-62
SVM_CLASSIFIER .....ooviiimiiiiiiiieiicie s 2-63
CIUSEET TYPES ...t s 2-64
KMEAN_CLUSTERING .....coouiiiiiiiiiciiiritie ettt 2-64
SEOPLISES ...ttt 2-65
Multi-Language StOPLIStS .........ccvurueiiiiiieicc e 2-66
Creating STOPLISES .....c.cvviiiiiiiiiiiii s 2-66



3

Modifying the Default StOPLiSt.........ccovieiiiiiiiiiici e 2-66

Dynamic Addition of SEOPWOIdS ........ccccceuviiiiiiiiiniiiiiiiiiiis 2-66
System-Defined Preferences ... 2-67
Data STOTAZE ....ovevieieiieieieicte 2-67
CTXSYS.DEFAULT_DATASTORE ........cccooiiiiiiiiiiiiiiiiiiics 2-67
CTXSYS.FILE_DATASTORE........cceviimiiiiiniiieinicc s 2-67
CTXSYS.URL_DATASTORE........ccceiiiitiiiiiriiiniiciciieceee s 2-67
FIIEET <ot 2-67
CTXSYS.NULL_FILTER.......cciiiiiiiiiiiniiccie s 2-67
CTXSYS.INSO_FILTER ....ocvoiiiiiiiiiiiiiiinieieiiieeee s 2-67
LEXOT ..o 2-67
CTXSYS.DEFAULT_LEXER ......coiviiiimiiiiiiiniiiciiciecn s 2-68
American and English Language Settings ..........ccccooeoiiiiiieiiiiiieiccce 2-68

Danish Language Settings ..ot 2-68

Dutch Language Settings.........cccccueueririiiiiiiiriiicciceeeceeeeeeeceeeeeeeee e 2-68
German and German DIN Language Settings .............ccoooeveiiiiiiiiincce 2-68
Finnish, Norwegian, and Swedish Language Settings............cccccccecvvviinninnnnnnnn 2-68
Japanese Language Settings..........cccoociiviiiiiiniiiiiiiiiic s 2-68

Korean Language Settings...........ccooviiieieiiiciiic 2-68
Chinese Language Settings...........ccccovviiiiiiiviniiiiiiiiiniiiis 2-68

Other Languages. .....c.cccueueuiuririeiiicicieieieceeeee et 2-68
CTXSYS.BASIC_LEXER .....cooiiiiiiiiiiiiiiiiicc s 2-68
SECION GIOUP ..voviiiiitiiieetc s 2-68
CTXSYS.NULL_SECTION_GROURP .......ccevririiriiiiniiiriiiininccne e 2-68
CTXSYS.HTML_SECTION_GROUP........cceceiiriiiiiiiiiiiieiciiieeeeee s 2-69
CTXSYS.AUTO_SECTION_GROUP.........cceviiiiiriiiiiiiciiciiicsies 2-69
CTXSYS.PATH_SECTION_GROURP .......cceuviiiriiriimiiriiciisiiceeee s 2-69
SEOPLIST et 2-69
CTXSYS.DEFAULT_STOPLIST ......cociiiiiiiiiiiiiiiciiiiiniissessssnsns 2-69
CTXSYS. EMPTY_STOPLIST .....coovotiiiiiiiiiiieiicne s 2-69
SEOTAZER «ecvveeect e 2-69
CTXSYS.DEFAULT_STORAGE ........ccoooiiiiiiiiiniiiiiiic s 2-69
WOTALSE ..o 2-69
CTXSYS.DEFAULT_WORDLIST ........coceiiiiiiiiiiniciiccce s 2-69
System Parameters .............coooiiiiiiiiiii s 2-69
General System Parameters ..........ccccceeuiiiiiiiiiiiiiiiiieeeceeee s 2-69
Default Index Parameters .........cocccooviiniiiiiiiniiiiiissce s 2-70
CONTEXT IndexX Parameters ..ottt seeenes 2-70
CTXCAT Index Parameters ..........cccovieuriiiiiimemeiiiiiiieeieieene s 2-71
CTXRULE Index Parameters..........cccooeveiiiiiiiiiiiiiiiiiiiiiicneeeseesees s 2-71
Viewing Default ValUes ..o 2-72
Changing Default ValUes..........cccccociiiiiiiiiiiccccceee s 2-72

Oracle Text CONTAINS Query Operators

OPerator PreCcedenCe ..ottt sttt 3-2
GIOUP 1 OPETALOLS ..ottt 3-2
Group 2 Operators and Characters .............ooceuiiiiiiccec s 3-2

Vii



Procedural OPerators ..ottt 3-2

Precedence EXaMPIEs ........ccccciiiiiiiiiiiiiiiiiicc e 3-3
ARETING PreCedenCe ... ... 3-3
ABOUT ...ttt ettt ettt ettt ettt et s et e s e st s e s et e st s e st et an e et ensesen s et enseseaseseaseseasanesenesanes 3-4
ACCUMUIALE () onveviieiiieiiietisieeetetete ettt ettt et s s sessesesseseesaseesessesessesessesensesensesarsesasassasanssanes 3-7
AND (&) ..ttt b e b et a et s b st b st ekt b et bbbt h et s bbb st et benes 3-9
Broader Term (BT, BTG, BTP, BTI).........ccooouiiiiiiieieteeeeeeeee ettt ettt 3-10
EQUIVALEIICE (2) ..ottt ettt sttt ettt a et e st e st et e s be s b e s b e b essansensensensententeneenteseeseesessensas 3-12
FUZZY ..o 3-13
HASPATH ...ttt ettt bbbt et b et e b et e se st ese s e s e b e s e beneebeneeseneeseneesanens 3-15
INPATH ...ttt ettt e et e e e at e s beessbeebe e e st e e s e aasseessaasssesaseeassaenseesssaenseessesnsaanseeenses 3-17
IMIDIATA ...ttt ettt ettt b bbb s b e st b e st b et b et e bt e st e s et e st b et b e st e b et b et ebe e ene 3-22
IMIIINTUS (=) 1ottt ettt ettt ettt ettt ettt b e st b e st e b e st e santesensese s esasesesenesaneeseneesansesansens 3-24
Narrower Term (NT, NTG, NTP, INTI) .......cooooiiiieeeeeceeteeeetee ettt ea et ae e eae e esaeevnens 3-25
INEAR () oottt ettt ettt ettt bt b et b et e b et e b et e st e st e st b et b et b et b et ebe e ene 3-27
INOT (%) oottt ettt ettt ettt et e s b e s e s e st be st be st s e st e s antesensese s esasesesenesaneesenseseneesansns 3-30
OR (1) ettt ettt et ettt et et s bt e b et e et e st ebest et ass et assesassesassesarseseesaseeseseesentesensesensesensesensesensenes 3-31
Preferred Term (PT)......coooi ittt ettt ettt ettt ettt b et b et b bbb s e sens 3-32
Related Term (RT) ..ottt ettt b bbbt et et et et et e st e st eaeebeebesbesbeben 3-33
SOUTNIAEX (1) 1.ttt ettt et e st e s e st et e et e e b e e be st e b e b e b entenseneenteneeneeneeseesesseesensas 3-34
STEIML (B) ..ttt ettt ettt b et bbb bbb st s b et b et bbb bbb st nenen 3-35
Stored Query Expression (SQE) ..o 3-36
SYNONYIN (SYN) .ottt ettt sees 3-37
FRTESIOLA (3) -ttt bttt b et b et 3-38
Translation Term (TR).......cccoooiiii ettt ettt be s s 3-39
Translation Term Synonym (TRSYN).......cccccooiiiiiiiiiiiis 3-40
TOP TIIN (TT) ..ottt 3-42
WEIGIE (%) oo 3-43
WILACATAS (Y0 ) ittt et e sttt e et eseaa e e e steeesanteeseaseeesanaeesasesessnseeesneeeean 3-45
WWITHIN ..ottt ettt b ettt et b et b et e b et e b et e st e s et e st be st b e st ebe e ebeneebeneene 3-47
4 Special Characters in Oracle Text Queries
Grouping CRATACTETS. ...t 4-1
Escape Characters ... 4-1
Querying Escape Characters ... 4-2
Reserved Words and CRAracters ...........coccveirieiriiiniiieiceeeee ettt ettt 4-2
Volume 2
5 CTX_ADM Package
RECOVER ...ttt ettt ettt sttt sttt st e st et st et e b et e b et e b e st e bt st ese st ene st e st st entsbent st enesbensebeneas 5-2
SET_PARAMETER. ..ottt ettt sttt ettt et et e se st ese st esestenessenessenessensesansesensesennas 5-3
6 CTX CLS Package

viii



CTX_DDL Package

ADD_ATTR_SECTION ..ottt sttt sttt ettt es et s et st be et et n e et ene s 7-3
ADD_FIELD_SECTTION ......cciiiiiiiiiiiiineieeeeeee et seee e ae et e e e ee 7-4
ADD_INDEX ...ttt sttt ettt st s s sttt 7-7
ADD_MDATA ...ttt ettt sttt sttt ettt et e a et e b e et b b et et ettt et st aeenes 7-9
ADD_MDATA_SECTION ..ottt 7-11
ADD_SPECIAL_SECTION .....ooiiiiiiiiiiiieictetetetete sttt ettt e 7-12
ADD_STOPCLASS ...ttt ettt ettt sttt ettt ettt sae b b ae 7-14
ADD_STOP_SECTION......ooiiiiiiieirereteee ettt et 7-15
ADD_STOPTHEME .....coiiiiiiiiiiiteteteteee e sttt 7-17
ADD_STOPWORD ....coortrititiitntitetetetetetet ettt ettt sat e st st a b sttt et ettt eae bt esesae s b nae 7-18
ADD_SUB_LEXER .....oioiiitiiiitcirieentetntee ettt 7-20
ADD_ZONE_SECTION .....ocoiiiiiiiiiiiiieieietetetetetete sttt sttt ettt s e 7-22
COPY_POLICY ..ouiiiieieietetettetee ettt ettt ettt ettt st eb e b st et b et et et e e et et et eutene bt suesaenen 7-25
CREATE_INDEX _SET ...ttt ettt 7-26
CREATE_POLICY ...ttt sttt sttt ettt st sae s 7-27
CREATE_PREFERENCE ........ooiiiiiiiiitiietetetetetet ettt ettt sttt ettt ettt et sae s 7-29
CREATE_SECTION_GROUP ..ottt ettt 7-31
CREATE_STOPLIST ....coooiiiiiieeeteeeetetetet ettt sttt ettt 7-34
DROP_INDEX _SET .......ooiiiiiiiiiieeteetetet ettt ettt srt b sttt sa et ettt ettt est st sesae s b sae 7-36
DROP_POLICY.....cooiiiiieirertetretete ettt e s e ne e ne e eene 7-37
DROP_PREFERENCE ..ottt sttt ettt s e 7-38
DROP_SECTION_GROUP .......ootiiiiiiiieieteiitetetete sttt st sttt ettt ettt sae s be e 7-39
DROP_STOPLIST ..ottt 7-40
OPTIMIZE _INDEX......ccoociiiiiiiieteteeteete ettt ettt 7-41
REMOVE_INDEX ..ottt et ettt st sa e st et sa et ettt ettt eae st ebesaesaesnes 7-44
REMOVE_MDATA ..ottt ettt n e nens 7-45
REMOVE_SECTION ....coiiiiieeeeteee ettt st sttt ettt 7-46
REMOVE_STOPCLASS ...ttt ettt sttt st be st ettt ettt ebe e s sae b 7-47
REMOVE_STOPTHEME ........ccooiiiiiieereeee ettt 7-48
REMOVE_STOPWORD .....ooouiiiiiiitetetctetctete ettt sttt ettt 7-49
REPLACE_INDEX_METADATA ..ottt sttt sttt ettt ettt ene e s e s 7-50
SET_ATTRIBUTE ......ooiiiiiiieeeceeetet ettt 7-51
SYNC _INDEX ...ttt sttt s sae s 7-52
UNSET_ATTRIBUTE ...ttt sttt sttt ettt ettt ae e e 7-54
UPDATE_POLICY ...ttt ettt st et 7-55

CTX_DOC Package

FILTER ..ottt s bbb sa s 8-3
GIST ...ttt ettt e e b s a et a e ettt s 8-5
HIGHLIGHT ..ottt sttt ettt ettt ettt st et b e b bttt ese et et saesueenes 8-9
TFILTER ..ot bbb s sa b sa s 8-12
MARKIUP ..ttt s bbbttt ettt saesae b e 8-13
PKENCODE ...ttt sttt ettt ettt st a et s bbbt ettt ettt eatene b sbesaenen 8-18
POLICY _FILTER......ccoiciiiiiieieieeeeeeereetetet ettt sttt snens 8-19
POLICY _GIST ...ttt sttt ettt s nes 8-20



10

11

12

POLICY_HIGHLIGHT .......ccooiiiiiiiiiectetcecetctetee ettt ettt e 8-22

POLICY_MARKIUP ..ottt ettt ettt sttt st et sa et ettt et ettt ebe e saesaesnes 8-23
POLICY_THEMES .....c.oooiiiiieeeeecere ettt sttt nens 8-25
POLICY_TOKENS ...ttt s sttt 8-27
SET_KEY _TYPE ...ttt ettt ettt sttt st ettt et ettt et ebe et sbesaenes 8-29
THEMES ...ttt et ettt 8-30
TOKENS. ...ttt s bbb bbbttt s at b b e saesae b e 8-33

CTX_OUTPUT Package

ADD_EVENT ..ottt ettt st s s bbbttt 9-2
ADD_TRAGQGE ...ttt ettt ettt sttt sttt et ettt et st b e bt bbb st et et e e et et et saeeueenes 9-3
END_LOGi......oeeeee ettt sttt sttt sttt sa et sa et et et ae e ene e enennes 9-4
END_QUERY_LOG ..ottt s st 9-5
GET_TRACE_VALUE.......oooittiteeseeeetetete ettt ettt b e s st b sa ettt et ettt st 9-6
LOG_TRAQGES ...ttt sttt ettt st s a et a et et eene e enennes 9-7
LOGEFILENAME ...ttt s s sttt et s 9-8
REMOVE_EVENT ..ottt ettt ettt st b e s st bttt et ettt st enes 9-9
REMOVE_TRACE. ...ttt ettt ne e nnens 9-10
RESET _TRACE ...ttt s sttt ettt 9-11
START _LOG ...ttt ettt ettt st b et sa e st a et ettt ettt eae e bt besbesaenes 9-12
START_QUERY_LOG ..ottt 9-13

CTX_QUERY Package

BROWSE_WORDS ..o s 10-2
COUNT_HITS ..ot 10-5
EXPLAIN ..ot 10-6
HFEEEDBACK ......oooiiiiiii s 10-9
REMOVE_SQE ... s sssaeas 10-13
STORE_SQE ... 10-14
CTX_REPORT

Procedures in CTX_REPORT ........ooo ittt ettt e et e e et eseaae e seaeessteeesssaeesenseessnsaessans 11-1
Using the Function Versions ... 11-1
DESCRIBE_INDEX ........ccccoiiiiiiiiiiiiiice s 11-3
DESCRIBE_POLICY .....cocoiiiiiiiiiiiiiiiiii sttt 11-4
CREATE_INDEX_SCRIPT........ccoiiiiiiiiieiicee s s 11-5
CREATE_POLICY_SCRIPT ......c.coiiiiiiiiiiiiniiiiiiiici s 11-6
INDEX_SIZE .......cooooiiiiiiiiiiiit s 11-7
INDEX_STATS ..ottt 11-8
QUERY_LOG_SUMMARY .....ocooiiiiiiiiiiiiii s s ss s sasssssssssssasas 11-12
TOKEN_INFO......coiiiiiiiiiiiiiiii st 11-16
TOKEN_TYPE ... 11-18

CTX_THES Package

ALTER _PHRASE ...ttt ettt 12-3
ALTER_THESAURIUS ...ttt sttt ettt 12-5



13

14

BTG oo 12-8
BT oo 12-10
BTP oo 12-12
CREATE_PHRASE ..ottt 12-14
CREATE_RELATION .....cocoiiiiiiiiiiiic s 12-15
CREATE_THESAURUS ..o 12-17
CREATE_TRANSLATION ...oooiiiiitietetetetetetetet ettt sttt se et ettt ettt et saesaee 12-18
DROP_PHRASE ..ot 12-19
DROP_RELATION ..ot 12-20
DROP_THESAURUS ...ttt sttt sttt st ettt ettt ettt sae s 12-22
DROP_TRANSLATION ....cocooiiiiiiiiiitice s 12-23
HAS_RELATION ..ot s 12-24
INT bbbt 12-25
INTIG oo 12-27
INTI o 12-29
INTP et 12-31
OUTPUTL_STYLE ..ot 12-33
P e 12-34
RT bbbt 12-36
SN e 12-38
SYN s 12-39
THES _TT ..ottt bbb 12-41
TR s 12-42
TREOYN Lo s 12-44
T bbbt 12-46
UPDATE_TRANSLATION.......cooitiiiiitiiiisictei s 12-48
CTX_ULEXER Package
WILDCARDL_TAB ..ot 13-2
Oracle Text Executables

Thesaurus Loader (ctX1oad) ..........ccccoiiiiiiiiiii s 14-1
Text LOAAING ....ovviieceeie 14-1
CEXI0AA SYNEAX....oiviiiiiiii s 14-1
Mandatory ATGUMENES. ......c.c.ciuiuiuiuiiiicieieieieieeeieteeeeeee ettt aeaees 14-2
Optional ATgUMENtS.........ooueiiiiiiiecc s 14-2

ctxload EXaMPLES......c.ccouiiiiiiiiiiiiiiiicici s 14-3
Thesaurus Import EXample .......cccccciiiiiiiicee s 14-3
Thesaurus Export EXample...........cooiiiiiiiiicici s 14-3
Knowledge Base Extension Compiler (ctXKbtc) ...........ccccovviiiiiiiiiiiiiiiiiii 14-4
Knowledge Base Character Set...........cccciuiiiiiiiiiiiiiiiiicciececeeeee e 14-4
CEXKDEC SYNTAX ..ttt 14-4
CtXKDEC USage INOLES.........cviiiiiiiiii s 14-5
CtXKDEC LimItations.....c.cucviviiiieiiiiicicicciceccce s 14-5
ctxkbtc Constraints on Thesaurus TErms ... 14-5

Xi



ctxkbtc Constraints on Thesaurus Relations ........cooevvviveeiiiiieiieie e 14-5

Extending the Knowledge Base ...........cccccccviiiiiiiiiiiiniiiiiiiiics 14-6
Example for Extending the Knowledge Base............cccccceuriiiiiinniiiiiiiccccccecee 14-6
Adding a Language-Specific Knowledge Base............ccccoooruiiiiiiiniiiiiic 14-7
Limitations for Adding a Knowledge Base..........ccccccoeviniiiiiiiiininiiiiiniiccniie, 14-7
Order of Precedence for Multiple TheSauri..........ccccceurueuiiiiiiririiiiiiicccccceecceeeeeeees 14-8
Size Limits for Extended Knowledge Base..........ccooouevriniiiniiiiiicicccc 14-8
Lexical Compiler (CEXI0).........ccooviiiiiiiiiiiiiiiiiii s 14-8
SYNEAX OF CEXIC ..ottt 14-8
Mandatory ATgUMENES........ccoviuiiiiiiiicieicceie et 14-9
Optional ATUMENTS.......c.coviiiiiiiiiiiiiii s 14-9
Performance Considerations ............ccoveveiriiiiiiiiiiiinicee e 14-9
CEXIC USAZE NOLES ... 14-9
EXAQIMIPLE ..o s 14-9

15 Oracle Text Alternative Spelling

Overview of Alternative Spelling Features................ccccccooviiiniinnninii 15-1
Alternate SPELling.......c.cccccuiiiiiiiiiiiiiiiicecee s 15-2
Base-Letter CONVEISION ......ccovuiiiiiiiieiiiiiiiiic s 15-2

Generic Versus Language-Specific Base-Letter Conversions............ccccccvevviviviniiinicinnnnnes 15-2
New German SPelling .........ccccociiiiiiiiiiieeeeee e 15-2

Overriding Alternative Spelling Features..............c.ccccocovviiiiiiiiiiiis 15-3
Overriding Base-Letter Transformations with Alternate Spelling ............cccocoeveiiinininnnn. 15-3

Alternative Spelling Conventions ... 15-3
German Alternate Spelling ConvVentions.............cooeeieiiicieiiicecc e 15-4
Danish Alternate Spelling CONVENtioNS ...........cccceviviriiiiiiiiinininiiiis 15-4
Swedish Alternate Spelling CONVENIONS .........cccceuiuririeiiiiiiiririiiciceee s 15-4

A Oracle Text Result Tables

CTX_QUERY ReESUIE TADIES .......cooovieiirieiietictietecee ettt ettt ettt ettt veeae et et ete s e ereeseersenneeneen A-1
EXPLAIN TaDIE ...oviuiiieeieiietieteeeeteteeeete ettt ettt ettt ettt st b be b bessessessessesseseesaesessessessenes A-1
Operation Column ValUes.........ccccceuiiiiiiiiniiiniiiiiiiiiii s A-2
OPTIONS COIUMIN VAIUES ..ottt sttt ess st saeseeseesassassessessessenns A-2
HEEEDBACK TaDIE ..ottt ettt ettt st st b et b b ss s st ess s eveeseeseevesressenns A-3
Operation Column ValUes.........ccccocuiiiiiiiiniiiniiiiiiiiiin s A-3
OPTIONS COIUMIN VAIUES ..ottt sttt ss st esaeseeseesessassessessessenes A-4
CTX_FEEDBACK_TYPE ..ottt ettt ettt st st v st essess et essessesseveeseebeeveesensenns A-4

CTX DOC RESUIE TADILES.........eeeeieiiiieieeeeeeeeeeeeeeee ettt ettt e et eat e s st e e e s teessatessseeessnaeesenneas A-5
ST <3 U =1 o) LU OO A-5
GESE TADIE.. ettt sttt et e et e b e e b e b e esbeste e b e sreessesreesaeeseesseessensansaenraans A-6
Highlight Table.........ccccooiiiiiiiiiiiiiiiii s A-6
MaArKUp TabIe......c.cocuiuiiiiiiiccc e A-6
TIREIME TADIE......c..ecieiieteceeeee ettt et et e st e e e e st e s te e s e sreessesseessessaessesssessenssesanns A-7
TOKEIN TaADLE.....cveeeietieieeteeeeee ettt ettt sttt et e e e st e e e et e e st e e beesseesaensesssenseessenseessensenssensenns A-7
CTX_THES Result Tables and Data TYPes ..........ccccovuvirirrniriririrrincrrrsecereeeeeeeeeeee s A-7
EXP_TAB Table TYPE ....coviiiieeei st A-8

Xii



B Oracle Text Supported Document Formats

About Document Filtering Technology ............cccccccooviviiiiiiiiiinniiiiis B-1
Latest Updates for Patch Releases ..........ccccccuviiiiiiiiiiiiiiiiiiiicceceecceeeeeeeeeeee s B-1
Supported PLatforms...........coooiiiiiiiii s B-1

Supported Platforms..........ccccoiiiiiiiiiiiiiiiiiiiiii s B-2
Environment Variables............cccoiiiiiiiiiiiiiicc s B-2
Requirements for UNIX PlatfOrms .........cccocoouieiiniiiciiicccc s B-2

Supported Document FOIMAts............cccccoviviiiiiiiiiiiii s B-2
Word Processing Formats - Generic TeXt ... B-3
Word Processing Formats - DOS ........c.cooiiiiiii e B-3
Word Processing Formats - WINAOWS..........cccouiiiiiiiiiicc B-4
Word Processing Formats - Macintosh ... B-4
Spreadsheet FOImMats..........ooouiiiiiiiii B-5
Database FOIMAtS ........cccccciiiiiiiiiiiiiiiiiiiiiiii s B-5
DiSPlay FOIMALS .....c.cocuiiiiiiiiiiciciiiicicccee e B-6
Presentation FOIMAts ..o B-6
Graphic FOrmats .......ccccoiiiiiiiiiiiiiii s B-7
Other Document FOTMAts ..........cccoviiiiiiiiiiiiiicc e B-8

Restrictions on Format SUPPOTrt..........ccccooviviiiiiiiiiiiii s B-9

C Text Loading Examples for Oracle Text

SQL INSERT Examplle..........cccccooiviiiiiiiiiiiiiic s C-1
SQL*Loader EXample ..o s C-1
Creating the Table ......ccooiiiii s C-1
Issuing the SQL*Loader Command...........coorueioiiiinieiiiicieccie e C-2
Example Control File: | oader 1. dat ... C-2
Example Data File: | 0ader 2. dat .........ccccooiiiiiiiiiccceeecccreeeeeeeeee s C-2
Structure of ctxload Thesaurus Import File ... C-3
Alternate Hierarchy Structure...........cccccociiiiiiiiiiiiiininiiiiics C-5
Usage Notes for Terms in Import FIles ... C-5
Usage Notes for Relationships in Import Files ..o C-6
Examples of IMport Files ..o C-6
Example 1 (Flat StructUIe) .......ccooviiiiiiiiiiiiiiicccec s C-7
Example 2 (Hierarchical).........cccocoviiiiiiiiiiiiiiiiiiiiccccccs C-7
EXaMPLE 3 ..o s C-7

D Oracle Text Multilingual Features

INEFOAUCHON ... D-1
INAEXING ...oviiiiiii s D-1
INA@X TYPES ..eeiiitte s D-1
CONTEXT INA@X TYPE ..vviiiiiiiiiciiici s D-1
CTXCAT INAEX TYPE ..ttt D-1
CTXRULE INA@X TYPE...ouiuiiiiiiiiicieiieicit ittt D-2

LeXOT TYPOS vttt D-2
Basic Lexer FEatUres. ..ot D-3
Theme INAEXING......coooiiiiieiei e D-3

Xiii



Xiv

Alternate SPeLliNg ..o D-3

Base Letter CONVETISION ......ccoiviiiiiiiiiiiiiiciciiceee s D-3
COMPOSILE ...t D-3

INAEX SEEIMS ...t D-3

Multi LeXer FEAtULES .......c.cciiiiiiiiiiiiiciicic e D-3
WOTld Lexer FEatUres ..o D-4
QUETYIIG ..o s D-6
ABOUT OPeIator .....cuoviiieiiiiiiiieiceeec s D-6
FUZZY OPEIator.... ..ot s D-6
StEM OPEIALOT ....viiieieiit s D-6
Supplied StOP Lists ........ccoviiiiiiiiiiiii s D-6
KNOWIEAGE BASE ... s D-6
Knowledge Base EXteNSION..........ccuoiiiiiiiiiiici it D-6
Multi-Lingual Features MatriX ...........cccccovviiiiiiiininiiiiii s D-7

Oracle Text Supplied Stoplists

English Default StOplist...........cccccooiiiiiiiiiiiiiiii s E-1
Chinese Stoplist (Traditional)..........cccocoeieirnirieiiineccccrect et nene E-2
Chinese Stoplist (Simplified) ..o E-2
Danish (dk) Default StOPIList............ccccoviiiiiiiiiiiiiiiiiiiiii s E-2
Dutch (nl) Default SToPList...........ccooiiiiiiiiii s E-3
Finnish (sf) Default StOPlist............cccccovviiiiiiiiiiiiiiiic s E-3
French (f) Default Stoplist ..o E-4
German (d) Default STOPLIST.........ccceceririiieiiniieiciccreec ettt se e E-4
Italian (i) Default StOPList...........cccocoviiiiiiiiiiiiiiii E-5
Portuguese (pt) Default StOPlist............ccccovviiiiiiiiiiiiiiiiii s E-6
Spanish (€) Default STOPList ...........ccooviiiiiiii s E-6
Swedish (s) Default Stoplist .............ccccovviiiiiiii E-7

The Oracle Text Scoring Algorithm

Scoring Algorithm for Word Queries ..o F-1
EXAQMIPLE ..ot s F-2
DML QNd SCOTING .....vviiiiiiciieiiicieicieeeeeie ettt F-2

Oracle Text Views

CTX_CLASSES ...ttt et e ene G-2
CTX_INDEXES ...ttt ettt et s s saesa e nne G-2
CTX_INDEX_ERRORS ..ottt ettt sb e sttt sttt et ettt st e s b e G-3
CTX_INDEX_OBJECTS ...ttt ettt e e G-3
CTX_INDEX_PARTITIONS .......ootiiititteieteeetctete ettt G-3
CTX _INDEX_SETS ...ttt ettt ettt sa ettt et ettt st e be e b sa b e G-4
CTX_INDEX_SET _INDEXES........cccootirieeeeeeereeseee et e G-4
CTX_INDEX_SUB_LEXERS.......cociritiiiiiiiiiieteiceteteee sttt ettt G-4
CTX_INDEX_SUB_LEXER_VALUES ......ccccoiiiiiineneeeetestestetetetetene ettt st sve e s ne e G-5
CTX_INDEX_VALUES ...ttt ettt G-5
CTX _OBJECTS ...ttt sttt ettt s sae e n e G-5



CTX_OBJECT_ATTRIBUTES .......cooiiiiiiiiiieetteneete ettt ettt G-5

CTX_OBJECT_ATTRIBUTE_LOV ..ottt sttt ettt ettt st sve e e s sne e G-6
CTX_PARAMETERS. ..ottt G-6
CTX _PENDING. .......oooiiiiiiiiie ettt s st sttt et s s sae e b e G-7
CTX_PREFERENCQCES.........oocioiitiiitietetetetetete ettt sttt sttt ettt st ebe e s sa b e G-8
CTX_PREFERENCE_VALUES .......ccoooiiiiiieceeee ettt e G-8
CTX_SECTIONS. ...ttt sttt et s s sae b nenne G-8
CTX_SECTION_GROUPS ......coooititiiietitctetetetet ettt sttt sttt ettt ettt st be e sae s s e G-9
CTX_SQES .ttt ettt G-9
CTX_STOPLISTS ...ttt sttt ettt s s saesaea e G-9
CTX_STOPWORDS ...ttt ettt ettt sttt b e s st e a ettt ettt sae bt sae s s e G-9
CTX_SUB_LEXERS ...ttt G-9
CTX_THESAURI ..ottt sttt ettt e G-10
CTX_THES_PHRASES ...ttt ettt ettt sttt ettt ettt et sttt sae bbb saeaenee G-10
CTX_TRACE_VALUES. ...ttt ettt ne G-10
CTX_USER _INDEXES........cocootiiitiiiiiieiet ettt sttt ettt s sa e G-10
CTX_USER_INDEX_ERRORS......c.cotiititiiiteteietntetteeste sttt sttt ettt sae e seeaene G-11
CTX_USER_INDEX_OBJECTS ......coooiiiiiiieereeretrreeereesree et neene G-12
CTX_USER_INDEX_PARTITIONS ......ccoioiiiiiiiiiiiieneteetetcteetetetee et G-12
CTX_USER _INDEX_SETS ...ttt sttt ettt ettt st sa e b s e eaenne G-13
CTX_USER_INDEX_SET_INDEXES.......ccocoitiiriiiirereneeeeee e G-13
CTX_USER_INDEX_SUB_LEXERS .......c.cceoiiiiiiiiiennteetetcteetetetee e G-13
CTX_USER_INDEX_SUB_LEXER_VALS........ccoootitrtiininietetcteteteteteeeie et sae e e e G-13
CTX_USER_INDEX_VALUES ...ttt ene G-14
CTX_USER _PENDING ......ccooiiiiiiiiiiiieteictctetet ettt sttt ettt G-14
CTX_USER_PREFERENCES .........cocotiiitiiititetetntetteeste sttt ettt ettt sttt s e saeaeane G-14
CTX_USER_PREFERENCE_VALUES .......ccocciriiiriiiiineneneeeeeee e G-14
CTX_USER _SECTIONS. .......ooiiiittetetcteetet ettt ettt s s G-15
CTX_USER_SECTION_GROUPS.........ccoootiititritrteteeestestestestestetete ettt sae s sa e ne G-15
CTX_USER _SQES ...ttt ne G-15
CTX_USER _STOPLISTS ...ttt sttt ettt s s G-15
CTX_USER_STOPWORDS .......ooottitititeteietetetetetette sttt ettt ettt sttt sae b s b sse e aenne G-16
CTX_USER_SUB_LEXERS .....ccooiiiiiiiiiereereereetrtete ettt G-16
CTX_USER _THESAURI ..ottt s G-16
CTX_USER_THES_PHRASES ...ttt sttt ettt et sttt s sa s aee G-16
CTX_VERSION ...ttt sttt sttt ne G-17

Stopword Transformations in Oracle Text

Understanding Stopword Transformations ... H-1
WOrd TranSfOIMAtIONS ......c.cceevieiiiitieiesieriet ettt ettt te ettt e st st e st e s e s essessesseseessesseseeseesessesans H-2
AND TransformMAatioNs ........cc.eeeevieiieiiieieerie ettt ste et et e e e reebesseesaesreesessaeseesaesseessesesssensenns H-2
OR TransfOTMAtIONS ......ccveieirieieieisesertesest ettt esteeeeesessessessessessessessessessessessessassesessessessensenes H-2
ACCUMulate TranSfOrmMations .........ccceeueivirierierieeeieeiereereereee e sresr et se s et essesaeseeseeseeseesessessenns H-3
MINUS TranSfOrMAtIONS .....c.cceeierieeitierieiteeeesteseesteeeesteeeesteeseeseesesseessesseessesssessesssesseessessesssessenns H-3
NOT TransSfOrmMAtiONS ......c.cceeveviriiririerirteriestesietesteteteeetesessessessessessessessessessessessessessesessessessessenss H-3
EQUIValence TransSfOrmations .........ccccceeievierievierieeeeieeereereeeesessessessessessessessessessesseseessssessessessenns H-3
NEAR TransSfOIMatiONS ......cc.cceevieiieiiietieitieeeiteeeesteeteesteeaesteeseeseesesseessesssessesssessesssessesssessesssessenes H-4

XV



Index

XVi

Weight Transformations ..

Threshold TranSfOITNATIONS .....covviiiieeiiieeeieeeeeeeeete ettt e et e e et e e s eaeeessaaeeesnseeessaeeessnaeesnnees

WITHIN Transformations



Send Us Your Comments

Oracle Text Reference 10g Release 1 (10.1.0.3)
Part No. B10730-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

«  Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XVii



XViii



Audience

Preface

This manual provides reference information for Oracle Text. Use it as a reference for
creating Oracle Text indexes, for issuing Oracle Text queries, for presenting
documents, and for using the Oracle Text PL/SQL packages.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Structure

= Related Documentation

« Conventions

Oracle Text Reference is intended for an Oracle Text application developer or a system
administrator responsible for maintaining the Oracle Text system.

To use this document, you need experience with the Oracle relational database
management system, SQL, SQL*Plus, and PL/SQL. See the documentation provided
with your hardware and software for additional information.

If you are unfamiliar with the Oracle RDBMS and related tools, see the Oracle Database
Concepts, which is a comprehensive introduction to the concepts and terminology used
throughout Oracle documentation.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessibility/

Xix



Structure

XX

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

This document contains:

Chapter 1, "Oracle Text SQL Statements and Operators"
This chapter describes the SQL statements and operators you can use with Oracle Text.

Chapter 2, "Oracle Text Indexing Elements”
This chapter describes the indexing types you can use to create an Oracle Text index.

Chapter 3, "Oracle Text CONTAINS Query Operators"
This chapter describes the operators you can use in CONTAI NS queries.

Chapter 4, "Special Characters in Oracle Text Queries"
This chapter describes the special characters you can use in CONTAI NS queries.

Chapter 5, "CTX_ADM Package"
This chapter describes the procedures in the CTX_ADMPL/SQL package.

Chapter 6, "CTX_CLS Package"
This chapter describes the procedures in the CTX_CLS PL/SQL package.

Chapter 7, "CTX_DDL Package"

This chapter describes the procedures in the CTX_DDL PL/SQL package. Use this
package for maintaining your index.

Chapter 8, "CTX_DOC Package"

This chapter describes the procedures in the CTX_DOCPL/SQL package. Use this
package for document services such as document presentation.

Chapter 9, "CTX_OUTPUT Package"

This chapter describes the procedures in the CTX_QUTPUT PL/SQL package. Use this
package to manage your index error log files.

Chapter 10, "CTX_QUERY Package"

This chapter describes the procedures in the CTX_QUERY PL/SQL package. Use this
package to manage queries such as to count hits and to generate query explain plan
information.



Chapter 11, "CTX_REPORT"

This chapter describes the procedures in the CTX_REPORT PL/SQL package. Use this
package to create various index reports.

Chapter 12, "CTX_THES Package"

This chapter describes the procedures in the CTX_THES PL/SQL package. Use this
package to manage your thesaurus.

Chapter 13, "CTX_ULEXER Package"

This chapter describes the data types in the CTX_ULEXER PL/SQL package. Use this
package with the user defined lexer.

Chapter 14, "Oracle Text Executables”

This chapter describes the supplied executables for Oracle Text including ctxload, the
thesaurus loading program, and ctxkbtc, the knowledge base compiler.

Chapter 15, "Oracle Text Alternative Spelling"

This chapter describes how to handle terms that have multiple spellings, and it lists
the alternate spelling conventions used for German, Danish, and Swedish.

Appendix A, "Oracle Text Result Tables"

This appendix describes the result tables for some of the procedures in CTX_DCC,
CTX_QUERY, and CTX_THES packages.

Appendix B, "Oracle Text Supported Document Formats"

This appendix describes the supported document formats that can be filtered with the
Inso filter for indexing.

Appendix C, "Text Loading Examples for Oracle Text"
This appendix provides some basic examples for populating a text table.

Chapter D, "Oracle Text Multilingual Features"
This appendix describes the multilingual features of Oracle Text.

Appendix E, "Oracle Text Supplied Stoplists"
This appendix describes the supplied stoplist for each supported language.

Appendix F, "The Oracle Text Scoring Algorithm"
This appendix describes the scoring algorithm used for word queries.

Appendix G, "Oracle Text Views"
This appendix describes the Oracle Text views.

Appendix H, "Stopword Transformations in Oracle Text"
This appendix describes stopword transformations.

Related Documentation
For more information, see these Oracle resources:

For more information about Oracle Text, see:

XXi



«  Oracle Text Application Developer’s Guide

For more information about Oracle Database, see:
= Oracle Database Concepts

«  Oracle Database Administrator’s Guide

«  Oracle Database Utilities

= Oracle Database Performance Tuning Guide

= Oracle Database SQL Reference

= Oracle Database Reference

= Oracle Database Application Developer’s Guide - Fundamentals
For more information about PL/SQL, see:

«  PL/SQL User’s Guide and Reference

You can obtain Oracle Text technical information, collateral, code samples, training
slides and other material at:

http://otn.oracl e.com products/text/

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore.oracl e.com
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e.com nenbershi p/
If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle. com docunent ati on/

Conventions

XXii

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text
= Conventions in Code Examples

= Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.



Convention

Meaning

Example

Bold

Italics

UPPERCASE
nonospace
(fixed-w dth)
font

| ower case
nonospace
(fixed-wi dth)
font

| ower case
italic
nonospace
(fixed-wi dth)
f ont

Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font represents
placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBM5_STATS.GENERATE_STATS
procedure.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depar t nent _i d, depar t nent _nang, and
| ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization
parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these methods.

You can specify the par al | el _cl ause.

Run ol d_rel ease. SQ. where ol d_r el ease
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT usernane FROM dba_users WHERE usernane =

"M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[ 1] Anything enclosed in brackets is optional. DECIMAL (digits [ , precision ])
{1} Braces are used for grouping items. {ENABLE | DI SABLE}
| A Vgrtical bar represents a choice of two {ENABLE | DI SABLE}
options. [ COWPRESS | NOCOWPRESS]

XXiii



Convention Meaning Example
Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.
In addition, ellipsis points can mean an SELECT col 1, col2, ... , coln FROM
omission in code examples or text. enpl oyees;

Other symbols You must use symbols other than brackets acctbal NUVBER(11, 2);
([ 1), braces ({ }), vertical bars (1), and acct CONSTANT NUMBER(4) := 3;
ellipsis points (...) exactly as shown.

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password
variables for which you must supply DB_NAME = dat abase_nane
particular values.

UPPERCASE Uppercase typeface indicates elements SELECT | ast _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish  SE| ECT * FROM USER TABLES;
them from terms you define. Unless terms prop TABLE hr. enpl Byees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

| ower case Lowercase typeface indicates user-defined SELECT | ast _name, enpl oyee_id FROM
programmatic elements, such as names of  enpl oyees;
tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements usea ~ CREATE USER nj ones | DENTI FI ED BY ty3mU9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start >
menu item

File and directory
names

C\>

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:\oracl e\ or adat a>

XXV



Convention

Meaning

Example

Special characters

HOVE_NAME

ORACLE_HOME
and
ORACLE_BASE

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components, all
subdirectories were located under a top
level ORACLE_HQVE directory. The default
for Windows NT was C: \ or ant .

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by default is

C:\oracl e\ product\ 10. 1. 0. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C.\oracl e\ product\10. 1. 0\db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

C.\>exp HR/ HR TABLES=enpl oyees
QUERY=\ "WHERE j ob_i d=' SA REP' and
sal ary<8000\ "

C\> net start Oracl eHOVE_NAMETNSLI st ener

Go to the
ORACLE_BASE\ ORACLE_HQVE\ r dbns\ admni n

directory.

XXV



XXVi



What's New in Oracle Text?

This chapter describes new features of Oracle Text and provides pointers to additional
information.

Oracle Database 10g R1 New Features

The following features are new for this release:

Security Improvements

In previous versions of Oracle Text, CTXSYS had DBA privileges. To tighten security
and protect the database in the case of unauthorized access, CTXSYS now has only
CONNECT and RESOURCE roles, and only limited, necessary direct grants on some
system views and packages. Some applications using Oracle Text may therefore
require minor changes in order to work properly with this security change.

See Also: The Migration chapter in the Oracle Text Application
Developer’s Guide

Classification and Clustering
The following features are new for classification and clustering;:
= Supervised Training and Document Classification

The CTX_CLS. TRAI N procedure has been enhanced to support an additional
classifier type called Support Vector Machine method for the supervised training
of documents. The SVM method of training can produce better rules for
classification than the query-based method.

See Also: TRAIN in Chapter 6, "CTX_CLS Package" and the
Oracle Text Application Developer’s Guide

= Document Clustering

The new CTX_CLS. CLUSTERI NG procedure enables you to generate document
clusters. A cluster is a group of documents similar to each other in content.

See Also: CLUSTERING in Chapter 6, "CTX_CLS Package"and
the Oracle Text Application Developer’s Guide

XXVii



Indexing

XXviii

The following features are new for indexing.

Automatic and ON COVM T Synchronization for CONTEXT index

You can set the CONTEXT index to synchronize automatically either at intervals
you specify or at commit time.

See Also: Syntax for CONTEXT Indextype in Chapter 1, "Oracle
Text SQL Statements and Operators".
Transactional CONTEXT Indexes
The new TRANSACTI ONAL parameter to CREATE | NDEX and ALTER | NDEX

enables changes to a base table to be immediately queryable.

See Also: TRANSACTIONAL in Oracle Text SQL Statements and
Operators

Automatic Multi-Language Indexing

The new WORLD_LEXER lexer type includes automatic language detection in
documents, enabling you to index multilingual documents without having to
include a language column in a base table.

See Also:  WORLD_LEXER in Chapter 2, "Oracle Text Indexing
Elements"

Mail Filtering
Oracle Text can filter and index RFC-822 email messages. To do so, you use the
new MAI L_FI LTERfilter preference.

See Also: MAIL_FILTER in Chapter 2, "Oracle Text Indexing
Elements"

Fast Filtering of Binary Documents

New attributes for the | NSO_FI LTERand MAI L_FI LTER filter preferences offer
the option of significantly improving performance when filtering binary
documents. This fast filtering preserves only a limited amount of document
formatting.

See Also: INSO_FILTER and MAIL_FILTER in Chapter 2, "Oracle
Text Indexing Elements"

Support for creating local partitioned CONTEXT indexes in parallel

You can now create local partitioned CONTEXT indexes in parallel with CREATE
| NDEX.

See Also: CREATE INDEX in Chapter 1, "Oracle Text SQL
Statements and Operators"
MDATA section for adding metadata to documents

You can now add an MDATA section to a section group. MDATA sections define
metadata that enables you to perform mixed CONTAI NS queries faster.



See Also:  ADD_MDATA and ADD_MDATA_SECTION in
Chapter 7, "CTX_DDL Package"; MDATA in Chapter 3, "Oracle Text
CONTAINS Query Operators"; the section searching chapter in the
Oracle Text Application Developer’s Guide

ALTER TABLE enhanced support for partitioned tables

ALTER TABLE supports the UPDATE GLOBAL | NDEXES clause for partitioned
tables.

See Also: ALTER TABLE: Supported Partitioning Statements in
Chapter 1, "Oracle Text SQL Statements and Operators"
Binary Filtering for MULTI _COLUMN_DATASTCRE

The MULTI _COLUMN_DATASTCORE now enables you to filter binary columns into
text for concatenation with other columns during indexing. This datastore has also
been enhanced to switch its XML-like auto-tagging on and off.

See Also:  MULTI_COLUMN_DATASTORE in Chapter 2, "Oracle
Text Indexing Elements"
New XML Output Option for Index Reports

Several procedures and functions in the CTX_REPORT package now include a
report_format parameter that enables you to obtain index report output either as
plain text or XML.

See Also:  Chapter 11, "CTX_REPORT"

Replacing Index Metadata

You can replace index metadata (preference attributes) without having to rebuild
the index. You do this using the new METADATA keyword with ALTER | NDEX.

See Also: ALTER INDEX REBUILD Syntax in Chapter 1, "Oracle
Text SQL Statements and Operators"

New Columns for Oracle Text Views

Three Oracle Text views, CTX_OBJECT_ATTRI BUTES, CTX_| NDEX_ PARTI Tl ONS,
and CTX_USER | NDEX_ PARTI Tl ONS, have new columns.

See Also:  Appendix G, "Oracle Text Views"

New Options for Index Optimization

CTX_DDL. OPTI M ZE_| NDEX has two new optlevels. TOKEN_TYPE optimizes on
demand all tokens in the index matching the input token type. This is intended to
help users keep critical field sections or MDATA sections optimal. REBUI LD enables
CTX_DDL. OPTI M ZE_| NDEX to rebuild an index entirely.

See Also: OPTIMIZE_INDEX in Chapter 7, "CTX_DDL Package"

Log tokens During Index Optimization

The CTX_QUTPUT. EVENT_OPT_PRI NT_TOKEN event, which prints each token as
it is being optimized, can be used with CTX_OUTPUT. ADD_EVENT.

XXiX



See Also: ADD_EVENT in Chapter 9, "CTX_OUTPUT Package"

« Tracing
Oracle Text includes a tracing facility that enables you to identify bottlenecks in

indexing and querying.

See Also: ADD_TRACE in Chapter 9, "CTX_OUTPUT Package"
and the Oracle Text Application Developer’s Guide

= New German Spelling
Oracle Text now can index German words under both traditional and reformed

spelling.

See Also: New German Spelling in Chapter 15, "Oracle Text
Alternative Spelling"

Language Features
The following are new language features:
= Japanese Language Enhancements
Oracle Text supports stem queries in Japanese with the stem $ operator.

See Also: BASIC_WORDLIST in Chapter 2, "Oracle Text Indexing
Elements"
stem ($) operator in Chapter 3, "Oracle Text CONTAINS Query
Operators"

» Customization of Japanese and Chinese Lexicons

A new command, ct x| ¢, enables you to either modify the existing system
Japanese and Chinese dictionaries (lexicons) or create new dictionaries from the
merging of the system dictionaries with user-provided word lists. ctxlc also
outputs the contents of dictionaries as word files.

See Also:  Lexical Compiler (ctxlc) in Chapter 14, "Oracle Text
Executables"
« New character sets for the Chinese VGRAM lexer

The Chinese VGRAM lexer now supports the AL32UTF8 and ZHS32GB18030
character sets.

See Also: CHINESE_VGRAM_LEXER in Chapter 2, "Oracle Text
Indexing Elements"

Querying
= Query Template Enhancements
Query templating has been enhanced to provide the following features:

= progressive relaxation of queries, which enables you to progressively execute
less restrictive versions of a single query

XXX



query rewriting, which enables you to programatically rewrite any single
query into different versions to increase recall

query language specification

alternative scoring algorithms

See Also: CONTAINS in Chapter 1, "Oracle Text SQL Statements
and Operators"

The Querying chapter in the Oracle Text Application Developer’s
Guide

Query Log Analysis

Oracle Text now offers the capability to create a log of queries and to issue reports
on its contents, indicating, for example, the most or least frequent successful
queries.

See Also:
QUERY_LOG_SUMMARY in Chapter 11, "CTX_REPORT"

START_QUERY_LOG and END_QUERY_LOG in Chapter 9,
"CTX_OUTPUT Package"

XML DB Enhancements

Oracle Text has the following XML DB enhancements:

Better performance of exi st sNode() /CTXXPATH queries, with new support
for attribute existence searching, and positional predicates.

Support for positional predicate testing with | NPATHand HASPATH operators

See Also: Syntax for CTXXPATH Indextype in Chapter 1, "Oracle
Text SQL Statements and Operators"

Oracle XML DB Developer’s Guide

Overriding of Base-letter Transformations

A new BASI C_LEXER attribute, OVERRI DE_BASE_LETTER, prevents unexpected
results when base-letter transformations are combined with alternate spelling.

See Also: Overview of Alternative Spelling Features in
Chapter 15, "Oracle Text Alternative Spelling”"

Document Services
Highlighting with | NPATH and HASPATH
Oracle Text supports highlighting with | NPATH and HASPATH operators.

See Also: Chapter 8, "CTX_DOC Package"

CTX_DOC Enhancements for Policy-Based Document Services

With the new CTX_DOC. POLI CY_* procedures, you can perform document
highlighting and filtering without requiring a table or a context index.

See Also: Chapter 8, "CTX_DOC Package"

XXXI



XXX



1

Oracle Text SQL Statements and Operators

This chapter describes the SQL statements and Oracle Text operators you use for
creating and managing Text indexes and performing Text queries.

The following statements are described in this chapter:

ALTER INDEX

ALTER TABLE: Supported Partitioning Statements
CATSEARCH

CONTAINS

CREATE INDEX

CATSEARCH

MATCHES

MATCH_SCORE

SCORE

Oracle Text SQL Statements and Operators 1-1



ALTER INDEX

ALTER INDEX

Note: This section describes the ALTER | NDEX statement as it
pertains to managing a Text domain index.

For a complete description of the ALTER | NDEX statement, see
Oracle Database SQL Reference.

Purpose

Use ALTER | NDEX to perform the following maintenance tasks for a CONTEXT,
CTXCAT, or CTXRULE index:

All Indextypes

You can use ALTER INDEX to perform the following task on all Oracle Text index
types:

= Rename the index or index partition. See ALTER INDEX RENAME Syntax.

= Rebuild the index using different preferences. Some restrictions apply for the
CTXCAT indextype. See ALTER INDEX REBUILD Syntax.

= Add stopwords to the index. See ALTER INDEX REBUILD Syntax.

CONTEXT and CTXRULE Indextypes

You can use ALTER INDEX to perform the following task on CONTEXT and
CTXRULE indextypes:

= Resume a failed index operation (creation/optimization).
= Process DML in batch (synchronize).

= Optimize the index, fully or by token.

= Add sections and stop sections to the index.

= Replace index meta data.

See Also: ALTER INDEX REBUILD Syntax to learn more about
performing these tasks.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER | NDEX [schena.]index_name RENAME TO new_i ndex_nane;
ALTER I NDEX [schena. ]i ndex_nane RENAME PARTI TI ON part_nane TO new part _narme;

[schema.]index_name
Specify the name of the index to rename.

new_index_name

Specify the new name for schema. i ndex. The new_i ndex_name parameter can be
no more than 25 bytes. If you specify a name longer than 25 bytes, Oracle Text returns
an error and the renamed index is no longer valid.

1-2 Oracle Text Reference



ALTER INDEX

Note: When new_i ndex_narre is more than 25 bytes and less
than 30 bytes, Oracle Text renames the index, even though the
system returns an error. To drop the index and associated tables,
you must DROP new_i ndex_nane with the DROP INDEX
statement and then re-create and drop i ndex_nane.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

The following syntax is used to rebuild the index, rebuild an index partition, resume a
failed operation, perform batch DML, replace index metadata, add stopwords to
index, add sections and stop sections to index, or optimize the index:

ALTER | NDEX [schema.]index REBU LD [ PARTI TI ON partnane] [ONLINE] [ PARAMETERS
(paramstring)] [ PARALLEL N ;

PARTITION partname
Rebuilds the index partition par t name. Only one index partition can be built at a
time.

When you rebuild a partition you can specify only SYNC, OPTIMIZE FULL/FAST,
RESUME, or REPLACE in paramstring. These operations work only on the par t nane
you specify. You cannot specify RESUME when you rebuild partitions or a partitioned
index.

With the REPLACE operation, you can only specify MEMORY and STORAGE for each
index partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL
statement. When you add a partition to an indexed table, Oracle Text automatically
creates the metadata for the new index partition. The new index partition has the same
name as the new table partition. You can change the index partition name with ALTER
I NDEX RENAME. To populate the new index partition, you must rebuild it with ALTER
| NDEX REBUI LD.

Splitting or Merging Partitions Splitting or merging a table partition with ALTER
TABLE renders the index partition(s) invalid. You must rebuild them with ALTER
| NDEX REBUI LD.

[ONLINE]
Optionally specify the ONLI NE parameter for nonblocking operation, which enables
the index to be queried during an ALTER | NDEX synchronize or optimize operation.

ONLI NE enables you to continue to perform updates, inserts, and deletes on a base
table; it does not enable you to query the base table.

You cannot use PARALLEL with ONLINE. ONLINE is only supported for CONTEXT
indexes.

Note: You can specify replace or resume when rebuilding and
index ONLINE, but you cannot specify replace or resume when
rebuilding an index partition ONLINE.

Oracle Text SQL Statements and Operators 1-3



ALTER INDEX

PARAMETERS (paramstring)
Optionally specify paramstring. If you do not specify paramstring, Oracle Text rebuilds the
index with existing preference settings.

The syntax for paramstring is as follows:

paranstring =
" REPLACE
[ DATASTORE dat astore_pref]
[FILTER filter_pref]
[ LEXER | exer _pref]
[ WORDLI ST wordl i st_pref]
[ STORAGE storage_pref]
[ STOPLI ST stoplist]
[ SECTI ON GROUP secti on_group]
[ MEMORY nensi ze]
[ NDEX SET index_set]

[ METADATA pref erence new_pref erence]
[ [ METADATA] SYNC (MANUAL | EVERY "interval-string” | ON COWMT)]
[ [ METADATA] TRANSACTI ONAL| NONTRANSACTI ONAL

| RESUME [nenory nensize]

| OPTIM ZE [token index_token | fast | full [maxtinme (time | unlimted)]
| SYNC [menory mensi ze]

| ADD STOPWORD wor d [l anguage | anguage]

| ADD ZONE SECTI ON section_nane tag tag

| ADD FI ELD SECTION section_name tag tag [(VISIBLE | | NVISIBLE)]

| ADD ATTR SECTI ON section_nane tag tag@ttr

| ADD STOP SECTION tag'

REPLACE [optional_preference_list]
Rebuilds an index. You can optionally specify preferences, your own or
system-defined.

You can only replace preferences that are supported for that index type. For instance,
you cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the
CTXCAT index type, you can replace only lexer, wordlist, storage index set, and
memory preferences.

If you are rebuilding a partitioned index with REPLACE, you can only specify
STORAGE and MEMORY.

See Also: Chapter 2, "Oracle Text Indexing Elements" for more
information about creating and setting preferences, including
information about system-defined preferences.

REPLACE METADATA preference new_preference

Replaces the existing preference class settings, including SYNC parameters, of the index
with the settings from new_preference. Only index preferences and attributes are
replaced. The index is not rebuilt.

This command is useful for when you want to replace a preference and its attribute
settings after the index is built, without reindexing all data. Reindexing data can
require significant time and computing resources.

This command is also useful for changing the type of SYNC, which can be automatic,
manual, or on-commit.

ALTER | NDEX REBUI LD PARAMETER (' REPLACE METADATA' ) does not work for
a local partitioned index at the index (global) level; you cannot, for example, use this

1-4 Oracle Text Reference



ALTER INDEX

syntax to change a global preference, such as filter or lexer type, without rebuilding
the index. Use CTX_DDL.REPLACE_INDEX_METADATA instead.

When should I use the METADATA keyword? REPLACE METADATA should be used
only when the change in index metadata would not lead to an inconsistent index,
which can lead to incorrect query results.

For example, you can use this command in the following instances:

= to go from a single-language lexer to a multi-lexer in anticipation of multi-lingual
data. For an example, see "Replacing Index Metadata: Changing Single-lexer to
Multi-lexer" on page 1-11.

= tochange the W LDCARD_NMAXTERMS setting in BASIC_WORDLIST.
= to change the type of SYNC, which can be automatic, manual, or on-commit.

These changes are safe and would not lead to an inconsistent index that might
adversely affect your query results

Caution: The REPLACE METADATA command can result in
inconsistent index data, which can lead to incorrect query results.
As such, Oracle does not recommend using this command, unless
you carefully consider the effect it will have on the consistency of
your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index
data. For example, Oracle does not advise you to use the METADATA keyword after
doing the following:

= changing the USER_DATASTORE procedure to a new PL/SQL stored procedure
that has different output.

= changing the BASIC_WORDLIST attribute PREFI X_| NDEX from NOto YES
because no prefixes have been generated for already-existing documents.
Changing it from YES to NO is safe.

« adding or changing BASI C_LEXER printjoin and skipjoin characters, since new
queries with these characters would be lexed differently from how these
characters were lexed at index time.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specify SYNC for automatic synchronization of the CONTEXT index when there is DML
to the base table. You can specify one of the following SYNC methods:

SYNC type Description

MANUAL No automatic synchronization. This is the default. You must
manually synchronize the index with CTX_DDL. SYNC_| NDEX.

Use MANUAL to disable ON COVMM T and EVERY synchronization.

Oracle Text SQL Statements and Operators 1-5



ALTER INDEX

SYNC type Description

EVERY interval-string ~ Automatically synchronize the index at a regular interval specified
by the value of interval-string. interval-string takes the same syntax
as that for scheduler jobs. Automatic synchronization using EVERY
requires that the index creator have CREATE JOB privileges.

Make sure that interval-string is set to a long enough period that
any previous sync jobs will have completed; otherwise, the sync job
may hang. interval-string must be enclosed in double quotes.

See Enabling Automatic Index Synchronization on page 1-39 for an
example of automatic sync syntax.

ON COMMIT Synchronize the index immediately after a commit. The commit
does not return until the sync is complete. (Since the
synchronization is performed as a separate transaction, there may
be a period, usually small, when the data is committed but index
changes are not.)

The operation uses the memory specified with the memory
parameter.

Note that the sync operation has its own transaction context. If this
operation fails, the data transaction still commits. Index
synchronization errors are logged in the CTX_USER_| NDEX_
ERRORS view. See Viewing Index Errors under CREATE | NDEX.

See Enabling Automatic Index Synchronization on page 1-39 for an
example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON
COW T, EVERY, or MANUAL). The type of sync specified in master parameter strings
applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

EVERY interval _string MEMORY nmem size PARALLEL paradegree ...

ON COWM T synchronizations can only be executed serially and at the same memory
size as at index creation.

Note: This command rebuilds the index. When you want to
change the SYNC setting without rebuilding the index, use the
REBUI LD REPLACE METADATA SYNC ( MANUAL | ON COW T)
operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACTI ONAL property on or off. For more
on TRANSACTI ONAL, see "TRANSACTIONAL" on page 1-38.

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.

To turn on TRANSACTI ONAL index property:
ALTER | NDEX nyi dx REBUI LD PARAMETERS(' repl ace metadata transactional');

or

ALTER | NDEX nyi dx REBUI LD PARAMETERS(' repl ace transactional');

To turn off TRANSACTI ONAL index property:

1-6 Oracle Text Reference



ALTER INDEX

ALTER | NDEX nyi dx REBUI LD PARAMETERS(' repl ace metadata nontransactional');

or
ALTER | NDEX nyi dx REBUI LD PARAVETERS('repl ace nontransactional');
RESUME [MEMORY memsize]

Resumes a failed index operation. You can optionally specify the amount of memory
to use with memsize.

Note: This ALTERI NDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]

Note: This ALTER| NDEX operation will not be supported in
future releases.

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Optimizes the index. Specify t oken, f ast, or ful | optimization. You typically
optimize after you synchronize the index.

When you optimize in t oken mode, Oracle Text optimizes only i ndex_t oken. Use
this method of optimization to quickly optimize index information for specific words.

When you optimize in f ast mode, Oracle Text works on the entire index, compacting
fragmented rows. However, in f ast mode, old data is not removed.

When you optimize in f ul I mode, you can optimize the whole index or a portion.
This method compacts rows and removes old data (deleted rows).

Note: Optimizing in f ul | mode runs even when there are no
deleted document rows. This is useful when you need to optimize
time-limited batches with the maxt i me parameter.

You use the maxt i me parameter to specify in minutes the time Oracle Text is to spend
on the optimization operation. Oracle Text starts the optimization where it left off and
optimizes until complete or until the time limit has been reached, whichever comes
first. Specifying a time limit is useful for automating index optimization, where you
set Oracle Text to optimize the index for a specified time on a regular basis.

When you specify maxtime unl i mi t ed, the entire index is optimized. This is the
default. When you specify 0 for maxt i me, Oracle Text performs minimal optimization.

You can log the progress of optimization by writing periodic progress updates to the
CTX_OUTPUT log. An event for CTX_OUTPUT. ADD_EVENT, called CTX_
OUTPUT. EVENT_OPT_PRI NT_TOKEN, prints each token as it is being optimized.

Note: This ALTERI NDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

Oracle Text SQL Statements and Operators 1-7



ALTER INDEX

SYNC [MEMORY memsize

Note: This ALTERI| NDEX operation will not be supported in
future releases.

To synchronize your index, use CTX_DDL.SYNC_INDEX.

Synchronizes the index. You can optionally specify the amount of runtime memory to
use with memsize. You synchronize the index when you have DML operations on your
base table.

Note: This ALTERI| NDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to CTXCAT indexes.

Memory Considerations The memory parameter memsize specifies the amount of
memory Oracle Text uses for the ALTER | NDEX operation before flushing the index to
disk. Specifying a large amount of memory improves indexing performance because
there is less I/O and improves query performance and maintenance because there is
less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful if you want to track indexing progress or when run-time memory
is scarce.

ADD STOPWORD word [language language]
Dynamically adds a stopword word to the index.

Index entries for word that existed before this operation are not deleted. However,
subsequent queries on word are treated as though it has always been a stopword.

When your stoplist is a multi-language stoplist, you must specify language.

The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag
Dynamically adds the zone section section_name identified by tag to the existing index.

The added section section_name applies only to documents indexed after this operation.
For the change to take effect, you must manually re-index any existing documents that
contain the tag.

The index is not rebuilt by this statement.

Note: This ALTERI NDEX operation applies only to CONTEXT and
CTXRULE indexes. It does not apply to ct xcat indexes.

See Also: "ALTER INDEX Notes" on page 1-12
ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
Dynamically adds the field section section_name identified by tag to the existing index.

Optionally specify VI Sl BLE to make the field sections visible. The default is
I NVI SI BLE.

See Also: CTX_DDL.ADD_FIELD SECTION for more
information on visible and invisible field sections.

1-8 Oracle Text Reference



ALTER INDEX

The added section section_name applies only to documents indexed after this operation.
For the change to affect previously indexed documents, you must explicitly re-index
the documents that contain the tag.

The index is not rebuilt by this statement.

Note: This ALTER | NDEX operation applies only to CONTEXT
CTXRULE indexes. It does not apply to CTXCAT indexes.

See Also: "ALTER INDEX Notes" on page 1-12

ADD ATTR SECTION section_name tag tag@attr

Dynamically adds an attribute section section_name to the existing index. You must
specify the XML tag and attribute in the form tag@attr. You can add attribute sections
only to XML section groups.

The added section section_name applies only to documents indexed after this operation.
Thus for the change to take effect, you must manually re-index any existing
documents that contain the tag.

The index is not rebuilt by this statement.

Note: This ALTER | NDEX operation applies only to CONTEXT
CTXRULE indexes. It does not apply to CTXCAT indexes.

See Also: "ALTER INDEX Notes" on page 1-12

ADD STOP SECTION tag

Dynamically adds the stop section identified by tag to the existing index. As stop
sections apply only to automatic sectioning of XML documents, the index must use the
AUTO_SECTI ON_GRCOUP section group. The tag you specify must be case sensitive and
unique within the automatic section group or else ALTER | NDEX raises an error.

The added stop section tag applies only to documents indexed after this operation. For
the change to affect previously indexed documents, you must explicitly re-index the
documents that contain the tag.

The text within a stop section is always searchable.
The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

See Also: "ALTER INDEX Notes" on page 1-12

Note: This ALTERI NDEX operation applies only to CONTEXT
indexes. It does not apply to CTXCAT indexes.

PARALLEL n

Optionally specify with n the parallel degree for parallel indexing. This parameter is
supported only when you use SYNC, REPLACE, and RESUME i n paramstring. The
actual degree of parallelism might be smaller depending on your resources.

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

Oracle Text SQL Statements and Operators 1-9



ALTER INDEX

You cannot use PARALLEL with ONLINE.

ALTER INDEX Examples

Resuming Failed Index

The following statement resumes the indexing operation on newsi ndex with 2
megabytes of memory:

ALTER | NDEX newsi ndex REBUI LD PARAMETERS('resume nenory 2M);

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with
new_st op.

ALTER | NDEX newsi ndex REBUI LD PARAMETERS('repl ace stoplist new stop');

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a
partitioned index. It then adds a new partition to the table and then rebuilds the index
with ALTER | NDEX:

PROVPT create partitioned table and popul ate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tabl values less than (10),
partition p_tab2 values less than (20),
partition p_tab3 values less than (30));

insert into part_tab values (1,'Actinidia deliciosa');

insert into part_tab values (8,'Distictis buccinatoria');

insert into part_tab values (12,'Actinidia quinata');

insert into part_tab values (18,'Distictis Rivers');

insert into part_tab values (21,' pandorea jasninoides Lady Di');
insert into part_tab values (28,' pandorea rosea');

commit;

PROVPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idxl, partition p_idx2, partition p_idx3);

PROVPT add a partition and populate it

alter table part_tab add partition p_tab4 values |ess than (40);
insert into part_tab values (32, 'passiflora citrina');

insert into part_tab values (33, 'passiflora alatocaerulea');
commi t;

The following statement rebuilds the index in the newly populated partition. In
general, the index partition name for a newly added partition is the same as the table
partition name, unless it is already been used. In this case, Oracle Text generates a new
name.

alter index part_idx rebuild partition p_tab4;
The following statement queries the table for the two hits in the newly added
partition:

select * frompart_tab where contains(b,' passiflora') >0;

1-10 Oracle Text Reference



ALTER INDEX

The foll owing statement queries the newy added partition directly:

select * frompart_tab partition (p_tab4) where contains(b,  passiflora') >0;

Replacing Index Metadata: Changing Single-lexer to Multi-lexer

The following example demonstrates how an application can migrate from
single-language documents (English) to multi-language documents (English and
Spanish) by replacing the index metadata for the lexer.

REM create a sinple table, which stores only english (American) text

create table sinple (text varchar2(80));
insert into sinple values ('the quick brown fox');
commi t;

REMwe' || create a sinple lexer to lex this english text

begin

ctx_ddl.create_preference(' us_|l exer','basic_|lexer');
end;
/

REM create a text index on the sinple table
create index sinple_idx on sinple(text)
i ndextype is ctxsys.context parameters ('lexer us_lexer');

REM we can query easily
select * fromsinple where contains(text, 'fox')>0;

REM now suppose we want to start accepting spani sh documents.
REM first we have to extend the table with a | anguage col um
alter table sinple add (lang varchar2(10) default 'us');

REM now |l et's create a spanish |exer,
begin
ctx_ddl .create_preference('e_l exer', ' basic_lexer');
ctx_ddl.set _attribute('e_lexer', base letter','yes');
end;
/
REM Then we create a multi-lexer incorporating our english and spanish |exers.
REM Note that the DEFAULT |exer is the exact sane |exer that we have already
REM i ndexed al | the docunents with.
begin
ctx_ddl.create_preference(' mlexer', ' multi_lexer');
ctx_ddl . add_sub_l exer('mlexer', 'default','us_lexer');
ctx_ddl . add_sub_l exer('mlexer', 'spanish','e_|lexer');
end;
/
REM now | et's replace our netadata
alter index sinmple_idx rebuild
paranmeters ('replace netadata | anguage colum lang |l exer mlexer');

REM we' re ready for some spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we didn't SYNC

insert into sinple values ('el zorro nmarré&oacute;n r&acute;pido’, 'e');
commi t;

exec ctx_ddl.sync_i ndex('sinple_idx");

REM now we can query the spanish data with base lettering:

select * fromsinple where contains(text, 'rapido')>0;

Oracle Text SQL Statements and Operators  1-11



ALTER INDEX

Optimizing the Index

Optimizing your index with ALTER | NDEX will not be supported in future releases. To
optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index

Synchronizing the index with ALTER | NDEX will not be supported in future releases.
To synchronize your index, use CTX_DDL.SYNC_INDEX.

Adding a Zone Section

To add to the index the zone section aut hor identified by the tag <aut hor >, issue the
following statement:

ALTER | NDEX nyindex REBU LD PARAMETERS(' add zone section author tag author');

Adding a Stop Section

To add a stop section identified by tag <f | uf f > to the index that uses the AUTO_
SECTI ON_GROUP, issue the following statement:

ALTER | NDEX nyi ndex REBU LD PARAMETERS(' add stop section fluff');

Adding an Attribute Section
Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">t was the best of tinmes.</book>
You want to create a separate section for the title attribute and you want to name the
new attribute section bookt i t | e. To do so, issue the following statement:

ALTER | NDEX nyindex REBU LD PARAMETERS(' add attr section booktitle tag
title@ook');

ALTER INDEX Notes

Related Topics

Add Section Constraints Before altering the index section information, Oracle Text
checks the new section against the existing sections to ensure that all validity
constraints are met. These constraints are the same for adding a section to a section
group with the CTX_DDL PL/SQL package and are as follows:

= You cannot add zone, field, or stop sections to a NULL_SECTI ON_GROUP.

= You cannot add zone, field, or attribute sections to an automatic section group.
= You cannot add attribute sections to anything other than XML section groups.
= You cannot have the same tag for two different sections.

« Section names for zone, field, and attribute sections cannot intersect.

= You cannot exceed 64 field sections.

= You cannot add stop sections to basic, HTML, XML, or news section groups.

« SENTENCE and PARAGRAPH are reserved section names.

CTX_DDL.SYNC_INDEX in Chapter 7, "CTX_DDL Package"
CTX_DDL.OPTIMIZE_INDEX in Chapter 7, "CTX_DDL Package"
CREATE INDEX

1-12 Oracle Text Reference



ALTER TABLE: Supported Partitioning Statements

ALTER TABLE: Supported Partitioning Statements

Purpose

Note: This section describes the ALTER TABLE statement as it
pertains to adding and modifying a partitioned text table with a
context domain index.

For a complete description of the ALTER TABLE statement, see
Oracle Database SQL Reference.

You can use ALTER TABLE to add, modify, split, merge, exchange, or drop a
partitioned text table with a context domain index. The following sections describe
some of the ALTER TABLE operations you can issue.

Modify Partition Syntax

Unusable Local Indexes
ALTER TABLE [schena.]table MODI FY PARTITION partition UNUSABLE LOCAL | NDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You
might mark an index partition unusable before you rebuild the index partition as
described in Rebuild Unusable Local Indexes.

If the index partition is not marked unusable, the rebuild command returns without
actually rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schenma.]table MODIFY PARTITION partition REBU LD UNUSABLE LOCAL
| NDEXES

Rebuilds the index partition corresponding to the specified table partition that has an
UNUSABLE status.

Note: If the index partition status is already VALID before you
issue this command, this command does NOT rebuild the index
partition. Do not depend on this command to rebuild the index
partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]tabl e ADD PARTITION [partition]
VALUES LESS THAN (val ue_list) [partition_description]

Adds a new partition to the high end of a range partitioned table.

To add a partition to the beginning or to the middle of the table, use ALTER TABLE
SPLIT PARTI TI ON.

The newly added table partition is always empty, and the context domain index (if
any) status for this partition is always VALI D. After doing DML, if you want to
synchronize or optimize this newly added index partition, you must look up the index

Oracle Text SQL Statements and Operators 1-13



ALTER TABLE: Supported Partitioning Statements

partition name, and issue the ALTER | NDEX REBUI LD PARTI Tl ONcommand. For
this newly added partition, index partition name is usually the same as the table
partition name, but if the table partition name is already used by another index
partition, the system assigns a name in the form of SYS_Pn.

By querying the USER | ND_PARTI Tl ONS view and comparing the Hl GH_VALUE
field, you can determine the index partition name for the newly added partition.

Merge Partition Syntax
ALTER TABLE [schema.]table
MERGE PARTI TIONS partitionl, partition2
[INTO PARTI TI ON [new partition] [partition_description]]
[ UPDATE GLOBAL | NDEXES]

Applies only to a range partition. This command merges the contents of two adjacent
partitions into a new partition and then drops the original two partitions. If the
resulting partition is non-empty, the corresponding local domain index partition is
marked UNUSABLE. Users can use ALTER TABLE MODI FY PARTI Tl ONto rebuild the
partition index.

For a global index, if you perform the merge operation without an UPDATE GLOBAL
I NDEXES clause, the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL | NDEXES clause after the operation, the index

will be valid, but you will still need to synchronize the index with CTX_DDL.SYNC_
INDEX for the update to take place, if the sync type is manual.

The naming convention for the resulting index partition is the same as in ALTER
TABLE ADD PARTI TI ON.

Split Partition Syntax

ALTER TABLE [schenma.]table

SPLIT PARTITION partition_nane_old

AT (value_list)

[into (partition_description, partition_description)]
[prallel_clause]

[ UPDATE GLOBAL | NDEXES]

Applies only to range partition. This command divides a table partition into two
partitions, thus adding a new partition to the table. The local corresponding index
partitions will be marked UNUSABLE if the corresponding table partitions are
non-empty. You can use ALTER TABLE MODI FY PARTI Tl ONto rebuild the partition
indexes.

For a global index, if you perform the split operation without an UPDATE GLOBAL

| NDEXES clause, the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL | NDEXES clause after the operation, the index
will be valid, but you will still need to synchronize the index with CTX_DDL.SYNC_
INDEX for the update to take place, if the sync type is manual.

The naming convention for the two resulting index partition is the same as in ALTER
TABLE ADD PARTI Tl ON.

Exchange Partition Syntax

ALTER TABLE [schena.]tabl e EXCHANGE PARTI TION partition WTH TABLE table
[ 1 NCLUDI NG EXCLUDI NG | NDEXES}
[ W TH W THOUT VALI DATI ON|

1-14 Oracle Text Reference



ALTER TABLE: Supported Partitioning Statements

[ EXCEPTI ONS | NTO [ schena. ]t abl e]
[ UPDATE GLOBAL | NDEXES]

Converts a partition to a non-partitioned table, and converts a table to a partition of a
partitioned table by exchanging their data segments. Rowids are preserved.

If EXCLUDI NG | NDEXES is specified, all the context indexes corresponding to the
partition and all the indexes on the exchanged table are marked as UNUSABLE. To
rebuild the new index partition this case, you can issue ALTER TABLE MODI FY
PARTI TI ON.

If I NCLUDI NG | NDEXES is specified, then for every local domain index on the
partitioned table, there must be a non-partitioned domain index on the
non-partitioned table. The local index partitions are exchanged with the corresponding
regular indexes.

For a global index, if you perform the exchange operation without an UPDATE
GLOBAL | NDEXES clause, the resulting index (if not NULL) will be invalid and must
be rebuilt. If you specify the UPDATE GLOBAL | NDEXES clause after the operation,
the index will be valid, but you will still need to synchronize the index with CTX_
DDL.SYNC_INDEX for the update to take place, if the sync type is manual.

Field Sections

Field section queries might not work the same if the non-partitioned index and local
index use different section id's for the same field section.

Storage

Storage is not changed. So if the index on the non-partitioned table $I table was in
tablespace XYZ, then after the exchange partition it will still be in tablespace XYZ, but
now it is the $I table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index the
table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects, same settings for
each object. Note: we only check that they are using the same object. But they should
use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised
and both the index and index partition will be | NVALI D. The user needs to manually
rebuild both index and index partition using ALTER | NDEX REBUI LD.

Truncate Partition Syntax

ALTER TABLE [schema. ]tabl e TRUNCATE PARTI TI ON [ DROP| REUSE STORAGE] [ UPDATE GLOBAL
| NDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index
partitions are also removed.

For a global index, if you perform the truncate operation without an UPDATE GLOBAL
I NDEXES clause, the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL | NDEXES clause after the operation, the index
will be valid.

Oracle Text SQL Statements and Operators 1-15



ALTER TABLE: Supported Partitioning Statements

ALTER TABLE Examples

Global Index on Partitioned Table Examples

The following example creates a range partitioned table with three partitions. Each
partition is populated with two rows. A global context index is then created. To
demonstrate the UPDATE GLOBAL | NDEXES clause, the partitions are split and
merged with an index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition pl values less than (10),
partition p2 values |ess than (20),
partition p3 values less than (30));

insert into tdrexglb_part values (
insert into tdrexglb_part values (
insert into tdrexglb_part values ( )
insert into tdrexglb_part values (18,'rowl8');
insert into tdrexglb_part values ( )
insert into tdrexglb_part values ( )

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20,' new ow20');
comit;

PROVMPT make sure query works
select * fromtdrexglb_part where contains(b,'rowl8') >0;

PROWPT split partition
alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update gl obal indexes;

PROVPT before sync
select * fromtdrexglb_part where contains(b,'rowll') >0;
select * fromtdrexglb_part where contains(b,'rowl8') >0;

exec ctx_ddl.sync_index('tdrexglb_parti')

PROVPT after sync
select * fromtdrexglb_part where contains(b,'rowll') >0;
select * fromtdrexglb_part where contains(b,'rowl8') >0;

PROVPT nerge partition
alter table tdrexglb_part nmerge partitions p22, p3
into partition pnew3 update gl obal indexes;

PROWPT before sync

select * fromtdrexglb_part where contains(b,'rowl8') >0;
select * fromtdrexglb_part where contains(b,'row28') >0;
exec ctx_ddl.sync_index('tdrexglhb_parti');

PROWPT after sync

select * fromtdrexglb_part where contains(b,'rowl8') >0;
select * fromtdrexglb_part where contains(b,'row28') >0;

1-16 Oracle Text Reference



ALTER TABLE: Supported Partitioning Statements

PROWPT drop partition
alter table tdrexglb_part drop partition pl update gl obal indexes;

PROVPT before sync
select * fromtdrexglb_part where contains(b,'rowl') >0;
exec ctx_ddl.sync_i ndex('tdrexglb_parti');

PROWPT after sync
select * fromtdrexglb_part where contains(b, ' rowl') >0;

PROWPT exchange partition
alter table tdrexgl b_part exchange partition pnew3d with table
tdrexgl b update gl obal indexes;

PROVPT before sync
select * fromtdrexglb_part where contains(b,' newow20') >0;
select * fromtdrexglb_part where contains(b,'row28') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');

PROWPT after sync

select * fromtdrexglb_part where contains(b,' newow20') >0;
select * fromtdrexglb_part where contains(b,'row28') >0;

PROWPT nove table partition

alter table tdrexglb_part move partition p2l update gl obal indexes;
PROVPT bhefore sync

select * fromtdrexglb _part where contains(b, ' rowll') >0;

exec ctx_ddl.sync_i ndex('tdrexglb_parti');
PROWPT after sync
select * fromtdrexglb_part where contains(b,'rowll') >0;

PROVPT truncate table partition
alter table tdrexglb_part truncate partition p2l update gl obal indexes;

update gl obal indexes;

Oracle Text SQL Statements and Operators 1-17



CATSEARCH

CATSEARCH

Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the
WHERE clause of a SELECT statement.

The grammar of this operator is called CTXCAT. You can also use the CONTEXT
grammar if your search criteria requires special functionality, such as thesaurus, fuzzy
matching, proximity searching or stemming. To utilize the CONTEXT grammar, use
the Query Template Specification in the t ext _quer y parameter as described in this
section.

About Performance

You use the CATSEARCH operator with a CTXCAT index mainly to improve mixed
query performance. You specify your text query condition with t ext _query and
your structured condition with st ruct ur ed_query.

Internally, Oracle Text uses a combined b-tree index on text and structured columns to
quickly produce results satisfying the query.

Limitation
If the optimizer chooses to use the functional query invocation, your query will fail.

The optimizer might choose functional invocation when your structured clause is
highly selective.

Syntax

CATSEARCH(

[ schema. ] col um,

text _query VARCHAR2,
structured_query VARCHAR?,
RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in col um.

« CATSEARCH query operations
= Query Template Specification (for using CONTEXT grammar)

CATSEARCH query operations

The CATSEARCH operator supports only the following query operations:
= Logical AND

« Logical OR(!)

« Logical NOT (-)

= ""(quoted phrases)

«  Wildcarding

These operators have the following syntax:

1-18 Oracle Text Reference



CATSEARCH

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b and c.
Logical OR alblc Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.
hyphen withno  a-b Hyphen treated as a regular character.
space

For example, if the hyphen is defined as
skipjoin, words such as web-site are
treated as the single query term website.

Likewise, if the hyphen is defined as a
printjoin, words such as web-site are
treated as web-site in the CTXCAT query
language.

" "abc" Returns rows that contain the phrase "a
bc".

For example, entering "Sony CD Player'
means return all rows that contain this
sequence of words.

1

@) (AB) I C Parentheses group operations. This
query is equivalent to the CONTAI NS
query (A &B) | C.

wildcard term* The wildcard character matches zero or
(right and double a*b more characters.
truncated) For example, do* matches dog, and gl*s

matches glass.
Left truncation not supported.

Note: Oracle recommends that you
create a prefix index if your application
uses wildcard searching. You set prefix
indexing with the BASIC_WORDLIST
preference.

The following limitations apply to these operators:

« The left-hand side (the column name) must be a column named in at least one of
the indexes of the index set.

= The left-hand side must be a plain column name. Functions and expressions are
not allowed.

= The right-hand side must be composed of literal values. Functions, expressions,
other columns, and subselects are not allowed.

= Multiple criteria can be combined with AND. ORis not supported.
For example, these expressions are supported:

catsearch(text, 'dog', 'foo > 15")
catsearch(text, 'dog', 'bar = '""SMTH"'")
catsearch(text, 'dog', 'foo between 1 and 15')
catsearch(text, 'dog', 'foo = 1 and abc = 123")

And these expression are not supported:

catsearch(text, 'dog', 'upper(bar) ='"A"'")
catsearch(text, 'dog', 'bar LIKE '"A%'")
catsearch(text, 'dog', 'foo = abc')

catsearch(text, 'dog', 'foo =1 or abc = 3")

Oracle Text SQL Statements and Operators 1-19



CATSEARCH

Examples

Query Template Specification

You specify a marked-up string that specifies a query template. You can specify one of
the following templates:

= query rewrite, used to expand a query string into different versions

= progressive relaxation, used to progressively issue less restrictive versions of a
query to increase recall

= alternate grammar, used to specify CONTAINS operators (See CONTEXT Query
Grammar Examples)

« alternate language, used to specify alternate query language

= alternate scoring, used to specify alternate scoring algorithms

See Also: The text_query parameter description for CONTAINS
on page 1-24 for more information about the syntax for these query
templates.

structured_query

Specify the structured conditions and the ORDER BY clause. There must exist an index
for any column you specify. For example, if you specify ' cat egory_i d=1 or der
by bid_cl ose', youmusthave an index for ' cat egory_i d, bid_cl ose' as
specified with CTX_DDL.ADD_I| NDEX.

With st ruct ur ed_query, you can use standard SQL syntax with only the following
operators:

. <=

. >=

. >

. <

« IN

« BETWEEN

«  AND (to combine two or more clauses)

Note: You cannot use parentheses () in the st ruct ur ed_query
parameter.

1. Create the Table
The following statement creates the table to be indexed.

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_cl ose date);

The following table inserts the values into the table:

I NSERT | NTO auction values(1, 'Sony CD Player', '20-FEB-2000");

I NSERT | NTO auction values(2, 'Sony CD Player', '24-FEB-2000");

I NSERT | NTO auction val ues(3, 'Pioneer DVD Player', '25-FEB-2000");
I NSERT I NTO auction val ues(4, 'Sony CD Player', '25-FEB-2000');

I NSERT | NTO auction val ues(5, 'Bose Speaker', '22-FEB-2000');

1-20 Oracle Text Reference



CATSEARCH

I NSERT | NTO auction val ues(6, 'Tascam CD Burner', '25-FEB-2000");
I NSERT I NTO auction values(7, 'N kon digital canera', '22-FEB-2000");
I NSERT | NTO auction values(8, 'Canon digital canera', '26-FEB-2000");

1. Create the CTXCAT Index
The following statements create the CTXCAT index:

begin

ctx_ddl.create_index_set('auction_iset');

ctx_ddl . add_i ndex("' auction_iset','bid_close');

end;

/

CREATE | NDEX auction_titlex ON auction(title) INDEXTYPE | S CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset');

1. Query the Table

A typical query with CATSEARCH might include a structured clause as follows to find
all rows that contain the word camera ordered by bi d_cl ose:

SELECT * FROM auction WHERE CATSEARCH(title, 'canera', 'order by bid_cl ose desc')>
0;

CATEGCRY_I D TITLE Bl D_CLOSE

8 Canon digital canmera 26- FEB-00
7 Nikon digital canera 22-FEB-00

The following query finds all rows that contain the phrase Sony CD Player and that
have a bid close date of February 20, 2000:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony CD Player"', 'bid_
close=""20-FEB-00""")> 0;

CATEGORY_I D TITLE Bl D_CLOSE

1 Sony CD Pl ayer 20- FEB- 00

The following query finds all rows with the terms Sony and CD and Player:
SELECT * FROM auction WHERE CATSEARCH(title, 'Sony CD Player', 'order by bid_close

desc')> 0;

CATEGORY_I D TITLE Bl D_CLCSE
4 Sony CD Pl ayer 25- FEB- 00
2 Sony CD Pl ayer 24- FEB- 00
1 Sony CD Pl ayer 20- FEB- 00

The following query finds all rows with the term CD and not Player:
SELECT * FROM auction WHERE CATSEARCH(title, 'CD - Player', 'order by bid_close
desc')> 0;

CATEGCRY_I D TITLE Bl D_CLOSE

6 Tascam CD Burner 25- FEB- 00

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, "CD | DVD | Speaker', 'order by bid_
cl ose desc')> 0;

Oracle Text SQL Statements and Operators  1-21



CATSEARCH

CATEGORY_I D TI TLE Bl D_CLOSE

3 Pioneer DVD Player  25-FEB-00

4 Sony CD Pl ayer 25- FEB- 00
6 Tascam CD Bur ner 25- FEB- 00
2 Sony CD Pl ayer 24-FEB-00
5 Bose Speaker 22-FEB- 00
1 Sony CD Pl ayer 20- FEB- 00

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, 'ABQUT(audi o equipnent)', NULL)> O;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in
CATSEARCH queries using the template feature.

PROVPT
PROWPT fuzzy: query = ?test
PROWPT shoul d match all fuzzy variations of test (for exanple, text)

select pk||' ==>"||text fromtest
where cat search(text
' <query>
<textquery grammar="context">
?test

</textquery>

<score datatype="integer"/>
</query>',"")>0
order by pk;

PROVPT
PROWPT fuzzy: query = !sail
PROVPT shoul d match all soundex variations of bot (for exanple, sell)

select pk||' ==>"||text fromtest
where cat search(text
' <query>
<textquery grammar="context">
I'sai

</textquery>

<score datatype="integer"/>
</query>',"")>0
order by pk;

PROWPT
PROVPT theme (ABCUT) query
PROVPT query: about (California)

select pk||' ==>"'||text fromtest
where catsearch(text,
' <query>

<textquery grammar="context">
about (Cal i forni a)
</textquery>
<score datatype="integer"/>
</query>',"'")>0
order by pk;

The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query.

- Create and popul ate table
create table BOOKS (1D nunber, |NFO varchar2(200), PUBDATE DATE);

1-22 Oracle Text Reference



CATSEARCH

Related Topics

insert into BOOKS val ues(1, '<author>NOAM CHOVBKY</ aut hor ><subj ect >Cl VI L
Rl GHTS</ subj ect ><| anguage>ENGL| SH</ | anguage><publ i sher>M T
PRESS</ publ i sher>', ' 01- NOV-2003');

insert into BOOKS val ues(2, '<author>N CANOR PARRA</ aut hor ><subj ect >PCEMS
AND ANTI POEMS</ subj ect ><I anguage>SPANI SH</ | anguage>
<publ i sher >VASQUEZ</ publ i sher>", ' 01-JAN-2001');

insert into BOOKS val ues(1, '<author>LUC SANTE</ aut hor ><subj ect >XM.
DATABASE</ subj ect ><| anguage>FRENCH</ | anguage><publ i sher >FREE
PRESS</ publ i sher>', ' 15- MAY-2002');

conmi t;

- Create index set and section group

exec
exec

exec

exec
exec
exec
exec

ctx_ddl
ct x_ddl

ctx_ddl

.create_index_set (' BOOK_| NDEX_SET");
.add_i ndex(' BOOKSET', ' PUBDATE' ) ;

.create_section_group(' BOOK_SECTI ON_GROUP' ,

" BASI C_SECTI ON_GROUP' ) ;

ctx_ddl .
.add_fiel d_section(' BOOK_SECTI ON_GROUP', ' SUBJECT' , " SUBJECT' )
.add_fiel d_section(' BOOK_SECTI ON_GROUP , ' LANGUAGE', ' LANGUAGE' ) ;
.add_fiel d_section(* BOOK_SECTI ON_GROUP , ' PUBLI SHER ,’ PUBLI SHER ):

ctx_ddl
ctx_ddl
ctx_ddl

add_fiel d_section(' BOOK_SECTI ON_GROUP' , ' AUTHOR , ' AUTHCR ) ;

- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
paraneters('index set book_index_set section group book_section_group');

- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
- W need to use query tenplate with CONTEXT grammar to access field
- sections with CATSEARCH

select id, info from books
where cat search(info,
' <query>

<t extquery grammar="context">

NOAM wi t hi n aut hor and english within |anguage

</textquery>
</ query>',
"order by pubdate')>0;

Syntax for CTXCAT Indextype in this chapter.

Oracle Text Application Developer’s Guide

Oracle Text SQL Statements and Operators 1-23



CONTAINS

CONTAINS

Syntax

Use the CONTAI NS operator in the WHERE clause of a SELECT statement to specify the
query expression for a Text query.

CONTAI NS returns a relevance score for every row selected. You obtain this score with
the SCORE operator.

The grammar for this operator is called CONTEXT. You can also use CTXCAT
grammar if your application works better with simpler syntax. To do so, use the Query
Template Specification in the t ext _quer y parameter as described in this section.

CONTAI NS(
[ schena. ] col um,
text _query VARCHAR2
[, abel NUVBER] )
RETURN NUMBER,

[schema.]Jcolumn
Specify the text column to be searched on. This column must have a Text index
associated with it.

text_query
Specify one of the following;:

= the query expression that defines your search in column.

« amarked-up document that specifies a query template. You can use one of the
following templates:

Query Rewrite Template

Use this template to automatically write different versions of a query before you
submit the query to Oracle Text. This is useful when you need to maximize the recall
of a user query. For example, you can program your application to expand a single
phrase query of 'cat dog' into the following queries:

{cat} {dog}

{cat} ; {dog}

{cat} AND {dog}

{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication.
In this example, the query returns documents that contain the phrase cat dog as well as
documents in which cat is near dog, and documents that have cat and dog.

This is done with the following template:

<query>
<textquery |ang="ENGLI SH' grammar="CONTEXT"> cat dog
<progressi on>

<seg><rewrite>transform (TOKENS, "{", "}", " "))</rewite></seq>
<seg><rewrite>transform(TOKENS, "{", "}", " ; "))</rewite></seq>
<seg><rewrite>transform (TOKENS, "{", "}", "AND"))</rewite></seq>
<seg><rewrite>transform (TOKENS, "{", "}", "ACCUM))</rewite></seq>

</ progressi on>
</textquery>
<score datatype="|NTEGER" al gorithm=" COUNT"/ >

1-24 Oracle Text Reference



CONTAINS

</ query>

The operator TRANSFORMis used to specify the rewrite rules and has the following
syntax (note that it uses double parentheses):

TRANSFORM (terms, prefix, suffix, connector))

Parameter Description

terms Specify the type of terms to be prodcued from the original query. You can
specify either TOKENS or THEMES

Specifying THEMES requires an installed knowledge base. A knowledge
base may or may not have been installed with Oracle Text. For more
information on knowledge bases, see the Oracle Text Application
Developer's Guide.

prefix Specify the literal string to be prepended to all the terms

suffix Specify the literal string to be appended to all the terms.

connector Specify the literal string to connect all the terms after applying prefix and
suffix.

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when
you increase recall by progressively issuing less restrictive versions of a query, so that
your application can return an appropriate number of hits to the user.

For example, the query of black pen can be progressively relaxed to:

bl ack pen

bl ack NEAR pen
bl ack AND pen
bl ack ACCUM pen

This is done with the following template

<query>
<textquery |ang="ENGLI SH' granmmar =" CONTEXT" >
<progr essi on>
<seq>bl ack pen</seq>
<seg>bl ack NEAR pen</seq>
<seg>bl ack AND pen</seq>
<seg>bl ack ACCUM pen</seq>
</ progressi on>
</textquery>
<score datatype="INTEGER' al gorithm=" COUNT"/>
</ query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or
CATSEARCH. Specifying an alternate grammar enables you to issue queries using
different syntax and operators.

For example, with CATSEARCH, you can issue ABOUT queries using the CONTEXT
grammar. Likewise with CONTAINS, you can issue logical queries using the
simplified CATSEARCH syntax.

The phrase ‘dog cat mouse’ is interpreted as a phrase in CONTAINS. However, with
CATSEARCH this is equivalent to a AND query of ‘dog AND cat AND mouse’. To

Oracle Text SQL Statements and Operators 1-25



CONTAINS

specify that CONTAINS use the alternate grammar, we can issue the following
template:
<query>

<textquery granmmar="CTXCAT">dog cat nouse</textquery>

<score datatype="integer"/>
</ query>

Alternate Language Template
Use this template to specify an alternate language.

<query><text query | ang="french">bon soir</textquery></query>

Alternate Scoring Template

Use this template to specify an alternate scoring algorithm. The following example
specifies that the query use the CONTEXT grammar and return integer scores using
the COUNT algorithm. This algorithm return score as number of query occurrences in
document.

<query>

<text query grammar="CONTEXT" |ang="english"> nustang </textquery>
<score datatype="I1NTEGER" al gorithm=" COUNT"/>

</ query>

Template Attribute Values
The following table gives the possible values for template attributes:

Tag Attribute Description Possible Values Meaning
grammar= Specify the grammar of =~ CONTEXT
the query. CTXCAT
datatype= Specify the type of INTEGER Returns score as
number returned as integer between 0
score. and 100.
Returns score as its
FLOAT high precision
floating point
number between 0
and 100.
algorithm= Specify the scoring DEFAULT Default.
algorithm to use. COUNT Returns scores as the
number of
occurrences in
document.
lang= Specify the language Any language
name. supported by Oracle

Database. See the
Oracle Database
Globalization Support
Guide.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the
following XML DTD:

<l ELEMENT query (textquery, score?)>
<! ELEMENT textquery (#PCDATA| progression)*>

1-26 Oracle Text Reference



CONTAINS

Returns

Example

<! ELEMENT progression (seq)+>

< ELEMENT seq (#PCDATA|rewrite)*>

< ELEMENT rewite (#PCDATA)>

<! ELEMENT score EMPTY>

<I ATTLI ST textquery granmar (context | ctxcat) #l MPLI ED>
<I ATTLI ST textquery |anguage CDATA #l MPLI ED>

<I ATTLI ST score datatype (integer | float) "integer">

<I ATTLI ST score algorithm (default | count) "default">

All tags and attributes values are case-sensitive.

See Also: Chapter 3, "Oracle Text CONTAINS Query Operators"
for more information about the operators you can use in query
expressions.

label
Optionally specify the label that identifies the score generated by the CONTAI NS
operator.

For each row selected, CONTAI NS returns a number between 0 and 100 that indicates
how relevant the document row is to the query. The number 0 means that Oracle Text
found no matches in the row.

Note: You must use the SCORE operator with a label to obtain this
number.

The following example searches for all documents in the in the t ext column that
contain the word oracle. The score for each row is selected with the SCORE operator
using a label of 1:

SELECT SCORE(1), title from newsindex
VWHERE CONTAINS(text, 'oracle', 1) > 0;

The CONTAI NS operator must be followed by an expression such as > 0, which
specifies that the score value calculated must be greater than zero for the row to be
selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAI NS
clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC,

The following example specifies that the query be parsed using the CATSEARCH
grammar:

SELECT id FROM test WHERE CONTAINS (text,
' <query>
<textquery |ang="ENGLI SH' gramrar="CATSEARCH' >
cheap pokenon
</textquery>
<score datatype="INTEGER'/ >
</ query> ) > 0;

Oracle Text SQL Statements and Operators 1-27



CONTAINS

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS
query. The example creates a CTXCAT and a CONTEXT index on the same table, and
compares the query results:

PROWPT create context and ctxcat indexes both with thene indexing on
PROVPT

create index tdrbqcqlOlx on test(text) indextype is ctxsys.context
parameters ('lexer theme_lexer');

create index tdrbgcqlOlcx on test(text) indextype is ctxsys.ctxcat
paranmeters ('lexer theme_|exer');

PROVPT *kk k% San Dego kkkkkkkkkkk
PROVPT *kkkk CU\ITEXT grammr kkkkkkkhkkkkk
PROWPT ** shoul d be interpreted as phrase query **
select pk||' ==>"||text fromtest

where contains(text,' San Diego')>0

order by pk;

PROVPT *kkkk San Dego kkkkkkkkhkkxk

PROVP *kk k% CTXCAT gl’an’mir kkkkkkkkhkkkk
PROVMPT ** should be interpreted as AND query ***

select pk||' ==>"||text fromtest
where contai ns(text,
' <query>

<textquery granmmar="CTXCAT">San Di ego</textquery>
<score datatype="integer"/>
</ query>')>0

order by pk;

PROWPT ***** Hit]ist from CTXCAT index ****x*kxxkx
select pk||" ==>"||text fromtest

where catsearch(text,' San Diego','")>0

order by pk;

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of black
pen is issued in sequence as black pen then black NEAR pen then black AND pen then
black ACCUM pen. Query hits are returned in this sequence with no duplication as long
as the application needs results.

select id fromdocs where CONTAINS (text,
<query>
<textquery |ang="ENGLI SH' granmmar =" CONTEXT" >
bl ack pen
<progr essi on>
<seg>hl ack pen</seq>
<seg>bl ack NEAR pen</seq>
<seg>bl ack AND pen<seq/ >
<seg>bl ack ACCUM pen<seq/ >
</ progressi on>
</textquery>
<score datatype="INTEGER" al gorithm=" COUNT"/>
</ query>')>0

Query relaxation is most effective when your application needs the top n hits to a
query, which you can obtain with the FIRST_ROWS hint or in a PL/SQL cursor.

1-28 Oracle Text Reference



CONTAINS

Notes

Related Topics

Query Rewrite Example

The following template defines a query rewrite sequence. The query of kukui nut is
rewritten as follows:

kukui} {nut}

kukui} ; {nut}

kukui} AND {nut}
kukui} ACCUM {nut}

select id fromdocs where CONTAINS (text, '
<query>
<textquery |ang="ENGLI SH' grammar="CONTEXT"> kukui nut
<progr essi on>

{
{
{
{

<seg><rewrite>transform (TOKENS, "{", "}", " "))</rewite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewite>/seq>
<seg><rewrite>transform((TOKENS, "{", "}", "AND"))</rewite><seq/>
<seg><rewrite>transform (TOKENS, "{", "}", "ACCUM))</rewite><seq/>

</ progressi on>
</textquery>
<score datatype="1NTEGER" al gorithm=" COUNT"/ >
</ query>')>0;

Querying Multi-Language Tables
With the multi-lexer preference, you can create indexes from multi-language tables.

At query time, the multi-lexer examines the session's language setting and uses the
sub-lexer preference for that language to parse the query. If the language setting is not
mapped, then the default lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in
several languages.

To limit your query to returning document of a given language, use a structured clause
on the language column.

Query Performance Limitation with a Partitioned Index
Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER
BY SCORE clause, query the partition. If you query the entire table and use an ORDER
BY SCORE clause, the query might not perform optimally unless you include a range
predicate that can limit the query to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * frompart_tab partition (p_tab4) where contains(b, oracle') > 0 ORDER BY
SCORE DESC;

Syntax for CONTEXT Indextype in this chapter
Chapter 3, "Oracle Text CONTAINS Query Operators"
Oracle Text Application Developer’s Guide

Oracle Text SQL Statements and Operators 1-29



CONTAINS

SCORE

1-30 Oracle Text Reference



CREATE INDEX

CREATE INDEX

Purpose

Note: This section describes the CREATE | NDEX statement as it
pertains to creating an Oracle Text domain index.

For a complete description of the CREATE | NDEX statement, see
Oracle Database SQL Reference.

Use CREATE | NDEX to create an Oracle Text index. An Oracle Text index is an Oracle
Database domain index of type CONTEXT, CTXCAT, CTXRULE or CTXXPATH.

You must create an appropriate Oracle Text index to issue CONTAI NS, CATSEARCH, or
MATCHES queries.

You cannot create an Oracle Text index on an Index Organized Table (I0T).

You can create the following types of Oracle Text indexes:

CONTEXT

This is an index on a text column. You query this index with the CONTAI NS operator in
the WHERE clause of a SELECT statement. This index requires manual synchronization
after DML. See Syntax for CONTEXT Indextype.

CTXCAT

This is a combined index on a text column and one or more other columns.You query
this index with the CATSEARCH operator in the WHERE clause of a SELECT statement.
This type of index is optimized for mixed queries. This index is transactional,
automatically updating itself with DML to the base table. See Syntax for CTXCAT
Indextype.

CTXRULE

This is an index on a column containing a set of queries. You query this index with the
MATCHES operator in the WHERE clause of a SELECT statement. See Syntax for
CTXRULE Indextype.

CTXXPATH

Create this index when you need to speed up existsNode() queries on an XMLIype
column. See Syntax for CTXXPATH Indextype.

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle
Database grants to create a b-tree index on the text column, you have sufficient
permission to create a text index. The issuing owner, table owner, and index owner can
all be different users, which is consistent with Oracle standards for creating regular
B-tree indexes.

Syntax for CONTEXT Indextype

Use this indextype to create an index on a text column. You query this index with the
CONTAI NS operator in the WHERE clause of a SELECT statement. This index requires
manual synchronization after DML.

Oracle Text SQL Statements and Operators 1-31



CREATE INDEX

CREATE | NDEX [schema.]index ON [schena.]tabl e(col um) I NDEXTYPE IS
ctxsys. context [ ONLI NE]

[LOCAL [(PARTITION [partition] [PARAVETERS(' paranstring')]

[, PARTITION [partition] [PARAMETERS(' paramstring )]])]

[ PARAMETERS( par anstring)] [PARALLEL n] [ UNUSABLE]];

[schema.]index
Specify the name of the Text index to create.

[schema.]table(column)
Specify the name of the table and column to index.

Your table can optionally contain a primary key if you prefer to identify your rows as
such when you use procedures in CTX_DOC. When your table has no primary key,
document services identifies your documents by RON D.

The column you specify must be one of the following types: CHAR, VARCHAR,
VARCHAR?, BLOB, CLOB, BFI LE, XMLType, or UR Type.

The table you specify can be a partitioned table. If you do not specify the LOCAL
clause, a global index is created.

DATE, NUMBER, and nested table columns cannot be indexed. Object columns also
cannot be indexed, but their attributes can be, provided they are atomic data types.

Attempting to create a index on a Virtual Private Database (VPD) protected table will
fail unless one of the following is true:

= The VPD policy is created such that it does not apply to INDEX statement type,
which is the default

= The policy function returns a null predicate for the current user.
» The user (index owner) is SYS.
= The user has the EXEMPT ACCESS POLICY privilege.

Indexes on multiple columns are not supported with the CONTEXT index type. You
must specify only one column in the column list.

Note: With the CTXCAT indextype, you can create indexes on text
and structured columns. See Syntax for CTXCAT Indextype in this
chapter.

ONLINE
Creates the index while enabling inserts/updates/deletes (DML) on the base table.

During indexing, Oracle Text enqueues DML requests in a pending queue. At the end
of the index creation, Oracle Text locks the base table. During this time DML is
blocked.

Limitations
The following limitations apply to using ONLINE:

= At the very beginning or very end of this process, DML might fail.
= Local partition index online creation not supported with ONLINE.
= ONLINE is supported for CONTEXT indexes only.

= ONLINE cannot be used with PARALLEL.

1-32 Oracle Text Reference



CREATE INDEX

LOCAL [(PARTITION [partition] [PARAMETERS('paramstring’)]

Specify LOCAL to create a local partitioned context index on a partitioned table. The
partitioned table must be partitioned by range. Hash, composite and list partitions are
not supported.

You can specify the list of index partition names with partition. If you do not specify a
partition name, the system assigns one. The order of the index partition list must
correspond to the table partition by order.

The PARAMETERS clause associated with each partition specifies the parameters
string specific to that partition. You can only specify sync (manual | every |on commit),
memory and storage for each index partition.

You can query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_
PARTITIONS to find out index partition information, such as index partition name,
and index partition status.

You cannot use the ONLINE parameter with this operation.

See Also: "Creating a Local Partitioned Index" on page 1-40

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE
clause, the query might not perform optimally unless you include a range predicate
that can limit the query to the fewest number of partitions, which is optimally a single
partition.

See Also: "Query Performance Limitation with a Partitioned
Index" in this chapter under CONTAINS.

PARALLEL n
Optionally specify with n the parallel degree for parallel indexing. The actual degree
of parallelism might be smaller depending on your resources.

You can use this parameter on non-partitioned tables. Creating a non-partitioned
index in parallel does not turn on parallel query processing.

Parallel indexing is supported for creating a local partitioned index.

See Also:

"Parallel Indexing" on page 1-40

"Creating a Local Partitioned Index in Parallel" on page 1-41
Performance Tuning chapter in Oracle Text Application Developer’s

Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

Oracle Text SQL Statements and Operators 1-33



CREATE INDEX

Note: Using PARALLEL to create a local partitioned index enables
parallel queries. (Creating a non-partitioned index in parallel does
not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily
loaded systems. Because of this, Oracle recommends that you
disable parallel querying after creating a local index. To do so, use
ALTER INDEX NOPARALLEL.

For more information on parallel querying, see the Performance
Tuning chapter in Oracle Text Application Developer’s Guide

Limitations
The following limitations apply to using PARALLEL:

= Parallel indexing is supported only for CONTEXT index
= PARALLEL cannot be used with ONLINE.

UNUSABLE
Create an unusable index. This creates index metadata only and exits immediately.

You might create an unusable index when you need to create a local partitioned index
in parallel.

See Also: "Creating a Local Partitioned Index in Parallel"

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences
owned by another user using the user.preference notation.

The syntax for par anst ri ng is as follows:

paramstring =

' [ DATASTORE dat ast ore_pref]
[FILTER filter_pref]
[ CHARSET COLUWN char set _col uim_nane]
[ FORVAT COLUWN for mat _col unmm_nane]

[ LEXER | exer _pref]
[ LANGUAGE COLUWN | anguage_col urm_nane]

[ WORDLI ST wordl i st_pref]

[ STORAGE storage_pref]

[ STOPLI ST stoplist]

[ SECTI ON GROUP section_group]

[ MEMORY nensi ze]

[ POPULATE | NCPOPULATE]

[ [ METADATA] SYNC (MANUAL | EVERY "interval-string” | ON COMT)]
[ TRANSACTI ONAL]

You create datastore, filter, lexer, wordlist, and storage preferences with CTX_
DDL.CREATE_PREFERENCE and then specify them in the paramstring.

1-34 Oracle Text Reference



CREATE INDEX

Note: When you specify no paramstring, Oracle Text uses the system
defaults.

For more information about these defaults, see "Default Index
Parameters" in Chapter 2.

DATASTORE datastore_pref

Specify the name of your datastore preference. Use the datastore preference to specify
where your text is stored.See Datastore Types in Chapter 2, "Oracle Text Indexing
Elements".

FILTER filter_pref

Specify the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text or HTML. See Filter Types in Chapter 2,
"Oracle Text Indexing Elements".

CHARSET COLUMN charset_column_name

Specify the name of the character set column. This column must be in the same table as
the text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this
column to specify the document character set for conversion to the database character
set. The value is case insensitive. You must specify a Globalization Support character

set string such as JA16EUC.

When the document is plain text or HTML, the | NSO_FI LTER and CHARSET filter use
this column to convert the document character set to the database character set for
indexing.

For all rows containing the keywords 'AUTO' or 'AUTOMATIC', Oracle Text will
apply statistical techniques to determine the character set of the documents and
modify document indexing appropriately.

You use this column when you have plain text or HTML documents with different
character sets or in a character set different from the database character set.

Note: Documents are not marked for re-indexing when only the
charset column changes. The indexed column must be updated to
flag the re-index.

FORMAT COLUMN format_column_name
Specify the name of the format column. The format column must be in the same table
as the text column and it must be CHAR, VARCHAR, or VARCHAR? type.

FORVAT COLUMWN determines how a document is filtered, or, in the case of the | GNORE
value, if it is to be indexed.

The | NSO_FI LTER uses the format column when filtering documents. Use this
column with heterogeneous document sets to optionally bypass filtering for plain text
or HTML documents.

In the format column, you can specify one of the following

«  TEXT
« BINARY
« | G\NORE

Oracle Text SQL Statements and Operators 1-35



CREATE INDEX

TEXT indicates that the document is either plain text or HTML. When TEXT is
specified the document is not filtered, but might be character set converted.

Bl NARY indicates that the document is a format supported by the | NSO_FI LTER
object other than plain text or HTML, such as PDF. Bl NARY is the default if the format
column entry cannot be mapped.

| GNORE indicates that the row is to be ignored during indexing. Use this value when
you need to bypass rows that contain data incompatible with text indexing such as
image data, or rows in languages that you do not want to process. The difference
between documents with TEXT and IGNORE format column types is that the former
are indexed but ignored by the filter, while the latter are not indexed at all. (Thus

| GNORE can be used with any filter type.)

Note: Documents are not marked for re-indexing when only the
format column changes. The indexed column must be updated to
flag the re-index.

LEXER lexer_pref

Specify the name of your lexer or multi-lexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See Lexer
Types in Chapter 2, "Oracle Text Indexing Elements".

LANGUAGE COLUMN language_column_name
Specify the name of the language column when using a multi-lexer preference. See
MULTI_LEXER in Chapter 2, "Oracle Text Indexing Elements".

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column is examined for language
identification.

For all rows containing the keywords 'AUTO' or 'AUTOMATIC', Oracle Text will
apply statistical techniques to determine the language of the documents and modify
document indexing appropriately.

Note: Documents are not marked for re-indexing when only the
language column changes. The indexed column must be updated to
flag the re-index.

WORDLIST wordlist_pref

Specify the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See Wordlist Type in Chapter 2, "Oracle Text Indexing Elements".

STORAGE storage_pref

Specify the name of your storage preference for the Text index. Use the storage
preference to specify how the index tables are stored. See Storage Types in Chapter 2,
"Oracle Text Indexing Elements".

STOPLIST stoplist
Specify the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST in Chapter 7, "CTX_DDL Package".

1-36 Oracle Text Reference



CREATE INDEX

SECTION GROUP section_group

Specify the name of your section group. Use section groups to create searchable
sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP in
Chapter 7, "CTX_DDL Package".

MEMORY memsize
Specify the amount of run-time memory to use for indexing. The syntax for memsize is
as follows:

mensi ze = nunber[K|M G

where K stands for kilobytes., M stands for megabytes, and G stands for gigabytes.

The value you specify for mensi ze must be between 1M and the value of MAX_

| NDEX_MEMCORY in the CTX_PARAMETERS view. To specify a memory size larger
than the MAX_| NDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_
PARAMETER to be larger than or equal to mensi ze.

The default is the value specified for DEFAULT_| NDEX_MEMORY in CTX_PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing
before flushing the index to disk. Specifying a large amount memory improves
indexing performance because there are fewer I/O operations and improves query
performance and maintenance since there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

POPULATE | NOPOPULATE
Specify nopopulate to create an empty index. The default is populate.

Note: This is the only option whose default value cannot be set
with CTX_ADM.SET_PARAMETER.

This option is not valid with CTXXPATH indexes.

Empty indexes are populated by updates or inserts to the base table. You might create
an empty index when you need to create your index incrementally or to selectively
index documents in the base table. You might also create an empty index when you
require only theme and Gist output from a document set.

[METADATA] SYNC (MANUAL | EVERY "interval-string” | ON COMMIT)

Specify SYNC for automatic synchronization of the CONTEXT index when there are
inserts, updates or deletes to the base table. You can specify one of the following SYNC
methods:

SYNC type Description

MANUAL No automatic synchronization. This is the default. You must
manually synchronize the index with CTX_DDL. SYNC_| NDEX.

Oracle Text SQL Statements and Operators 1-37



CREATE INDEX

SYNC type Description

EVERY Automatically synchronize the index at a regular interval specified

"interval-string" by the value of interval-string. interval-string takes the same syntax
as that for scheduler jobs. Automatic synchronization using
EVERY requires that the index creator have CREATE JOB
privileges.

Make sure that interval-string is set to a long enough period that
any previous sync jobs will have completed; otherwise, the sync job
may hang. interval-string must be enclosed in double quotes, and
any single quote within interval-string must be escaped with
another single quote.

See Enabling Automatic Index Synchronization on page 1-39 for an
example of automatic sync syntax.

ON COMMIT Synchronize the index immediately after a commit. The commit
does not return until the sync is complete. (Since the
synchronization is performed as a separate transaction, there may
be a period, usually small, when the data is committed but index
changes are not.)

The operation uses the memory specified with the memory
parameter.

Note that the sync operation has its own transaction context. If this
operation fails, the data transaction still commits. Index
synchronization errors are logged in the CTX_USER_| NDEX_
ERRORS view. See Viewing Index Errors under CREATE | NDEX.

See Enabling Automatic Index Synchronization on page 1-39 for an
example of ON COMM T syntax.

Each partition of a locally partitioned index can have its own type of sync (ON
COW T, EVERY, or MANUAL). The type of sync specified in master parameter strings
applies to all index partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

EVERY interval _string MEMORY nem size PARALLEL paradegree ...

ON COWM T synchronizations can only be executed serially and at the same memory
size as at index creation.

See the Oracle Database Administrator’s Guide for information on job scheduling.

TRANSACTIONAL

Specify that documents can be searched immediately after they are inserted or
updated. If a text index is created with TRANSACTI ONAL enabled, then, in addition to
processing the synchronized rowids already in the index, the CONTAI NS operator will
process unsynchronized rowids as well. (That is, Oracle Text does in-memory
indexing of unsynchronized rowids and processes the query against the in-memory
index.)

TRANSACTI ONAL is an index-level parameter and does not apply at the partition level.

You must still synchronize your text indexes from time to time (with CTX_DDL. SYNC_
I NDEX) to bring pending rowids into the index. Query performance degrades as the
number of unsynchronized rowids increases. For that reason, Oracle recommends
setting up your index to use automatic synchronization with the EVERY parameter.
(See [METADATA] SYNC (MANUAL | EVERY "interval-string”" | ON COMMIT) on
page 1-37.)

1-38 Oracle Text Reference



CREATE INDEX

Transactional querying for indexes that have been created with the TRANSACTI ONAL
parameter can be turned on and off (for the duration of a user session) with the
PL/SQL variable CTX_QUERY. di sabl e_t ransacti onal _query. This is useful, for
example, if you find that querying is slow due to the presence of too many pending
rowids. Here is an example of setting this session variable:

exec ctx_query.disable_transactional _query := TRUE;

If the index uses | NSO_FI LTER, queries involving unsynchronized rowids will
require filtering of unsynchronized documents.

CREATE INDEX: CONTEXT Index Examples

The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

The following example creates a CONTEXT index called nmyi ndex on the docs column
in myt abl e. Default preferences are used.

CREATE | NDEX nyi ndex ON nytabl e(docs) | NDEXTYPE IS ctxsys. context;

See Also: For more information about default settings, see
"Default Index Parameters" in Chapter 2.

Also refer to Oracle Text Application Developer’s Guide.

Creating CONTEXT Index with Custom Preferences

The following example creates a CONTEXT index called rmyi ndex on the docs column
in nyt abl e. The index is created with a custom lexer preference called my_| exer and
a custom stoplist called ny_st op.

This example also assumes that the preference and stoplist were previously created
with CTX_DDL.CREATE_PREFERENCE for ny_| exer , and CTX_DDL.CREATE_
STOPLIST for my_st op. Default preferences are used for the unspecified preferences.

CREATE | NDEX nyi ndex ON mytabl e(docs) | NDEXTYPE IS ctxsys. cont ext
PARAMETERS(' LEXER ny_| exer STOPLI ST ny_stop');

Any user can use any preference. To specify preferences that exist in another user's
schema, add the user name to the preference name. The following example assumes
that the preferences my_| exer and my_st op exist in the schema that belongs to user
kenny:

CREATE | NDEX nyi ndex ON nytabl e(docs) | NDEXTYPE IS ctxsys. cont ext
PARAMETERS(' LEXER kenny. ny_| exer STOPLI ST kenny. ny_stop');

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular
intervals for inserts, updates and deletes to the base table. To do so, create the index
with the SYNC ( EVERY 'interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then
grant CREATE J(OB privileges.

The following example creates an index and schedules three synchronization jobs for
three index partitions. The first partition uses ON COMMIT synchronization. The
other two partitions are synchronized by jobs that are scheduled to be executed every
Monday at 3 PM.

Oracle Text SQL Statements and Operators 1-39



CREATE INDEX

CONNECT syst emf manager
GRANT CREATE JOB TO dr_test

CREATE | NDEX t dr maut 002x ON t dr naut 002(t ext)
| NDEXTYPE | S CTXSYS. CONTEXT | ocal
(PARTITION tdrmD2x_i 1 PARAMETERS('
MEMORY 20m SYNC(ON COM T)'),
PARTI TI ON t dr m02x_i 2,
PARTI TION tdrn02x_i3) PARAMETERS("
SYNC (EVERY " NEXT_DAY( TRUNC( SYSDATE), '' MONDAY'') + 15/24")

)
See the Oracle Database Administrator’s Guide for information on job scheduling syntax.

Creating CONTEXT Index with Multi-Lexer Preference

The multi-lexer decides which lexer to use for each row based on a language column.
This is a character column in the table which stores the language of the document in
the text column. For example, you create the table gl obal doc to hold documents of
different languages:

CREATE TABLE gl obal doc (
doc_i d NUMBER PRI MARY KEY,
| ang VARCHAR2( 10),
text CLOB

);

Assume that gl obal _| exer is a multi-lexer preference you created. To index the
gl obal _doc table, you specify the multi-lexer preference and the name of the
language column as follows:

CREATE | NDEX gl obal x ON gl obal doc(text) INDEXTYPE IS ctxsys.context PARAVETERS
(" LEXER gl obal _| exer LANGUAGE COLUWN | ang');

See Also: For more information about creating multi-lexer
preferences, see MULTI_LEXER in Chapter 2.

Creating a Local Partitioned Index

The following example creates a text table partitioned into three, populates it, and then
creates a partitioned index.

PROWPT create partitioned table and popul ate it
CREATE TABLE part _tab (a int, b varchar2(40)) PARTITI ON BY RANGE(a)
(partition p_tabl values less than (10),

partition p_tab2 values |ess than (20),
partition p_tab3 values less than (30));

PROWPT create partitioned index
CREATE | NDEX part _idx on part_tab(b) | NDEXTYPE | S CTXSYS. CONTEXT
LOCAL (partition p_idxl, partition p_idx2, partition p_idx3);

Parallel Indexing
Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This
example uses a parallel degree of 3:

CREATE | NDEX nyi ndex ON mytab(pk) | NDEXTYPE IS ctxsys.context PARALLEL 3;

1-40 Oracle Text Reference



CREATE INDEX

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have
multiple CPUs. With partitioned tables, you can divide the work. You can create a
local partitioned index in parallel in two ways:

=« Use the PARALLEL clause with the LOCAL clause in CREATE | NDEX. In this case,
the maximum parallel degree is limited to the number of partitions you have. See
Parallelism with CREATE INDEX

»  Create an unusable index first, then run the DBM5S_PCLXUTI L. BU LD_PART_
I NDEX utility. This method can result in a higher degree of parallelism, especially
if you have more CPUs than partitions. See Parallelism with DBMS_
PCLUTIL.BUILD_PART_INDEX.

If you attempt to create a local partitioned index in parallel, and the attempt fails, you
may see the following error message:

ORA-29953: error in the execution of the ODCl I ndexCreate routine for one or nore
of the index partitions

To determine the specific reason why the index creation failed, query the CTX_USER_
INDEX_ERRORS view.

Parallelism with CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in
CREATE | NDEX. In this case, the maximum parallel degree is limited to the number of
partitions you have.

The following example creates a table with three partitions, populates them, and then
creates the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values |ess than (2000),

partition p3 values |ess than (3000));

begin
for i in 0..2999
| oop
insert into part_tab3 values (i, 'oracle');
end | oop;
end;

/

create index part_tab3x on part_tab3(text)

i ndextype is ctxsys.context |ocal (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index,
then running the DBM5_PCLUTI L. BUI LD_PART_| NDEX utility. This method can
result in a higher degree of parallelism, especially when you have more CPUs than
partitions.

In this example, the base table has three partitions. We create a local partitioned
unusable index first, then run DBMS_PCLUTI L. BUI LD_PART_| NDEX, which builds
the 3 partitions in parallel (inter-partition parallelism). Also inside each partition,

Oracle Text SQL Statements and Operators  1-41



CREATE INDEX

index creation proceeds in parallel (intra-partition parallelism) with a parallel degree
of 2. Therefore the total parallel degree is 6 (3 times 2).

create table part_tab3(id nunber primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values |ess than (2000),

partition p3 values |ess than (3000));

begin
for i in 0..2999
| oop
insert into part_tab3 values (i, 'oracle');
end | oop;
end,

/

create index part_tab3x on part_tab3(text)

i ndextype is ctxsys.context local (partition part_tabxl,
partition part_tabx2,
partition part_tabx3)

unusabl e;

exec dbms_pcl xutil. build_part_index(jobs_per_bat ch=>3,
procs_per_j ob=>2,
tab_name=>' PART_TAB3',
i dx_nanme=>' PART_TAB3X ,
force_opt =>TRUE) ;

Viewing Index Errors

After a CREATE | NDEX or ALTER | NDEX operation, you can view index errors with
Oracle Text views. To view errors on your indexes, query the CTX_USER_INDEX_
ERRORS view. To view errors on all indexes as CTXSYS, query the CTX_INDEX_
ERRORS view.

For example, to view the most recent errors on your indexes, you can issue:

SELECT err_tinestanp, err_text FROM ctx_user_index_errors ORDER BY err_tinestanp
DESC,

Deleting Index Errors
To clear the index error view, you can issue:

DELETE FROM ct x_user _i ndex_errors;

Syntax for CTXCAT Indextype

The CTXCAT index is a combined index on a text column and one or more other
columns.You query this index with the CATSEARCH operator in the WHERE clause of a
SELECT statement. This type of index is optimized for mixed queries. This index is
transactional, automatically updating itself with DML to the base table.

CREATE | NDEX [schema.]index on [schema.]tabl e(col um) | NDEXTYPE IS ctxsys. ctxcat
[ PARAMETERS

("[index set index_set]

[l'exer lexer_pref]

[storage storage_pref]

[stoplist stoplist]

[section group sectiongroup_pref

[wordlist wordlist_pref]

1-42 Oracle Text Reference



CREATE INDEX

[menory nemsi ze]');
[schema.]table(column)
Specify the name of the table and column to index.

The column you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.

Attempting to create a index on a Virtual Private Database (VPD) protected table will
fail unless one of the following is true:

= The VPD policy is created such that it does not apply to INDEX statement type,
which is the default

= The policy function returns a null predicate for the current user.
» The user (index owner) is SYS.

= The user has the EXEMPT ACCESS POLICY privilege.

Supported Preferences

index set index_set

Specify the index set preference to create the CTXCAT index. Index set preferences
name the columns that make up your sub-indexes. Any column named in an index set
column list cannot have a NULL value in any row of the base table or else you get an
error.

You must always ensure that your columns have non-NULL values before and after
indexing.

See "Creating a CTXCAT Index" on page 1-44.

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating the index has its
costs. The time Oracle Text takes to create a CTXCAT index depends on its total size,
and the total size of a CTXCAT index is directly related to

= total text to be indexed
= number of component indexes in the index set
= number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance
since more indexes must be updated.

Because of these added costs in creating a CTXCAT index, carefully consider the query
performance benefit each component index gives your application before adding it to
your index set.

See Also: Oracle Text Application Developer’s Guide for more
information about creating CTXCAT indexes and its benefits.

Other Preferences

When you create an index of type CTXCAT, you can use the following supported index
preferences in the par anet er s string:

Oracle Text SQL Statements and Operators 1-43



CREATE INDEX

Table 1-1  Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.
Filter This preference class is not supported for CTXCAT.
Lexer BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER
CHINESE_VGRAM_LEXER
JAPANESE_LEXER
JAPANESE_VGRAM_LEXER
KOREAN_LEXER
KOREAN_LEXER

Wordlist BASIC_WORDLIST

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC_STOPLIST type.)
Section Group This preference class is not supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore, filter and section
group preferences. You also cannot specify language, format, and charset columns as
with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete
example, see the Oracle Text Application Developer’s Guide.

Consider a table called AUCTI ON with the following schema:

create table auction(
itemid nunber,
title varchar2(100),
category_id nunber,
price nunber,

bid_cl ose date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on pri ce. Results must be sorted based on bi d_cl ose. This
means that we need an index to support good response time for the structured and
sorting criteria.

You can create a catalog index to support the different types of structured queries a
user might enter. For structured queries, a CTXCAT index improves query performance
over a context index.

To create the indexes, first create the index set preference, then add the required
indexes to it:

begin

ctx_ddl.create_index_set('auction_iset');

ctx_ddl . add_i ndex("' auction_iset','bid_close');
ctx_ddl . add_i ndex("' auction_iset', ' price, bid_close');
end;

1-44 Oracle Text Reference



CREATE INDEX

Create the CTXCAT index with CREATE | NDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS. CTXCAT
paranmeters ('index set auction_iset');

Querying a CTXCAT Index

To query the title column for the word pokermon, you can issue regular and mixed
queries as follows:

sel ect * from AUCTI ON where CATSEARCH(title, 'pokenon', NULL)> O;
sel ect * from AUCTI ON where CATSEARCH(title, 'pokenon', 'price < 50 order by bhid_
cl ose desc')> 0;

See Also::  Oracle Text Application Developer’s Guide for a complete
CTXCAT example.

Syntax for CTXRULE Indextype

This is an index on a column containing a set of queries. You query this index with the
MATCHES operator in the WHERE clause of a SELECT statement.

CREATE | NDEX [schema.]index on [schema.]table(rule_col) INDEXTYPE IS
ctxsys.ctxrule

[ PARAMETERS (' [l exer lexer_pref] [storage storage_pref]

[section group section_pref] [wordlist wordlist_pref]

[classifier classifier_pref]');

[ PARALLEL n];

[schema.]table(column)
Specify the name of the table and rule column to index. The rules can be query
compatible strings, query template strings, or binary support vector machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB
or BLOB. No other types are supported for CTXRULE.

Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following is true:

= The VPD policy does not have the INDEX statement type turned on (which is the
default)

= The policy function returns a null predicate for the current user.
» The user (index owner) is SYS.

= The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref

Specify the lexer preference to be used for processing the queries and the documents to
be classified with the MATCHES function. If the SYM_CLASSI Fl ER classifier is used,
then you may use the BASI C_LEXER, CHI NESE_LEXER, JAPANESE_LEXER, or
KOREAN_LEXERIlexers. If SYM CLASSI FI ERis not used, only the BASI C_LEXER
lexer type may be used for indexing your query set. (See "Classifier Types" on

page 2-62 and "Lexer Types" on page 2-26.)

For processing queries, this lexer supports the following operators: ABOUT, STEM AND,
NEAR, NOT, OR, and W THI N.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are
supported. However, these operators are expanded using a snapshot of the thesaurus
at index time, not when the MATCHES function is issued. This means that if you
change your thesaurus after you index, you must re-index your query set.

Oracle Text SQL Statements and Operators 1-45



CREATE INDEX

storage_pref

Specify the storage preference for the index on the queries.Use the storage preference
to specify how the index tables are stored. See Storage Types in Chapter 2, "Oracle Text
Indexing Elements".

section group
Specify the section group. This parameter does not affect the queries. It applies to

sections in the documents to be classified. The following section groups are supported
for the CTXRULE indextype:

« BASI C_SECTI ON_GROUP

« HTM__SECTI ON_GROUP

«  XM__SECTI ON_GROUP

« AUTO_SECTI ON_GROUP

See Section Group Types in Chapter 2, "Oracle Text Indexing Elements".
CTXRULE does not support special sections.

wordlist_pref
Specify the wordlist preferences. This is used to enable stemming operations on query
terms. See Wordlist Type in Chapter 2, "Oracle Text Indexing Elements".

classifier_pref

Specify the classifier preference. See Classifier Types in Chapter 2, "Oracle Text
Indexing Elements". You must use the same preference name you specify with CTX_
CLS.TRAIN.

Example for Creating a CTXRULE Index

See the Oracle Text Application Developer’s Guide for a complete example of using the
CTXRULE indextype in a document routing application.

Syntax for CTXXPATH Indextype

Create this index when you need to speed up existsNode() queries on an XMLIype
column.

CREATE | NDEX [schema.]index on [schema.]tabl e(XM.Type col utm) | NDEXTYPE | S
ct xsys. CTXXPATH
[ PARAMETERS (' [storage storage_pref]

[menory nensize]')];

[schema.]table(column)
Specify the name of the table and column to index.

The column you specify when you create a CTXXPATH index must be XMLType. No
other types are supported for CTXXPATH.

storage_pref

Specify the storage preference for the index on the queries.Use the storage preference
to specify how the index tables are stored. See Storage Types in Chapter 2, "Oracle Text
Indexing Elements".

memory memsize
Specify the amount of run-time memory to use for indexing. The syntax for memsize is
as follows:

mensi ze = nunber[M G K]

1-46 Oracle Text Reference



CREATE INDEX

where M stands for megabytes, G stands for gigabytes, and K stands for kilobytes.

The value you specify for mensi ze must be between 1M and the value of MAX_

I NDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger
than the MAX_| NDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_
PARAMETER to be larger than or equal to mensi ze.

The default is the value specified for DEFAULT_| NDEX_MEMORY in CTX_PARAMETERS.

CTXXPATH Examples

Related Topics

Index creation on an XMLType column:

CREATE | NDEX xm _index ON xm _tab(col xm) indextype is ctxsys. CTXXPATH,
or

CREATE | NDEX xm _index ON xm _tab(col _xm) indextype is ctxsys. CTXXPATH
PARAMETERS(' st orage my_storage nenory 40M);

Querying the table with existsNode:

select xm id fromxm tab x where x.col _
xn . exi st snode(' / book/ chapter[@itle="XM."]") > 0;

See Also:  Oracle XML DB Developer’s Guide for information on
using the CTXXPATH indextype.

CTX_DDL.CREATE_PREFERENCE in Chapter 7, "CTX_DDL Package".
CTX_DDL.CREATE_STOPLIST in Chapter 7, "CTX_DDL Package".
CTX_DDL.CREATE_SECTION_GROUP in Chapter 7, "CTX_DDL Package".
ALTER INDEX

CATSEARCH

Oracle Text SQL Statements and Operators  1-47



DROP INDEX

DROP INDEX

Note: This section describes the DROP | NDEX statement as it
pertains to dropping a Text domain index.

For a complete description of the DROP | NDEX statement, see Oracle
Database SQL Reference.

Purpose
Use DROP | NDEX to drop a specified Text index.

Syntax
DROP | NDEX [schena.]index [force];

[force]
Optionally force the index to be dropped. Use force option when Oracle Text cannot
determine the state of the index, such as when an indexing operation crashes.

Oracle recommends against using this option by default. Use it a a last resort when a
regular call to DROP INDEX fails.

Examples

The following example drops an index named doc_i ndex in the current user's
database schema.

DROP | NDEX doc_i ndex;

Related Topics
ALTER INDEX

CREATE INDEX

1-48 Oracle Text Reference



MATCHES

MATCHES

Limitation

Syntax

Use this operator to find all rows in a query table that match a given document. The
document must be a plain text, HTML, or XML document.

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the
range 0 to 100; a higher number indicates a greater confidence in the match. You can
use the | abel parameter and MATCH_SCORE to obtain this number. You can then use
the matching score to apply a category-specific threshold to a particular category.

If SVM_CLASSI FI ERis not used, then this operator returns either 100 (the document
matches the criteria) or 0 (the document does not match).

If the optimizer chooses to use the functional query invocation with a MATCHES query,
your query will fail.

MATCHES(

[ schema. ] col um,

docunent VARCHAR2 or CLOB
[,1abel |NTEGER])

RETURN NUMBER;

column
Specify the column containing the indexed query set.

document
Specify the document to be classified. The document can be plain-text, HTML, or
XML. Binary formats are not supported.

label
Optionally specify the label that identifies the score generated by the MATCHES
operator. You use this label with MATCH_SCORE.

Matches Example

The following example creates a table quer yt abl e, and populates it with
classification names and associated rules. It then creates a CTXRULE index.

The example issues the MATCHES query with a document string to be classified. The
SELECT statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values ('commn nanes', 'smth OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');

insert into querytable values ('Oracle DB, 'oracle NEAR database');

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT cl assificati on FROM querytabl e WHERE MATCHES(text, 'Smith is a comon nane
inthe United States') > 0;

Oracle Text SQL Statements and Operators 1-49



MATCHES

CLASSI FI CATI ON

conmon names
countries

Related Topics
MATCH_SCORE on page 1-51

Syntax for CTXRULE Indextype on page 1-45
CTX_CLS.TRAIN on page 6-2

The Oracle Text Application Developer’s Guide contains extended examples of simple
and supervised classification, which make use of the MATCHES operator.

1-50 Oracle Text Reference



MATCH_SCORE

MATCH_SCORE

Syntax

Example

Related Topics

Use the MATCH_SCORE operator in a statement to return scores produced by a
MATCHES query.

When the SYM_CLASSI FI ER classifier type is used, this operator returns a score in the
range 0 to 100. You can then use the matching score to apply a category-specific
threshold to a particular category.

If SVM_CLASSI FI ERis not used, then this operator returns either 100 (the document
matches the criteria) or 0 (the document does not match).

MATCH_SCORE( | abel NUMBER)

label
Specify a number to identify the score produced by the query. You use this number to
identify the MATCHES clause which returns this score.

To get the matching score, use

select cat_id, match_score(1) fromtraining_result where matches(profile,
text, 1) >0;

MATCHES on page 1-49

Oracle Text SQL Statements and Operators 1-51



SCORE

SCORE

Syntax

Example

Related Topics

Use the SCORE operator in a SELECT statement to return the score values produced by
a CONTAINS query. The SCORE operator can be used in a SELECT, ORDER BY, or
GROUP BY clause.

SCORE( | abel NUMBER)

label
Specify a number to identify the score produced by the query. You use this number to
identify the CONTAI NS clause which returns this score.

Single CONTAINS

When the SCORE operator is called (for example, in a SELECT clause), the CONTAI NS
clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

Multiple CONTAINS

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words
Oracle in their title and java in their body. The articles are sorted by the scores for the
first CONTAI NS (Oracle) and then by the scores for the second CONTAI NS (java).

SELECT title, body, SCORE(10), SCORE(20)

FROM news

WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR
CONTAINS (news. body, 'java', 20) >0

ORDER BY SCORE(10), SCORE(20);

CONTAINS
Appendix F, "The Oracle Text Scoring Algorithm"

1-52 Oracle Text Reference



2

Overview

Oracle Text Indexing Elements

This chapter describes the various elements you can use to create your Oracle Text
index.

The following topics are discussed in this chapter:
=« Overview

= Datastore Types

= Filter Types

= Lexer Types

= Wordlist Type

= Storage Types

= Section Group Types

« Classifier Types

«  Cluster Types

= Stoplists

= System-Defined Preferences

= System Parameters

When you use CREATE INDEX to create an index or ALTER INDEX to manage an
index, you can optionally specify indexing preferences, stoplists, and section groups in
the parameter string. Specifying a preference, stoplist, or section group answers one of
the following questions about the way Oracle Text indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?
Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Oracle Text Indexing Elements 2-1



Datastore Types

Preference Class Answers the Question

Section Group Is querying within sections enabled, and how are the document
sections defined?

This chapter describes how to set each preference. You enable an option by creating a
preference with one of the types described in this chapter.

For example, to specify that your documents are stored in external files, you can create
a datastore preference called nydat ast or e using the FILE_DATASTORE type. You
specify nydat ast or e as the datastore preference in the parameter clause of CREATE

| NDEX.

Creating Preferences

To create a datastore, lexer, filter, wordlist, or storage preference, you use the CTX_
DDL.CREATE_PREFERENCE procedure and specify one of the types described in this
chapter. For some types, you can also set attributes with the CTX_DDL.SET_
ATTRIBUTE procedure.

An indexing type names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that
corresponds to a type. Many system-defined preferences have the same name as types
(for example, BASI C_LEXER), but exact correspondence is not guaranteed (for
example, the DEFAULT_DATASTORE preference uses the DI RECT_DATASTORE type,
and there is no system preference corresponding to the CHARSET_FI LTER type). Be
careful in assuming the existence or nature of either indexing types or system
preferences.

You specify indexing preferences with CREATE | NDEXand ALTER | NDEX; indexing
preferences determine how your index is created. For example, lexer preferences
indicate the language of the text to be indexed. You can create and specify your own
(user-defined) preferences or you can utilize system-defined preferences.

To create a stoplist, use CTX_DDL.CREATE_STOPLIST. You can add stopwords to a
stoplist with CTX_DDL. ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a
section group type. You can add sections to section groups with CTX_DDL. ADD_
ZONE_SECTI ONor CTX_DDL. ADD_FI ELD_SECTI ON.

Datastore Types

Use the datastore types to specify how your text is stored. To create a datastore
preference, you must use one of the following datastore types:

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in the text column. Each row is
indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one for each row.

2-2 Oracle Text Reference



Datastore Types

Datastore Type Use When

DETAIL_DATASTORE Data is stored internally in the text column. Document
consists of one or more rows stored in a text column in
a detail table, with header information stored in a
master table.

FILE_DATASTORE Data is stored externally in operating system files.
Filenames are stored in the text column, one for each
row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet

or the Internet. Uniform Resource Locators (URLSs) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a
user-defined stored procedure.

DIRECT_DATASTORE

Use the DI RECT_DATASTORE type for text stored directly in the text column, one
document for each row. DI RECT _DATASTORE has no attributes.

The following columns types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB,
BFI LE, or XM_Type.

Note: If your column is a BFI LE, the index owner must have read
permission on all directories used by the BFI LEs.

DIRECT_DATASTORE CLOB Example

The following example creates a table with a CLOB column to store text data. It then
populates two rows with text data and indexes the table using the system-defined
preference CTXSYS. DEFAULT_DATASTORE.

create table nytable(id nunber primary key, docs clob);

insert into nytable values(111555,"'this text will be indexed');
insert into nmytable val ues(111556,'this is a direct_datastore exanple');
conmi t;

create index nyindex on mytabl e(docs)
i ndextype is ctxsys.context
parameters (' DATASTORE CTXSYS. DEFAULT_DATASTORE' );

MULTI_COLUMN_DATASTORE

Use this datastore when your text is stored in more than one column. During indexing,
the system concatenates the text columns, tagging the column text, and indexes the
text as a single document. The XML-like tagging is optional. You can also set the
system to filter and concatenate binary columns.

MULTI _COLUMN_DATASTORE has the following attributes:

Oracle Text Indexing Elements 2-3



Datastore Types

Attribute Attribute Value

columns Specify a comma separated list of columns to be concatenated during
indexing. You can also specify any expression allowable for the select
statement column list for the base table. This includes expressions,
PL/SQL functions, column aliases, and so on.

NUMBER and DATE column types are supported. They are converted to
text before indexing using the default format mask. The TO_CHAR
function can be used in the column list for formatting.

RAWand BLOB columns are directly concatenated as binary data.

LONG, LONG RAW NCHAR, and NCL OB, nested table columns and
collections are not supported.

The column list is limited to 500 bytes.

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a
column in the COLUMNS list and denotes whether to filter the column
using the | NSO_FI LTER

Specify one of the following allowable values:
Y: Column is to be filtered with | NSO_FI LTER

N or no value: Column is not be filtered (Default)

delimiter Specify the delimiter that separates column text. Use one of the
following:

COLUMN_NAME_TAG: Column text is set off by XML-like open and
close tags (default behavior).

NEWLINE: Column text is separated with a newline.

Indexing and DML

To index, you must create a dummy column to specify in the CREATE | NDEX
statement. This column's contents are not made part of the virtual document, unless its
name is specified in the columns attribute.

The index is synchronized only when the dummy column is updated. You can create
triggers to propagate changes if needed.

MULTI_COLUMN_DATASTORE Example

The following example creates a multi-column datastore preference called my_nul t i
with three text columns:

begin

ctx_ddl .create_preference(' nmy_multi', 'MILTI_COLUW _DATASTORE );
ctx_ddl.set _attribute("my_multi', 'colums', 'columl, colum2, colum3');
end;

MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multi-column datastore preference and denotes that
the bar column is to be filtered with the INSO_FILTER.

ctx_ddl.create_preference(’ M_MILTI"," MLLTI _COLUWN_DATASTORE' ) ;
ctx_ddl.set_attribute(' \Y_MILTI"', 'COLUWS','foo, bar');
ctx_ddl .set_attribute(" M\_MULTI',"' FILTER ," N, Y');

The multi-column datastore fetches the content of the f 00 and bar columns, filters
bar , then composes the compound document as:

<FOCO>

2-4 Oracle Text Reference



Datastore Types

foo contents

</ FOO>

<BAR>

bar filtered contents (probably originally HTM)
</ BAR>

The N's need not be specified, and there need not be a flag for every column. Only the
Y's need to be specified, with commas to denote which column they apply to. For
instance:

ctx_ddl.create_preference(’ M_MILTI"," MLLTI _COLUVN_DATASTORE' );
ctx_ddl.set_attribute(' M\Y_MILTI', 'COLUWS' ,'foo, bar, zoo,jar');
ctx_ddl .set_attribute(" M\_MILTI",' FILTER ,",,Y");

This filters only the column zoo0.

Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual
document is composed of the contents of the columns concatenated in the listing order
with column name tags automatically added. For example:

create table nc(id nunber primary key, name varchar2(10)
insert into nt values(l, 'John Smth', '123 Main Street'

, address varchar2(80));
);
exec ctx_ddl.create_preference(' nymds', ' MULTI _COLUWN_DATASTORE' );
exec ctx_ddl.set_attibute(' nymds', 'colums', 'name, address');

This produces the following virtual text for indexing:

<NAME>

John Smith

</ NAME>

<ADDRESS>

123 Main Street

</ ADDRESS>

The system indexes the text between the tags, ignoring the tags themselves.

Indexing Columns as Sections

To index these tags as sections, you can optionally create field sections with the
BASI C_SECTI ON_GROUP.

Note: No section group is created when you use the MULTI _
COLUVN_DATASTORE. To create sections for these tags, you must
create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters
of the expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set_attibute(' nymds', 'colums', '4 + 17');

then it produces the following virtual text:

<4 + 17>
21

Oracle Text Indexing Elements 2-5



Datastore Types

<[4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute(' nymds', 'colums', '4 + 17 col1');

then it produces the following virtual text:

<col 1>
21
<col 1>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotes. For example:

exec ctx_ddl.set_attibute(' nymds', 'COLUMWS , 'foo');

produces the following virtual text:

<FOO>

content of foo

</ FOO>>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute(' nymds', 'COLUWS , 'foo "foo"');
This expression produces:

<f 00>
content of foo
</foo0>

DETAIL_DATASTORE

Use the DETAI L_DATASTORE type for text stored directly in the database in detail
tables, with the indexed text column located in the master table.

DETAI L_DATASTORE has the following attributes:

Attribute Attribute Value
binary Specify TRUE for Oracle Text to add no newline character after each
detail row.

Specify FALSE for Oracle Text to add a newline character (\n) after each
detail row automatically.

detail_table Specify the name of the detail table (OWNER.TABLE if necessary)
detail_key Specify the name of the detail table foreign key column(s)
detail_lineno Specify the name of the detail table sequence column.

detail_text Specify the name of the detail table text column.

Synchronizing Master/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index.
Only changes to the indexed column in the master table triggers a re-index when you
synchronize the index.

You can create triggers on the detail table to propagate changes to the indexed column
in the master table row.

2-6 Oracle Text Reference



Datastore Types

Example Master/Detail Tables
This example illustrates how master and detail tables are related to each other.

Master Table Example Master tables define the documents in a master/detail
relationship. You assign an identifying number to each document. The following table
is an example master table, called ny_nast er:

Column Name Column Type Description

article_id NUMBER Document ID, unique for each document
(Primary Key)

author VARCHAR2(30) Author of document

title VARCHAR2(50) Title of document

body CHAR(1) Dummy column to specify in CREATE
INDEX

Note: Your master table must include a primary key column when
you use the DETAI L_DATASTORE type.

Detail Table Example Detail tables contain the text for a document, whose content is
usually stored across a number of rows. The following detail table my_det ai | is
related to the master table my_rmast er with thearti cl e_i d column. This column
identifies the master document to which each detail row (sub-document) belongs.

Column Name Column Type Description

article_id NUMBER Document ID that relates to master table

seq NUMBER Sequence of document in the master document
defined by article_id

text VARCHAR?2 Document text

Detail Table Example Attributes In this example, the DETAI L_DATASTORE attributes have
the following values:

Attribute Attribute Value
binary TRUE
detail_table my_detail
detail_key article_id
detail_lineno seq

detail_text text

You use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAI L_
DATASTORE. You use CTX_DDL.SET_ATTRIBUTE to set the attributes for this
preference as described earlier. The following example shows how this is done:

begin

ctx_ddl.create_preference(' nmy_detail _pref', 'DETAI L_DATASTORE );
ctx_ddl.set_attribute('ny_detail _pref', 'binary', "true');
ctx_ddl.set_attribute(' my_detail _pref', 'detail _table', 'ny_detail');

Oracle Text Indexing Elements 2-7



Datastore Types

ctx_ddl.set_attribute(' my_detail _pref', 'detail_key', "article_id');

ctx_ddl .set_attribute(' my_detail _pref', 'detail_lineno', 'seq )_;
ctx_ddl.set_attribute(' ny_detail _pref', 'detail_text', "text');
end;

Master/Detail Index Example To index the document defined in this master/detail
relationship, you specify a column in the master table with CREATE | NDEX. The
column you specify must be one of the allowable types.

This example uses the body column, whose function is to enable the creation of the
master/detail index and to improve readability of the code. The ny_det ai | _pr ef
preference is set to DETAI L_DATASTCORE with the required attributes:

CREATE | NDEX nyi ndex on my_master (body) indextype is ctxsys.context
parameters(' datastore ny_detail _pref');

In this example, you can also specify theti t | e or aut hor column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

FILE_DATASTORE

The FI LE_DATASTORE type is used for text stored in files accessed through the local
file system.

Note: FI LE_DATASTORE may not work with certain types of
remote mounted file systems.

FI LE_DATASTORE has the following attribute(s):

Attribute Attribute Values
path pathl:path2:pathn
path

Specify the full directory path name of the files stored externally in a file system. When
you specify the full directory path as such, you need only include file names in your
text column.

You can specify multiple paths for path, with each path separated by a colon (:) on
UNIX and semicolon(;) on Windows. File names are stored in the text column in the
text table.

If you do not specify a path for external files with this attribute, Oracle Text requires
that the path be included in the file names stored in the text column.

PATH Attribute Limitations
The PATH attribute has the following limitations:

= If you specify a PATH attribute, you can only use a simple filename in the indexed
column. You cannot combine the PATH attribute with a path as part of the
filename. If the files exist in multiple folders or directories, you must leave the
PATH attribute unset, and include the full file name, with PATH, in the indexed
column.

= On Windows systems, the files must be located on a local drive. They cannot be on
a remote drive, whether the remote drive is mapped to a local drive letter.

2-8 Oracle Text Reference



Datastore Types

FILE_DATASTORE Example

This example creates a file datastore preference called COMMON_DI R that has a path of
/ mydocs:

begin
ctx_ddl.create_preference(' COWON DIR ,' FI LE_DATASTORE' ) ;
ctx_ddl.set_attribute(' COMON_DIR ,' PATH ,'/nydocs');
end;

When you populate the table myt abl e, you need only insert filenames. The path
attribute tells the system where to look during the indexing operation.

create table nytable(id nunber primary key, docs varchar2(2000));
insert into nytable values(111555,"'first.txt');

insert into nytable val ues(111556, ' second.txt");

commi t;

Create the index as follows:

create index nyindex on nytabl e(docs)
i ndextype is ctxsys.context
paraneters ('datastore COWON DIR);

URL_DATASTORE
Use the URL_DATASTORE type for text stored:

= In files on the World Wide Web (accessed through HTTP or FTP)
= Infiles in the local file system (accessed through the file protocol)

You store each URL in a single text field.

URL Syntax

The syntax of a URL you store in a text field is as follows (with brackets indicating
optional parameters):

[ URL: ] <access_schene>: /[ <host _name>[: <port _number>]/[<url _path>]

The access_scheme string you specify can be either ftp, http, or file. For example:
http://mymachi ne. us. oracl e. con hone. ht m

As this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax:

= The URL must contain only printable ASCII characters. Non printable ASCII
characters and multibyte characters must be escaped with the %xx notation, where
xx is the hexadecimal representation of the special character.

Note: Thel ogi n: passwor d@syntax within the URL is
supported only for the ftp access scheme.

URL_DATASTORE Attributes
URL_DATASTORE has the following attributes:

Oracle Text Indexing Elements 2-9



Datastore Types

Attribute Attribute Values

timeout Specify the timeout in seconds. The valid range is 15 to 3600
seconds. The default is 30.

maxthreads Specify the maximum number of threads that can be running
simultaneously. Use a number between land 1024. The default is
8.

urlsize Specify the maximum length of URL string in bytes. Use a
number between 32 and 65535. The default is 256.

maxurls Specify maximum size of URL buffer. Use a number between 32
and 65535. The defaults is 256.

maxdocsize Specify the maximum document size. Use a number between
256 and 2,147,483,647 bytes (2 gigabytes). The defaults is
2,000,000.

http_proxy Specify the host name of http proxy server. Optionally specify

port number with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify
port number with a colon in the form hostname:port.

Nno_proxy Specify the domain for no proxy server. Use a comma separated
string of up to 16 domain names.

timeout

Specify the length of time, in seconds, that a network operation such as a connect or
read waits before timing out and returning a timeout error to the application. The
valid range for timeout is 15 to 3600 and the default is 30.

Note: Since timeout is at the network operation level, the total
timeout may be longer than the time specified for timeout.

maxthreads
Specify the maximum number of threads that can be running at the same time. The
valid range for maxthreads is 1 to 1024 and the default is 8.

urlsize

Specify the maximum length, in bytes, that the URL data store supports for URLs
stored in the database. If a URL is over the maximum length, an error is returned. The
valid range for urlsize is 32 to 65535 and the default is 256.

Note: The product values specified for maxurls and urlsize cannot
exceed 5,000,000.

In other words, the maximum size of the memory buffer (maxurls *
urisize) for the URL is approximately 5 megabytes.

maxurls

Specify the maximum number of rows that the internal buffer can hold for HTML
documents (rows) retrieved from the text table. The valid range for maxurls is 32 to
65535 and the default is 256.

2-10 Oracle Text Reference



Datastore Types

Note: The product values specified for maxurls and urlsize cannot
exceed 5,000,000.

In other words, the maximum size of the memory buffer (maxurls *
urlsize) for the URL is approximately 5 megabytes.

http_proxy

Specify the fully qualified name of the host machine that serves as the HTTP proxy
(gateway) for the machine on which Oracle Text is installed. You can optionally specify
port number with a colon in the form hostname:port.

You must set this attribute if the machine is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

ftp_proxy

Specify the fully-qualified name of the host machine that serves as the FTP proxy
(gateway) for the machine on which Oracle Text is installed. You can optionally specify
a port number with a colon in the form hostname:port.

This attribute must be set if the machine is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

no_proxy

Specify a string of domains (up to sixteen, separate by commas) which are found in
most, if not all, of the machines in your intranet. When one of the domains is
encountered in a host name, no request is sent to the machine(s) specified for ftp_proxy
and http_proxy. Instead, the request is processed directly by the host machine identified
in the URL.

For example, if the string us.oracle.com, uk.oracle.com is entered for no_proxy, any URL
requests to machines that contain either of these domains in their host names are not
processed by your proxy server(s).

URL_DATASTORE Example

This example creates a URL_DATASTORE preference called URL_PREF for which the
http_proxy, no_proxy, and timeout attributes are set. The defaults are used for the
attributes that are not set.

begin
ctx_ddl.create_preference(' URL_PREF' ,' URL_DATASTORE' );
ctx_ddl .set_attribute(' URL_PREF" ,"' HTTP_PROXY', ' www- proxy. us. oracl e. com );
ctx_ddl.set_attribute(' URL_PREF',' NO PROXY','us.oracle.com);
ctx_ddl .set _attribute(' URL_PREF ,' Timeout',"'300");
end;

Create the table and insert values into it:

create table urls(id nunber primary key, docs varchar2(2000));
insert into urls values(111555," http://context.us.oracle.con);
insert into urls values(111556," http://ww. sun.com);

commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls ( docs )
i ndextype is ctxsys.context
parameters ( 'Datastore URL_PREF' );

Oracle Text Indexing Elements 2-11



Datastore Types

USER_DATASTORE

Use the USER_DATASTORE type to define stored procedures that synthesize
documents during indexing. For example, a user procedure might synthesize author,
date, and text columns into one document to have the author and date information be
part of the indexed text.

The USER_DATASTORE has the following attributes:

Attribute Attribute Value
procedure Specify the procedure that synthesizes the document to be
indexed.

This procedure can be owned by any user and must be
executable by the index owner.

output_type Specify the data type of the second argument to procedure. Valid
values are CLOB, BLOB, CLOB_LOC, BLOB_LGOC, or VARCHAR2.
The default is CLOB.

When you specify CLOB_LOC, BLOB_LCC, you indicate that no
temporary CLOB or BLOB is needed, since your procedure copies
a locator to the | N/QUT second parameter.

procedure

Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or
PACKAGENAME.PROCEDURENAME. You can also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:
procedure (r IN ROND, c¢ IN OUT NOCOPY <out put _type>)
The first argument r must be of type RON D. The second argument ¢ must be of type

output_type. NOCOPY is a compiler hint that instructs Oracle Text to pass parameter c by
reference if possible.

Note:: The procedure name and its arguments can be named
anything. The arguments r and c are used in this example for
simplicity.

The stored procedure is called once for each row indexed. Given the rowid of the current
row, procedure must write the text of the document into its second argument, whose
type you specify with output_type.

Constraints
The following constraints apply to procedure:

= procedure can be owned by any user, but the user must have database permissions
to execute procedure correctly

= procedure must be executable by the index owner

«  procedure must not issue DDL or transaction control statements like COM T
Editing Procedure after Indexing

If you change or edit the stored procedure, indexes based upon it will not be notified,
so you must manually re-create such indexes. So if the stored procedure makes use of

2-12 Oracle Text Reference



Datastore Types

other columns, and those column values change, the row will not be re-indexed. The
row is re-indexed only when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB,
BLOB, CLOB_LOC, BLOB_LCC, or VARCHAR2.

USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the
arti cl es table defined as follows:

create table articles(
id nunber,
author  varchar2(80),
title var char 2(120),
t ext clob );

The author and title fields are to be part of the indexed document text. Assume user
appowner writes a stored procedure with the user datastore interface that synthesizes
a document from the text, author, and title fields:

create procedure nyproc(rid in rowid, tlob in out clob nocopy) is

begin

for ¢l in (select author, title, text fromarticles

where rowid = rid)

| oop
dbns_| ob. writeappend(tlob, length(cl.title), cl.title);
dbns_| ob. writ eappend(tlob, |ength(cl.author), cl.author);
dbns_| ob. writeappend(tlob, Iength(cl.text), cl.text);

end | oop;

end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all
the article's columns into the temporary CLOB. The for loop executes only once.
The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference(' myud', 'user_datastore');
ctx_ddl.set _attribute(' myud', 'procedure', 'myproc');
ctx_ddl.set_attribute(' myud', 'output_type', 'CLOB);
end;

When appowner creates the index on arti cl es(t ext) using this preference, the
indexing operation sees author and title in the document text.

USER_DATASTORE with BLOB_LOC Example
The following procedure might be used with QUTPUT_TYPE BLOB_LCC:

procedure nmyds(rid in row d, dataout in out nocopy bl ob)

is
| _dtype varchar2(10);
| _pk nunber ;

begin

sel ect dtype, pk into | _dtype, | _pk frommtable where rowid = rid;
if (I _dtype = "'MWME) then

sel ect novie_data into dataout from nmovietab where fk = I_pk;
elsif (I_dtype = 'SOUND ) then
sel ect sound_data into dataout from soundtab where fk =1 _pk;

end if;

Oracle Text Indexing Elements 2-13



Datastore Types

end;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference(' myud', 'user_datastore');
ctx_ddl.set_attribute(' myud', 'procedure', 'myproc');
ctx_ddl.set_attribute(' myud', 'output_type', 'blob_loc');
end;

NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.

Attribute Attribute Value

nested_column Specify the name of the nested table column.This attribute is
required. Specify only the column name. Do not specify schema
owner or containing table name.

nested_type Specify the type of nested table. This attribute is required. You
must provide owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders
the lines. This is like DETAIL_LINENO in detail datastore. This
attribute is required.

nested_text Specify the name of the column in the nested table type that
contains the text of the line. This is like DETAIL_TEXT in detail
datastore. This attribute is required. LONG column types are not
supported as nested table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline
character when synthesizing the document text. If you specify
TRUE, Oracle Text does not do this. This attribute is not
required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See the
example.

DML on the nested table is not automatically propagated to the dummy column used
for indexing. For DML on the nested table to be propagated to the dummy column,
your application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nest ed_t ext column.

During validation, Oracle Text checks that the type exists and that the attributes you
specify for nested_lineno and nested_text exist in the nested table type. Oracle Text
does not check that the named nested table column exists in the indexed table.

NESTED_DATASTORE Example

This section shows an example of using the NESTED_DATASTCORE type to index
documents stored as rows in a nexted table.

Create the Nested Table The following code creates a nested table and a storage table
mytab for the nested table:

create type nt_rec as object (
| no nunber, -- |ine nunber

2-14 Oracle Text Reference



Filter Types

Itxt varchar2(80) -- text of line

)i

create type nt_tab as table of nt_rec;

create table nytab (
id nunber primry key, -- primary key
dummy char (1), -- dummy colum for indexing
doc nt_tab -- nested table

)

nested tabl e doc store as nyntab;

Insert Values into Nested Table The following code inserts values into the nested table for
the parent row with id equal to 1.

insert into nytab values (1, null, nt_tab());

insert into table(select doc frommytab where id=1) values (1, 'the dog');
insert into table(select doc frommytab where id=1) values (2, 'sat on mat ');
comit;

Create Nested Table Preferences The following code sets the preferences and attributes
for the NESTED_DATASTORE according to the definitions of the nested table type nt _
t ab and the parent table nyt ab:

begin
- create nested datastore pref
ctx_ddl.create_preference(' ntds','nested_datastore');

- nest tab colum in nain table
ctx_ddl.set _attribute('ntds', ' nested colum', 'doc');

- nested table type
ctx_ddl.set_attribute('ntds', ' nested_type', 'scott.nt_tab');

- lineno colum in nested table
ctx_ddl.set _attribute('ntds', ' nested |ineno','Ino);

--text colum in nested table
ctx_ddl.set_attribute('ntds', 'nested text', 'ltxt');
end;

Create Index on Nested Table The following code creates the index using the nested table
datastore:

create index nyidx on nytab(dunmy) -- index dummy col um, not nest table

i ndextype is ctxsys.context paranmeters ('datastore ntds');

Query Nested Datastore The following select statement queries the index built from a
nested table:

select * fromnytab where contains(dumy, 'dog and mat')>0;
- returns document 1, since it has dog inline 1 and mat in line 2.

Filter Types

Use the filter types to create preferences that determine how text is filtered for
indexing. Filters allow word processor and formatted documents as well as plain text,
HTML, and XML documents to be indexed.

Oracle Text Indexing Elements 2-15



Filter Types

For formatted documents, Oracle Text stores documents in their native format and
uses filters to build temporary plain text or HTML versions of the documents. Oracle
Text indexes the words derived from the plain text or HTML version of the formatted
document.

To create a filter preference, you must use one of the following types:

Filter Preference type Description

CHARSET_FILTER Character set converting filter

INSO_FILTER Inso filter for filtering formatted documents

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or
XML documents

MAIL_FILTER Use the MAI L_FI LTER to transform RFC-822, RFC-2045
messages in to indexable text.

USER_FILTER User-defined external filter to be used for custom filtering

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom
filtering.

CHARSET_FILTER

Use the CHARSET _FI LTER to convert documents from a non-database character set to
the character set used by the database.

CHARSET_FI LTERhas the following attribute:

Attribute Attribute Value

charset Specify the Globalization Support name of source character set.

If you specify UTF16AUTO, this filter automatically detects the
if the character set is UTF16 big- or little-endian.

Specify JAAUTO for Japanese character set auto-detection. This
filter automatically detects the custom character specification in
JA16EUC or JA16SJIS and converts to the database character set.
This filter is useful in Japanese when your data files have mixed
character sets.

See Also:  Oracle Database Globalization Support Guide for more
information about the supported Globalization Support character
sets.

UTF-16 Big- and Little-Endian Detection

If your character set is UTF-16, you can specify UTF16AUTO to automatically detect
big- or little-endian data. Oracle Text does so by examining the first two bytes of the
document row.

If the first two bytes are OxFE, OxFE, the document is recognized as little-endian and
the remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are OxFF, OxFE, the document is recognized as big-endian and the
remainder of the document minus those two bytes is passed on for indexing.

If the first two bytes are anything else, the document is assumed to be big-endian and
the whole document including the first two bytes is passed on for indexing.

2-16 Oracle Text Reference



Filter Types

INSO_FILTER

Indexing Mixed-Character Set Columns

A mixed character set column is one that stores documents of different character sets.
For example, a text table might store some documents in WESISO8859P1 and others in
UTFS.

To index a table of documents in different character sets, you must create your base
table with a character set column. In this column, you specify the document character
set on a per-row basis. To index the documents, Oracle Text converts the documents
into the database character set.

Character set conversion works with the CHARSET _FI LTER When the charset column
is NULL or not recognized, Oracle Text assumes the source character set is the one
specified in the charset attribute.

Note: Character set conversion also works with the | NSO _
FI LTER when the document format column is set to TEXT.

Indexing Mixed-Character Set Example For example, create the table with a charset
column:

create table hdocs (
id number primary key,
fm varchar2(10),
cset varchar2(20),
text varchar2(80)

)

Create a preference for this filter:

begi n

cxt_ddl.create. preference('cs_filter', 'CHARSET_FILTER );
ctx_ddl.set_attribute('cs_filter', 'charset', 'UTF8");
end

Insert plain-text documents and name the character set:

insert into hdocs values(1l, 'text', 'WE8ISOB859P1', '/docs/iso.txt');
insert into hdocs values (2, 'text', 'UTF8', '/docs/utf8.txt");
comit;

Create the index and name the charset column:

create index hdocsx on hdocs(text) indextype is ctxsys.context
paraneters ('datastore ctxsys.file_datastore
filter cs_filter
format colum fnt
charset colum cset');

The INSO_FILTER is a universal filter that filters most document formats, including
PDE Microsoft Word™, and MacWrite II"™ documents. This filtering technology,
called Outside In HTML Export™ and Outside In Viewer Technology™, is licensed
from Stellant Chicago, Inc.

Use it for indexing single-format and mixed-format columns.

This filter automatically bypasses plain-text, HTML, and XML documents.

Oracle Text Indexing Elements 2-17



Filter Types

See Also:

For a list of the formats supported by | NSO_FI LTER

and to learn more about how to set up your environment to use this
filter, see Appendix B, "Oracle Text Supported Document Formats".

The INSO_FILTER has the following attributes:

Attribute

Attribute Values

timeout

timeout_type

output_formatting

Specify the | NSO_FI LTER timeout in seconds. Use a number
between 0 and 42,949,672. Default is 120. Setting this value 0
disables the feature.

How this wait period is used depends on how you set timeout_
type.
This feature is disabled for rows for which the corresponding

charset and format column cause the | NSO_FI LTER to bypass the
row, such as when format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation
from waiting indefinitely on a hanging filter operation.

Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT
seconds if output from Outside In HTML Export has increased.
The operation terminates for the document if output has not
increased. An error is recorded in the CTX_USER | NDEX_ERRORS
view and Oracle Text moves to the next document row to be
indexed.

Specify FIXED to terminate the Outside In HTML Export
processing after TIMEOUT seconds regardless of whether filtering
was progressing normally or just hanging. This value is useful
when indexing throughput is more important than taking the time
to successfully filter large documents.

Specify either TRUE or FALSE. Default is TRUE.

Specify FALSE for fast filtering of binary formatted documents.
Specifying FALSE may significantly improve filtering
performance; however, only minimal formatting will be preserved
in the HTML output of the filter. The output will contain the
necessary HTML character entities for most browsers to display it
correctly. Users should evaluate the quality of the filer output
when using this feature in order to determine its suitability. Note
that since the output of the filter will be different compared to
when this feature is not used, indexing and search results may be
affected.

Specify TRUE for the filter to preserve substantial amount of
formatting in its HTML output when filtering binary formatted
documents.

Indexing Formatted Documents

To index a text column containing formatted documents such as Microsoft Word, use
the | NSO_FI LTER This filter automatically detects the document format. You can use
the CTXSYS.I NSO _FI LTER system-defined preference in the parameter clause as

follows:

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.file_datastore
filter ctxsys.inso_filter');

2-18 Oracle Text Reference



Filter Types

Explicitly Bypassing Plain Text or HTML in Mixed Format Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDEF, plain text, and HTML
documents.

The | NSO_FI LTER can index mixed-format columns, automatically bypassing plain
text, HTML, and XML documents. However, if you prefer not to depend on the
built-in bypass mechanism, you can explicitly tag your rows as text and cause the

I NSO_FI LTER to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
Bl NARY, and | GNORE. During indexing, the | NSO_FI LTERignores any document
typed TEXT, assuming the charset column is not specified. (The difference between a
documet with a TEXT format column type and one with an | GNORE type is that the
TEXT document is indexed, but ignored by the filter, while the | GNORE document is
not indexed at all. Use | GNORE to overlook documents such as image files, or
documents in a language that you do not want to index. | GNORE can be used with
any filter type.)

To set up the | NSO_FI LTERbypass mechanism, you must create a format column in
your base table.

For example:

create table hdocs (

id number primary key,

fm varchar2(10),

text varchar2(80)
);
Assuming you are indexing mostly Word documents, you specify Bl NARY in the
format column to filter the Word documents. Alternatively, to have the | NSO _FI LTER
ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as Bl NARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.htm");
commi t;

To create the index, use CREATE | NDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
paranmeters ('datastore ctxsys.file_datastore
filter ctxsys.inso filter
format colum fm');

If you do not specify TEXT or Bl NARY for the format column, Bl NARY is used.

Note: You need not specify the format column in CREATE | NDEX
when using the | NSO_FI LTER

Character Set Conversion With Inso

The | NSO _FI LTER converts documents to the database character set when the
document format column is set to TEXT. In this case, the | NSO_FI LTERIooks at the
charset column to determine the document character set.

Oracle Text Indexing Elements 2-19



Filter Types

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

Note: You need not specify the charset column when using the
I NSO_FI LTER

If you do specify the charset column and do not specify the format column, the | NSO _
FI LTERworks like the CHARSET_FILTER, except that in this case there is no Japanese
character set auto-detection.

See Also: "CHARSET_FILTER" on page 2-16.

NULL_FILTER

Use the NULL_FI LTER type when plain text or HTML is to be indexed and no filtering
needs to be performed. NULL_FI LTER has no attributes.

Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL _
FI LTERin your filter preference.

For example, to index an HTML document set, you can specify the system-defined
preferences for NULL_FI LTERand HTM._SECTI ON_GROUP as follows:

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null _filter
section group ctxsys.htn _section_group');

See Also: For more information on section groups and indexing
HTML documents, see "Section Group Types" on page 2-60.

MAIL_FILTER

Use the MAI L_FI LTER to transform RFC-822, RFC-2045 messages in to indexable
text. The following limitations hold for the input:

= Document must be US-ASCII
= Lines must not be longer than 1024 bytes
= Document must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by
the filter without error. Others may result in a fetch-time or filter-time error.

The MAI L_FI LTER has the following attributes:

Attribute Attribute Values

INDEX_FIELDS Specify a colon-separated list of fields to preserve in the output.
These fields are transformed to tag markup. For example:

From Scott Tiger
becomes:
<FROW-Scott Ti ger </ FROW

Only top-level files are transformed in this way.

INSO_TIMEOUT Specify a timeout values for the INSO filtering invoked by the
mail filter. Default is 60.

2-20 Oracle Text Reference



Filter Types

Attribute Attribute Values
INSO_OUTPUT_ Specify either TRUE or FALSE. Default is TRUE.
FORMATTING

Specify FALSE for fast filtering of binary formatted documents.
Specifying FALSE may significantly improve filtering
performance; however, only minimal formatting will be preserved
in the HTML output of the filter. The output will contain the
necessary HTML character entities for most browsers to display it
correctly. Users should evaluate the quality of the filer output
when using this feature in order to determine its suitability. Note
that since the output of the filter will be different compared to
when this feature is not used, indexing and search results may be
affected.

Specify TRUE for the filter to preserve substantial amount of
formatting in its HTML output when filtering binary formatted
documents.

Filter Behavior
This filter does the following for each document:

= Read and remove header fields
= Decode message body if needed, depending on Content-transfer-encoding field

= Take action depending on the Content-Type field value and the user-specified
behavior in the mail filter configuration file. The possible actions are:

= produce the body in the output text (I NCLUDE)
= INSO filter the body contents (I NSOFI LTER).
= remove the body contents from the output text (I GNORE)

= If no behavior is specified for the type in the configuration file, the defaults are as
follows:

= text/*: produce body in the output text
= application/*: INSO filter the body contents
= image/* audio/*, video/*, model/*: ignore

= Multipart messages are parsed, and the mail filter applied recursively to each part.
Each part is appended to the output.

= All text produced will be charset-converted to the database character set, if
needed.

About the Mail Filter Configuration File
The mail filter configuration file is a editable text file. Here you can override default

behavior for each Content-Type. The configuration file also contains IANA to Oracle
Globalization Support character set name mappings.

The location of the file must be in ORACLE_HOVE/ctx/config. The name of the file to
use is stored in the new system parameter MAI L_FI LTER_CONFI G_FI LE. On install,
this is set to drmailfl.txt, which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid
overwrite by the installation of a new version or patch set. The mail filter configuration
file should be in the database character set.

Oracle Text Indexing Elements 2-21



Filter Types

USER_FILTER

Mail File Configuration File Structure The file has two sections, BEHAVIOR and
CHARSETS. You indicate the start of the behavior section as follows:

[ behavi or]

Each line following starts with a mime type, then whitespace, then behavior
specification. The M ME type can be a full TYPE/SUBTYPE or just TYPE, which will
apply to all subtypes of that type. TYPE/SUBTYPE specification overrides TYPE
specification, which overrides default behavior. Behavior can be | NCLUDE,

I NSCFI LTER, or | GNORE (see "Filter Behavior" on page 2-21 for definitions). For
instance:

application/zip | GNORE
application/msword | NSOFI LTER
model | GNORE

You cannot specify behavior for "multipart” or "message" types. If you do, such lines
are ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the #
symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then a Oracle Globalization Support
charset name, like:

US- ASCl | US7ASCI
I SO-8859-1  VAE8I SOB859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents
indexed after that point. You must flush the shared pool after changing the file.

Use the USER_FI LTER type to specify an external filter for filtering documents in a
column. USER_FI LTERhas the following attribute:

Attribute Attribute Values
command Specify the name of the filter executable.
command

Specify the executable for the single external filter used to filter all text stored in a
column. If more than one document format is stored in the column, the external filter
specified for command must recognize and handle all such formats.

On UNIX, the executable you specify must exist in the $ORACLE_HOME/ ct x/ bi n
directory. On Windows, the executable you specify must exist in the ¥ORACLE_
HOVE% bi n directory.

You must create your user-filter executable with two parameters: the first is the name
of the input file to be read, and the second is the name of the output file to be written
to.

2-22 Oracle Text Reference



Filter Types

If all the document formats are supported by | NSO_FI LTER, use | NSO_FI LTER
instead of USER_FI LTER unless additional tasks besides filtering are required for the
documents.

User Filter Example

The following example Perl script to be used as the user filter. This script converts the
input text file specified in the first argument to uppercase and writes the output to the
location specified in the second argument:

#11usr/1ocal / bin/ perl

open(IN, $ARGV[0]);
open(QUT, ">".$ARGV1]);

while (<IN>)

trla-z/ A-Z/;
print OUT;
}

close (IN);
close (QUT);

Assuming that this file is named upcase. pl , create the filter preference as follows:

begin
ctx_ddl.create_preference

(
preference_name => ' USER FI LTER PREF',
obj ect _name => ' USER_FI LTER
);
ctx_ddl.set _attribute
(" USER_FI LTER_PREF' , ' COWAND , ' upcase. pl');
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user _filter ( docs )
i ndextype is ctxsys.context
paraneters (' FILTER USER FI LTER PREF');

PROCEDURE_FILTER

Use the PROCEDURE_FI LTER type to filter your documents with a stored procedure.
The stored procedure is called each time a document needs to be filtered.

This type has the following attributes:

Attribute Purpose Allowable Values
procedure Name of the filter Any procedure. The procedure can be a
stored procedure. PL/SQL stored procedure.
input_type Type of input argument VARCHAR2, BLOB, CLOB, FILE
for stored procedure.
output_type Type of output VARCHAR2, CLOB, FILE
argument for stored
procedure.
rowid_parameter Include rowid TRUE/ FALSE
parameter?

Oracle Text Indexing Elements 2-23



Filter Types

Attribute Purpose Allowable Values

format_parameter  Include format TRUE/ FALSE
parameter?

charset_parameter  Include charset TRUE/ FALSE
parameter?

procedure

Specify the name of the stored procedure to use for filtering. The procedure can be a
PL/SQL stored procedure. The procedure can be a safe callout or call a safe callout.

With ther owi d_par anet er,f or nat _par anet er,and char set _par anet er setto
FALSE, the procedure can have one of the following signatures:

PROCEDURE( | N BLOB, | N OUT NOCCPY CLOB)
PROCEDURE( I N CLOB, | N OUT NOCCPY CLOB)
PROCEDURE( | N VARCHAR | N OUT NOCOPY CLOB)
PROCEDURE( | N BLOB, | N OUT NOCOPY VARCHAR?)
PROCEDURE( I N CLOB, | N OUT NOCOPY VARCHAR?)
PROCEDURE( | N VARCHAR?, | N OUT NOCOPY VARCHAR?)
PROCEDURE( | N BLOB, | N VARCHAR?)
PROCEDURE( | N CLOB, | N VARCHAR?)
PROCEDURE( | N VARCHAR?, | N VARCHAR?)

The first argument is the content of the unfiltered row as passed out by the datastore.
The second argument is for the procedure to pass back the filtered document text.

The procedure attribute is mandatory and has no default.

input_type

Specify the type of the input argument of the filter procedure. You can specify one of

the following:

Type Description

BLOB The input argument is of type BLOB. The unfiltered document is
contained in the BLOB passed in.

CLOB The input argument is of type CLOB. The unfiltered document is

contained in the CLOB passed in.

No pre-filtering or character set conversion is done. If the
datastore outputs binary data, that binary data is written
directly to the CLOB, with Globalization Support doing implicit
mapping to character data as best it can.

VARCHAR2 The input argument is of type VARCHAR?2. The unfiltered
document is contained in the VARCHAR?2 passed in.

The document can be a maximum of 32767 bytes of data. If the
unfiltered document is greater than this length, an error is raised
for the document and the filter procedure is not called.

FI LE The input argument is of type VARCHAR2. The unfiltered
document content is contained in a temporary file in the file
system whose filename is stored in the VARCHAR2 passed in.

For example, the value of the passed-in VARCHAR2 might be
"tmp/mydoc.tmp' which means that the document content is
stored in the file '/tmp/mydoc.tmp'.

The file input type is useful only when your procedure is a safe
callout, which can read the file.

2-24 Oracle Text Reference



Filter Types

The input_type attribute is not mandatory. If not specified, BLOB is the default.

output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your
procedure must write the filtered content to the CLOB passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHAR?2. Your

procedure must write the filtered content to the VARCHAR2
variable passed in.

FI LE The output argument must be | NVARCHAR2. On entering the
filter procedure, the output argument is the name of a
temporary file. The filter procedure must write the filtered
contents to this named file.

Using a FILE output type is useful only when the procedure is a
safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, CLOB is the default.

rowid_ parameter
When you specify TRUE, the rowid of the document to be filtered is passed as the first
parameter, before the input and output parameters.

For example, with | NPUT_TYPE BLOB, QUTPUT_TYPE CLOB, and RON D_PARAMETER
TRUE, the filter procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or
tables. This attribute is not mandatory. The default is FALSE.

format_parameter

When you specify TRUE, the value of the format column of the document being
filtered is passed to the filter procedure before input and output parameters, but after
the rowid parameter, if enabled.

You specify the name of the format column at index time in the parameters string,
using the keyword ' f or mat col umm <col utmmnane>' . The parameter type must be
| NVARCHARZ.

The format column value can be read by means of the rowid parameter, but this
attribute enables a single filter to work on multiple table structures, because the format
attribute is abstracted and does not require the knowledge of the name of the table or
format column.

FORVAT_PARAMETER is not mandatory. The default is FALSE.

charset_parameter

When you specify TRUE, the value of the charset column of the document being
filtered is passed to the filter procedure before input and output parameters, but after
the rowid and format parameter, if enabled.

You specify the name of the charset column at index time in the parameters string,
using the keyword ' char set col utm <col urmnane>' . The parameter type must
be | NVARCHARZ.

Oracle Text Indexing Elements 2-25



Lexer Types

Lexer Types

CHARSET_PARAMETER attribute is not mandatory. The default is FALSE.

Parameter Order

ROW D_PARAMETER, FORVAT _PARAMETER, and CHARSET _PARAMETER are all
independent. The order is rowid, the format, then charset, but the filter procedure is
passed only the minimum parameters required.

For example, assume that | NPUT_TYPE is BLOB and QUTPUT_TYPE is CLOB. If your
filter procedure requires all parameters, the procedure signature must be:

(id IN ROND, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
QUT NOCOPY CLOB)

If your procedure requires only the RON D, then the procedure signature must be:

(id INROND,input INBLOB, ouput |N OUT NOCOPY CLOB)

Procedure Filter Execute Requirements

In order to create an index using a PROCEDURE_FI LTER preference, the index owner
must have execute permission on the procedure.

Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL raise_
application_error facility. These errors are propagated to the CTX_USER_INDEX_
ERRORS view or reported to the user, depending on how the filter is invoked.

Procedure Filter Preference Example
Consider a filter procedure CTXSYS. NORVALI ZE that you define with the following
signature:

PROCEDURE NORMALI ZE(id IN ROND, charset IN VARCHAR2, input |IN CLOB,
output I N OUT NOCOPY VARCHAR?);

To use this procedure as your filter, set up your filter preference as follows:

begin

ctx_ddl.create_preference(' nyfilt', 'procedure_filter');
ctx_ddl .set_attribute('nyfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute(' myfilt', "input_type', 'clob');

ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set _attribute('nyfilt', '"rowi d_paraneter', 'TRUE);
ctx_ddl.set_attribute('myfilt', 'charset_paraneter', 'TRUE);
end;

Use the lexer preference to specify the language of the text to be indexed. To create a
lexer preference, you must use one of the following lexer types:

type Description

BASIC_LEXER Lexer for extracting tokens from text in languages, such as
English and most western European languages that use
white space delimited words.

2-26 Oracle Text Reference



Lexer Types

type

Description

MULTI_LEXER

CHINESE_VGRAM_LEXER
CHINESE_LEXER
JAPANESE_VGRAM_LEXER
JAPANESE_LEXER
KOREAN_LEXER
KOREAN_MORPH_LEXER

USER_LEXER
WORLD_LEXER

Lexer for indexing tables containing documents of different
languages

Lexer for extracting tokens from Chinese text.
Lexer for extracting tokens from Chinese text.
Lexer for extracting tokens from Japanese text.
Lexer for extracting tokens from Japanese text.
Lexer for extracting tokens from Korean text.

Lexer for extracting tokens from Korean text
(recommended).

Lexer you create to index a particular language.

Lexer for indexing tables containing documents of different
languages; autodetects languages in a document

BASIC_LEXER

Use the BASI C_LEXER type to identify tokens for creating Text indexes for English
and all other supported whitespace delimited languages.

The BASI C_LEXERalso enables base-letter conversion, composite word indexing,
case-sensitive indexing and alternate spelling for whitespace delimited languages that
have extended character sets.

In English and French, you can use the BASI C_LEXER to enable theme indexing.

Note: Any processing the lexer does to tokens before indexing (for
example, removal of characters, and base-letter conversion) are also
performed on query terms at query time. This ensures that the
query terms match the form of the tokens in the Text index.

BASI C_LEXERsupports any database character set.
BASI C_LEXER has the following attributes:

Attribute Attribute Values

continuation characters

numgroup characters

numjoin characters

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a token
(string)

endjoins non alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

Oracle Text Indexing Elements 2-27



Lexer Types

Attribute Attribute Values
newline NEWLINE (\n)

CARRIAGE_RETURN (\r)
base_letter NO (disabled)

YES (enabled)
base_letter_type GENERIC (default)

SPECIFIC
override_base_letter TRUE

FALSE (default)
mixed_case NO (disabled)

YES (enabled)

composite DEFAULT (no composite word indexing, default)
GERMAN (German composite word indexing)

DUTCH (Dutch composite word indexing)

index_stems

index_themes

index_text

prove_themes

theme_language

alternate_spelling

new_german_spelling

0 NONE

1 ENGLISH

2 DERIVATIONAL
3 DUTCH

4 FRENCH

5 GERMAN

6 ITALIAN

7 SPANISH

YES (enabled)

NO (disabled, default)

NO (disabled, default)

YES (enabled, default

NO (disabled)

YES (enabled, default)

NO (disabled)

AUTO (default)

(any Globalization Support language)
GERMAN (German alternate spelling)
DANISH (Danish alternate spelling)
SWEDISH (Swedish alternate spelling)
NONE (No alternate spelling, default)

YES
NO (default)

2-28 Oracle Text Reference



Lexer Types

continuation

Specify the characters that indicate a word continues on the next line and should be
indexed as a single token. The most common continuation characters are hyphen '-'
and backslash '\'.

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the
digits are groupings within a larger single unit.

For example, comma ',' might be defined as a nhumgroup character because it often
indicates a grouping of thousands when it appears in a string of digits.

numjoin
Specify the characters that, when they appear in a string of digits, cause Oracle Text to
index the string of digits as a single unit or word.

For example, period .' can be defined as numjoin characters because it often serves as
decimal points when it appears in a string of digits.

Note: The default values for numjoin and numgroup are determined
by the Globalization Support initialization parameters that are
specified for the database.

In general, a value need not be specified for either numjoin or
numgroup when creating a lexer preference for BASI C_LEXER

printjoins

Specify the non alphanumeric characters that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the
token in the Text index. This includes printjoins that occur consecutively.

For example, if the hyphen '-' and underscore '_' characters are defined as printjoins,
terms such as pseudo-intellectual and _file_ are stored in the Text index as
pseudo-intellectual and _file_.

Note: If a printjoins character is also defined as a punctuations
character, the character is only processed as an alphanumeric
character if the character immediately following it is a standard
alphanumeric character or has been defined as a printjoins or skipjoins
character.

punctuations

Specify the non-alphanumeric characters that, when they appear at the end of a word,
indicate the end of a sentence. The defaults are period "', question mark '?', and
exclamation point '!".

Characters that are defined as punctuations are removed from a token before text
indexing. However, if a punctuations character is also defined as a printjoins character, the
character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations character,
the following transformations take place during indexing and querying as well:

Token Indexed Token

.doc .doc

Oracle Text Indexing Elements 2-29



Lexer Types

Token Indexed Token
dog.doc dog.doc
dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASI C_LEXER uses punctuations characters in conjunction with newline and
whitespace characters to determine sentence and paragraph delimiters for
sentence/paragraph searching.

skipjoins

Specify the non-alphanumeric characters that, when they appear within a word,
identify the word as a single token; however, the characters are not stored with the
token in the Text index.

For example, if the hyphen character '-' is defined as a skipjoins, the word
pseudo-intellectual is stored in the Text index as pseudointellectual.

Note: printjoins and skipjoins are mutually exclusive. The same
characters cannot be specified for both attributes.

startjoins/endjoins

For startjoins, specify the characters that when encountered as the first character in a
token explicitly identify the start of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry for
the token. In addition, the first startjoins character in a string of startjoins characters
implicitly ends the previous token.

For endjoins, specify the characters that when encountered as the last character in a
token explicitly identify the end of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry for
the token.

The following rules apply to both startjoins and endjoins:

= The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASI C_LEXER

= startjoins/endjoins characters can occur only at the beginning or end of tokens

whitespace

Specify the characters that are treated as blank spaces between tokens. BASI C_LEXER
uses whitespace characters in conjunction with punctuations and newline characters to
identify character strings that serve as sentence delimiters for sentence and paragraph
searching.

The predefined default values for whitespace are 'space’ and 'tab’. These values cannot
be changed. Specifying characters as whitespace characters adds to these defaults.

newline

Specify the characters that indicate the end of a line of text. BASI C_LEXER uses newline
characters in conjunction with punctuations and whitespace characters to identify
character strings that serve as paragraph delimiters for sentence and paragraph
searching.

2-30 Oracle Text Reference



Lexer Types

The only valid values for newline are NEWL| NE and CARRI AGE_RETURN (for carriage
returns). The default is NEWLI NE.

base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index. The default is NO (base-letter conversion disabled). For more information on
base-letter conversions and base_| ett er _t ype, see Base-Letter Conversion on
page 15-2.

base_letter_type
Specify GENERIC or SPECIFIC.

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on
base-letter conversions and base_| ett er _t ype, see Base-Letter Conversion on
page 15-2.

override_base_letter

When base_| et t er is enabled at the same time as al t er nat e_spel | i ng, itis
sometimes necessary to override base_| et t er to prevent unexpected results from
serial transformations. See Overriding Base-Letter Transformations with Alternate
Spelling on page 15-3. Default is FALSE.

mixed_case

Specify whether the lexer leaves the tokens exactly as they appear in the text or
converts the tokens to all uppercase. The default is NO (tokens are converted to all
uppercase).

Note: Oracle Text ensures that word queries match the case
sensitivity of the index being queried. As a result, if you enable case
sensitivity for your Text index, queries against the index are always
case sensitive.

composite
Specify whether composite word indexing is disabled or enabled for either GERVAN or
DUTCH text. The default is DEFAULT (composite word indexing disabled).

Words that are usually one entry in a German dictionary are not split into composite
stems, while words that aren't dictionary entries are split into composite stems.

In order to retrieve the indexed composite stems, you must issue a stem query, such as
$bahnhof. The language of the wordlist stemmer must match the language of the
composite stems.

Stemming User-Dictionaries

Oracle Text ships with a system stemming dictionary (SORACLE_

HOVE/ ct x/ dat a/ enl x/ dr en. dct ), which is used for both ENGLI SHand

DERI VATI ONAL stemming. You can create a user-dictionary for your own language to
customize how words are decomposed. These dictionaries are shown in Table 2-1.

Table 2-1 Stemming User-Dictionaries

Dictionary Language
$ORACLE _HOVE/ ct x/data/frl x/drfr.dct French

Oracle Text Indexing Elements 2-31



Lexer Types

Table 2-1 (Cont.) Stemming User-Dictionaries

Dictionary Language
$ORACLE_HOVE/ ct x/ dat a/ del x/ dr de. dct German
$ORACLE_HOVE/ ct x/ dat a/ nl | x/ drnl . dct Dutch
$ORACLE_HOME/ ct x/data/itlx/drit.dct Italian
$ORACLE_HOME/ ct x/ dat a/ esl x/ dr es. dct Spanish

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-1.

The format for the user dictionary is as follows:

input term<tab> output term

The individual parts of the decomposed word must be separated by the # character.
The following example entries are for the German word Hauptbahnhof:

Haupt bahnhof <t ab>Haupt #Bahnhof
Haupt bahnhof es<t ab>Haupt #Bahnhof
Haupt bahnhof <t ab>Haupt #Bahnhof
Haupt bahnhoef e<t ab>Haupt #Bahnhof

index_themes
Specify YES to index theme information in English or French. This makes ABOUT
queries more precise. The index_themes and index_text attributes cannot both be NO.

If you use the BASI C_LEXER and specify no value for index_themes, this attribute
defaults to NO

You can set this parameter to TRUE for any indextype including CTXCAT. To issue an
ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.

Note: i ndex_t hemes requires an installed knowledge base. A
knowledge base may or may not have been installed with Oracle Text.
For more information on knowledge bases, see the Oracle Text
Application Developer’s Guide.

prove_themes

Specify YES to prove themes. Theme proving attempts to find related themes in a
document. When no related themes are found, parent themes are eliminated from the
document.

While theme proving is acceptable for large documents, short text descriptions with a
few words rarely prove parent themes, resulting in poor recall performance with
ABQUT queries.

Theme proving results in higher precision and less recall (less rows returned) for
ABCUT queries. For higher recall in ABOUT queries and possibly less precision, you can
disable theme proving. Default is YES.

The pr ove_t henes attribute is supported for CONTEXT and CTXRULE indexes.
theme_language

Specify which knowledge base to use for theme generation when index_themes is set to
YES. When index_themes is NO, setting this parameter has no effect on anything.

2-32 Oracle Text Reference



Lexer Types

You can specify any Globalization Support language or AUTO. You must have a
knowledge base for the language you specify. This release provides a knowledge base
in only English and French. In other languages, you can create your own knowledge
base.

See Also: "Adding a Language-Specific Knowledge Base" in
Chapter 14, "Oracle Text Executables".

The default is AUTO, which instructs the system to set this parameter according to the
language of the environment.

index_stems
Specify the stemmer to use for stem indexing. You can choose one of

= NONE

« ENGLISH

= DERIVATIONAL
« DUTCH

« FRENCH

«  GERMAN

=« SPANISH

Tokens are stemmed to a single base form at index time in addition to the normal
forms. Indexing stems enables better query performance for stem ($) queries, such as
$computed.

index_text
Specify YES to index word information. The index_themes and index_text attributes cannot
both be NO.

The default is NO.

alternate_spelling

Specify either GERVAN, DANI SH, or SWEDI SH to enable the alternate spelling in one of
these languages. Enabling alternate spelling enables you to query a word in any of its
alternate forms.

Alternate spelling is off by default; however, in the language-specific scripts that
Oracle provides in admi n/ def aul t s (dr def d. sql for German, dr def dk. sql for
Danish, and dr def s. sql for Swedish), alternate spelling is turned on. If your
installation uses these scripts, then alternate spelling is on. However, You can specify
NONE for no alternate spelling. For more information about the alternate spelling
conventions Oracle Text uses, see Alternate Spelling on page 15-2.

new_german_spelling

Specify whether the queries using the BASI C_LEXER return both traditional and
reformed (new) spellings of German words. If new_ger man_spel | i ng is set to YES,
then both traditional and new forms of words are indexed. If it is set to NO, then the
word will be indexed only as it as provided in the query. The default is NO.

See Also:  "New German Spelling" on page 15-2

BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the
BASI C_LEXER:

Oracle Text Indexing Elements 2-33



Lexer Types

MULTI_LEXER

begin

ctx_ddl.create_preference(' nylex', 'BASIC LEXER );
ctx_ddl.set_attribute('nmylex', "printjoins', '_-');
ctx_ddl.set _attribute ( "nylex', '"index_themes', 'NO);
ctx_ddl.set _attribute ( 'nylex', "index_text', 'YES);
end,

To create the index with no theme indexing and with printjoins characters set as
described, issue the following statement:

create index nyindex on nytable ( docs )
i ndextype is ctxsys. context
paraneters ( 'LEXER nylex' );

Use MULTI _LEXER to index text columns that contain documents of different
languages. For example, you can use this lexer to index a text column that stores
English, German, and Japanese documents.

This lexer has no attributes.

You must have a language column in your base table. To index multi-language tables,
you specify the language column when you create the index.

You create a multi-lexer preference with the CTX_DDL. CREATE_PREFERENCE. You
add language-specific lexers to the multi-lexer preference with the CTX_DDL. ADD_
SUB_LEXER procedure.

During indexing, the MULTI _LEXER examines each row's language column value and
switches in the language-specific lexer to process the document.

The WORLD_LEXERexer also performs mult-language indexing, but without the need
for separate language columns (that is, it has automatic language detection). For more
on WORLD_LEXER, see "WORLD_LEXER" on page 2-52.

Multi-language Stoplists

When you use the MULTI _LEXER, you can also use a multi-language stoplist for
indexing.

See Also: "Multi-Language Stoplists" on page 2-66.

MULTI_LEXER Example

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table gl obal doc (
doc_id number primary key,
| ang varchar2(3),
text clob

)

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers,
one for English, one for German, and one for Japanese:

ctx_ddl . create_preference(' english_|lexer', basic_lexer');
ctx_ddl.set_attribute('english_lexer',"index_thenmes','yes');
ctx_ddl.set _attribute('english_|exer','thene_|anguage','english');

2-34 Oracle Text Reference



Lexer Types

ctx_ddl . create_preference(' german_| exer', ' basic_| exer');
ctx_ddl.set_attribute(' german_|l exer','conposite','german');
ctx_ddl.set _attribute(' german_|lexer','nxed_case','yes');
ctx_ddl.set _attribute(' german_lexer',"alternate_spelling','german');

ctx_ddl . create_preference('japanese_| exer','japanese_vgramlexer');

Create the multi-lexer preference:

ctx_ddl .create_preference(' global _lexer', "nulti_lexer');

Since the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl . add_sub_l exer('global |exer', default','english_|exer');

Now add the German and Japanese lexers in their respective languages with CTX_
DDL.ADD_SUB_LEXER procedure. Also assume that the language column is
expressed in the standard ISO 639-2 language codes, so add those as alternate values.

ctx_ddl . add_sub_l exer (' gl obal _l exer','german','gernman_|l exer','ger');
ctx_ddl . add_sub_| exer (' gl obal _| exer','japanese','japanese_lexer','jpn');
Now create the index gl obal X, specifying the multi-lexer preference and the

language column in the parameter clause as follows:

create index global x on global doc(text) indextype is ctxsys.context
paraneters ('lexer global |exer |anguage colum lang');

Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer
preference for that language to parse the query. If the language is not set, then the
default lexer is used.

Otherwise, the query is parsed and run as usual. The index contains tokens from
multiple languages, so such a query can return documents in several languages. To
limit your query to a given language, use a structured clause on the language column.

CHINESE_VGRAM_LEXER

The CHI NESE_VGRAM _LEXER type identifies tokens in Chinese text for creating Text
indexes. It has no attributes.

Character Sets
You can use this lexer if your database character set is one of the following:

« AL32UTEF8

«  ZHS16CGB231280
« ZHS16GBK

«  ZHS32GB18030

« ZHT32EUC

=« ZHT16BIGS5
« ZHT32TRIS
«  ZHT16MSWIN950

Oracle Text Indexing Elements 2-35



Lexer Types

« ZHT16HKSCS
« UTF8

CHINESE_LEXER

The CHI NESE_LEXER type identifies tokens in traditional and simplified Chinese text
for creating Text indexes. It has no attributes.

This lexer offers the following benefits over the CHl NESE_VGRAM LEXER:
= generates a smaller index

= better query response time

= generates real word tokens resulting in better query precision

= supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing
time is longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode
character sets supported by Oracle.

Customizing the Chinese Lexicon

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create
your own Chinese lexicon, with the ct x| ¢ command.

See Also: Lexical Compiler (ctxlc) in Oracle Text Executables

JAPANESE_VGRAM_LEXER

The JAPANESE VGRAM LEXER type identifies tokens in Japanese for creating Text
indexes. It has no attributes. This lexer supports the stem ($) operator.

JAPANESE_VGRAM_LEXER Attribute

This lexer has the following attribute:

Attribute Attribute Values

delimiter Specify NONE or ALL to ignore certain Japanese blank characters, such as
a full-width forward slash or a full-width middle dot. Default is NONE.

JAPANESE_VGRAM_LEXER Character Sets

You can use this lexer if your database character set is one of the following:

. JA16SJIS

. JA16EUC
. UTFS
. AL32UTFS

. JAI6EUCTILDE
. JAI6EUCYEN

. JAI16SJISTILDE
. JAI6SJISYEN

2-36 Oracle Text Reference



Lexer Types

JAPANESE_LEXER

The JAPANESE _LEXER type identifies tokens in Japanese for creating Text indexes.
This lexer supports the stem ($) operator.

This lexer offers the following benefits over the JAPANESE_VGRAM LEXER:
= generates a smaller index

= better query response time

= generates real word tokens resulting in better query precision

Because the JAPANESE _LEXER uses a new algorithm to generate tokens, indexing
time is longer than with JAPANESE_VGRAM LEXER

Customizing the Japanese Lexicon

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create
your own Japanese lexicon, with the ct x| ¢ command.

See Also: Lexical Compiler (ctxlc) in Oracle Text Executables

JAPANESE_LEXER Attribute
This lexer has the following attribute:

Attribute Attribute Values

delimiter Specify NONE or ALL to ignore certain Japanese blank characters, such as
a full-width forward slash or a full-width middle dot. Default is NONE.

JAPANESE LEXER Character Sets
The JAPANESE_LEXER supports the following character sets:

. JAIL6SJIS

. JA16EUC

. UTF8

. AL32UTF8

. JA16EUCTILDE
. JA16EUCYEN

. JAI6SJISTILDE
. JAI6SJISYEN

Japanese Lexer Example

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER
resolves a sentence into words.

For example, the following compound word (natural language institute)

BARSENE

is indexed as three tokens:

Oracle Text Indexing Elements 2-37



Lexer Types

T

1 E I'I-:-‘ T £ 1 m —i'

In order to resolve a sentence into words, the internal dictionary is referenced. When a
word cannot be found in the internal dictionary, Oracle Text uses the JAPANESE _
VGRAM _LEXER to resolve it.

1]||||
|:|||||

KOREAN_LEXER

The KOREAN_LEXER type identifies tokens in Korean text for creating Text indexes.

Note: This lexer is supported for backward compatibility with
older versions of Oracle Text that supported only this Korean lexer.
If you are building a new application, Oracle recommends that you
use the KOREAN_MORPH_LEXER.

KOREAN_LEXER Character Sets

You can use this lexer if your database character set is one of the following:
= KO16KSC5601
- UTF8

KOREAN_LEXER Attributes
When you use the KOREAN_LEXER, you can specify the following boolean attributes:

Attribute Attribute Values

verb Specify TRUE or FALSE to index verbs. Default is TRUE.

adjective Specify TRUE or FALSE to index adjectives. Default is TRUE.

adverb Specify TRUE or FALSE to index adverb. Default is TRUE.

onechar Specify TRUE or FALSE to index one character. Default is TRUE.

number Specify TRUE or FALSE to index number. Default is TRUE.

udic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

xdic Specify TRUE or FALSE to index x-user dictionary. Default is TRUE.
composite Specify TRUE or FALSE to index composite words.

morpheme Specify TRUE or FALSE for morphological analysis. Default is TRUE.
toupper Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.
tohangeul Specify TRUE or FALSE to convert to hanga to hangeul. Default is TRUE.
Limitations

Sentence and paragraph sections are not supported with the Korean lexer.

KOREAN_MORPH_LEXER

The KOREAN_MORPH_LEXER type identifies tokens in Korean text for creating Oracle
Text indexes. The KOREAN_MORPH_LEXER lexer offers the following benefits over
KOREAN_LEXER:

2-38 Oracle Text Reference



Lexer Types

= better morphological analysis of Korean text
» faster indexing

= smaller indexes

= more accurate query searching

« support for AL32UTF8 character set

Supplied Dictionaries
The KOREAN_MORPH_LEXER uses four dictionaries:

Dictionary File

System $ORACLE_HOME/ ct x/ dat a/ kol x/ dr k2sdi c. dat
Grammar $ORACLE_HOWE/ ct x/ dat a/ kol x/ dr k2gr am dat
Stopword $ORACLE_HOMWE/ ct x/ dat a/ kol x/ dr k2xdi c. dat
User-defined $ORACLE_HOME/ ct x/ dat a/ kol x/ dr k2udi c. dat

The grammar, user-defined, and stopword dictionaries should be written using the
KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the
defined rules. The system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for
specifying new words are in the file.

Supported Character Sets

You can use KOREAN_MORPH_LEXERif your database character set is one of the
following:

«  KO16KSC5601
«  KO16MSWIN949

. UTF8
» AL32UTF8
Unicode Support

The KOREAN_MORPH_LEXER supports:
»  words in non-KSC5601 Korean characters defined in Unicode
= supplementary characters

See Also: For information on supplementary characters, see the
Oracle Database Globalization Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the KOREAN_
MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters, such
documents can also be interpreted by using the UTF8 or AL32UTFS8 character sets.

Use the AL32UTES character set for your database to extract surrogate characters. By
default, the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a
document as one token for each series.

Oracle Text Indexing Elements 2-39



Lexer Types

Limitations on Korean Unicode Support For conversion Hanja to Hangul (Korean), the
KOREAN_MORPH_LEXER supports only the 4888 Hanja characters defined in KSC5601.

KOREAN_MORPH_LEXER Attributes
When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Attribute Attribute Values

verb_adjective  Specify TRUE or FALSE to index verbs and adjectives. Default is FALSE.
one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.
user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.
stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE. The

stop-word dictionary belongs to KOREAN_MORPH_LEXER

composite Specify indexing style of composite noun.
Specify COMPOSI TE_ONLY to index only composite nouns.
Specify NGRAMto index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of
composite nouns as well as the composite noun itself. Default is
COVMPONENT _WORD.

The following example describes the difference between NGRAMand
COVPONENT _V\ORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE,
tokens are created from the words that are divided by delimiters such as
white space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.

hanja Specify TRUE to index hanja characters. If set to FALSE, hanja characters
are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-byte
area). Defaultis FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

Limitations

Sentence and paragraph sections are not supported with the Korean lexer.

KOREAN_MORPH_LEXER Example: Setting Composite Attribute

You can use the composite attribute to control how composite nouns are indexed.
NGRAM Example When you specify NGCRAMfor the composite attribute, composite

nouns are indexed with all possible component tokens. For example, the following
composite noun (information processing institute)

A B AT EE,
is indexed as six tokens:

AR, e, B, AR AR,

2-40 Oracle Text Reference



Lexer Types

‘AeletE), F B A2 E)

You can specify NGRAMindexing as follows:

begi n

ctx_ddl . create_preference(' korean_| exer',' KOREAN_MORPH LEXER );
ctx_ddl .set_attribute('korean_|l exer',"' COWPCSI TE' , ' NGRAM );

end

To create the index:
create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer korean_|exer');

COMPONENT_WORD Example When you specify COVPONENT_WORD for the composite
attribute, composite nouns and their components are indexed. For example, the
following composite noun (information processing institute)

HH AR =]
is indexed as four tokens:

HEADEE

R, A, e
You can specify COMPONENT_WORD indexing as follows:

begin

ctx_ddl . create_preference(' korean_| exer',' KOREAN_MORPH LEXER );
ctx_ddl .set_attribute('korean_|lexer',"' COWCSI TE' , ' COMPONENT_WORD ) ;
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
paraneters ('lexer korean_|lexer');

USER_LEXER

Use USER_LEXER to plug in your own language-specific lexing solution. This enables
you to define lexers for languages that are not supported by Oracle Text. It also enables
you to define a new lexer for a language that is supported but whose lexer is
inappropriate for your application.

The user-defined lexer you register with Oracle Text is composed of two routines that

you must supply:
User-define Routine Description
Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization

of documents and stop words. Output must be an XML
document as specified in this section.

Oracle Text Indexing Elements 2-41



Lexer Types

User-define Routine Description

Query Procedure Stored procedure (PL/SQL) which implements the tokenization
of query words. Output must be an XML document as specified
in this section.

Limitations
The following features are not supported with the USER_LEXER:

« CTX DOC. d ST and CTX_DOC. THEMES
=« CTX_QUERY. HFEEDBACK

= ABOUT query operator

= CTXRULE indextype

= VGRAMindexing algorithm

USER_LEXER Attributes
The USER_LEXER has the following attributes:

Attribute Supported Values

INDEX_PROCEDURE Name of a stored procedure. No default provided.
INPUT_TYPE VARCHAR?2, CLOB. Default is CLOB.
QUERY_PROCEDURE Name of a stored procedure. No default provided.

INDEX_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize a
document or a stop word found in the stoplist object.

Requirements This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You
can replace or drop this stored procedure after the index is dropped.

Parameters Two different interfaces are supported for the user-defined lexer indexing
procedure:

= VARCHAR? Interface

= CLOB Interface

Restrictions This procedure must not perform any of the following operations:
« rollback

= explicitly or implicitly commit the current transaction

= issue any other transaction control statement

= alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

2-42 Oracle Text Reference



Lexer Types

INPUT_TYPE

Two different interfaces are supported for the User-defined lexer indexing procedure.
One interface enables the document or stop word and the corresponding tokens
encoded as XML to be passed as VARCHAR? datatype whereas the other interface
uses the CLOB datatype. This attribute indicates the interface implemented by the
stored procedure specified by the INDEX_PROCEDURE attribute.

VARCHAR2 Interface  BASIC_WORDLIST AttributesTable 2-2 describes the interface
that enables the document or stop word from stoplist object to be tokenized to be
passed as VARCHAR? from Oracle Text to the stored procedure and for the tokens to
be passed as VARCHAR? as well from the stored procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all
documents in the column to be indexed are smaller than or equal to 32512 bytes and
the tokens can be represented by less than or equal to 32512 bytes. In this case the
CLOB interface given in Table 2-3 can also be used, although the VARCHAR?2
interface will generally perform faster than the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-2 VARCHAR?2 Interface for INDEX_PROCEDURES

Parameter Parameter Parameter
Position Mode Datatype Description
1 IN VARCHAR2  Document or stop word from stoplist object to be tokenized.

2 IN

If the document is larger than 32512 bytes then Oracle Text
will report a document level indexing error.

ouT VARCHAR2 Tokens encoded as XML.

If the document contains no tokens, then either NULL must
be returned or the tokens element in the XML document
returned must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by reference,
rather than passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically used to
improve readability). This reduces the size of the XML
document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use the IN
value.

BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the tokens
as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the
tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be used.

CLOB Interface Table 2-3 describes the CLOB interface that enables the document or
stop word from stoplist object to be tokenized to be passed as CLOB from Oracle Text

Oracle Text Indexing Elements 2-43



Lexer Types

to the stored procedure and for the tokens to be passed as CLOB as well from the
stored procedure back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one
of the documents in the column to be indexed is larger than 32512 bytes or the
corresponding tokens are represented by more than 32512 bytes.

Table 2-3 CLOB Interface for INDEX_PROCEDURE

Parameter Parameter

Position Mode Parameter Datatype Description

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 IN OUT CLOB Tokens encoded as XML.

3 IN BOOLEAN If the document contains no tokens, then either

NULL must be returned or the tokens element in the
XML document returned must contain no child
elements.

To improve performance, use the NOCOPY hint
when declaring this parameter. This passes the data
by reference, rather than passing data by value.

The XML document returned by this procedure
should not include unnecessary whitespace
characters (typically used to improve readability).
This reduces the size of the XML document which in
turn minimizes the transfer time.

To improve performance, index_procedure should
not validate the XML document with the
corresponding XML schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use
the IN value. The IN value will always be a
truncated CLOB.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB
locators to other locator variables. Assigning the formal parameter CLOB locator to
another locator variable causes a new copy of the temporary CLOB to be created
resulting in a performance hit.

QUERY_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize words in
the query. A space-delimited group of characters (excluding the query operators) in
the query will be identified by Oracle Text as a word.

Requirements This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created.
You can replace or drop this stored procedure after the index is dropped.

Restrictions This procedure must not perform any of the following operations:

= rollback

= explicitly or implicitly commit the current transaction

2-44 Oracle Text Reference



Lexer Types

. issue any other transaction control statement
=  alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

Parameters Table 2—4 describes the interface for the user-defined lexer query procedure:

Table 2-4 User-defined Lexer Query Procedure Attributes

Parameter Parameter

Position Mode Parameter Datatype Description

1 IN VARCHAR2 Query word to be tokenized.

2 IN CTX_ULEXER_WILDCARD_TAB Character offsets of wildcard characters (%
and _) in the query word. If the query word
passed in by Oracle Text does not contain
any wildcard characters then this index-by
table will be empty.
The wildcard characters in the query word
must be preserved in the tokens returned in
order for the wildcard query feature to
work properly.
The character offset is 0 (zero) based.

3 IN OUT VARCHAR?2 Tokens encoded as XML.

If the query word contains no tokens then
either NULL must be returned or the
tokens element in the XML document
returned must contain no child elements.

The length of the data must be less-than or
equal to 32512 bytes.

Encoding Tokens as XML

The sequence of tokens returned by your stored procedure must be represented as an
XML 1.0 document. The XML document must be valid with respect to the XML
Schemas given in the following sections.

=« XML Schema for No-Location, User-defined Indexing Procedure

= XML Schema for User-defined Indexing Procedure with Location

=« XML Schema for User-defined Lexer Query Procedure

Limitations To boost performance of this feature, the XML parser in Oracle Text will not
perform validation and will not be a full-featured XML compliant parser. This implies

that only minimal XML features will be supported. The following XML features are
not supported:

= Document Type Declaration (for example, <! DOCTYPE [ . . .] >) and therefore
entity declarations. Only the following built-in entities can be referenced: It, gt,
amp, quot, and apos.

« CDATA sections.
« Comments.

= Processing Instructions.

Oracle Text Indexing Elements 2-45



Lexer Types

« XML declaration (for example, <?xnml version="1.0" ... ?>).
= Namespaces.

= Use of elements and attributes other than those defined by the corresponding
XML Schema.

= Character references (for example &#x099F;).
= xml:space attribute.

= xmllang attribute

XML Schema for No-Location, User-defined Indexing Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is FALSE. The
XML document returned must be valid with respect to the following XML Schema:

<xsd: schema xnl ns: xsd="http://wm. w3. or g/ 2001/ XM_Schena" >

<xsd: el enent nane="t okens">
<xsd: compl exType>
<xsd: sequence>
<xsd: choi ce minCccurs="0" maxCccur s="unbounded" >
<xsd: el enent nanme="eos" type="EnptyTokenType"/>
<xsd: el enent nanme="eop" type="EnptyTokenType"/>
<xsd: el enent nanme="nunt' type="xsd:token"/>
<xsd: group ref="IndexConpositeG oup"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l--
Enforce constraint that conpMem el ement nmust be preceeded by word el enment
or conpMem el ement for indexing
-->
<xsd: group nane="|ndexConpositeG oup" >
<xsd: sequence>
<xsd: el enent name="word" type="xsd:token"/>
<xsd: el enent name="conpMeni' type="xsd:token" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: gr oup>

<I'-- EnptyTokenType defines an enpty elenent without attributes -->
<xsd: compl exType name="Enpt yTokenType"/>

</ xsd: schema>

Here are some of the constraints imposed by this XML Schema:
= The root element is tokens. This is mandatory. It has no attributes.

« The root element can have zero or more child elements. The child elements can be
one of the following: eos, eop, num, word, and compMem. Each of these represent
a specific type of token.

«  The compMem element must be preceded by a word element or a compMem
element.

«  The eos and eop elements have no attributes and must be empty elements.

2-46 Oracle Text Reference



Lexer Types

« The num, word, and compMem elements have no attributes. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and
truncate to 64 bytes.

Table 2-5 describes the element names defined in the preceding XML Schema.

Table 2-5 Element names

Element Description

word This element represents a simple word token. The content of the element is
the word itself. Oracle Text does the work of identifying this token as being
a stop word or non-stop word and processing it appropriately.

num This element represents an arithmetic number token. The content of the
element is the arithmetic number itself. Oracle Text treats this token as a
stop word if the stoplist preference has NUMBERS added as the stopclass.
Otherwise this token is treated the same way as the word token.

Supporting this token type is optional. Without support for this token type,
adding the NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this
information so that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type,
queries against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this
information so that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type,
queries against the PARAGRAPH section will not work as expected.

compMem Same as the word element, except that the implicit word offset is the same
as the previous word token.

Support for this token type is optional.

Example Document: Vom Nordhauptbahnhof und aus der Innenstadt zum
Messegeldnde.

Tokens:

<t okens>
<wor d> VOM </ wor d>
<wor d> NORDHAUPTBAHNHOF </ wor d>
<conpMen>NORD</ conpMen®
<conpMen>HAUPT </ conmpMen®
<conpMenm>BAHNHOF </ conpMen®
<conmpMenm>HAUPTBAHNHOF </ conpMen®
<wor d> UND </ wor d>
<wor d> AUS </ word>
<wor d> DER </ wor d>
<wor d> | NNENSTADT </ wor d>
<wor d> ZUM </ wor d>
<wor d> MESSEGELANDE </ wor d>
<eos/ >

</t okens>

Example Document: Oracle10g Release 1

Tokens:

Oracle Text Indexing Elements  2-47



Lexer Types

<t okens>

<wor d> ORACLE10G</ wor d>
<wor d> RELEASE </ wor d>
<num> 1 </ nune

</t okens>

Example Document: WHERE salary<25000.00 AND job = 'F&B Manager'
Tokens:

<t okens>

<wor d> WHERE </ wor d>

<wor d> sal aryé&l t; 2500. 00 </word>
<wor d> AND </ wor d>

<wor d> j ob </word>

<wor d> F&anp; B </ word>

<wor d> Manager </word>

</t okens>

XML Schema for User-defined Indexing Procedure with Location

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is TRUE. The
XML document returned must be valid w.r.t to the following XML schema:

<xsd: schema xm ns: xsd="http://ww w3. or g/ 2001/ XM_Schena" >

<xsd: el enent nane="t okens" >
<xsd: compl exType>
<xsd: sequence>
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el enent nanme="eos" type="EnptyTokenType"/>
<xsd: el enent nanme="eop" type="EnptyTokenType"/>
<xsd: el enent nane="nunt type="DocServi ceTokenType"/>
<xsd: group ref="DocServi ceConposi teG oup"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l--
Enforce constraint that conpMem el ement nust be preceeded by word el ement
or conpMem el enent for document service
-->
<xsd: group name="DocSer vi ceConposi t eG oup" >
<xsd: sequence>
<xsd: el enent name="word" type="DocServi ceTokenType"/>
<xsd: el enent name="conpMen' type="DocServi ceTokenType" m nCccurs="0"
maxCccur s="unbounded" / >
</ xsd: sequence>
</ xsd: gr oup>

<!-- EnptyTokenType defines an enpty el ement without attributes -->
<xsd: conpl exType name="EnptyTokenType"/>

<l--
DocServi ceTokenType defines an el enment with content and nmandatory attributes
-->
<xsd: conpl exType name="DocServi ceTokenType" >
<xsd: si npl eCont ent >

2-48 Oracle Text Reference



Lexer Types

<xsd: ext ensi on base="xsd:t oken">
<xsd:attribute name="of f" type="Offset Type" use="required"/>
<xsd:attribute name="len" type="xsd: unsignedShort" use="required"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: si npl eType nanme="Cf f set Type" >
<xsd:restriction base="xsd: unsi gnedl nt">
<xsd: maxl ncl usi ve val ue="2147483647"/ >
</xsd:restriction>
</ xsd: si npl eType>

</ xsd: schema>

Some of the constraints imposed by this XML Schema are as follows:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can be
one of the following: eos, eop, num, word, and compMem. Each of these represent
a specific type of token.

The compMem element must be preceded by a word element or a compMem
element.

The eos and eop elements have no attributes and must be empty elements.

The num, word, and compMem elements have two mandatory attributes: of f and
len. Oracle Text will normalize the content of these elements as follows: convert
whitespace characters to space characters, collapse adjacent space characters to a
single space character, remove leading and trailing spaces, perform entity
reference replacement, and truncate to 64 bytes.

The of f attribute value must be an integer between 0 and 2147483647 inclusive.

The | en attribute value must be an integer between 0 and 65535 inclusive.

Table 2-5, " Element names" describes the element types defined in the preceding XML
Schema.

Table 2-6, " Attributes" describes the attributes defined in the preceding XML Schema.

Table 2-6  Attributes

Attribute Description

off This attribute represents the character offset of the token as it appears

in the document being tokenized.

The offset is with respect to the character document passed to the
user-defined lexer indexing procedure, not the document fetched by
the datastore. The document fetched by the datastore may be
pre-processed by the filter object or the section group object, or both,
before being passed to the user-defined lexer indexing procedure.

The offset of the first character in the document being tokenized is 0
(zero).

Oracle Text Indexing Elements 2-49



Lexer Types

Table 2-6 (Cont.) Attributes

Attribute Description

len This attribute represents the character length (same semantics as SQL
function LENGTH) of the token as it appears in the document being
tokenized.

The length is with respect to the character document passed to the
user-defined lexer indexing procedure, not the document fetched by
the datastore. The document fetched by the datastore may be
pre-processed by the filter object or the section group object before
being passed to the user-defined lexer indexing procedure.

Sum of of f attribute value and | en attribute value must be less than or equal to the
total number of characters in the document being tokenized. This is to ensure that the
document offset and characters being referenced are within the document boundary.

Example Document: User-defined Lexer.
Tokens:

<t okens>
<word of f="0" |en="4"> USE </word>
<word of f="5" |en="7"> DEF </word>
<word of f="13" len="5"> LEX </word>
<eos/ >

</t okens>

XML Schema for User-defined Lexer Query Procedure

This section describes additional constraints imposed on the XML document returned
by the user-defined lexer query procedure. The XML document returned must be valid
with respect to the following XML Schema:

<xsd: schema xm ns: xsd="http://ww w3. or g/ 2001/ XM_Schena" >

<xsd: el enent nane="t okens">
<xsd: conpl exType>
<xsd: sequence>
<xsd: choi ce minCccurs="0" maxCccur s="unbounded" >
<xsd: el enent name="nunt' type="QueryTokenType"/>
<xsd: group ref="QueryConpositeG oup"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l--
Enforce constraint that conpMem el ement nust be preceeded by word el enent
or conpMem el ement for query
>
<xsd: group nane="QueryConposit eG oup" >
<xsd: sequence>
<xsd: el ement name="word" type="QueryTokenType"/>
<xsd: el ement name="conpMeni' type="QueryTokenType" ni nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: gr oup>

<l--
QueryTokenType defines an el ement with content and with an optional attribute

2-50 Oracle Text Reference



Lexer Types

-->
<xsd: conpl exType nane="QueryTokenType">
<xsd: si mpl eCont ent >
<xsd: ext ensi on base="xsd: t oken">
<xsd:attribute name="wi | dcard" type="WIdcardType" use="optional"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: si npl eType nane="W | dcardType" >
<xsd:restriction base="W/I dcardBaseType" >
<xsd: minLength val ue="1"/>
<xsd: maxLengt h val ue="64"/>
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si mpl eType nane="W | dcar dBaseType">
<xsd: list>
<xsd: si mpl eType>
<xsd:restriction base="xsd: unsi gnedShort">
<xsd: max| ncl usi ve val ue="378"/>
</xsd:restriction>
</ xsd: si npl eType>
</xsd: list>
</ xsd: si npl eType>

</ xsd: schenma>

Here are some of the constraints imposed by this XML Schema:

The r oot element is tokens. This is mandatory. It has no attributes.

The r oot element can have zero or more child elements. The child elements can
be one of the following: numand wor d. Each of these represent a specific type of
token.

The compMemelement must be preceded by a wor d element or a conpMem
element.

The purpose of conpMemis to enable USER_LEXER queries to return multiple
forms for a single query. For example, if a user-defined lexer indexes the word
bank as BANK( FI NANCI AL) and BANK( Rl VER) , the query procedure can return
the first term as a wor d and the second as a conmpMemelement:

<t okens>
<wor d>BANK( RI VER) </ wor d>
<conmpMem>BANK( FI NANCI AL) </ conpMen
</t okens>

See Table 2-7, " Attributes for XML Schema: Query Procedure" on page 2-52 for
more on the conpMemelement.

The num and word elements have a single optional attribute: wildcard. Oracle
Text will normalize the content of these elements as follows: convert whitespace
characters to space characters, collapse adjacent space characters to a single space
character, remove leading and trailing spaces, perform entity reference
replacement, and truncate to 64 bytes.

The wildcard attribute value is a white-space separated list of integers. The
minimum number of integers is 1 and the maximum number of integers is 64. The

Oracle Text Indexing Elements 2-51



Lexer Types

value of the integers must be between 0 and 378 inclusive. The intriguers in the list
can be in any order.

Table 2-5, " Element names" describes the element types defined in the preceding XML
Schema.

Table 2-7, " Attributes for XML Schema: Query Procedure" describes the attribute
defined in the preceding XML Schema.

Table 2-7  Attributes for XML Schema: Query Procedure

Attribute Description

compMem Same as the wor d element, but its implicit word offset is the
same as the previous wor d token. Oracle Text will equate this
token with the previous wor d token and with subsequent
conpMemtokens using the query EQUI V operator.

wildcard Any% or _ characters in the query which are not escaped by
the user are considered wildcard characters because they are
replaced by other characters. These wildcard characters in the
query must be preserved during tokenization in order for the
wildcard query feature to work properly. This attribute
represents the character offsets (same semantics as SQL
function LENGTH) of wildcard characters in the content of the
element. Oracle Text will adjust these offsets for any
normalization performed on the content of the element. The
characters pointed to by the offsets must either be% or _
characters.

The offset of the first character in the content of the element is
0.

If the token does not contain any wildcard characters then this
attribute must not be specified.

Example Query word: pseudo-%morph%
Tokens:

<t okens>

<wor d> PSEUDO </ wor d>

<word wildcard="1 7"> %ORPH% </ wor d>
</t okens>

Example Query word: <%
Tokens:
<t okens>
<word wildcard="5"> &l't;%gt; </ word>
</t okens>

WORLD_LEXER

Use the WORLD LEXER to index text columns that contain documents of different
languages. For example, you can use this lexer to index a text column that stores
English, Japanese, and German documents.

WORLD_LEXERdiffers from MULTI _LEXERin that WORLD_LEXER automatically
detects the language(s) of a document. Unlike MULTI _LEXER, WORLD_LEXER does
not require you to have a language column in your base table or to specify the
language column when you create the index. Moreover, it is not necessary to use
sub-lexers, as with MULTI _LEXER (See MULTI_LEXER on page 2-34.)

2-52 Oracle Text Reference



Wordlist Type

However, many features that work with MULTI _LEXER do not work with WORLD _
LEXER. For space-delimited language, these include ABOUT, Broader Term, Fuzzy,
Narrower Term, Preferred Term, Related Term, soundex, stem, SYNonym, Translation
Term, Translation Term Synonym, and Top Term. Additionally, for languages that are
not space-delimited, EQUIValence and wildcards also do not work with WORLD _
LEXER

This lexer has no attributes.

WORLD_LEXER works with languages whose character sets are defined by the Unicode
4.0 standard. For a list of languages that WORLD_LEXER can work with, see "World
Lexer Features" on page D-4.

WORLD_LEXER Example
Here is an example of creating an index using WORLD_LEXER

exec ctx_ddl.create_preference(' MPLEXER , "world_l exer');
create index doc_idx on doc(data)
i ndextype i s CONTEXT
paraneters ('lexer MYLEXER
stoplist CTXSYS. EMPTY_STOPLI ST');

Wordlist Type

Use the wordlist preference to enable the query options such as stemming, fuzzy
matching for your language. You can also use the wordlist preference to enable
substring and prefix indexing which improves performance for wildcard queries with
CONTAI NS and CATSEARCH.

To create a wordlist preference, you must use BASI C_WORDLI ST, which is the only
type available.

BASIC_WORDLIST

Use BASI C_WORDLI ST type to enable stemming and fuzzy matching or to create
prefix indexes with Text indexes.

See Also: For more information about the stem and fuzzy
operators, see Chapter 3, "Oracle Text CONTAINS Query
Operators".

BASI C_WORDLI ST has the following attributes:

Oracle Text Indexing Elements 2-53



Wordlist Type

Table 2-8 BASIC_WORDLIST Attributes

Attribute Attribute Values

stemmer Specify which language stemmer to use. You can
specify one of the following;:

NULL (no stemming)

ENGLISH (English inflectional)
DERIVATIONAL (English derivational)
DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

AUTO (Automatic language-detection for
stemming for the languages above. Does not
auto-detect Japanese.)

JAPANESE

fuzzy_match Specify which fuzzy matching cluster to use. You
can specify one of the following:

GENERIC
JAPANESE_VGRAM
KOREAN
CHINESE_VGRAM
ENGLISH

DUTCH

FRENCH
GERMAN
ITALIAN

SPANISH

OCR

AUTO (automatic language detection for
stemming)

fuzzy_score Specify a default lower limit of fuzzy score. Specify
a number between 0 and 80. Text with scores
below this number is not returned. Default is 60.

fuzzy_numresults Specify the maximum number of fuzzy
expansions. Use a number between 0 and 5,000.
Default is 100.

substring_index Specify TRUE for Oracle Text to create a substring
index. A substring index improves left-truncated
and double-truncated wildcard queries such as
%ing or %benz%. Default is FALSE.

prefix_index Specify TRUE to enable prefix indexing. Prefix
indexing improves performance for right truncated
wildcard searches such as TO%. Defaults to
FALSE.

prefix_length_min Specify the minimum length of indexed prefixes.
Defaults to 1.

2-54 Oracle Text Reference



Wordlist Type

Table 2-8 (Cont.) BASIC_WORDLIST Attributes

Attribute Attribute Values

prefix_length_max Specify the maximum length of indexed prefixes.
Defaults to 64.

wlidcard_maxterms Specify the maximum number of terms in a

wildcard expansion. Use a number between 1 and
15,000. Default is 5,000.

stemmer
Specify the stemmer used for word stemming in Text queries. When you do not
specify a value for stemmer, the default is ENGLI SH.

Specify AUTOfor the system to automatically set the stemming language according to
the language setting of the session. When there is no stemmer for a language, the
default is NULL. With the NULL stemmer, the stem operator is ignored in queries.

You can create your own stemming user-dictionary. See "Stemming User-Dictionaries"
on page 2-31 for more information.

fuzzy_match

Specify which fuzzy matching routines are used for the column. Fuzzy matching is
currently supported for English, Japanese, and, to a lesser extent, the Western
European languages.

Note: The fuzzy_match attribute values for Chinese and Korean are
dummy attribute values that prevent the English and Japanese
fuzzy matching routines from being used on Chinese and Korean
text.

The default for fuzzy_match is GENERI C.

Specify AUTOfor the system to automatically set the fuzzy matching language
according to language setting of the session.

fuzzy_score
Specify a default lower limit of fuzzy score. Specify a number between 0 and 80. Text
with scores below this number are not returned. The default is 60.

Fuzzy score is a measure of how close the expanded word is to the query word. The
higher the score the better the match. Use this parameter to limit fuzzy expansions to
the best matches.

fuzzy_numresults
Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000.
The default is 100.

Setting a fuzzy expansion limits the expansion to a specified number of the best
matching words.

substring_index

Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or
%benz%. The default is false.

Substring indexing has the following impact on indexing and disk resources:

= Index creation and DML processing is up to 4 times slower

Oracle Text Indexing Elements 2-55



Wordlist Type

The size of the substring index created is approximately the size of the $X index on
the word table.

Index creation with subst ri ng_i ndex enabled requires more rollback segments
during index flushes than with substring index off. Oracle recommends that you
do either of the following when creating a substring index:

« make available double the usual rollback or

= decrease the index memory to reduce the size of the index flushes to disk

prefix_index
Specify yes to enable prefix indexing. Prefix indexing improves performance for right
truncated wildcard searches such as TO%. Defaults to NO

Note: Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table.For
example, words TOKEN and TOY are normally indexed like this in the $I table:

Token Type Information
TOKEN 0 DOCID 1 POS 1
TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as
follows with a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3
TO 6 DOCID 1 POS 1 POS 3
TOK 6 DOCID 1 POS 1
TOKE 6 DOCID 1 POS 1
TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as TO%are now faster because Oracle Text does no expansion
of terms and merging of result sets. To obtain the result, Oracle Text need only
examine the (TO,6) row.

prefix_length_min
Specify the minimum length of indexed prefixes. Defaults to 1.

For example, setting prefi x_| engt h_m nto3and prefi x_| engt h_max to5
indexes all prefixes between 3 and 5 characters long.

Note: A wildcard search whose pattern is below the minimum
length or above the maximum length is searched using the slower
method of equivalence expansion and merging.

2-56 Oracle Text Reference



Wordlist Type

prefix_length_max
Specify the maximum length of indexed prefixes. Defaults to 64.

For example, setting prefi x_| engt h_m nto3and prefi x_| engt h_max to5
indexes all prefixes between 3 and 5 characters long.

Note: A wildcard search whose pattern is below the minimum
length or above the maximum length is searched using the slower
method of equivalence expansion and merging.

wildcard_maxterms

Specify the maximum number of terms in a wildcard (%) expansion. Use this
parameter to keep wildcard query performance within an acceptable limit. Oracle Text
returns an error when the wildcard query expansion exceeds this number.

BASIC_WORDLIST Example
The following example shows the use of the BASI C_WORDLI ST type.

Enabling Fuzzy Matching and Stemming

The following example enables stemming and fuzzy matching for English. The
preference STEM FUZZY_PREF sets the number of expansions to the maximum
allowed. This preference also instructs the system to create a substring index to
improve the performance of double-truncated searches.

begin
ctx_ddl.create_preference(' STEM FUZZY_PREF', ' BASI C_ WORDLI ST');
ctx_ddl.set_attribute(' STEM FUZZY_PREF' ,' FUZZY_MATCH ,' ENGLI SH );
ctx_ddl . set_attribute(' STEM FUZZY_PREF' ,' FUZZY_SCORE' ,'0');
ctx_ddl.set_attribute(' STEM FUZZY_PREF' ,' FUZZY_NUMRESULTS', ' 5000');
ctx_ddl.set_attribute(’ STEM FUZZY_PREF' ,' SUBSTRI NG | NDEX' ,' TRUE');
ctx_ddl.set_attribute(' STEM FUZZY_PREF' ,' STEMER ,' ENGLI SH );

end;

To create the index in SQL, issue the following statement:

create index fuzzy_stemsubst _idx on nytable ( docs )
i ndextype is ctxsys.context parameters ('Wrdlist STEM FUZZY PREF');

Enabling Sub-string and Prefix Indexing

The following example sets the wordlist preference for prefix and sub-string indexing.
For prefix indexing, it specifies that Oracle Text create token prefixes between 3 and 4
characters long;:

begin

ctx_ddl.create_preference(' mywordlist', 'BASI C WORDLI ST')
ctx_ddl.set_attribute(' mywordlist',' PREFI X_| NDEX' ,' TRUE')
ctx_ddl.set_attribute(' nywordlist',' PREFI X M N_LENGTH , 3);
ctx_ddl.set_attribute(' mywordlist'," PREFI X_MAX_LENGTH , 4);
ctx_ddl .set_attribute(' mywordlist',' SUBSTRING | NDEX', 'YES');
end

Setting Wildcard Expansion Limit

Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

Oracle Text Indexing Elements 2-57



Storage Types

- create a sanple table
drop table quick ;
create table quick
(
qui ck_i d nunber primary key,
t ext var char (80)

)i

- insert arowwth 10 expansions for "tire%
insert into quick ( quick_id, text )
values (1, 'tire tireatireb tirec tired tiree tiref tireg tireh tirei tirej")

commi t;

- create an index using w ldcard_maxternms=100
begin
Cx_Ddl . Create_Preference('wildcard_pref', 'BASIC WORDLIST');
ctx_ddl .set_attribute('wildcard_pref', 'wldcard_maxterns', 100) ;
end;
/
create index wildcard_idx on quick(text)
i ndextype is ctxsys.context
paraneters ('Wrdlist wildcard_pref') ;

- query on 'tire% - should work fine
select quick_id from quick
where contains ( text, 'tire% ) > 0;

- nowre-create the index with wildcard_maxterns=5
drop index wildcard_idx ;

begin
Cx_Ddl . Drop_Preference(' wildcard_pref');
Cx_Ddl . Create_Preference('wi ldcard_pref', 'BASIC WORDLIST');
ctx_ddl .set_attribute('wildcard_pref', 'wldcard_maxterms', 5) ;
end;
/

create index wildcard_idx on quick(text)
i ndextype is ctxsys. context
paranmeters ('Wrdlist wildcard_pref') ;

- query on 'tire% gives "wildcard query expansion resulted in too many terns"
sel ect quick_id from quick
where contains ( text, 'tire% ) > 0;

Storage Types

Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called BASI C_
STORAGE:

type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation
parameters for the database tables and indexes that
constitute a Text index.

2-58 Oracle Text Reference



Storage Types

BASIC_STORAGE

The BASI C_STORAGE type specifies the tablespace and creation parameters for the
database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE | NDEX for the
i_index _clause) statement at index creation. You can specify most allowable clauses,
such as storage, LOB storage, or partitioning. However, you cannot specify an index
organized table clause.

See Also: For more information about how to specify CREATE
TABLE and CREATE | NDEX statements, see Oracle Database SQL
Reference.

BASI C_STORAGE has the following attributes:

Attribute Attribute Value

i_table_clause Parameter clause for dr$indexname$l table creation. Specify storage
and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

The I table is the index data table.

k_table_clause Parameter clause for dr$indexname$K table creation. Specify storage
and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

The K table is the keymap table.

r_table_clause Parameter clause for dr$indexname$R table creation. Specify storage
and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

The R table is the rowid table.
The default clause is: ' LOB( DATA) STORE AS ( CACHE) ' .

If you modify this attribute, always include this clause for good
performance.

n_table_clause Parameter clause for dr$indexname$N table creation. Specify storage
and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

The N table is the negative list table.

i_index_clause Parameter clause for dr$indexname$X index creation. Specify storage
and tablespace clauses to add to the end of the internal CREATE
| NDEX statement. The default clause is: ' COMPRESS 2' which
instructs Oracle Text to compress this index table.

If you choose to override the default, Oracle recommends including
COWPRESS 2 in your parameter clause to compress this table, since
such compression saves disk space and helps query performance.

p_table_clause Parameter clause for the substring index if you have enabled
SUBSTRI NG _| NDEX in the BASI C_WORDLI ST.

Specify storage and tablespace clauses to add to the end of the
internal CREATE | NDEX statement. The P table is an index-organized
table so the storage clause you specify must be appropriate to this
type of table.

Storage Default Behavior

By default, BASI C_STORAGE attributes are not set. In such cases, the Text index tables
are created in the index owner's default tablespace. Consider the following statement,
issued by user | USER, with no BASI C_STORACE attributes set:

Oracle Text Indexing Elements 2-59



Section Group Types

create index | OMER idx on TOMNER. tab(b) indextype is ctxsys.context;

In this example, the text index is created in | ONMNER' s default tablespace.

Storage Example

The following examples specify that the index tables are to be created in the f 00
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference(' nystore', 'BASI C STORAGE' );
ctx_ddl.set _attribute(' mystore', 'I_TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set _attribute(' mystore', 'K TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set_attribute(' mystore', 'R TABLE CLAUSE ,

"tabl espace users storage (initial 1K) lob

(data) store as (disable storage in row cache)');

ctx_ddl.set _attribute(' mystore', 'N TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set_attribute(' mystore', 'I_I NDEX CLAUSE ,

'tabl espace foo storage (initial 1K) conpress 2');
ctx_ddl.set _attribute(' mystore', 'P_TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
end;

Section Group Types

In order to issue W THI N queries on document sections, you must create a section
group before you define your sections. You specify your section group in the
parameter clause of CREATE INDEX.

To create a section group, you can specify one of the following group types with the
CTX_DDL.CREATE_SECTION_GROUP procedure:

Section Group Preference Description

NULL_SECTI ON_GROUP Use this group type when you define no sections or
when you define only SENTENCE or PARAGRAPH
sections. This is the default.

BASI C_SECTI ON_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and </ A>.

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and
attributes. Use HTML_SECTI ON_GROUP for this type of

input.
HTML_SECTI ON_GROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.
XM._SECTI ON_GROUP Use this group type for indexing XML documents and

for defining sections in XML documents. All sections to
be indexed must be manually defined for this group.

2-60 Oracle Text Reference



Section Group Types

Section Group Preference Description

AUTO_SECTI ON_GROUP Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form tag@attribute.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

= You cannot add zone, field, or special sections to
an automatic section group.

= You can define a stop section that applies only to
one particular type; that is, if you have two
different XML DTDs, both of which use a tag
called FOO, you can define ( TYPE1) FOOto be
stopped, but( TYPE2) FOOto not be stopped.

= The length of the indexed tags, including prefix
and namespace, cannot exceed 64 characters. Tags
longer than this are not indexed.

PATH_SECTI ON_GROUP Use this group type to index XML documents. Behaves
like the AUTO_SECTI ON_GROUP.

The difference is that with this section group you can
do path searching with the | NPATHand HASPATH
operators. Queries are also case-sensitive for tag and
attribute names. Stop sections are not allowed.

NEWS_SECTI ON_GROUP Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

Section Group Examples
This example shows the use of section groups in both HTML and XML documents.

Creating Section Groups in HTML Documents
The following statement creates a section group called ht ngr oup with the HTML

group type.

begin

ctx_ddl.create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL. ADD_SPECI AL_SECTI ONor CTX_DDL. ADD_ZONE_
SECTI ON. To index your documents, you can issue a statement such as:

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null _filter section group htngroup');

See Also: For more information on section groups, see Chapter 7,
"CTX_DDL Package"

Creating Sections Groups in XML Documents

The following statement creates a section group called xrm gr oup with the XM__
SECTI ON_GROUP group type.

Oracle Text Indexing Elements 2-61



Classifier Types

begin
ctx_ddl . create_section_group('xm group', ' XM_SECTI ON_GROUP' );
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL. ADD_ATTR_SECTI ONor CTX_DDL. ADD_STOP_SECTI ON.
To index your documents, you can issue a statement such as:

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group xmgroup');

See Also: For more information on section groups, see Chapter 7,
"CTX_DDL Package"

Automatic Sectioning in XML Documents

The following statement creates a section group called aut o with the AUTO_
SECTI ON_GROUP group type. This section group automatically creates sections from
tags in XML documents.

begin
ctx_ddl.create_section_group('auto', 'AUTO SECTI ON_GROUFP');
end;

CREATE | NDEX nyi ndex on docs(htmfile) INDEXTYPE IS ctxsys. context
PARAMETERS(' filter ctxsys.null _filter section group auto');

Classifier Types

This section describes the classifier types used to create a preference for CTX_
CLS.TRAIN and CTXRULE index creation. The following two classifier types are
supported:

« RULE_CLASSIFIER
=« SVM_CLASSIFIER

RULE_CLASSIFIER

Use the RULE_CLASSIFIER type for creating preferences for the query rule generating
procedure, CTX_CLS.TRAIN and for CTXRULE creation. The rules generated with
this type are essentially query strings and can be easily examined. The queries
generated by this classifier can use the AND, NOT, or ABOUT operators. The WITHIN
operator is supported for queries on field sections only.

This type has the following attributes:

Data Min Max
Attribute Name Type Default Value Value Description
THRESHOLD I 50 1 99 Specify threshold (in

percentage) for rule
generation. One rule is output
only when its confidence
level is larger than threshold.

2-62 Oracle Text Reference



Classifier Types

Data Min Max

Attribute Name Type Default Value Value Description

MAX_TERNMS I 100 20 2000 For each class, a list of
relevant terms is selected to
form rules. Specify the
maximum number of terms
that can be selected for each
class.

MEMORY_SI ZE I 500 10 4000 Specify memory usage for

training in MB. Larger values
improve performance.

NT_THRESHOLD F 0.001 0 0.90 Specify a threshold for term
selection. There are two
thresholds guiding two steps
in selecting relevant terms.
This threshold controls the
behavior of the first step. At
this step, terms are selected as
candidate terms for the
further consideration in the
second step. The term is
chosen when the ratio of the
occurrence frequency over the
number of documents in the
training set is larger than this
threshold.

TERM THRESHOLD I 10 0 100 Specify a threshold as a
percentage for term selection.
This threshold controls the
second step term selection.
Each candidate term has a
numerical quantity calculated
to imply its correlation with a
given class. The candidate
term will be selected for this
class only when the ratio of
its quantity value over the
maximum value for all
candidate terms in the class is
larger than this threshold.

PRUNE_LEVEL I 75 0 100 Specify how much to prune a
built decision tree for better
coverage. Higher values
mean more aggressive
pruning and the generated
rules will have larger
coverage but less accuracy.

SVM_CLASSIFIER

Use the SVM_CLASSIFIER type for creating preferences for the rule generating
procedure, CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type
represents the Support Vector Machine method of classification and generates rules in
binary format. Use this classifier type when you need high classification accuracy.

This type has the following attributes:

Oracle Text Indexing Elements 2-63



Cluster Types

Data
Attribute Name Type

Default

Min
Value

Max
Value

Description

MAX_DCCTERMS I

MAX_FEATURES I

THEME_ON B

TOKEN_ON B

STEM ON B

VEMORY_SI ZE I

SECTI ON_WEI GHT 1

50

3,000

FALSE

TRUE

FALSE

500

10

NULL

NULL

NULL

10

8192

100,000

NULL

NULL

NULL

4000

100

Specify the maximum
number of terms representing
one document.

Specify the maximum
number of distinct features.

Specify TRUE to use themes
as features.

Classification with themes
requires an installed
knowledge base. A
knowledge base may or may
not have been installed with
Oracle Text. For more
information on knowledge
bases, see the Oracle Text
Application Developer's Guide.

Specify TRUE to use regular
tokens as features.

Specify TRUE to use
stemmed tokens as features.
This only works when
turning INDEX_STEM on for
the lexer.

Specify approximate memory
size in MB.

Specify the occurrence
multiplier for adding a term
in a field section as a normal
term. For example, by
default, the term cat in
"<A>cat</A>"is a field
section term and is treated as
a normal term with
occurrence equal to 2, but you
can specify that it be treated
as a normal term with a
weight up to 100. SECTI ON_
VEEI GHT is only meaningful
when the index policy
specifies a field section.

Cluster Types

This section describes the cluster types used for creating preferences for the CTX_
CLS. CLUSTERI NGprocedure.

See Also: For more information about clustering, see
"CLUSTERING" in Chapter 6, "CTX_CLS Package" as well as the
Oracle Text Application Developer’s Guide

KMEAN_CLUSTERING

This clustering type has the following attributes:

2-64 Oracle Text Reference



Stoplists

Data Min Max
Attribute Name Type Default Value Value Description

MAX_DCCTERMS I 50 10 8192  Specify the maximum
number of distinct terms
representing one document.

MAX_FEATURES I 3,000 1 500,000 Specify the maximum
number of distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes
as features.

Clustering with themes
requires an installed
knowledge base. A
knowledge base may or may
not have been installed with
Oracle Text. For more
information on knowledge
bases, see the Oracle Text
Application Developer's Guide.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use
stemmed tokens as features.
This only works when
turning INDEX_STEM on for
the lexer.

VEMORY_SI ZE I 500 10 4000 Specify approximate memory
size in MB.

SECTI ON_VEI GHT 1 2 0 100 Specify the occurrence
multiplier for adding a term
in a field section as a normal
term. For example, by
default, the term cat in
"<A>cat</A>"is a field
section term and is treated as
a normal term with
occurrence equal to 2, but you
can specify that it be treated
as a normal term with a
weight up to 100. SECTI ON_
VI GHT is only meaningful
when the index policy
specifies a field section.

CLUSTER_NUM I 200 2 20000  Specify the total number of
leaf clusters to be generated.

Stoplists

Stoplists identify the words in your language that are not to be indexed. In English,
you can also identify stopthemes that are not to be indexed. By default, the system
indexes text using the system-supplied stoplist that corresponds to your database
language.

Oracle Text provides default stoplists for most common languages including English,
French, German, Spanish, Dutch, and Danish. These default stoplists contain only
stopwords.

Oracle Text Indexing Elements 2-65



Stoplists

See Also: For more information about the supplied default
stoplists, see Appendix E, "Oracle Text Supplied Stoplists".

Multi-Language Stoplists

You can create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you use the MULTI _LEXER to index a table that
contains documents in different languages, such as English, German, and Japanese.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure
and specify a stoplist type of MULTI _STOPLI ST. You add language specific stopwords
with CTX_DDL.ADD_STOPWORD.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

Creating Stoplists

You can create your own stoplists using the CTX_DLL.CREATE_STOPLIST procedure.
With this procedure you can create a BASI C_STOPLI ST for single language stoplist,
or you can create a MULTI _STOPLI ST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of
CREATE | NDEX.

Modifying the Default Stoplist

The default stoplist is always named CTXSYS.DEFAULT_STOPLIST. You can use the
following procedures to modify this stoplist:

« CTX_DDL.ADD_STOPWORD

« CTX_DDL.REMOVE_STOPWORD
« CTX_DDL.ADD_STOPTHEME

« CTX_DDL.ADD_STOPCLASS

When you modify CTXSYS. DEFAULT_STCOPLI ST with the CTX_DDL package, you
must re-create your index for the changes to take effect.

Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER
INDEX. When you add a stopword dynamically, you need not re-index, because the
word immediately becomes a stopword and is removed from the index.

Note: Even though you can dynamically add stopwords to an
index, you cannot dynamically remove stopwords. To remove a
stopword, you must use CTX_DDL.REMOVE_STOPWORD, drop
your index and re-create it.

See Also: ALTER INDEX in Chapter 1, "Oracle Text SQL
Statements and Operators".

2-66 Oracle Text Reference



System-Defined Preferences

System-Defined Preferences

Data Storage

Filter

Lexer

When you install Oracle Text, some indexing preferences are created. You can use
these preferences in the parameter clause of CREATE INDEX or define your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

See Also: For more information about default index parameters,
see "Default Index Parameters" on page 2-70.

System-defined preferences are divided into the following categories:

= Data Storage

= Filter

=« Lexer

= Section Group

= Stoplist
= Storage
= Wordlist

This section discusses the types associated with data storage preferences.

CTXSYS.DEFAULT_DATASTORE

This preference uses the DIRECT_DATASTORE type. You can use this preference to
create indexes for text columns in which the text is stored directly in the column.

CTXSYS.FILE_DATASTORE
This preference uses the FILE_DATASTORE type.

CTXSYS.URL_DATASTORE
This preference uses the URL_DATASTORE type.

This section discusses the types associated with filtering preferences.

CTXSYS.NULL_FILTER
This preference uses the NULL_FILTER type.

CTXSYS.INSO_FILTER
This preference uses the INSO_FILTER type.

This section discusses the types associated with lexer preferences.

Oracle Text Indexing Elements 2-67



System-Defined Preferences

CTXSYS.DEFAULT_LEXER

The default lexer depends on the language used at install time. The following sections
describe the default settings for CTXSYS. DEFAULT_LEXER for each language.

American and English Language Settings If your language is English, this preference uses
the BASIC_LEXER with the i ndex_t henes attribute disabled.

Danish Language Settings If your language is Danish, this preference uses the BASIC_
LEXER with the following option enabled:

= alternate spelling (alternate_spelling attribute set to DANI SH)

Dutch Language Settings If your language is Dutch, this preference uses the BASIC_
LEXER with the following options enabled:

= composite indexing (conposi t e attribute set to DUTCH)

German and German DIN Language Settings If your language is German, this preference
uses the BASIC_LEXER with the following options enabled:

= case-sensitive indexing (m xed_case attribute enabled)

= composite indexing (conposi t e attribute set to GERVAN)

= alternate spelling (al t er nat e_spel | i ng attribute set to GERVAN)

Finnish, Norwegian, and Swedish Language Settings If your language is Finnish,

Norwegian, or Swedish, this preference uses the BASIC_LEXER with the following
option enabled:

= alternate spelling (alternate_spelling attribute set to SWEDI SH)

Japanese Language Settings If you language is Japanese, this preference uses the
JAPANESE_VGRAM_LEXER.

Korean Language Settings If your language is Korean, this preference uses the
KOREAN_MORPH_LEXER. All attributes for the KOREAN MORPH_LEXER are
enabled.

Chinese Language Settings If your language is Simplified or Traditional Chinese, this
preference uses the CHINESE_VGRAM_LEXER.

Other Languages For all other languages not listed in this section, this preference uses
the BASIC_LEXER with no attributes set.

See Also: To learn more about these options, see BASIC_LEXER
on page 2-27.

CTXSYS.BASIC_LEXER
This preference uses the BASI C_LEXER

Section Group

This section discusses the types associated with section group preferences.

CTXSYS.NULL_SECTION_GROUP
This preference uses the NULL_SECTI ON_GROUP type.

2-68 Oracle Text Reference



System Parameters

Stoplist

Storage

Wordlist

CTXSYS.HTML_SECTION_GROUP
This preference uses the HTML_SECTI ON_CGROUP type.

CTXSYS.AUTO_SECTION_GROUP
This preference uses the AUTO_SECTI ON_CGROUP type.

CTXSYS.PATH_SECTION_GROUP
This preference uses the PATH_SECTI ON_CGROUP type.

This section discusses the types associated with stoplist preferences.

CTXSYS.DEFAULT_STOPLIST
This stoplist preference defaults to the stoplist of your database language.

See Also: For a complete list of the stop words in the supplied
stoplists, see Appendix E, "Oracle Text Supplied Stoplists".

CTXSYS.EMPTY_STOPLIST

This stoplist has no words.

This section discusses the types associated with storage preferences.

CTXSYS.DEFAULT_STORAGE
This storage preference uses the BASIC_STORAGE type.

This section discusses the types associated with wordlist preferences.

CTXSYS.DEFAULT_WORDLIST

This preference uses the language stemmer for your database language. If your
language is not listed in Table 2-8 on page 2-54, this preference defaults to the NULL
stemmer and the GENERIC fuzzy matching attribute.

System Parameters

This section describes the Oracle Text system parameters. They fall into the following
categories:

= General System Parameters

« Default Index Parameters

General System Parameters

When you install Oracle Text, in addition to the system-defined preferences, the
following system parameters are set:

Oracle Text Indexing Elements 2-69



System Parameters

System Parameter

Description

MAX_| NDEX_MEMORY

DEFAULT_| NDEX_MEMORY

LOG_DI RECTORY
CTX_DOC_KEY_TYPE

This is the maximum indexing memory that can be
specified in the parameter clause of CREATE | NDEX
and ALTER | NDEX.

This is the default indexing memory used with CREATE
I NDEX and ALTER | NDEX.

This is the directory for CTX_QOUTPUT log files.

This is the default input key type, either ROW D or
PRI MARY_KEY, for the CTX_DOC procedures. Set to
ROW D at install time.

See also: CTX_DOC. SET_KEY_TYPE on page 8-29.

You can view system defaults by querying the CTX_PARAMETERS view. You can
change defaults using the CTX_ADM.SET_PARAMETER procedure.

Default Index Parameters

This section describes the index parameters you can use when you create context and

ctxcat indexes.

CONTEXT Index Parameters

The following default parameters are used when you do not specify preferences in the
parameter clause of CREATE INDEX when you create a context index. Each default
parameter names a system-defined preference to use for data storage, filtering, lexing,

and so on.
System Parameter Used When Default Value
DEFAULT_DATASTORE No datastore preference specified in CTXSYS.DEFAULT_DATASTORE
parameter clause of CREATE | NDEX.
DEFAULT_FI LTER FI LE No filter preference specified in CTXSYS.INSO_FILTER

parameter clause of CREATE | NDEX,
and either of the following conditions

is true:

«  Your files are stored in external

files (BFILES) or

= You specify a datastore preference
that uses FI LE_DATASTORE

DEFAULT_FI LTER _BI NARY  No filter preference specified in CTXSYS.INSO_FILTER
parameter clause of CREATE | NDEX,
and Oracle Text detects that the text
column datatype is RAW LONG RAW or

BLCB.

DEFAULT_FI LTER _TEXT No filter preference specified in CTXSYS.NULL_FILTER
parameter clause of CREATE | NDEX,
and Oracle Text detects that the text
column datatype is either LONG,
VARCHAR2, VARCHAR, CHAR, or CLCB.

2-70 Oracle Text Reference



System Parameters

System Parameter

Used When

Default Value

DEFAULT_SECTI ON_HTM.

DEFAULT_SECTI ON_TEXT

DEFAULT_STORAGE

DEFAULT_LEXER

DEFAULT_STOPLI ST

DEFAULT_WORDLI ST

No section group specified in
parameter clause of CREATE | NDEX,
and when either of the following
conditions is true:

= Your datastore preference uses
URL_DATASTORE or

= Your filter preference uses | NSO _

FI LTER

No section group specified in
parameter clause of CREATE | NDEX,

and when you do not use either URL _

DATASTORE or | NSO _FI LTER

No storage preference specified in
parameter clause of CREATE | NDEX.

No lexer preference specified in
parameter clause of CREATE | NDEX.

No stoplist specified in parameter
clause of CREATE | NDEX.

No wordlist preference specified in
parameter clause of CREATE | NDEX.

CTXSYS.HTML_SECTION_GROUP

CTXSYS.NULL_SECTION_GROUP

CTXSYS.DEFAULT_STORAGE

CTXSYS.DEFAULT_LEXER

CTXSYS.DEFAULT_STOPLIST

CTXSYS.DEFAULT_WORDLIST

CTXCAT Index Parameters

The following default parameters are used when you create a CTXCAT index with
CREATE INDEX and do not specify any parameters in the parameter string. The
CTXCAT index supports only the index set, lexer, storage, stoplist, and wordlist
parameters. Each default parameter names a system-defined preference.

System Parameter

Used When

Default Value

DEFAULT_CTXCAT | NDEX_SET

DEFAULT_CTXCAT_STORAGE

DEFAULT_CTXCAT_LEXER

DEFAULT_CTXCAT_STOPLI ST

DEFAULT_CTXCAT_WORDLI ST

No index set specified in parameter
clause of CREATE | NDEX.

No storage preference specified in

parameter clause of CREATE | NDEX.

No lexer preference specified in

parameter clause of CREATE | NDEX.

No stoplist specified in parameter
clause of CREATE | NDEX.

No wordlist preference specified in

parameter clause of CREATE | NDEX.

Note that while you can specify a
wordlist preference for CTXCAT

indexes, most of the attributes do not

apply, since the catsearch query
language does not support
wildcarding, fuzzy, and stemming.
The only attribute that is useful is
PREFI X_| NDEX for Japanese data.

CTXSYS.DEFAULT_STORAGE

CTXSYS.DEFAULT_LEXER

CTXSYS.DEFAULT_STOPLIST

CTXSYS.DEFAULT_WORDLIST

CTXRULE Index Parameters

The following default parameters are used when you create a CTXRULE index with
CREATE | NDEX and do not specify any parameters in the parameter string. The

Oracle Text Indexing Elements 2-71



System Parameters

CTXRULE index supports only the lexer, storage, stoplist, and wordlist parameters.
Each default parameter names a system-defined preference.

System Parameter Used When Default Value

DEFAULT_CTXRULE_LEXER No lexer preference specified in CTXSYS.DEFAULT_LEXER
parameter clause of CREATE | NDEX.

DEFAULT_CTXRULE_STORAGE No storage preference specified in CTXSYS.DEFAULT_STORAGE
parameter clause of CREATE | NDEX.

DEFAULT_CTXRULE_STOPLIST = No stoplist specified in parameter CTXSYS.DEFAULT_STOPLIST
clause of CREATE | NDEX.

DEFAULT_CTXRULE_WORDLIST No wordlist preference specified in =~ CTXSYS.DEFAULT_WORDLIST
parameter clause of CREATE | NDEX.

DEFAULT_CLASSIFIER No classifier preference is specified in RULE_CLASSIFIER
parameter clause.

Viewing Default Values

You can view system defaults by querying the CTX_PARAMETERS view. For example,
to see all parameters and values, you can issue:

SQL> SELECT par _nane, par_val ue from ctx_paraneters;
Changing Default Values

You can change a default value using the CTX_ADM.SET_PARAMETER procedure to
name another custom or system-defined preference to use as default.

2-72 Oracle Text Reference



3

Oracle Text CONTAINS Query Operators

This chapter describes operator precedence and provides description, syntax, and
examples for every CONTAINS operator. The following topics are covered:

= Operator Precedence

« ABOUT
« ACCUMulate (,)
«  AND (&)

» Broader Term (BT, BTG, BTP, BTI)
« EQUIValence (=)

« Fuzzy

« HASPATH

« INPATH

«  MDATA

«  MINUS (-)

« Narrower Term (NT, NTG, NTP, NTI)
«  NEARC()

= NOT(~)

« OR(I)

« Preferred Term (PT)

» Related Term (RT)

« soundex ()

« stem ($)

= Stored Query Expression (SQE)
= SYNonym (SYN)

« threshold (>)

» Translation Term (TR)

= Translation Term Synonym (TRSYN)
= Top Term (TT)

= weight (¥)

Oracle Text CONTAINS Query Operators  3-1



Operator Precedence

« wildcards (% _)
«  WITHIN

Operator Precedence

Operator precedence determines the order in which the components of a query
expression are evaluated. Text query operators can be divided into two sets of
operators that have their own order of evaluation. These two groups are described
later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first.
Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

Group 1 Operators

Within query expressions, the Group 1 operators have the following order of
evaluation from highest precedence to lowest:

EQUIValence (=)
NEAR ()

weight (*), threshold (>)
MINUS (-)

NOT (~)

WITHIN

AND (&)

OR (1)

ACCUMulate (,)

© © N o 0~ w NP

Group 2 Operators and Characters

Within query expressions, the Group 2 operators have the following order of
evaluation from highest to lowest:

1. Wildcard Characters

2. stem ($)
3. Fuzzy
4. soundex (!)

Procedural Operators

Other operators not listed under Group 1 or Group 2 are procedural. These operators
have no sense of precedence attached to them. They include the SQE and thesaurus
operators.

3-2 Oracle Text Reference



Operator Precedence

Precedence Examples

Query Expression Order of Evaluation

wl | w2 & w3 (wl) | (w2 & w3)

wl & w2 | w3 (wl & w2) | w3

wl, w2 | w3 & wi @wl), (W2 | (W3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query returns
all documents that contain w1 and all documents that contain both w2 and w3.

In the second example, the query returns all documents that contain both w1 and w2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is
applied to arguments w3 and w4, then the OR operator is applied to term w2 and the
results of the AND operation, and finally, the score from the fuzzy operation on w1 is
added to the score from the OR operation.

The fourth example shows that the equivalence operator has higher precedence than
the AND operator.

The fifth example shows that the AND operator has lower precedence than the W THI N
operator.

Altering Precedence

Precedence is altered by grouping characters as follows:

= Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

= Within parentheses, precedence of operators is maintained during evaluation of
expressions.

= Within parentheses, expansion operators are not applied to expressions unless the
operators are also within the parentheses.

See Also: Grouping Characters in Chapter 4, "Special Characters
in Oracle Text Queries".

Oracle Text CONTAINS Query Operators  3-3



ABOUT

ABOUT

General Behavior

Use the ABOUT operator to return documents that are related to a query term or
phrase. In English and French, ABOUT enables you to query on concepts, even if a
concept is not actually part of a query. For example, an ABOUT query on heat might
return documents related to temperature, even though the term temperature is not part
of the query.

In other languages, using ABOUT will often increase the number of returned
documents and may improve the sorting order of results. For all languages, Oracle
Text scores results for an ABOUT query with the most relevant document receiving the
highest score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks
up concept information in the theme component of the index. You create a theme
component to your index by setting the | NDEX_THEMES BASIC_LEXER attribute to
YES.

Note: You need not have a theme component in the index to issue
ABOUT queries in English and French. However, having a theme
component in the index yields the best results for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query
word or phrase. For example, if you issue an ABOUT query on California, the system
might return documents that contain the terms Los Angeles and San Francisco, which
are cities in California.The document need not contain the term California to be
returned in this ABOUT query.

The word or phrase specified in your ABOUT query need not exactly match the themes
stored in the index. Oracle Text normalizes the word or phrase before performing
lookup in the index.

You can use the ABOUT operator with the CONTAI NS and CATSEARCH SQL operators.
In the case of CATSEARCH, you must use query templating with the CONTEXT
grammar to query on the indexed themes. See ABOUT Query with CATSEARCH in
the Examples section.

3-4 Oracle Text Reference



ABOUT

Syntax
Syntax Description
about(phrase) In all languages, increases the number of relevant documents
returned for the same query without the ABOUT operator.The phrase
parameter can be a single word or a phrase, or a string of words in
free text format.
In English and French, returns documents that contain concepts
related to phrase, provided the BASIC_LEXER INDEX_THEMES
attribute is set to YES at index time.
The score returned is a relevance score.
Oracle Text ignores any query operators that are included in phrase.
If your index contains only theme information, an ABOUT operator
and operand must be included in your query on the text column or
else Oracle Text returns an error.
The phrase you specify cannot be more than 4000 characters.
Case-Sensitivity
ABQUT queries give the best results when your query is formulated with proper case.
This is because the normalization of your query is based on the knowledge catalog
which is case-sensitive.
However, you need not type your query in exact case to obtain results from an ABOUT
query. The system does its best to interpret your query. For example, if you enter a
query of CISCO and the system does not find this in the knowledge catalog, the
system might use Cisco as a related concept for look-up.
Improving ABOUT Results
The ABQUT operator uses the supplied knowledge base in English and French to
interpret the phrase you enter. Your ABQUT query therefore is limited to knowing and
interpreting the concepts in the knowledge base.
You can improve the results of your ABOUT queries by adding your
application-specific terminology to the knowledge base.
See Also: Extending the Knowledge Base in Chapter 14, "Oracle
Text Executables".
Limitations
= The phrase you specify in an ABOUT query cannot be more than 4000 characters.
Examples

Single Words

To search for documents that are about soccer, use the following syntax:

"about (soccer)’

Phrases

You can further refine the query to include documents about soccer rules in
international competition by entering the phrase as the query term:

"about (soccer rules in international conpetition)'

Oracle Text CONTAINS Query Operators  3-5



ABOUT

In this English example, Oracle Text returns all documents that have themes of soccer,
rules, or international competition.

In terms of scoring, documents which have all three themes will generally score higher
than documents that have only one or two of the themes.

Unstructured Phrases
You can also query on unstructured phrases, such as the following;:

"about (j apanese banking investnents in indonesia)'

Combined Queries

You can use other operators, such as AND or NOT, to combine ABOUT queries with word
queries.

For example, you can issue the following combined ABOUT and word query:

"about (dogs) and cat'

You can combine an ABOUT query with another ABOUT query as follows:

"about (dogs) not about (| abradors)’

Note: You cannot combine ABOUT with the WITHIN operator, as
for example 'ABOUT (xyz) WITHIN abc’.

ABOUT Query with CATSEARCH

You can issue ABOUT queries with CATSEARCH using the query template method
with grammar set to CONTEXT as follows:

select pk||" ==>"||text fromtest
where catsearch(text,
' <query>

<textquery grammar="context">
about (Cal i forni a)
</textquery>
<score datatype="integer"/>
</query>',"'")>0
order by pk;

3-6 Oracle Text Reference



ACCUMulate (,)

ACCUMulate (,)

Use the ACCUMoperator to search for documents that contain at least one occurrence of
any query terms, with the returned documents ranked by a cumulative score based on
how many query terms are found (and how frequently).

Syntax
Syntax Description
term1,term2 Returns documents that contain term1 or term2. Ranks documents
according to document term weight, with the highest scores assigned
term1 ACCUM ferm?2 to documents that have the highest total term weight.
ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches.
A document that matches more terms will always score higher than a document that
matches fewer terms, even if the terms appear more frequently in the latter. In other
words, if you search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM hits that match both terms will
always score between 51 and 100, whereas hits matching only one of the terms will
score between 1 and 50. Likewise, for a three-term ACCUM a hit matching one term
will score between 1 and 33; a hit matching two terms will score between 34 and 66,
and a hit matching all three terms will score between 67 and 100. Within these ranges,
normal scoring algorithms apply. (See Appendix F, "The Oracle Text Scoring
Algorithm" for more on how scores are calculated.)

You can assign different weights to different terms. For example, in a query of the
form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

peopl e play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South Anerica

but both documents will rank below

soccer is the national sport of Brazil

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil
ACCUM Brazil ACCUM Brazil. Since each query term Brazil is considered
independent, the entire query is scored as though it has four terms, not two, and thus
has four scoring ranges. The first Brazil-and-soccer example document shown above
will score in the first range (1-25), the second will score in the third range (51-75), and
the third will score in the fourth range (76-100). (No document will score in the second

Oracle Text CONTAINS Query Operators  3-7



ACCUMulate (,)

range, because any document with Brazil in it will be considered to match at least three
query terms.)

Example

set serveroutput on;
DROP TABLE accuntbl ;
CREATE TABLE accuntbl (id NUMBER text VARCHAR2(4000) );

I NSERT | NTO accuntbl VALUES ( 1, 'the little dog played with the big dog
while the other dog ate the dog food');
I NSERT I NTO accuntbl values (2, 'the cat played with the dog');

CREATE | NDEX accuntbl _idx ON accuntbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE(10) FROM accuntbl WHERE CONTAINS (text, 'dog ACCUM cat’, 10)
> 0;

PROWPT dog*3 ACCUM cat
SELECT SCORE(10) FROM accuntbl WHERE CONTAINS (text, 'dog*3 ACCUM cat’, 10)
> 0;

This produces the following output. Note that the document with both dog and cat
scores highest.

dog ACCUM cat
ID SCORE(10)

ID SCORE(10)

Related Topics
See also weight (*) on page 3-43

3-8 Oracle Text Reference



AND (&)

AND (&)

Syntax

Examples

Related Topics

Use the AND operator to search for documents that contain at least one occurrence of
each of the query terms.

Syntax Description

term1&term?2 Returns documents that contain term1 and term2. Returns the minimum

term1 and term2 score of its operands. All query terms must occur; lower score taken.

To obtain all the documents that contain the terms blue and black and red, issue the
following query:

"blue & black & red'
In an AND query, the score returned is the score of the lowest query term. In this

example, if the three individual scores for the terms blue, black, and red is 10, 20 and 30
within a document, the document scores 10.

See Also: The AND operator returns documents that contain all of the
query terms, while OR operator returns documents that contain any of
the query terms. See "OR (1)" on page 3-31.

Oracle Text CONTAINS Query Operators  3-9



Broader Term (BT, BTG, BTP, BTI)

Broader Term (BT, BTG, BTP, BTI)

Syntax

Use the broader term operators (BT, BTG BTP, BTl ) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

Syntax Description

BT (term[(qualifier)][ level][,thes]) Expands a query to include the term defined in the
thesaurus as a broader term for term.

BTG(term[(qualifier)][,level][, thes]) Expands a query to include all terms defined in the
thesaurus as broader generic terms for term.

BTP(term[(qualifier)][ level][,thes]) Expands a query to include all the terms defined in
the thesaurus as broader partitive terms for term.

BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in
the thesaurus as broader instance terms for term.

term

Specify the operand for the broader term operator. Oracle Text expands term to include
the broader term entries defined for the term in the thesaurus specified by thes. For
example, if you specify BTG(dog), the expansion includes only those terms that are
defined as broader term generic for dog. You cannot specify expansion operators in the
t er margument.

The number of broader terms included in the expansion is determined by the value for
level.

qgualifier

Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a broader term query, the query
expands to include the broader terms of all the homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the broader
terms for the specified term. For example, a level of 1 in a BT query returns the broader
term entry, if one exists, for the specified term. A level of 2 returns the broader term
entry for the specified term, as well as the broader term entry, if one exists, for the
broader term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

3-10 Oracle Text Reference



Broader Term (BT, BTG, BTP, BTI)

Note: If you specify thes, you must also specify level.

Examples

The following query returns all documents that contain the term tutorial or the BT term
defined for tutorial in the DEFAULT thesaurus:

"BT(tutorial)'

When you specify a thesaurus name, you must also specify level as in:

"BT(tutorial, 2, nythes)'

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term for
crane (waterfowl) and no qualifier is specified for a broader term query, the query

BT(crane)

expands to:
"{crane} or {machine} or {bird}'
If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT(crane{(waterfow )})

expands to the query:

"{crane} or {bird}’

Note: When specifying a qualifier in a broader or narrower term
query, the qualifier and its notation (parentheses) must be escaped,
as is shown in this example.

Related Topics

You can browse a thesaurus using procedures in the CTX_THES package.
See Also: For more information on browsing the broader terms in

your thesaurus, see CIX_THES.BT in Chapter 12, "CTX_THES
Package".

Oracle Text CONTAINS Query Operators  3-11



EQUIValence (=)

EQUIValence (=)

Use the EQUI V operator to specify an acceptable substitution for a word in a query.

Syntax
Syntax Description
term1=term2 Specifies that term2 is an acceptable substitution for term1. Score
. calculated as the sum of all occurrences of both terms.
terml1 equiv term?2
Examples

The following example returns all documents that contain either the phrase alsatians
are big dogs or labradors are big dogs:

"l abradors=al satians are big dogs'
Operator Precedence

The EQUI V operator has higher precedence than all other operators except the
expansion operators (fuzzy, soundex, stem).

3-12 Oracle Text Reference



Fuzzy

Fuzzy

Use the f uzzy operator to expand queries to include words that are spelled similarly
to the specified term. This type of expansion is helpful for finding more accurate
results when there are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain
words with high similarity to the query word are scored higher than documents with
lower similarity. You can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion depends
on what is in the index. Results can vary significantly according to the contents of the
index.

Supported Languages

Stopwords

Oracle Text supports fuzzy definitions for English, German, Italian, Dutch, Spanish,
Japanese, Korean, Chinese, OCR, and auto-language detection.

If the fuzzy expansion returns a stopword, the stopword is not included in the query
or highlighted by CTX_DCC. HI GHLI GHT or CTX_DOC. MARKUP.

Base-Letter Conversion

Syntax

Examples

If base-letter conversion is enabled for a text column and the query expression
contains a fuzzy operator, Oracle Text operates on the base-letter form of the query.

fuzzy(term score, nunresults, weight)

Parameter Description

term Specify the word on which to perform the fuzzy expansion. Oracle
Text expands term to include words only in the index.

score Specify a similarity score. Terms in the expansion that score below
this number are discarded. Use a number between 1 and 80. The
default is 60.

numresults Specify the maximum number of terms to use in the expansion of

term. Use a number between 1 and 5000. The default is 100.

weight Specify VEI GHT or W for the results to be weighted according to
their similarity scores.

Specify NOWEI GHT or N for no weighting of results.

Consider the CONTAI NS query:
... CONTAI NS( TEXT, 'fuzzy(governnent, 70, 6, weight)', 1) > 0;

This query expands to the first six fuzzy variations of government in the index that
have a similarity score over 70.

Oracle Text CONTAINS Query Operators  3-13



Fuzzy

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the
highest score.

You can skip unnecessary parameters using the appropriate number of commas. For
example:

"fuzzy(governnent,,, weight)'

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as

follows:
Parameter Description
?term Expands term to include all terms with similar spellings as the

specified term.

3-14 Oracle Text Reference



HASPATH

HASPATH

Syntax

Example

Use this operator to find all XML documents that contain a specified section path. You
can also use this operator to do section equality testing.

Your index must be created with the PATH_SECTI ON_GROUP for this operator to

work.
Syntax Description
HASPATH(path) Searches an XML document set and returns a score

HASPATH(A="value")

of 100 for all documents where path exists.
Separate parent and child paths with the /
character. For example, you can specify A/B/C.

See example.

Searches an XML document set and returns a score
of 100 for all documents that have the element A
with content value and only value.

See example.

Path Testing
The query

HASPATH( A/ B/ C)

finds and returns a score of 100 for the document

<A><B><C>dog</ &</ B></ A>

without the query having to reference dog at all.

Section Equality Testing

The query

dog | NPATH A
finds

<A>dog</ A>

but it also finds
<A>dog park</ A>

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH( A="dog" )

finds and returns a score of 100 only for the first document, and not the second.

Oracle Text CONTAINS Query Operators  3-15



HASPATH

Limitations

Because of how XML section data is recorded, false matches might occur with XML
sections that are completely empty as follows:

<A><B><C></C></B><D><E></E></D></A>

A query of HASPATH( A/ B/ E) or HASPATH( A/ D/ C) falsely matches this document.
This type of false matching can be avoided by inserting text between empty tags.

3-16 Oracle Text Reference



INPATH

INPATH

Use this operator to do path searching in XML documents. This operator is like the
W THI N operator except that the right-hand side is a parentheses enclosed path, rather
than a single section name.

Your index must be created with the PATH_SECTI ON_GROUP for the | NPATH operator
to work.

Syntax
The | NPATH operator has the following syntax:

Top-Level Tag Searching

Syntax Description
term INPATH (/A) Returns documents that have term within the <A>
term INPATH (A) and </A> tags.

Any-Level Tag Searching

Syntax Description

term INPATH (//A) Returns documents that have term in the <A> tag
at any level. This query is the same as "term
WITHIN A'

Direct Parentage Path Searching

Syntax Description

term INPATH (A/B) Returns documents where term appears in a B
element which is a direct child of a top-level A
element.

For example, a document containing
<A><B>t er nx/ B></ A>

is returned.

Single-Level Wildcard Searching

Syntax Description

term INPATH (A /*/B) Returns documents where term appears in a B
element which is a grandchild (two levels down)
of a top-level A element.

For example a document containing
<A><D><B>t er nx/ B></ D></ A>

is returned.

Oracle Text CONTAINS Query Operators  3-17



INPATH

Multi-level Wildcard Searching

Syntax

Description

term INPATH (A/*/B/*/*/C)

Returns documents where term appears in a C
element which is 3 levels down from a B element
which is two levels down (grandchild) of a
top-level A element.

Any-Level Descendant Searching

Syntax

Description

term INPATH(A/ /B)

Returns documents where term appears in a B
element which is some descendant (any level) of a
top-level A element.

Attribute Searching

Syntax

Description

term INPATH (//A/@B)

Returns documents where term appears in the B
attribute of an A element at any level. Attributes
must be bound to a direct parent.

Descendant/Attribute Existence Testing

Syntax

Description

term INPATH (A[B])

term INPATH (A[.//B])

term INPATH (// A[@B])

Returns documents where term appears ina
top-level A element which has a B element as a
direct child.

Returns documents where term appears in a
top-level A element which has a B element as a
descendant at any level.

Finds documents where term appears in an A
element at any level which has a B attribute.
Attributes must be tied to a direct parent.

Attribute Value Testing

Syntax

Description

term INPATH (A[@B = "value"])

term INPATH (A[@B != "value"])

Finds all documents where term appears in a
top-level A element which has a B attribute whose
value is value.

Finds all documents where term appears in a
top-level A element which has a B attribute whose
value is not value.

Tag Value Testing

Syntax

Description

term INPATH (A[B = "value"]))

Returns documents where term appears in an A tag
which has a B tag whose value is value.

3-18 Oracle Text Reference



INPATH

Nested INPATH

Case-Sensitivity

Not
Syntax Description
term INPATH (A[NOT(B)]) Finds documents where term appears in a top-level

A element which does not have a B element as an
immediate child.

AND and OR Testing

Syntax Description

term INPATH (A[B and C]) Finds documents where term appears in a
top-level A element which has a B and a C element
as an immediate child.

term INPATH (A[B and @C="value"]]) Finds documents where term appears in a top-level
A element which has a B element and a C attribute
whose value is value.

term INPATH (A [B OR C]) Finds documents where term appears in a top-level
A element which has a B element or a C element.

Combining Path and Node Tests

Syntax Description

term INPATH (A[@B = "value"]/C/D) Returns documents where term appears in aD
element which is the child of a C element, which is
the child of a top-level A element with a B attribute
whose value is value.

You can nest the entire | NPATH expression in another | NPATH expression as follows:
(dog | NPATH (//A/BIC)) | NPATH (D)
When you do so, the two | NPATH paths are completely independent. The outer

| NPATH path does not change the context node of the inner | NPATH path. For
example:

(dog I'NPATH (A)) | NPATH (D)
never finds any documents, because the inner | NPATHis looking for dog within the
top-level tag A, and the outer | NPATH constrains that to document with top-level tag

D. A document can have only one top-level tag, so this expression never finds any
documents.

Tags and attribute names in path searching are case-sensitive. That is,

dog | NPATH (A)

finds <A>dog</ A> but does not find <a>dog</ a>. Instead use
dog | NPATH (a)

Oracle Text CONTAINS Query Operators  3-19



INPATH

Examples

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog | NPATH (/A)
or

dog | NPATH( A)

Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog | NPATH(// A)

This query finds the following documents:

<A>dog</ A>

and

<C><B><A>dog</ A></ B></ &

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog | NPATH( A/ B)

This query finds the following XML document:
<A><B>My dog is friendly.</B><A>

but does not find:

<C<B>My dog is friendly.</B></C

Tag Value Testing
You can test the value of tags. For example, the query:

dog | NPATH( Al B="dog"])
Finds the following document:
<A><B>dog</ B></ A>

But does not find:

<A><B>My dog is friendly.</B></A>

Attribute Searching
You can search the content of attributes. For example, the query:

dog | NPATH(// A @B)

Finds the document

<C><A B="snoop dog"> </A> </ C

3-20 Oracle Text Reference



INPATH

Limitations

Attribute Value Testing
You can test the value of attributes. For example, the query

California INPATH (// Al @ = "hone address"])

Finds the document:

<A B="hone address">San Francisco, California, USA</ A>
But does not find:

<A B="work address">San Francisco, California, USA</ A>

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH( A/ B/ C)

finds and returns a score of 100 for the document

<A><B><C>dog</ &</ B></ A>

without the query having to reference dog at all.

Testing for Equality
The following is an example of an | NPATH equality test.

dog I NPATH (A @ = "fo00"])

The following limitations apply for these expressions:

= Only equality and inequality are supported. Range operators and functions are not
supported.

= The left hand side of the equality must be an attribute. Tags and literals here are
not enabled.

= The right hand side of the equality must be a literal. Tags and attributes here are
not allowed.

= The test for equality depends on your lexer settings. With the default settings, the
query
dog | NPATH (Al @= "pot of gold"])

matches the following sections:

<A B="POT OF GOLD'>dog</A>
and

<A B="pot of gol d">dog</A>
because lexer is case-insensitive by default.

<A B="POT | S GOLD'>dog</ A>

because of and is are default stopwords in English, and a stopword matches any
stopword word.

<A B="POT_OF_GOLD'>dog</ A>

because the underscore character is not a join character by default.

Oracle Text CONTAINS Query Operators 3-21



MDATA

MDATA

Syntax

Example

Notes

Use the MDATA operator to query documents that contain MDATA sections. MDATA
sections are metadata that have been added to documents to speed up mixed

querying.

MDATA queries are treated exactly as literals. For example, with the query
MDATA(price, $1.24)

the $ is not interpreted as a stem operator, nor is the . (period) transformed into

whitespace. A right (close) parenthesis terminates the MDATA operator, so that MDATA
values that have close parentheses cannot be searched.

Syntax
MDATA (sectionname, value)

sectionname
The name of the MDATA section(s) to search.

value
The value of the MDATA section. For example, if an MDATA section called Bookt ype
has been created, it might have a value of paperback.

Suppose you want to query for books written by the writer Nigella Lawson that
contain the word summer. Assuming that an MDATA section called AUTHOR has been
declared, you can query as follows:

SELECT id FROM i dx_docs
VHERE CONTAI NS(text, 'summer AND MDATA(author, Nigella Lawson)')>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson
(after simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

MDATA query values ignore stopwords.
The MDATA operator returns 100 or 0, depending on whether the document is a match.
The MDATA operator is not supported for CTXCAT, CTXRULE, or CTXXPATH indexes.

Table 3-1 shows how MDATA interacts with some other query operators:

Table 3-1 MDATA and Other Query Operators

Operator Example Allowed?
AND dog & MDATA(a, b) yes
OR dog | MDATA(a, b) yes
NOT dog ~ MDATA(a, b) yes

3-22 Oracle Text Reference



MDATA

Table 3-1 (Cont.) MDATA and Other Query Operators

Operator Example Allowed?

MINUS dog - MDATA(a, b) yes

ACCUM dog , MDATA(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, MDATA(a, b) WITHIN ¢ no

INPATH

Thesaurus MDATA(a, SYN(b)) no

expansion MDATA(a, $b) no (syntactically
MDATA(a, b%) operator i treated a5
MDATA(a, 'b) literal text)
MDATA(a, ?b)

ABOUT ABOUT(MDATAC(a,b)) no (syntactically

allowed, but the inner
operator is treated as
literal text)

MDATA(ABOUT(a))

When MDATA sections repeat, each instance is a separate and independent value. For
instance, the document

<AUTHOR>Terry Prat chet t </ AUTHOR><AUTHOR>Dougl as Adans</ AUTHOR>

can be found with any of the following queries:

MDATA( aut hor, Terry Pratchett)
MDATA( aut hor, Dougl as Adans)
MDATA( aut hor, Terry Pratchett) and MDATA(author, Dougl as Adams)

but not any of the following:

MDATA( aut hor, Terry Pratchett Douglas Adans)
MDATA(aut hor, Terry Pratchett & Douglas Adans)
MDATA( aut hor, Pratchett Dougl as)

Related Topics

See also "ADD_MDATA" on page 7-9 and "ADD_MDATA_SECTION" on page 7-11, as
well as the Section Searching chapter of the Oracle Text Application Developer’s Guide.

Oracle Text CONTAINS Query Operators  3-23



MINUS ()

MINUS (-)

Use the M NUS operator to lower the score of documents that contain unwanted noise
terms. MINUS is useful when you want to search for documents that contain one
query term but want the presence of a second term to cause a document to be ranked

lower.
Syntax
Syntax Description
term1-term2 Returns documents that contain term1. Calculates score by
/ . subtracting the score of term2 from the score of term1. Only
erm1 minus term?2 . 0
documents with positive score are returned.
Examples
Suppose a query on the term cars always returned high scoring documents about Ford
cars. You can lower the scoring of the Ford documents by using the expression:
‘cars - Ford'
In essence, this expression returns documents that contain the term cars and possibly
Ford. However, the score for a returned document is the score of cars minus the score
of Ford.
Related Topics

See Also:  "NOT (~)" on page 3-30

3-24 Oracle Text Reference



Narrower Term (NT, NTG, NTP, NTI)

Narrower Term (NT, NTG, NTP, NTI)

Syntax

Use the narrower term operators (NT, NTG, NTP, NTI ) to expand a query to include all
the terms that have been defined in a thesaurus as the narrower or lower level terms
for a specified term. They can also expand the query to include all of the narrower
terms for each narrower term, and so on down through the thesaurus hierarchy.

Syntax Description

NT(term[(qualifier)][ level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower terms for term.

NTG(term[(qualifier)][ level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower generic terms for
term.

NTP(term[(qualifier)][ level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower partitive terms
for term.

NTI(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower instance terms
for term.

term

Specify the operand for the narrower term operator. t er mis expanded to include the
narrower term entries defined for the term in the thesaurus specified by t hes. The
number of narrower terms included in the expansion is determined by the value for

| evel . You cannot specify expansion operators in the t er margument.

qgualifier

Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.

If a qualifier is not specified for a homograph in a narrower term query, the query
expands to include all of the narrower terms of all homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the
narrower terms for the specified term. For example, a level of 1 in an NT query returns
all the narrower term entries, if any exist, for the specified term. A level of 2 returns all
the narrower term entries for the specified term, as well as all the narrower term
entries, if any exist, for each narrower term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

Note: If you specify thes, you must also specify level.

Oracle Text CONTAINS Query Operators  3-25



Narrower Term (NT, NTG, NTP, NTI)

Examples

Notes

Related Topics

The following query returns all documents that contain either the term cat or any of
the NT terms defined for cat in the DEFAULT thesaurus:

"NT(cat)’

If you specify a thesaurus name, you must also specify level as in:

"NT(cat, 2, nythes)’

The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

"NTI (fairy tale)'

That is, if the terms cinderella and snow white are defined as narrower term instances for
fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or snow white.

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to
the four narrower term operators. In a narrower term query, Oracle Text only expands
the query using the branch corresponding to the specified narrower term operator.

You can browse a thesaurus using procedures in the CTX_THES package.

See Also: For more information on browsing the narrower terms
in your thesaurus, see CTX_THES.NT in Chapter 12, "CTX_THES
Package".

3-26 Oracle Text Reference



NEAR ()

NEAR (;)

Syntax

Use the NEAR operator to return a score based on the proximity of two or more query
terms. Oracle Text returns higher scores for terms closer together and lower scores for
terms farther apart in a document.

Note: The NEAR operator works with only word queries. You
cannot use NEAR in ABQUT queries.

Syntax
NEAR((word1, word?2,..., wordn) [, max_span [, order]])

wordl1-n

Specify the terms in the query separated by commas. The query terms can be single
words or phrases and may make use of other query operators (see "NEAR with Other
Operators").

max_span
Optionally specify the size of the biggest clump. The default is 100. Oracle Text returns
an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed between
the two terms. For example, to query on dog and cat where dog is within 6 words of cat,
issue the following query:

"near ((dog, cat), 6)'
order

Specify TRUE for Oracle Text to search for terms in the order you specify. The default is
FALSE.

For example, to search for the words monday, tuesday, and wednesday in that order with
a maximum clump size of 20, issue the following query:

"near ((rmonday, tuesday, wednesday), 20, TRUE)'

Note: To specify order, you must always specify a number for the
max_span parameter.

Oracle Text might return different scores for the same document when you use
identical query expressions that have the order flag set differently. For example, Oracle
Text might return different scores for the same document when you issue the
following queries:

"near ((dog, cat), 50, FALSE)'
"near ((dog, cat), 50, TRUE)'

Oracle Text CONTAINS Query Operators 3-27



NEAR ()

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of
terms. For each document that satisfies the query, Oracle Text returns a score between
1 and 100 that is proportional to the number of clumps in the document and inversely
proportional to the average size of the clumps. This means many small clumps in a
document result in higher scores, since small clumps imply closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries with
few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. You can define clump size with the max_span
parameter as described in this section.

The size of a clump does not include the query terms themselves. So for the query
NEAR( (DOG, CAT), 1), dog cat will be a match, and dog ate cat will be a match, but
dog sat on cat will not be a match.

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah where
the terms lion and tiger are within 10 words of each other, issue the following query:

“near((lion, tiger), 10) AND cheetah’
The score returned for each document is the lower score of the near operator and the
term cheetah.
You can also use the equivalence operator to substitute a single term in a near query:
"near ((stock crash, Japan=Korea), 20)'
This query asks for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.
The following operators also work with NEAR:
« EQUV
« NEARitself
= All expansion operators that produce words, phrases, or EQUI V. These include:
« soundex
«  fuzzy
« wildcards

. stem

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases. For
example, to find all documents where lion occurs near tiger, you can write:

"lion near tiger'
or with the semi-colon as follows:

"lion;tiger'

3-28 Oracle Text Reference



NEAR ()

This query is equivalent to the following query:

"near((lion, tiger), 100, FALSE)'

Note: Only the syntax of the NEAR operator is backward
compatible. In the example, the score returned is calculated using
the clump method as described in this section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all occurrences
of all terms in the query that satisfy the proximity requirements are highlighted.
Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocol ate and vanilla are ny favorite ice creamflavors. | Iike chocol ate served
inawffle cone, and vanilla served in a cup with carmel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocol ate>> and <<vanilla>> are ny favorite ice creamflavors. | like
<<chocol ate>> served in a waffle cone, and <<vanilla>> served in a cup with
caranel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

<<Chocol ate>> and <<vanilla>> are ny favorite ice creamflavors. | like

chocol ate served in a waffle cone, and vanilla served in a cup with carmel syrup.

See Also: For more information about the procedures you can use
for highlighting, see Chapter 8, "CTX_DOC Package".

Section Searching and NEAR

You can use the NEAR operator with the W THI N operator for section searching as
follows:

"near ((dog, cat), 10) WTH N Headi ngs'
When evaluating expressions such as these, Oracle Text looks for clumps that lie
entirely within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the
section Headings are counted. That is, if the term dog lies within Headings and the term
cat lies five words from dog, but outside of Headings, this pair of words does not satisfy
the expression and is not counted.

Oracle Text CONTAINS Query Operators  3-29



NOT (~)

NOT (~)

Syntax

Examples

Related Topics

Use the NOT operator to search for documents that contain one query term and not
another.

Syntax Description

term1~term2 Returns documents that contain term1 and not term2.

term1 not term2

To obtain the documents that contain the term animals but not dogs, use the following
expression:

"ani mal s ~ dogs'
Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

"transportation not (autorpbiles or trains)'

Note: The NOT operator does not affect the scoring produced by
the other logical operators.

See Also: "MINUS (-)" on page 3-24

3-30 Oracle Text Reference



OR ()

OR ()

Use the OR operator to search for documents that contain at least one occurrence of any
of the query terms.

Syntax
Syntax Description
term1 | term2 Returns documents that contain ferm1 or term2. Returns the
terml or term? maximum score of its operands. At least one term must
exist; higher score taken.
Examples
For example, to obtain the documents that contain the term cats or the term dogs, use
either of the following expressions:
‘cats | dogs'
"cats OR dogs'
Scoring
In an OR query, the score returned is the score for the highest query term. In the
example, if the scores for cats and dogs is 30 and 40 within a document, the document
scores 40.
Related Topics

See Also: The ORoperator returns documents that contain any of the
query terms, while the AND operator returns documents that contain
all query terms. See "AND (&)" on page 3-9.

Oracle Text CONTAINS Query Operators 3-31



Preferred Term (PT)

Preferred Term (PT)

Syntax

Examples

Related Topics

Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

Syntax Description

PT(term|[,thes]) Replaces the specified word in a query with the preferred term
for term.

term

Specify the operand for the preferred term operator. term is replaced by the preferred
term defined for the term in the specified thesaurus. However, if no PT entries are
defined for the term, term is not replaced in the query expression and term is the result
of the expansion.

You cannot specify expansion operators in the t er margument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

The term automobile has a preferred term of car in a thesaurus. A PT query for
automobile returns all documents that contain the word car. Documents that contain the
word automobile are not returned.

You can browse a thesaurus using procedures in the CTX_THES package.

See Also: For more information on browsing the preferred terms
in your thesaurus, see CTX_THES.PT in Chapter 12, "CTX_THES
Package".

3-32 Oracle Text Reference



Related Term (RT)

Related Term (RT)

Syntax

Examples

Related Topics

Use the related term operator (RT) to expand a query to include all related terms that
have been defined in a thesaurus for the term.

Syntax Description

RT(term[,thes]) Expands a query to include all the terms defined in the
thesaurus as a related term for term.

term
Specify the operand for the related term operator. term is expanded to include term and
all the related entries defined for term in thes.

You cannot specify expansion operators in the t er margument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

The term dog has a related term of wolf. A RT query for dog returns all documents that
contain the word dog and wolf.

You can browse a thesaurus using procedures in the CTX_THES package
See Also: For more information on browsing the related terms in

your thesaurus, see CTX_THES.RT in Chapter 12, "CTX_THES
Package".

Oracle Text CONTAINS Query Operators 3-33



soundex (1)

soundex (!)

Use the soundex (!) operator to expand queries to include words that have similar
sounds; that is, words that sound like other words. This function enables comparison
of words that are spelled differently, but sound alike in English.

Syntax

Syntax Description

Iterm Expands a query to include all terms that sound the same
as the specified term (English-language text only).

Examples

SELECT I D, COMVENT FROM EMP_RESUME
WHERE CONTAINS ( COMVENT, '!SMYTHE') > O ;

23 Smith is a hard worker who..

Language

Soundex works best for languages that use a 7-bit character set, such as English. It can
be used, with lesser effectiveness, for languages that use an 8-bit character set, such as
many Western European languages.

If you have base-letter conversion specified for a text column and the query expression
contains a soundex operator, Oracle Text operates on the base-letter form of the query.

3-34 Oracle Text Reference



stem ($)

stem ($)
Use the stem ($) operator to search for terms that have the same linguistic root as the
query term.
If you use the BASIC_LEXER to index your language, stemming performance can be
improved by using the index_stems attribute.
The Oracle Text stemmer, licensed from Xerox Corporation's XSoft Division, supports
the following languages with the BASIC_LEXER: English, French, Spanish, Italian,
German, and Dutch.
Japanese stemming is supported with the JAPANESE_LEXER.
You can specify your stemming language with the BASIC_WORDLIST wordlist
preference.
Syntax
Syntax Description
$term Expands a query to include all terms having the same
stem or root word as the specified term.
Examples
Input Expands To
$scream Sscream screaming screamed
$distinguish distinguish distinguished distinguishes
$guitars guitars guitar
$commit commit committed
$cat cat cats
$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the
query or highlighted by CTX_QUERY. HI GHLI GHT or CTX_QUERY. MARKUP.

Related Topics
See Also: For more information about enabling the stem operator

with BASIC_LEXER, see BASIC_LEXER in Chapter 2, "Oracle Text
Indexing Elements".

Oracle Text CONTAINS Query Operators 3-35



Stored Query Expression (SQE)

Stored Query Expression (SQE)

Use the SQE operator to call a stored query expression created with the CTX_
QUERY. STORE_SQE procedure.

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is
refined using one or more additional queries.

Syntax
Syntax Description
SQE(SQE_name) Returns the results for the stored query expression
SQE_name.
Examples
To create an SQE named disasters, use CTX_QUERY. STORE_SQE as follows:
begi n
ctx_query.store_sqe(' disasters', '"hurricane or earthquake or blizzard);
end;

This stored query expression returns all documents that contain either hurricane,
earthquake or blizzard.

This SQE can then be called within a query expression as follows:

SELECT SCORE(1), docid FROM news
WHERE CONTAI NS(resune, 'sqge(disasters)', 1)> 0
ORDER BY SCORE(1);

3-36 Oracle Text Reference



SYNonym (SYN)

SYNonym (SYN)

Syntax

Examples

Related Topics

Use the synonym operator (SYN) to expand a query to include all the terms that have
been defined in a thesaurus as synonyms for the specified term.

Syntax Description

SYN(term|,thes]) Expands a query to include all the terms defined in the
thesaurus as synonyms for term.

term
Specify the operand for the synonym operator. term is expanded to include term and all
the synonyms defined for term in thes.

You cannot specify expansion operators in the t er margument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

The following query expression returns all documents that contain the term dog or any
of the synonyms defined for dog in the DEFAULT thesaurus:

" SYN(dog) "

Compound Phrases in Synonym Operator

Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.

For example, the compound phrase temperature + measurement + instruments is defined
in a thesaurus as a synonym for the term thermometer. In a synonym query for
thermometer, the query is expanded to:

{thermoneter} OR ({tenperature}& measurenent}&{instruments})

You can browse your thesaurus using procedures in the CTX_THES package.
See Also: For more information on browsing the synonym terms

in your thesaurus, see CTX_THES.SYN in Chapter 12, "CTX_THES
Package".

Oracle Text CONTAINS Query Operators 3-37



threshold (>)

threshold (>)

Use the threshold operator (>) in two ways:
« at the expression level
« at the query term level

The threshold operator at the expression level eliminates documents in the result set
that score below a threshold number.

The threshold operator at the query term level selects a document based on how a
term scores in the document.

Syntax
Syntax Description
expression>n Returns only those documents in the result set that
score above the threshold 7.
Within an expression, returns documents that contain
term>n .
the query term with score of at least n.
Examples

At the expression level, to search for documents that contain relational databases and to
return only documents that score greater than 75, use the following expression:

"rel ational databases > 75'

At the query term level, to select documents that have at least a score of 30 for lion and
contain tiger, use the following expression:

"(lion > 30) and tiger'

3-38 Oracle Text Reference



Translation Term (TR)

Translation Term (TR)

Syntax

Examples

Related Topics

Use the translation term operator (TR) to expand a query to include all defined foreign
language equivalent terms.

Syntax Description

TR(term[, lang, [thes]]) Expands term to include all the foreign equivalents that are
defined for term.

term

Specify the operand for the translation term operator. term is expanded to include all
the foreign language entries defined for term in thes.You cannot specify expansion
operators in the t er margument.

lang

Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. (You may specify
only one language at a time.) If you omit this parameter or specify it as ALL, the
system expands to use all defined foreign language terms.

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any of
the thesaurus operators.

Note: If you specify thes, you must also specify lang.

Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANI SH: gato
FRENCH.  chat

To search for all documents that contain cat and the spanish translation of cat, issue the
following query:

"tr(cat, spanish, ny_thes)’

This query expands to:
‘{cat}|{gato}'

You can browse a thesaurus using procedures in the CTX_THES package.
See Also: For more information on browsing the related terms in

your thesaurus, see CTX_THES.TR in Chapter 12, "CTX_THES
Package".

Oracle Text CONTAINS Query Operators 3-39



Translation Term Synonym (TRSYN)

Translation Term Synonym (TRSYN)

Syntax

Examples

Related Topics

Use the translation term operator (TR) to expand a query to include all the defined
foreign equivalents of the query term, the synonyms of query term, and the foreign
equivalents of the synonyms.

Syntax Description

TRSYN(term], lang, [thes]]) Expands term to include foreign equivalents of term, the
synonyms of term, and the foreign equivalents of the
synonyms.

term

Specify the operand for this operator. term is expanded to include all the foreign
language entries and synonyms defined for term in thes.You cannot specify expansion
operators in the t er margument.

lang

Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. If you omit this
parameter, the system expands to use all defined foreign language terms.

thes

Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any of
the thesaurus operators.

Note: If you specify thes, you must also specify lang.

Consider a thesaurus MY_THES with the following entries for cat:

cat
SPANI SH. gato
FRENCH: chat
SYN lion
SPANI SH: | eon

To search for all documents that contain cat, the spanish equivalent of cat, the synonym
of cat, and the spanish equivalent of lion, issue the following query:

"trsyn(cat, spanish, ny_thes)’

This query expands to:
"{cat}|{gato}|{lion}|{leon}

You can browse a thesaurus using procedures in the CTX_THES package.

3-40 Oracle Text Reference



Translation Term Synonym (TRSYN)

See Also: For more information on browsing the translation and
synonym terms in your thesaurus, see CTX_THES.TRSYN in
Chapter 12, "CTX_THES Package".

Oracle Text CONTAINS Query Operators 3-41



Top Term (TT)

Top Term (TT)

Syntax

Examples

Related Topics

Use the top term operator (TT) to replace a term in a query with the top term that has
been defined for the term in the standard hierarchy (Broader Term [BT], Narrower
Term [NT] ) in a thesaurus. A top term is the broadest conceptual term related to a
given query term. For example, a thesaurus might define the following hierarchy:

DOG
BT1 CANI NE
BT2 MAMVAL
BT3 VERTEBRATE
BT4 AN MAL

The top term for dog in this thesaurus is animal.

Top terms in the generic (BTG NTG), partitive (BTP, NTP), and instance (BTl , NTI )
hierarchies are not returned.

Syntax Description

TT(term|[,thes]) Replaces the specified word in a query with the top term in the
standard hierarchy (BT, NT) for term.

term

Specify the operand for the top term operator. term is replaced by the top term defined
for the term in the specified thesaurus. However, if no TT entries are defined for term,
term is not replaced in the query expression and term is the result of the expansion.

You cannot specify expansion operators in the t er margument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term.
The thes argument is optional and has a default value of DEFAULT. A thesaurus named
DEFAULT must exist in the thesaurus tables if you use this default value.

The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT
query for dog returns all documents that contain the phrase animal. Documents that
contain the word dog are not returned.

You can browse your thesaurus using procedures in the CTX_THES package.

See Also: For more information on browsing the top terms in
your thesaurus, see CTX_THES.TT on page 12-46.

3-42 Oracle Text Reference



weight (*)

weight (*)

Syntax

Examples

The weight operator multiplies the score by the given factor, topping out at 100 when
the score exceeds 100. For example, the query cat, dog*2 sums the score of cat with
twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. You can reduce the score of a query term
by using the weight operator with a number less than 1; you can increase the score of a
query term by using the weight operator with a number greater than 1 and less than
10.

The weight operator is useful in ACCUMulate (, ), AND (&), or OR () queries when
the expression has more than one query term. With no weighting on individual terms,
the score cannot tell you which of the query terms occurs the most. With term
weighting, you can alter the scores of individual terms and hence make the overall
document ranking reflect the terms you are interested in.

Syntax Description

term*n Returns documents that contain term. Calculates score by multiplying
the raw score of term by n, where n is a number from 0.1 to 10.

You have a collection of sports articles. You are interested in the articles about soccer,
in particular Brazilian soccer. It turns out that a regular query on soccer or Brazil returns
many high ranking articles on US soccer. To raise the ranking of the articles on
Brazilian soccer, you can issue the following query:

‘soccer or Brazil*3
Table 3-2 illustrates how the weight operator can change the ranking of three
hypothetical documents A, B, and C, which all contain information about soccer. The

columns in the table show the total score of four different query expressions on the
three documents.

Table 3-2 Score Samples

soccer Brazil soccer or Brazil soccer or Brazil*3
A 20 10 20 30
B 10 30 30 90
C 50 20 50 60

The score in the third column containing the query soccer or Brazil is the score of the
highest scoring term. The score in the fourth column containing the query soccer or
Brazil*3 is the larger of the score of the first column soccer and of the score Brazil
multiplied by three, Brazil*3.

With the initial query of soccer or Brazil, the documents are ranked in the order C B A.
With the query of soccer or Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

Oracle Text CONTAINS Query Operators 3-43



weight (*)

Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3
will increase the relative scores for documents that contain both soccer and Brazil.

3-44 Oracle Text Reference



wildcards (% _)

wildcards (% _)

Wildcard characters can be used in query expressions to expand word searches into
pattern searches. The wildcard characters are:

Wildcard Character Description

% The percent wildcard can appear any number of times at any part of
the search term. The search term will be expanded into an
equivalence list of terms. The list consists of all terms in the index
that match the wildcarded term, with zero or more characters in
place of the percent character.

The underscore wildcard specifies a single position in which any
character can occur.

The total number of wildcard expansions from all words in a query containing
unescaped wildcard characters cannot exceed the maximum number of expansions
specified by the BASI C_WORDLI ST attribute W LDCARD_NMAXTERMS. For more
information, see "BASIC_WORDLIST" on page 3-2.

Note: When a wildcard expression translates to a stopword, the
stopword is not included in the query and not highlighted by CTX_
DOC.HIGHLIGHT or CTX_DOC.MARKUP.

Right-Truncated Queries

Right truncation involves placing the wildcard on the right-hand-side of the search
string.

For example, the following query expression finds all terms beginning with the pattern
scal:

"scal %

Left- and Double-Truncated Queries
Left truncation involves placing the wildcard on the left-hand-side of the search string.

To find words such as king, wing or sing, you can write your query as follows:
_ing'

For all words that end with ing, you can issue:

' % r.]g|

You can also combine left-truncated and right-truncated searches to create

double-truncated searches. The following query finds all documents that contain
words that contain the substring %benz%

' %benz%

Improving Wildcard Query Performance
You can improve wildcard query performance by adding a substring or prefix index.

When your wildcard queries are left- and double-truncated, you can improve query
performance by creating a substring index. Substring indexes improve query

Oracle Text CONTAINS Query Operators 3-45



wildcards (% _)

performance for all types of left-truncated wildcard searches such as %ed, _ing, or
Y%benz%.

When your wildcard queries are right-truncated, you can improve performance by
creating a prefix index. A prefix index improves query performance for wildcard
searches such as t0%.

See Also: For more information about creating substring and
prefix indexes, see "BASIC_WORDLIST" in Chapter 2.

3-46 Oracle Text Reference



WITHIN

WITHIN

You can use the W THI N operator to narrow a query down into document sections.
Document sections can be one of the following;:

« zone sections
« field sections

« attribute sections

= special sections (sentence or paragraph)

Syntax

Syntax

Description

expression WITHIN section

expression WITHIN SENTENCE

expression WITHIN PARAGRAPH

Searches for expression within the pre-defined zone,
field, or attribute section.

If section is a zone, expression can contain one or more
W THI Noperators (nested W THI N) whose section is a
zone or special section.

If section is a field or attribute section, expression
cannot contain another W THI N operator.

Searches for documents that contain expression within
a sentence. Specify an AND or NOT query for expression.

The expression can contain one or more W THI N
operators (nested W THI N) whose section is a zone or
special section.

Searches for documents that contain expression within
a paragraph. Specify an AND or NOT query for
expression.

The expression can contain one or more W THI N
operators (nested W THI N) whose section is a zone or
special section.

WITHIN Limitations

The W THI N operator has the following limitations:

= You cannot embed the W THI Nclause in a phrase. For example, you cannot write:

term1 WITHIN section term2

= Since W THI Nis a reserved word, you must escape the word with braces to search

on it.

WITHIN Operator Examples

Querying Within Zone Sections

To find all the documents that contain the term San Francisco within the section
Headings, write your query as follows:

"San Franci sco WTHI N Headi ngs'

To find all the documents that contain the term sailing and contain the term San
Francisco within the section Headings, write your query in one of two ways:

Oracle Text CONTAINS Query Operators 3-47



WITHIN

"(San Francisco WTHI N Headi ngs) and sailing'

"sailing and San Francisco WTH N Headi ngs'

Compound Expressions with WITHIN

To find all documents that contain the terms dog and cat within the same section
Headings, write your query as follows:

"(dog and cat) WTH N Headi ngs'

This query is logically different from:
"dog WTHI N Headi ngs and cat W TH N Headi ngs'

This query finds all documents that contain dog and cat where the terms dog and cat are
in Headings sections, regardless of whether they occur in the same Headings section or
different sections.

Near with WITHIN

To find all documents in which dog is near cat within the section Headings, write your
query as follows:

"dog near cat W TH N Headi ngs'

Note: The near operator has higher precedence than the W THI N
operator so braces are not necessary in this example. This query is
equivalent to (dog near cat) WITHIN Headings.

Nested WITHIN Queries

You can nest the within operator to search zone sections within zone sections.

For example, assume that a document set had the zone section AUTHOR nested within
the zone BOOK section. You write a nested W THI N query to find all occurrences of scott
within the AUTHOR section of the BOOK section as follows:

"(scott WTH N AUTHOR) W THI N BOX'

Querying Within Field Sections

The syntax for querying within a field section is the same as querying within a zone
section. The syntax for most of the examples given in the previous section, "Querying
Within Zone Sections”, apply to field sections.

However, field sections behave differently from zone sections in terms of

= Visibility: You can make text within a field section invisible.

= Repeatability: W THI N queries cannot distinguish repeated field sections.
= Nestability: You cannot issue a nested W THI N query with a field section.

The following sections describe these differences.

Visible Flag in Field Sections

When a field section is created with the visible flag set to FALSE in CTX_DDL. ADD_

FI ELD_SECTI ON, the text within a field section can only be queried using the W THI N
operator.

3-48 Oracle Text Reference



WITHIN

For example, assume that Tl TLE is a field section defined with visible flag set to
FALSE. Then the query dog without the W THI N operator will not find a document
containing:

<TI TLE>The dog</TITLE> | Iike ny pet.

To find such a document, you can use the W THI N operator as follows:
"dog WTHI N TI TLE

Alternatively, you can set the visible flag to TRUE when you define Tl TLE as a field
section with CTX_DDL. ADD_FI ELD_SECTI ON.

See Also: For more information about creating field sections, see
ADD_FIELD_SECTION in Chapter 7, "CTX_DDL Package".

Repeated Field Sections

W THI N queries cannot distinguish repeated field sections in a document. For example,
consider the document with the repeated section <aut hor >:

<aut hor> Charles Dickens </author>
<author> Martin Luther King </author>

Assuming that <aut hor > is defined as a field section, a query such as (charles and
martin) within author returns the document, even though these words occur in separate
tags.

To have W THI N queries distinguish repeated sections, define the sections as zone
sections.

Nested Field Sections
You cannot issue a nested W THI N query with field sections. Doing so raises an error.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations of
words that occur in the same sentence or paragraph. To query sentence or paragraphs,
you must first add the special section to your section group before you index. You do
so with CTX_DDL. ADD_SPEC!I AL_SECTI ON.

To find documents that contain dog and cat within the same sentence:

' (dog and cat) W THI N SENTENCE

To find documents that contain dog and cat within the same paragraph:

'(dog and cat) WTH N PARAGRAPH

To find documents that contain sentences with the word dog but not cat:

"(dog not cat) WTH N SENTENCE

Querying Within Attribute Sections

You can query within attribute sections when you index with either XML_SECTI ON_
GROUP or AUTO_SECTI ON_GROUP as your section group type.

Assume you have an XML document as follows:

<book title="Tale of Two Cities">t was the best of times.</book>

Oracle Text CONTAINS Query Operators  3-49



WITHIN

You can define the section ti t | e@o0k to be the attribute sectionti t| e. You can do
so with the CTX_DLL. ADD_ATTR_SECTI ON procedure or dynamically after indexing
with ALTER| NDEX.

Note: When you use the AUTO_SECTI ON_GROUP to index XML
documents, the system automatically creates attribute sections and
names them in the form attribute @tag.

If you use the XML_SECTI ON_GROUP, you can name attribute
sections anything with CTX_DDL. ADD_ATTR_SECTI ON.

To search on Tale within the attribute section ti t | e, you issue the following query:

"Tale WTHIN title'

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

= Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of tines.</book>
A query on Tale by itself does not produce a hit on the document unless qualified with

W THI N titl e@ook. (This behavior is like field sections when you set the visible
flag set to false.)

= You cannot use attribute sections in a nested W THI N query.

= Phrases ignore attribute text. For example, if the original document looked like:
Now is the time for all good <word type="noun"> men </word> to cone to the aid.
Then this document would hit on the regular query good men, ignoring the intervening
attribute text.

= W THI Nqueries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, you have a document as
follows:

<book title="Tale of Two Cities">lt was the best of tinmes.</book>

<book title="Cf Human Bondage">The sky broke dull and gray. </ book>
Assume that book is a zone section and book @ut hor is an attribute section.
Consider the query:

'(Tal e and Bondage) W THI N book@ut hor'

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book @ut hor .

Notes
Section Names
The W THI N operator requires you to know the name of the section you search. A list

of defined sections can be obtained using the CTX_SECTIONS or CTX_USER_
SECTIONS views.

3-50 Oracle Text Reference



WITHIN

Section Boundaries

For special and zone sections, the terms of the query must be fully enclosed in a
particular occurrence of the section for the document to satisfy the query. This is not a
requirement for field sections.

For example, consider the query where bold is a zone section:

"(dog and cat) WTHIN bol d'
This query finds:
<B>dog cat</B>

but it does not find:

<B>dog</ B><B>cat </ B>

This is because dog and cat must be in the same bold section.
This behavior is especially useful for special sections, where

"(dog and cat) WTHI N sentence'

means find dog and cat within the same sentence.

Field sections on the other hand are meant for non-repeating, embedded metadata
such as a title section. Queries within field sections cannot distinguish between
occurrences. All occurrences of a field section are considered to be parts of a single
section. For example, the query:

(dog and cat) WTHIN title

can find a document like this:
<TITLE>dog</TITLE><TITLE>cat</TITLE>

In return for this field section limitation and for the overlap and nesting limitations,
field section queries are generally faster than zone section queries, especially if the
section occurs in every document, or if the search term is common.

Oracle Text CONTAINS Query Operators 3-51



WITHIN

3-52 Oracle Text Reference



A

Special Characters in Oracle Text Queries

This chapter describes the special characters that can be used in Text queries. In
addition, it provides a list of the words and characters that Oracle Text treats as
reserved words and characters.

The following topics are covered in this chapter:
= Grouping Characters
= Escape Characters

« Reserved Words and Characters

Grouping Characters

The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are:

Grouping Character Description

) The parentheses characters serve to group terms and operators
found between the characters

[1] The bracket characters serve to group terms and operators
found between the characters; however, they prevent
penetrations for the expansion operators (fuzzy, soundex,
stem).

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by the
occurrence of the appropriate close character for the open character that started the
group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

Escape Characters

To query on words or symbols that have special meaning to query expressions such as
and & or | accum, you must escape them. There are two ways to escape characters in a
query expression:

Special Characters in Oracle Text Queries 4-1



Reserved Words and Characters

Escape Character  Description

{} Use braces to escape a string of characters or symbols. Everything
within a set of braces in considered part of the escape sequence.

When you use braces to escape a single character, the escaped
character becomes a separate token in the query.

\ Use the backslash character to escape a single character or symbol.
Only the character immediately following the backslash is escaped.
For example, a query of blue\-green matches blue-green and blue green.

In the following examples, an escape sequence is necessary because each expression
contains a Text operator or reserved symbol:

"AT\ &T'
" {AT&T}'

" hi gh\ -vol t age'
"{high-vol tage}'

In the second example, the query matches high-voltage or high voltage.

Note: If you use braces to escape an individual character within
a word, the character is escaped, but the word is broken into
three tokens.

For example, a query written as high{-}voltage searches for high -
voltage, with the space on either side of the hyphen.

Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed brace }
indicates the end of the sequence. Everything between the opening brace and the
closing brace is part of the escaped query expression (including any open brace
characters). To include the close brace character in an escaped query expression, use

3R

To escape the backslash escape character, use \ \ .

Reserved Words and Characters

The following table lists the Oracle Text reserved words and characters that must be
escaped when you want to search them in CONTAI NS queries:

Reserved Word Reserved Character Operator

ABOUT (none) ABOUT

ACCUM , Accumulate

AND & And

BT (none) Broader Term

BTG (none) Broader Term Generic

BTI (none) Broader Term Instance
BTP (none) Broader Term Partitive

4-2 Oracle Text Reference



Reserved Words and Characters

Reserved Word Reserved Character Operator

EQUIV = Equivalence

FUZZY ? fuzzy

(none) {} escape characters (multiple)
(none) \ escape character (single)
(none) () grouping characters
(none) [] grouping characters
HASPATH (none) HASPATH

INPATH (none) INPATH

MDATA (none) MDATA

MINUS - MINUS

NEAR ; NEAR

NOT ~ NOT

NT (none) Narrower Term

NTG (none) Narrower Term Generic
NTI (none) Narrower Term Instance
NTP (none) Narrower Term Partitive
OR | OR

PT (none) Preferred Term

RT (none) Related Term

(none) $ stem

(none) ! soundex

SQE (none) Stored Query Expression
SYN (none) Synonym

(none) > threshold

TR (none) Translation Term

TRSYN (none) Translation Term Synonym
TT (none) Top Term

(none) * weight

(none) Y% wildcard character (multiple)
(none) _ wildcard character (single)
WITHIN (none) WITHIN

Special Characters in Oracle Text Queries 4-3



Reserved Words and Characters

4-4 Oracle Text Reference



D

CTX_ADM Package

This chapter provides information for using the CTX_ADMPL/SQL package.
CTX_ADMcontains the following stored procedures:

Name Description
RECOVER Cleans up database objects for deleted Text tables.
SET_PARAMETER Sets system-level defaults for index creation.

Note: Only the CTXSYS user can use the procedures in CTX_
ADM.

CTX_ADM Package 5-1



RECOVER

RECOVER

The RECOVER procedure cleans up the Text data dictionary, deleting objects such as
leftover preferences.

Syntax
CTX_ADM RECOVER;
Example
begin
ctx_admrecover;
end;

5-2 Oracle Text Reference



SET_PARAMETER

SET_PARAMETER

The SET_PARAMETER procedure sets system-level parameters for index creation.

Syntax

CTX_ADM SET_PARAMETER( par am name | N VARCHAR2,
paramval ue | N VARCHAR?) ;

param_name
Specify the name of the parameter to set, which can be one of the following:

= max_i ndex_menory (maximum memory allowed for indexing)

= defaul t_i ndex_menory (default memory allocated for indexing)
= |l og_directory (directory for CTX_OUPUT files)

= ctx_doc_key_type (default input key type for CTX_DOC procedures)
« file_access role

= defaul t_dat ast or e (default datastore preference)

« default_filter_fil e (default filter preference for data stored in files)
« default_filter_text (default text filter preference)

« default_filter_binary (default binary filter preference)

« default_section_htm (default html section group preference)
« default_section_xm (default xml section group preference)

« default_section_text (default text section group preference)

= defaul t_| exer (default lexer preference)

«» default_wordlist (default wordlist preference)

« default_stoplist (default stoplist preference)

= defaul t_storage (default storage preference)

« default_ctxcat | exer

« default_ctxcat_stoplist

« default_ctxcat_storage

« default_ctxcat_wordlist

« default_ctxrule_ | exer

« default_ctxrule_stoplist

« default _ctxrul e_storage

« default_ctxrule wordlist

See Also: To learn more about the default values for these
parameters, see "System Parameters” in Chapter 2.

param_value

Specify the value to assign to the parameter. For max_i ndex_nenory and def aul t _
i ndex_nenor y, the value you specify must have the following syntax:

CTX_ADM Package 5-3



SET_PARAMETER

nunber[KIM G

where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

For each of the other parameters, specify the name of a preference to use as the default
for indexing.

Example

begin
ctx_adm set _paraneter (' default_lexer', "ny_lexer');
end;

5-4 Oracle Text Reference



6

CTX_CLS Package

This chapter provides reference information for using the CTX_CLS PL/SQL package.
This package enables you to perform document classification.

See Also: The Oracle Text Application Developer’s Guide for more
on document classification

Name Description

TRAIN Generates rules that define document categories. Output based
on input training document set.

CLUSTERING Generates clusters for a document collection.

CTX_CLS Package 6-1



TRAIN

TRAIN

Use this procedure to generate query rules that select document categories. You must
supply a training set consisting of categorized documents. Documents can be in any
format supported by Oracle Text and must belong to one or more categories. This
procedure generates the queries that define the categories and then writes the results
to a table.

You must also have a document table and a category table. The category table must
contain at least two categories.

For example, your document and category tables can be defined as:

create table trainingdoc(
doci d nunber primary key,
text varchar2(4000));

create table category (
doci d trainingdoc(docid),
cat egoryi d nunber);

You can use one of two syntaxes depending on the classification algorithm you need.
The query compatible syntax uses the RULE_CLASSI FI ER preference and generates
rules as query strings. The support vector machine syntax uses the SYM_CLASSI FER
preference and generates rules in binary format. The SVM_CLASSI FI ERis good for
high classification accuracy, but because its rules are generated in binary format, they
cannot be examined like the query strings generated with the RULE_CLASSI FI ER
Note that only those document ids that appear in both the document table and the
category table will impact RULE_CLASSI FI ERand SVM_CLASSI FI ER learning.

The CTX_CLS. TRAI Nprocedure requires that your document table have an associated
context index. For best results, the index should be synchronized before running this
procedure. SVM_CLASSI FI ER syntax enables the use of an unpopulated context
index, while query-compatible syntax requires that the context index be populated.

See Also: The Oracle Text Application Developer’s Guide for more
on document classification.

Query Compatible Syntax

The following syntax generates query-compatible rules and is used with the RULE_
CLASSIFIER preference. Use this syntax and preference when different categories are
separated from others by several key words. An advantage of generating your rules as
query strings is that you can easily examine the generated rules. This is different from
generating SVM rules, which are in binary format.

CTX_CLS. TRAI N(

i ndex_nane in varchar2,
docid in varchar?2,
cattab in varchar2,
catdoci d in varchar2,
catid in varchar2,
restab in varchar?2,
rescatid in varchar?2,
resquery in varchar2,
resconfid in varchar2,

pr ef erence in varchar2 DEFAULT NULL
);

6-2 Oracle Text Reference



TRAIN

index_name
Specify the name of the context index associated with your document training set.

docid
Specify the name of the document id column in the document table. This column must
contain unique document ids. This column must a NUMBER.

cattab
Specify the name of the category table. You must have SELECT privilege on this table.

catdocid
Specify the name of the document id column in the category table. The document ids
in this table must also exist in the document table. This column must a NUMBER.

catid
Specify the name of the category ID column in the category table. This column must a
NUMBER.

restab
Specify the name of the result table. You must have INSERT privilege on this table.

rescatid
Specify the name of the category ID column in the result table. This column must a
NUMBER.

resquery
Specify the name of the query column in the result table. This column must be
VARACHAR2, CHAR CLOB, NVARCHAR?2, or NCHAR.

The queries generated in this column connects terms with AND or NOT operators,
such as:

'T1 & T2 ~ T3'
Terms can also be theme tokens and be connected with the ABOUT operator, such as:
‘about(T1) & about(T2) ~ about(T3)'

Generated rules also support WITHIN queries on field sections.

resconfid

Specify the name of the confidence column in result table. This column contains the
estimated probability from training data that a document is relevant if that document
satisfies the query.

preference
Specify the name of the preference. For classifier types and attributes, see "Classifier
Types" in Chapter 2, "Oracle Text Indexing Elements".

Syntax for Support Vector Machine Rules

The following syntax generates support vector machine (SVM) rules with the SVM_
CLASSIFIER preference. This preference generates rules in binary format. Use this
syntax when your application requires high classification accuracy.

CTX_CLS. TRAI N(
i ndex_name in varchar?2,
doci d in varchar?2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar2,

CTX_CLS Package 6-3



TRAIN

restab in varchar?2,
preference in varchar2 );

index_name
Specify the name of the text index.

docid
Specify the name of docid column in document table.

cattab
Specify the name of category table.

catdocid
Specify the name of docid column in category table.

catid
Specify the name of category ID column in category table.

restab
Specify the name of result table.

The result table has the following format:

Column Name Datatype Description

CAT_ID NUMBER The ID of the category.

TYPE NUMBER(3) NOT NULL 0 for the actual rule or catid;
1 for other.

RULE BLOB The returned rule.

preference

Specify the name of user preference. For classifier types and attributes, see "Classifier
Types" in Chapter 2, "Oracle Text Indexing Elements".

Example

The CTX_CLS. TRAI Nprocedure is used in supervised classification. For an extended
example, see the Oracle Text Application Developer’s Guide.

6-4 Oracle Text Reference



CLUSTERING

CLUSTERING

Use this procedure to cluster a collection of documents. A cluster is a group of
documents similar to each other in content.

A clustering result set is composed of document assignments and cluster descriptions:

= A document assignment result set shows how relevant each document is to all
generated leaf clusters.

= A cluster description result set contains information about what topic a cluster is
about. This result set identifies the cluster and contains cluster description text, a
suggested cluster label, and a quality score for the cluster.

Cluster output is hierarchical. Only leaf clusters are scored for relevance to
documents. Producing more clusters requires more computing time. You indicate the
upper limit for generated clusters with the CLUSTER _NUMattribute of the KMEAN_
CLUSTERI NGcluster type (see "Cluster Types" on page 2-64).

There are two versions of this procedure: one with a table result set, and one with an
in-memory result set.

Clustering is also known as unsupervised classification.

See Also: For more information about clustering, see "Cluster
Types" in Chapter 2, "Oracle Text Indexing Elements", which
contains relevant preferences, as well as the Oracle Text Application
Developer’s Guide.

Syntax: Table Result Set

ctx_cls.clustering (
index_name | N VARCHAR2,
doci d I'N VARCHAR?,
doctab_name I N VARCHAR?,
cl stab_name I N VARCHAR?,
pref _name | N VARCHAR2 DEFAULT NULL

)i

index_name
Specify the name of the context index on collection table.

docid
Specify the name of document ID column of the collection table.

doctab_name
Specify the name of document assignment table. This procedure creates the table with
the following structure:

doc_assi gn(
doci d nunber,
clusterid nunber,
score numnber

)

Column Description

DOCID Document ID to identify document.

CTX_CLS Package 6-5



CLUSTERING

Column Description

CLUSTERID ID of a leaf cluster associated with this document. If
CLUSTERI Dis -1, then the cluster contains "miscellaneous"
documents; for example, documents that cannot be assigned to
any other cluster category.

SCORE The associated score between the document and the cluster.

If you require more columns, you can create the table before you call this procedure.

clstab_name
Specify the name of the cluster description table. This procedure creates the table with
the following structure:

cluster_desc(
clusterid NUMVBER,
descript VARCHAR2(4000),
| abel VARCHAR2(200),
sze NUMBER,
qual ity_score NUMBER,
parent NUMBER

)

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the
cluster contains "miscellaneous" documents; for example,
documents that cannot be assigned to any other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates

greater coherence.

PARENT The parent cluster id. Zero means no parent cluster.

If you require more columns, you can create the table before you call this procedure.

pref_name
Specify the name of the preference.

Syntax: In-Memory Result Set

You can put the result set into in-memory structures for better performance. Two
in-memory tables are defined in CTX_CLS package for document assignment and
cluster description respectively.

CTX_CLS. CLUSTERI NG

i ndex_nanme IN VARCHARZ,
docid IN VARCHAR2,
di ds I N DOCI D_TAB,

doct ab_nane IN QUT NOCOPY DOC TAB,
cl stab_nane IN QUT NOCOPY CLUSTER TAB,
pref _name IN VARCHAR2 DEFAULT NULL

)

6-6 Oracle Text Reference



CLUSTERING

index_name
Specify the name of context index on the collection table.

docid
Specify the document id column of the collection table.

dids
Specify the name of the in-memory docid_tab.

TYPE docid_tab I'S TABLE OF number | NDEX BY Bl NARY_| NTEGER;

doctab_name
Specify name of the document assignment in-memory table. This table is defined as
follows:

TYPE doc_rec |'S RECORD (
doci d NUMBER,
clusterid NUVBER,
score NUMBER

)
TYPE doc_tab IS TABLE OF doc_rec | NDEX BY Bl NARY_| NTEGER;

Column Description
DOCID Document ID to identify document.
CLUSTERID ID of a leaf cluster associated with this document. If

CLUSTERI Dis -1, then the cluster contains "miscellaneous"
documents; for example, documents that cannot be assigned to
any other cluster category.

SCORE The associated score between the document and the cluster.

cls_tab
Specify the name of cluster description in-memory table

TYPE cluster_rec 1S RECORD(
clusterid NUVBER,
descript VARCHAR2(4000),
| abel VARCHAR2(200),
sze NUMBER,
quality_score NUMBER,
parent NUMBER
)
TYPE cluster _tab IS TABLE OF cluster_rec | NDEX BY Bl NARY | NTEGER;

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then the
cluster contains "miscellaneous" documents; for example,
documents that cannot be assigned to any other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number indicates

greater coherence.

PARENT The parent cluster id. Zero means no parent cluster.

CTX_CLS Package 6-7



CLUSTERING

pref_name
Specify the name of the preference. For cluster types and attributes, see "Cluster
Types" in Chapter 2, "Oracle Text Indexing Elements".

Example

See Also: The Oracle Text Application Developer’s Guide for an
example of using clustering.

6-8 Oracle Text Reference



v

CTX DDL Package

This chapter provides reference information for using the CTX_DDL PL/SQL package
to create and manage the preferences, section groups, and stoplists required for Text

indexes.

CTX_DDL contains the following stored procedures and functions:

Name

Description

ADD_ATTR_SECTION
ADD_FIELD_SECTION

ADD_INDEX
ADD_MDATA
ADD_MDATA_SECTION
ADD_SPECIAL_SECTION
ADD_STOPCLASS
ADD_STOP_SECTION
ADD_STOPTHEME
ADD_STOPWORD
ADD_SUB_LEXER
ADD_ZONE_SECTION

COPY_POLICY
CREATE_INDEX_SET
CREATE_POLICY
CREATE_PREFERENCE

CREATE_SECTION_GROUP

CREATE_STOPLIST
DROP_INDEX_SET
DROP_POLICY
DROP_PREFERENCE
DROP_SECTION_GROUP
DROP_STOPLIST

Adds an attribute section to a section group.

Creates a filed section and assigns it to the specified
section group

Adds an index to a catalog index preference.
Changes the MDATA value of a document

Adds an MDATA metadata section to a document
Adds a special section to a section group.

Adds a stopclass to a stoplist.

Adds a stop section to an automatic section group.
Adds a stoptheme to a stoplist.

Adds a stopword to a stoplist.

Adds a sub-lexer to a multi-lexer preference.
Creates a zone section and adds it to the specified section
group.

Creates a copy of a policy

Creates an index set for CTXCAT index types.
Create a policy to use with ORA:CONTAINS().
Creates a preference in the Text data dictionary
Creates a section group in the Text data dictionary
Creates a stoplist.

Drops an index set.

Drops a policy.

Deletes a preference from the Text data dictionary
Deletes a section group from the Text data dictionary

Drops a stoplist.

CTX_DDL Package 7-1



Name Description

OPTIMIZE_INDEX Optimize the index.

REMOVE_INDEX Removes an index from a CTXCAT index preference.
REMOVE_MDATA Removes MDATA values from a document
REMOVE_SECTION Deletes a section from a section group
REMOVE_STOPCLASS Deletes a stopclass from a section group.
REMOVE_STOPTHEME Deletes a stoptheme from a stoplist.
REMOVE_STOPWORD Deletes a stopword from a section group.
REPLACE_INDEX_ Replaces metadata for local domain indexes
METADATA

SET_ATTRIBUTE Sets a preference attribute.

SYNC_INDEX Synchronize index.

UNSET_ATTRIBUTE Removes a set attribute from a preference.
UPDATE_POLICY Updates a policy.

7-2 Oracle Text Reference



ADD_ATTR_SECTION

ADD_ATTR_SECTION

Syntax

Examples

Adds an attribute section to an XML section group. This procedure is useful for
defining attributes in XML documents as sections. This enables you to search XML
attribute text with the W THI N operator.

Note: When you use AUTO_SECTI ON_GRCUP, attribute sections
are created automatically. Attribute sections created automatically
are named in the form tag@attribute.

CTX_DDL. ADD_ATTR_SECTI ON(

group_nane in var char 2,
section_nanme in var char 2,
tag in varchar 2) ;

group_name
Specify the name of the XML section group. You can add attribute sections only to
XML section groups.

section_name
Specify the name of the attribute section. This is the name used for W THI N queries on
the attribute text.

The section name you specify cannot contain the colon (:), comma (,), or dot (.)
characters. The section name must also be unique within group_name. Section names are
case-insensitive.

Attribute section names can be no more than 64 bytes long.

tag
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOXK TITLE="Tal e of Two Cities">
It was the best of tines.
</ BOOK>

To define the title attribute as an attribute section, create an XM._ SECTI ON_GROUP
and define the attribute section as follows:

begin

ctx_ddl . create_section_group(' nyxn group', ' XM._SECTI ON_GROUF');
ctx_ddl.add_attr_section(' myxm group', 'booktitle', 'BOOK@ TLE );
end;

When you define the Tl TLE attribute section as such and index the document set, you
can query the XML attribute text as follows:

"Cities within booktitle'

CTX_DDL Package 7-3



ADD_FIELD_SECTION

ADD_FIELD_SECTION

Syntax

Creates a field section and adds the section to an existing section group. This enables
field section searching with the WITHIN operator.

Field sections are delimited by start and end tags. By default, the text within field
sections are indexed as a sub-document separate from the rest of the document.

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are
best suited for non-repeating, non-overlapping sections such as Tl TLE and AUTHOR
markup in email- or news-type documents.

Because of how field sections are indexed, WITHIN queries on field sections are
usually faster than W THI N queries on zone sections.

CTX_DDL. ADD_FI ELD_SECTI ON(

group_nane in varchar 2,
section_name in var char 2,
tag in var char 2,
visible in bool ean default FALSE

),

group_name

Specify the name of the section group to which section_name is added. You can add up
to 64 field sections to a single section group. Within the same group, section zone
names and section field names cannot be the same.

section_name

Specify the name of the section to add to the group_name. You use this name to identify
the section in queries. Avoid using names that contain non-alphanumeric characters
such as _, since these characters must be escaped in queries. Section names are
case-insensitive.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, making details transparent to searches.

tag
Specify the tag which marks the start of a section. For example, if the tag is <H1>,
specify H1. The start tag you specify must be unique within a section group.

If group_name is an HTM._SECTI ON_GROUP, you can create field sections for the META
tag's NAME/ CONTENT attribute pairs. To do so, specify tag as meta@namevalue where
namevalue is the value of the NAME attribute whose CONTENT attribute is to be indexed
as a section. Refer to the example.

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

visible

Specify TRUE to make the text visible within rest of document.

By default the visible flag is FALSE. This means that Oracle Text indexes the text within
field sections as a sub-document separate from the rest of the document. However,

7-4 Oracle Text Reference



ADD_FIELD_SECTION

Examples

Limitations

you can set the visible flag to TRUE if you want text within the field section to be
indexed as part of the enclosing document.

Visible and Invisible Field Sections

The following code defines a section group basi cgr oup of the BASI C_SECTI ON_
GROUP type. It then creates a field section in basi cgr oup called Aut hor for the <A>
tag. It also sets the visible flag to FALSE:

begin

ctx_ddl . create_section_group('basicgroup', 'BASIC_SECTI ON_GROUP');
ctx_ddl . add_field_section('basicgroup', 'Author', '"A, FALSE);
end;

Because the Aut hor field section is not visible, to find text within the Aut hor section,
you must use the WITHIN operator as follows:

"(Martin Luther King) WTH N Aut hor'

A query of Martin Luther King without the W THI N operator does not return instances
of this term in field sections. If you want to query text within field sections without
specifying W THI N, you must set the visible flag to TRUE when you create the section
as follows:

begin
ctx_ddl . add_field_section('basicgroup', 'Author', 'A, TRUE);
end;

Creating Sections for <META> Tags
When you use the HTML_SECTI ON _GROUP, you can create sections for META tags.

Consider an HTML document that has a META tag as follows:

<META NAME="aut hor" CONTENT="ken">

To create a field section that indexes the CONTENT attribute for the <META
NAME=" aut hor " > tag:

begin

ctx_ddl . create_section_group(' nyhtm group', 'HTM._SECTI ON_GROUP');

ctx_ddl . add_field_section('nyhtm group', 'author', 'META@GAUTHOR );

end

After indexing with section group nygr oup, you can query the document as follows:

"ken WTHI N aut hor'

Nested Sections

Field sections cannot be nested. For example, if you define a field section to start with
<TI TLE> and define another field section to start with <FOO>, the two sections cannot
be nested as follows:

<TITLE> dog <FOO> cat </FOO>> </TITLE>

To work with nested section define them as zone sections.

CTX_DDL Package 7-5



ADD_FIELD_SECTION

Repeated Sections

Repeated field sections are allowed, but W THI N queries treat them as a single section.
The following is an example of repeated field section in a document:

<TITLE> cat </ TITLE>
<TI TLE> dog </ TI TLE>

The query (dog and cat) within title returns the document, even though these words
occur in different sections.

To have W THI N queries distinguish repeated sections, define them as zone sections.

Related Topics
WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".

"Section Group Types" in Chapter 2, "Oracle Text Indexing Elements".
CREATE_SECTION_GROUP

ADD_ZONE_SECTION

ADD_SPECIAL_SECTION

REMOVE_SECTION

DROP_SECTION_GROUP

7-6 Oracle Text Reference



ADD_INDEX

ADD_INDEX

Syntax

Example

Use this procedure to add a sub-index to a catalog index preference. You create this
preference by naming one or more columns in the base table.

Since you create sub-indexes to improve the response time of structured queries, the
column you add should be used in the st r uct ur ed_query clause of the
CATSEARCH operator at query-time.

CTX_DDL. ADD_| NDEX( set _nane in varchar2,
colum_|ist varchar2,
storage_cl ause varchar2);

set_name
Specify the name of the index set.

column_list

Specify a comma separated list of columns to index. At index time, any column listed
here cannot have a NULL value in any row in the base table. If any row is NULL
during indexing and error is raised.

You must always ensure that your columns have non-NULL values before and after
indexing.

storage_clause
Specify a storage clause.

Consider a table called AUCTI ONwith the following schema:

create table auction(
itemid nunber,

title varchar2(100),
category_id nunber,
price nunber,

bi d_cl ose date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on cat egor y_i d. Results must be sorted based on bi d_cl ose.

You can create a catalog index to support the different types of structured queries a
user might enter.

To create the indexes, first create the index set preference then add the required
indexes to it:
begin
ctx_ddl . create_i ndex_set('auction_iset');
ctx_ddl . add_i ndex('auction_iset', hid close');
ctx_ddl . add_i ndex(' auction_iset','category_id, bid_close');
end;

Create the combined catalog index with CREATE | NDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT paraneters
("index set auction_iset');

CTX_DDL Package 7-7



ADD_INDEX

Querying
To query the title column for the word pokermon, you can issue regular and mixed
queries as follows:

select * from AUCTI ON where CATSEARCH(title, 'pokenmon', NULL)> O;
sel ect * from AUCTI ON where CATSEARCH(title, 'pokenmon', 'category_id=99 order by
bid_cl ose desc')> 0;

7-8 Oracle Text Reference



ADD_MDATA

ADD_MDATA

Syntax

Use this procedure to change the metadata of a document that has been specified as an
MDATA section. After this call, MDATA queries involving the named MDATA value will
find documents with the given MDATA value.

There are two versions of CTX_DDL. ADD_MDATA: one for adding a single metadata
value to a single rowid, and one for handing multiple values, multiple rowids, or both.

CTX_DDL. ADD_NDATA is transactional; it takes effect immediately in the calling
session, can be seen only in the calling session, can be reversed with a ROLLBACK
command, and must be committed to take permanent effect.

Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed
documents. Only the owner of the index is allowed to call ADD_MDATA and REMOVE _
MDATA.

This is the syntax for adding a single value to a single rowid:

CTX_DDL. ADD_MDATA(

i dx_nane I N VARCHAR2,
secti on_nane I N VARCHAR?,
nmdat a_val ue I N VARCHAR?,
mdata_row d I N VARCHAR?,
[ part _nane] I N VARCHAR?]
);
idx_name

Name of the text index that contains the named rowid.

section_name
Name of the MDATA section.

mdata_value
The metadata value to add to the document.

mdata_rowid
The rowid to which to add the metadata value.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version
is more efficient for large numbers of new values or rowids.

CTX_DDL. ADD_MDATA(

i dx_nane I'N VARCHAR?,
secti on_nane I N VARCHAR?,
mdat a_val ues SYS. ODCl VARCHAR2LI ST,
nmdat a_r owi ds SYS. ODCI RI DLI ST,
[ part _nane] I'N VARCHAR?]
);
idx_name

Name of the text index that contains the named rowids.

CTX_DDL Package 7-9



ADD_MDATA

Example

Notes

Related Topics

section_name
Name of the MDATA section.

mdata_values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

mdata_rowids
rowids to which to add the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global indexes.

This example updates a single value:

select rowid fromnytab where contains(text, ' MDATA(sec, val ue')>0;
No rows returned

exec ctx_ddl.add_ndata(' my_index', 'sec', 'value', 'ABC);

select rowid fromnytab where contains(text, ' MDATA(sec, val ue')>0;
ROW D

This example updates multiple values:

begin

ctx_ddl . add_ndata(' my_i ndex', 'sec',
sys. odci varchar 2l i st (' val uel','value2','value3'),
sys.odciridlist('ABC,'DEF));

end;

This is equivalent to:

begin

ctx_ddl.add_ndata(' my_index', 'sec', 'valuel', 'ABC)

ctx_ddl . add_ndata(' my_i ndex', 'sec', 'valuel', 'DEF);

ctx_ddl . add_ndata(' my_i ndex', 'sec', 'value2', 'ABC);

ctx_ddl . add_ndata(' my_i ndex', 'sec', 'value2', 'DEF')
("my_ )
("ny_ )

ctx_ddl . add_ndat a index', 'sec', 'value3', 'ABC
ctx_ddl . add_ndat a i ndex', 'sec', 'value3', 'DEF
end;

If a rowid is not yet indexed, CTX_DDL. ADD. MDATA completes without error, but an
error is logged in CTX_USER_| NDEX_ERRCRS.

See also "ADD_MDATA_SECTION" on page 7-11; "REMOVE_MDATA" on page 7-45;
"MDATA" on page 3-22; as well as the Section Searching chapter of the Oracle Text
Application Developer's Guide.

7-10 Oracle Text Reference



ADD_MDATA_SECTION

ADD_MDATA_SECTION

Syntax

Example

Related Topics

Use this procedure to add an MDATA section, with an accompanying value, to an
existing section group. MDATA sections cannot be added to Null Section groups, Path
Section groups, or Auto Section groups.

Section values undergo a simplified normalization:

« Leading and trailing whitespace on the value is removed.
« The value is truncated to 64 bytes.

=  The value is converted to upper case.

= The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

« Caseis preserved. If the document is dynamically generated, you can implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

Use CTX_DDL.REMOVE_SECTION to remove sections.

CTX_DDL. ADD_MDATA_SECTI ON(
group_name | N VARCHAR?,
section_nanme | N VARCHAR?,
tag I N VARCHAR2,

)

group_name
Name of the section group that will contain the MDATA section.

section_name
Name of the MDATA section.

tag
The value of the MDATA section. For example, if the section is <AUTHOR>, the value
could be Cynthia Kadohata (author of the novel The Floating World). More than one tag
can be assigned to a given MDATA section.

This example creates an MDATA section called AUTHOR and gives it the value Gordon
Burn (author of the novel Alma).

ctx_ddl.create.section.group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_ndata_section(' htmgroup', "author', 'Gordon Burn');

See also "ADD_MDATA" on page 7-9; "REMOVE_MDATA" on page 7-45; "MDATA"
on page 3-22; "CREATE_SECTION_GROUP" on page 7-31, as well as the Section
Searching chapter of the Oracle Text Application Developer’s Guide.

CTX_DDL Package 7-11



ADD_SPECIAL_SECTION

ADD_SPECIAL_SECTION

Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This
enables searching within sentences or paragraphs in documents with the WITHIN
operator.

A special section in a document is a section which is not explicitly tagged like zone
and field sections. The start and end of special sections are detected when the index is
created. Oracle Text supports two such sections: paragraph and sentence.

The sentence and paragraph boundaries are determined by the lexer. For example, the
lexer recognizes sentence and paragraph section boundaries as follows:

Table 7-1 Paragraph and Sentence Section Boundaries

Special Section Boundary
SENTENCE WORD/PUNCT/WHITESPACE
WORD/PUNCT/NEWLINE
PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)

WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer
settings and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are

indexed.
Syntax
CTX_DDL. ADD_SPEC! AL_SECTI ON(
group_namne I N VARCHAR2,
section_nane | N VARCHAR2);
group_name
Specify the name of the section group.
section_name
Specify SENTENCE or PARAGRAPH.
Example

The following code enables searching within sentences within HTML documents:

begi n

ctx_ddl.create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_speci al _section(' htngroup', ' SENTENCE');

end;

You can also add zone sections to the group to enable zone searching in addition to
sentence searching. The following example adds the zone section Headl i ne to the
section group ht ngr oup:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_speci al _section(' htmgroup', ' SENTENCE');

ctx_ddl . add_zone_section(' htngroup', 'Headline', '"Hl');

7-12 Oracle Text Reference



ADD_SPECIAL_SECTION

Related Topics

end;

If you are only interested in sentence or paragraph searching within documents and
not interested in defining zone or field sections, you can use the NULL_SECTI ON_
GROUP as follows:

begin

ctx_ddl.create_section_group(' nullgroup', "NULL_SECTI ON_GROUF');
ctx_ddl . add_speci al _section(' nullgroup', 'SENTENCE );

end;

WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, "Oracle Text Indexing Elements".
CREATE_SECTION_GROUP

ADD_ZONE_SECTION

ADD_FIELD_SECTION

REMOVE_SECTION

DROP_SECTION_GROUP

CTX_DDL Package 7-13



ADD_STOPCLASS

ADD_STOPCLASS

Syntax

Example

Related Topics

Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed.

CTX_DDL. ADD_STOPCLASS(
stoplist_name in varchar2,
stopcl ass in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the stopclass to be added to stoplist_name. Currently, only the NUMBERS class is
supported. It is not possible to create a custom stopclass.

NUMBERS includes tokens that follow the number pattern: digits, nungr oup, and
nunj oi n only. Therefore, 123ABC is not a number, nor is A123. These are labeled as
M XED. $123 is not a number (this token is not common in a text index because
non-alphanumerics become whitespace by default). In the United States, 123.45is a
number, but 123.456.789 is not; in Europe, where numgroup may be ’.’, the reverse is
true.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

The following code adds a stopclass of NUMBERS to the stoplist nmyst op:

begin
ctx_ddl . add_stopcl ass(' mystop', ' NUMBERS');
end;

CREATE_STOPLIST
REMOVE_STOPCLASS
DROP_STOPLIST

7-14 Oracle Text Reference



ADD_STOP_SECTION

ADD_STOP_SECTION

Syntax

Example

Adds a stop section to an automatic section group. Adding a stop section causes the
automatic section indexing operation to ignore the specified section in XML
documents.

Note: Adding a stop section causes no section information to be
created in the index. However, the text within a stop section is
always searchable.

Adding a stop section is useful when your documents contain many low information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

CTX_DDL. ADD_STOP_SECTI ON(
section_group I N VARCHAR?,
tag |N VARCHAR?);

section_group
Specify the name of the automatic section group. If you do not specify an automatic
section group, this procedure returns an error.

tag
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a
stop tag as such also stops the tag's attribute sections, if any.

You can qualify the tag with document type in the form (doctype)tag. For example, if
you wanted to make the <f | uf f > tag a stop section only within the mydoc document
type, specify (nmydoc) f | uf f for tag.

Defining Stop Sections

The following code adds a stop section identified by the tag <f | uf f > to the automatic
section group nyaut o:

begin
ctx_ddl . add_stop_section(' myauto', 'fluff');
end;

This code also stops any attribute sections contained within <f | uf f >. For example, if
a document contained:

<fluff type="conputer">

Then the preceding code also stops the attribute section f | uf f @ ype.

CTX_DDL Package 7-15



ADD_STOP_SECTION

Doctype Sensitive Stop Sections

The following code creates a stop section for the tag <f | uf f > only in documents that
have a root element of nydoc:

begin
ctx_ddl . add_stop_section(' myauto', '(nmydoc)fluff');
end;

Related Topics
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".

CREATE_SECTION_GROUP

7-16 Oracle Text Reference



ADD_STOPTHEME

ADD_STOPTHEME

Syntax

Example

Related Topics

Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.
In English, you query on indexed themes using the ABOUT operator.

CTX_DDL. ADD_STOPTHEME(
stoplist_name in varchar2,
st opt herre in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stoptheme

Specify the stoptheme to be added to stoplist_name. The system normalizes the
stoptheme you enter using the knowledge base. If the normalized theme is more than
one theme, the system does not process your stoptheme. For this reason, Oracle
recommends that you submit single stopthemes.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

The following example adds the stoptheme banki ng to the stoplist myst op:

begin
ctx_ddl . add_st opt hene(' mystop', 'banking');
end;

CREATE_STOPLIST

REMOVE_STOPTHEME

DROP_STOPLIST

ABOUT operator in Chapter 3, "Oracle Text CONTAINS Query Operators".

CTX_DDL Package 7-17



ADD_STOPWORD

ADD_STOPWORD

Syntax

Example

Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

CTX_DDL. ADD_STOPWORD(

stoplist_name in varchar2,

st opwor d in varchar2,

| anguage in varchar2 default NULL

)

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be added.

Language-specific stopwords must be unique across the other stopwords specific to
the language. For example, it is valid to have a German die and an English die in the
same stoplist.

The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

language

Specify the language of st opwor d when the stoplist you specify with st opl i st _
name is of type MULTI _STOPLI ST. You must specify the Globalization Support name
or abbreviation of an Oracle Text-supported language.

To make a stopword active in multiple languages, specify ALL for this parameter. For
example, defining ALL stopwords is useful when you have international documents
that contain English fragments that need to be stopped in any language.

An ALL stopword is active in all languages. If you use the multi-lexer, the
language-specific lexing of the stopword occurs, just as if it had been added multiple
times in multiple specific languages.

Otherwise, specify NULL.

Single Language Stoplist
The following example adds the stopwords because, notwithstanding, nonetheless, and
therefore to the stoplist myst op:

begin

ctx_ddl . add_st opwor d
ctx_ddl . add_st opwor d
ctx_ddl . add_st opwor d
ctx_ddl . add_st opwor d
end;

mystop', 'because');
mystop', 'notw thstanding');
mystop', 'nonetheless');

(
(I
(l
("mystop', 'therefore');

Multi-Language Stoplist
The following example adds the German word die to a multi-language stoplist:

7-18 Oracle Text Reference



ADD_STOPWORD

Related Topics

begin
ctx_ddl . add_st opword(' nystop', 'Die','german');
end;

Note: You can add stopwords after you create the index with
ALTER| NDEX.

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist
globallist:

begi n
ctx_ddl . add_stopword(' global list',"the',"ALL");
end;

CREATE_STOPLIST

REMOVE_STOPWORD

DROP_STOPLIST

ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Appendix E, "Oracle Text Supplied Stoplists"

CTX_DDL Package 7-19



ADD_SUB_LEXER

ADD_SUB_LEXER

Restrictions

Syntax

Add a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a
multi-lexer (multi-language) preference. Use a multi-lexer preference when you want
to index more than one language.

The following restrictions apply to using CTX_DDL. ADD_SUB_LEXER:

= The invoking user must be the owner of the multi-lexer or CTXSYS.

= The lexer_name parameter must name a preference which is a multi-lexer lexer.

= Alexer for default must be defined before the multi-lexer can be used in an index.
= The sub-lexer preference owner must be the same as multi-lexer preference owner.
= The sub-lexer preference must not be a multi-lexer lexer.

= A sub-lexer preference cannot be dropped while it is being used in a multi-lexer
preference.

« CTX_DDL. ADD SUB LEXERrecords only a reference. The sub-lexer values are
copied at create index time to index value storage.

CTX_DDL. ADD_SUB_LEXER(
| exer _nanme in varchar2,
| anguage in varchar2,
sub_l exer in varchar2,
alt _value in varchar2 default null

K

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the Globalization Support language name or abbreviation of the sub-lexer. For
example, you can specify ENGLI SH or EN for English.

The sub-lexer you specify with sub_lexer is used when the language column has a value
case-insensitive equal to the Globalization Support name of abbreviation of language.

Specify DEFAULT to assign a default sub-lexer to use when the value of the language
column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT
lexer is also used to parse stopwords.

If a sub-lexer definition for language already exists, then it is replaced by this call.

sub_lexer
Specify the name of the sub-lexer to use for this language.

alt_value
Optionally specify an alternate value for language.

If you specify DEFAULT for language, you cannot specify an alt_value.

The alt_value is limited to 30 bytes and cannot be an Globalization Support language
name, abbreviation, or DEFAULT.

7-20 Oracle Text Reference



ADD_SUB_LEXER

Example

This example shows how to create a multi-language text table and how to set up the
multi-lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table gl obal doc (
doc_i d nunber primary key,
| ang varchar2(3),
text clob

)

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers,
one for English, one for German, and one for Japanese:

ctx_ddl . create_preference(' english_|lexer', basic_|lexer');
ctx_ddl.set _attribute('english_|exer',"index_thenmes','yes');
ctx_ddl.set _attribtue('english_lexer','thene_|language','english');

ctx_ddl.create_preference(' german_| exer','basic_| exer');
ctx_ddl.set_attribute(' german_|l exer','conposite','german');
ctx_ddl.set_attribute(' german_|l exer',' nmxed_case','yes');
ctx_ddl.set_attribute(' german_lexer',"alternate_spelling,'german');

ctx_ddl.create_preference('japanese_| exer','japanese_vgramlexer');

Create the multi-lexer preference:

ctx_ddl.create_preference(' global _lexer', "nmulti_lexer');

Since the stored documents are mostly English, make the English lexer the default:
ctx_ddl.add_sub_|exer('global |exer', default','english_ |exer');

Add the German and Japanese lexers in their respective languages. Also assume that
the language column is expressed in ISO 639-2, so we add those as alternate values.
ctx_ddl . add_sub_l exer (' gl obal _| exer','german','gernan_|lexer', 'ger');

ctx_ddl . add_sub_| exer (' gl obal _| exer','japanese','japanese_lexer','jpn');

Create the index gl obal X, specifying the multi-lexer preference and the language
column in the parameters string as follows:

create index global x on global doc(text) indextype is ctxsys.context
paranmeters ('lexer global _|exer |anguage colum lang');

CTX_DDL Package 7-21



ADD_ZONE_SECTION

ADD_ZONE_SECTION

Syntax

Examples

Creates a zone section and adds the section to an existing section group. This enables
zone section searching with the WITHIN operator.

Zone sections are sections delimited by start and end tags. The <B> and </ B> tags in
HTML, for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more than
once in a document.

CTX_DDL. ADD_ZONE_SECTI ON(

group_nane in var char 2,
section_name in var char 2,
tag in var char 2

)i

group_name
Specify the name of the section group to which section_name is added.

section_name

Specify the name of the section to add to the group_name. You use this name to identify
the section in W THI N queries. Avoid using names that contain non-alphanumeric
characters such as _, since most of these characters are special must be escaped in
queries. Section names are case-insensitive.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.

Section names need not be unique across tags. You can assign the same section name
to more than one tag, making details transparent to searches.

tag

Specify the pattern which marks the start of a section. For example, if <HL> is the
HTML tag, specify H1 for tag. The start tag you specify must be unique within a section
group.

Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

If group_name is an HTML_SECTI ON_GROUP, you can create zone sections for the META
tag's NAME/ CONTENT attribute pairs. To do so, specify tag as meta@namevalue where
namevalue is the value of the NAME attribute whose CONTENT attributes are to be
indexed as a section. Refer to the example.

If group_name is an XM._SECTI ON_GROUP, you can optionally qualify tag with a
document type (root element) in the form (doctype)tag. Doing so makes section_name
sensitive to the XML document type declaration. Refer to the example.

Creating HTML Sections

The following code defines a section group called ht mgr oup of type HTM._SECTI ON_
GROUP. It then creates a zone section in ht ngr oup called headl i ne identified by the
<H1> tag:

7-22 Oracle Text Reference



ADD_ZONE_SECTION

Notes

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );
ctx_ddl . add_zone_section(' ht mgroup', 'heading', 'Hl');

end;

After indexing with section group ht ngr oup, you can query within the heading
section by issuing a query as follows:

"Oracle WTH N headi ng'

Creating Sections for <META NAME> Tags

You can create zone sections for HTML META tags when you use the HTM__
SECTI ON_GROUP.

Consider an HTML document that has a META tag as follows:
<META NAME="aut hor" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose
NAME value is author:

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'author', 'meta@uthor');
end

After indexing with section group ht ngr oup, you can query the document as follows:

"ken WTHI N aut hor'

Creating Document Type Sensitive Sections (XML Documents Only)

You have an XML document set that contains the <book> tag declared for different
document types (DTDs). You want to create a distinct book section for each document

type.
Assume that myDTDnamne is declared as an XML document type as follows:

<! DOCTYPE nyDTDnane>
<nyDTDnane>

(Note: the DOCTYPE must match the top-level tag.)

Within nmy DTDnane, the element <book> is declared. For this tag, you can create a
section named nmybooksec that is sensitive to the tag's document type as follows:

begin

ctx_ddl . create_section_group(' nyxnigroup', ' XM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' myxm group', 'nybooksec', ' (nmyDTDnane)book');
end;

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example,
if <H1> denotes a headi ng section, they can repeat in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

CTX_DDL Package 7-23



ADD_ZONE_SECTION

Related Topics

Assuming that these zone sections are named Headi ng, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Sections

Zone sections can overlap each other. For example, if <B> and <| > denote two
different zone sections, they can overlap in document as follows:

plain <B> bold <I> bold and italic </B>only italic </I> plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cel | </ TD></ TABLE></ TD>

Using the W THI N operator, you can write queries to search for text in sections within
sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents docl and doc2:

docl:

<book1> <aut hor>Scott Tiger</author> This is a cool book to read.</bookl>

doc2:

<book2> <aut hor>Scott Tiger</author> This is a great book to read. </ book2>

Consider the nested query:

"(Scott within author) within bookl'

This query returns only docl.

WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, "Oracle Text Indexing Elements".
CREATE_SECTION_GROUP

ADD_FIELD_SECTION

ADD_SPECIAL_SECTION

REMOVE_SECTION

DROP_SECTION_GROUP

7-24 Oracle Text Reference



COPY_POLICY

COPY_POLICY

Syntax

Creates a new policy from an existing policy or index.

ctx_ddl . copy_policy(
source_policy VARCHAR2,
pol i cy_name VARCHAR2

)

source_policy
The name of the policy or index being copied.

policy_name
The name of the new policy copy.

The preference values are copied from the sour ce_pol i cy. Both the source policy or
index and the new policy must be owned by the same database user.

CTX_DDL Package 7-25



CREATE_INDEX_SET

CREATE_INDEX_SET

Creates an index set for CTXCAT index types. You name this index set in the parameter
clause of CREATE | NDEX when you create a CTXCAT index.

Syntax
CTX_DDL. CREATE_| NDEX_SET(set _nane in var char 2);

set_name

Specify the name of the index set. You name this index set in the parameter clause of
CREATE | NDEX when you create a CTXCAT index.

7-26 Oracle Text Reference



CREATE_POLICY

CREATE_POLICY

Syntax

Example

Creates a policy to use with the CTX_DOC. POLI CY_* procedures and the
ORA: CONTAI NS function. ORA: CONTAI NS is a function you use within an XPATH
query expression with exi st sNode() .

See Also:  Oracle XML DB Developer’s Guide

CTX_DDL. CREATE_PCLI CY(

pol i cy_name IN VARCHAR2 DEFAULT NULL,
filter N VARCHAR2 DEFAULT NULL,
section_group | N VARCHAR2 DEFAULT NULL,
| exer N VARCHAR2 DEFAULT NULL,
stopli st N VARCHAR2 DEFAULT NULL,
wor dl i st IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the name for the new policy.

filter
Specify the filter preference to use.

Note: In this release, this parameter is not supported.

section_group
Specify the section group to use. You can specify only NULL_SECTI ON_GROUP. Only
special (sentence and paragraph) sections are supported.

lexer
Specify the lexer preference to use. Your | NDEX_THEMES attribute must be disabled.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

Create mylex lexer preference named mylex.

begin
ctx_ddl.create_preference(' nylex', 'BASIC LEXER );
ctx_ddl.set_attribute('nylex', "printjoins', '_-');
ctx_ddl.set _attribute ( "nylex', '"index_themes', 'NO);
ctx_ddl.set _attribute ( "nylex', "index_text', 'YES);
end,

Create a stoplist preference named mystop.

begin
ctx_ddl.create_stoplist('mystop', 'BASIC STOPLIST');
ctx_ddl . add_stopword(' nystop', 'because');
ctx_ddl . add_stopword(' mystop', 'nonetheless');
ctx_ddl . add_stopword(' mystop', 'therefore');

CTX_DDL Package 7-27



CREATE_POLICY

end;

Create a wordlist preference named 'mywordlist'.

begin
ctx_ddl.create_preference(' mywordlist', 'BASIC WORDLI ST');
ctx_ddl.set_attribute(' nywordlist','FUZZY _MATCH ,' ENGLISH );
ctx_ddl .set_attribute(' nywordlist',"'FUZZY_SCORE' ,'0');
ctx_ddl .set _attribute(' nywordlist',"' FUZZY_NUVRESULTS', ' 5000');
ctx_ddl.set_attribute(' nywordlist'," SUBSTRI NG | NDEX ,' TRUE );
ctx_ddl.set _attribute(' nywordlist',' STEMMER ,' ENGLISH );

end;

—_— e~ —~

exec ctx_ddl.create_policy('my_policy', NULL, NULL, 'nylex', 'nystop',
“mywordlist");

or

exec ctx_ddl.create_policy(policy_name =>"'ny_policy',
lexer => "nylex',
stoplist => 'nystop',
wordlist => "mywordlist');

Then you can issue the following exi st sNode() query with your own defined

policy:
select id fromxnltab
wher e exi st sNode(doc, '/book/chapter[ ora:contains(summary, "dog or cat", "ny_

policy") >0 ]', "xmns:ora="http://xnns.oracle.conm xdb" ')=1;

You can update your policy by doing:

exec ctx_ddl.update_policy(policy_name => "ny_policy', lexer => "'ny_new|lex');

You can drop your policy by doing;:

exec ctx_ddl.drop_policy(policy_name => "my_policy');

7-28 Oracle Text Reference



CREATE_PREFERENCE

CREATE_PREFERENCE

Syntax

Examples

Creates a preference in the Text data dictionary. You specify preferences in the
parameter string of CREATE INDEX or ALTER INDEX.

CTX_DDL. CREATE_PREFERENCE( pr ef erence_name in varchar2,
obj ect _name in varchar2);

preference_name
Specify the name of the preference to be created.

object_name
Specify the name of the preference type.

See Also: For a complete list of preference types and their
associated attributes, see Chapter 2, "Oracle Text Indexing
Elements".

Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It
does so by creating a BASI C_LEXER preference called my _| exer with CTX_

DDL. CREATE_PREFERENCE. It then calls CTX_DDL.SET_ATTRIBUTE twice, first

specifying YES for the | NDEX_TEXT attribute, then specifying NO for the | NDEX_
THEMES attribute.

begin

ctx_ddl.create_preference(' ny_lexer', 'BASIC LEXER );
ctx_ddl.set_attribute(' my_lexer', "I NDEX_TEXT', 'YES);
ctx_ddl.set_attribute(' my_lexer', 'INDEX_THEMES , 'NO);
end;

Specifying File Data Storage

The following example creates a data storage preference called nypr ef that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute of to the directory

/ docs.

begin

ctx_ddl.create_preference(' nypref', 'FILE_DATASTORE' );
ctx_ddl.set _attribute(' mypref', 'PATH, '/docs');

end;

See Also: For more information about data storage, see
"Datastore Types" in Chapter 2, "Oracle Text Indexing Elements".

Creating Master/Detail Relationship

You can use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAI L_
DATASTORE. You use CTX_DDL.SET_ATTRIBUTE to set the attributes for this
preference. The following example shows how this is done:

begin

CTX_DDL Package 7-29



CREATE_PREFERENCE

Related Topics

ctx_ddl.create_preference(' ny_detail _pref', 'DETAI L_DATASTORE );
ctx_ddl .set_attribute(' ny_detail _pref', 'binary', "true');
ctx_ddl.set_attribute(' nmy_detail _pref', 'detail_table', 'ny_detail');
ctx_ddl.set _attribute('my_detail _pref', 'detail_key', "article_id);
ctx_ddl.set_attribute(' ny_detail _pref', 'detail _lineno', 'seq');
ctx_ddl.set _attribute(' my_detail _pref', 'detail _text', "text');

end;

See Also: For more information about master/detail, see
"DETAIL_DATASTORE" in Chapter 2, "Oracle Text Indexing
Elements".

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the f 00
tablespace with an initial extent of 1K:

begi n
ctx_ddl.create_preference(' nystore', 'BASI C_STORAGE');
ctx_ddl .set _attribute(' mystore', 'I_TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set_attribute(' nystore', 'K TABLE_CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set _attribute(' mystore', 'R TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)");
ctx_ddl .set _attribute(' mystore', 'N _TABLE CLAUSE ,

"tabl espace foo storage (initial 1K)');
ctx_ddl.set_attribute(' nystore', 'I_I NDEX_CLAUSE ,

"tabl espace foo storage (initial 1K)');
end;

See Also:  "Storage Types" in Chapter 2, "Oracle Text Indexing
Elements".

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create
the preference, as in the following example which sets the filter to the NULL_FI LTER:

begi n
ctx_ddl.create_preference(' my_null filter', 'NULL_FILTER);
end;

SET_ATTRIBUTE

DROP_PREFERENCE

CREATE INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Chapter 2, "Oracle Text Indexing Elements"

7-30 Oracle Text Reference



CREATE_SECTION_GROUP

CREATE_SECTION_GROUP

Syntax

Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with
ADD_ZONE_SECTION, ADD_FIELD_SECTION, ADD_MDATA_SECTION, or ADD_
SPECIAL_SECTION.

When you index, you name the section group in the parameter string of CREATE
INDEX or ALTER INDEX.

After indexing, you can query within your defined sections with the WITHIN
operator.

CTX_DDL. CREATE_SECTI ON_GROUP(
group_nane in varchar 2,
group_type in var char 2

group_name
Specify the section group name to create as [ user . ] secti on_gr oup_namne. This
parameter must be unique within an owner.

group_type
Specify section group type. The group_type parameter can be one of:

Section Group Preference Description

NULL_SECTI ON_GROUP Use this group type when you define no sections or
when you define only SENTENCE or PARAGRAPH
sections. This is the default.

BASI C_SECTI ON_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and </ A>.

Note: This group type dopes not support input such as
unbalanced parentheses, comments tags, and
attributes. Use HTML_SECTI ON_GROUP for this type of

input.
HTM__SECTI ON_CGROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.
XM._SECTI ON_GROUP Use this group type for indexing XML documents and

for defining sections in XML documents.

CTX_DDL Package 7-31



CREATE_SECTION_GROUP

Example

Related Topics

Section Group Preference Description

AUTO_SECTI ON_GROUP Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form attribute@tag.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

= You cannot add zone, field, or special sections to
an automatic section group.

= Automatic sectioning does not index XML
document types (root elements.) However, you can
define stop sections with document type.

= The length of the indexed tags, including prefix
and namespace, cannot exceed 64 characters. Tags
longer than this are not indexed.

PATH_SECTI ON_GROUP Use this group type to index XML documents. Behaves
like the AUTO_SECTI ON_GRQOUP.

The difference is that with this section group you can
do path searching with the | NPATHand HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

NEWS_SECTI ON_GROUP Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

The following command creates a section group called ht mgr oup with the HTML
group type.

begin

ctx_ddl . create_section_group('htngroup', 'HTM._SECTI ON_GROUF' );

end;

The following command creates a section group called aut o with the AUTO_
SECTI ON_GROUP group type to be used to automatically index tags in XML
documents.

begin
ctx_ddl.create_section_group('auto', 'AUTO_SECTI ON_GROUP');
end;

WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, "Oracle Text Indexing Elements".
ADD_ZONE_SECTION

ADD_FIELD_SECTION

ADD_MDATA_SECTION

7-32 Oracle Text Reference



CREATE_SECTION_GROUP

ADD_SPECIAL_SECTION
REMOVE_SECTION
DROP_SECTION_GROUP

CTX_DDL Package 7-33



CREATE_STOPLIST

CREATE_STOPLIST

Syntax

Example

Use this procedure to create a new, empty stoplist. Stoplists can contain words or
themes that are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you index a table that contains documents in
different languages, such as English, German, and Japanese. When you do so, you text
table must contain a language column.

You can add either stopwords, stopclasses, or stopthemes to a stoplist using ADD_
STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME.

You can specify a stoplist in the parameter string of CREATE INDEX or ALTER INDEX
to override the default stoplist CTXSYS.DEFAULT_STOPLIST.

CTX_DDL. CREATE_STOPLI ST(
stoplist_name | N VARCHAR?,
stoplist_type IN VARCHAR2 DEFAULT ' BASI C STOPLI ST');

stoplist_name
Specify the name of the stoplist to be created.

stoplist_type
Specify BASI C_STOPLI ST to create a stoplist for a single language. This is the default.

Specify MULTI _STOPLI ST to create a stoplist with language-specific stopwords.

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

Note: When indexing a multi-language table with a
multi-language stoplist, your table must have a language column.

Single Language Stoplist
The following code creates a stoplist called nyst op:

begin
ctx_ddl .create_stoplist('nystop', 'BASIC STOPLIST );
end;

Multi-Language Stoplist

The following code creates a multi-language stoplist called mul t i st op and then adds
tow language-specific stopwords:

begin

ctx_ddl.create_stoplist('nultistop', 'MJLTI_STOPLIST");
ctx_ddl . add_st opword(' nystop', 'Die','german');

ctx_ddl . add_st opword(' nystop', 'O"',"english');

end;

7-34 Oracle Text Reference



CREATE_STOPLIST

Related Topics
ADD_STOPWORD

ADD_STOPCLASS

ADD_STOPTHEME

DROP_STOPLIST

CREATE INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Appendix E, "Oracle Text Supplied Stoplists"

CTX_DDL Package 7-35



DROP_INDEX_SET

DROP_INDEX_SET

Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET.
Syntax
CTX_DDL. DROP_I NDEX_SET(set _nanme in varchar2);

set_name
Specify the name of the index set to drop.

Dropping an index set drops all of the sub-indexes it contains.

7-36 Oracle Text Reference



DROP_POLICY

DROP_POLICY

Drops a policy created with CTX_DDL.CREATE_POLICY.

Syntax
CTX_DDL. DROP_PQOLI CY(pol i cy_name | N VARCHAR?) ;

policy_name
Specify the name of the policy to drop.

CTX_DDL Package 7-37



DROP_PREFERENCE

DROP_PREFERENCE

The DROP_PREFERENCE procedure deletes the specified preference from the Text data
dictionary. Dropping a preference does not affect indexes that have already been
created using that preference.

Syntax
CTX_DDL. DROP_PREFERENCE( pr ef er ence_nanme | N VARCHAR?2) ;

preference_name
Specify the name of the preference to be dropped.

Example
The following code drops the preference nmy_| exer.

begi n
ctx_ddl . drop_preference(' ny_|l exer');
end;

Related Topics
See also CTX_DDL.CREATE_PREFERENCE.

7-38 Oracle Text Reference



DROP_SECTION_GROUP

DROP_SECTION_GROUP

The DROP_SECTI ON_GROUP procedure deletes the specified section group, as well as
all the sections in the group, from the Text data dictionary.

Syntax
CTX_DDL. DROP_SECTI ON_GROUP( gr oup_name | N VARCHAR?) ;

group_name
Specify the name of the section group to delete.

Examples
The following code drops the section group ht ngr oup and all its sections:

begi n
ctx_ddl . drop_section_group(' ht ngroup');
end;

Related Topics
See also CTX_DDL.CREATE_SECTION_GROUP.

CTX_DDL Package 7-39



DROP_STOPLIST

DROP_STOPLIST

Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must
re-create or rebuild the index for the change to take effect.

Syntax
CTX_DDL. DROP_STOPLI ST(stoplist_nane in varchar2);
stoplist_name
Specify the name of the stoplist.
Example
The following code drops the stoplist myst op:
begi n
ctx_ddl . drop_stoplist('nystop');
end;
Related Topics

See also CTX_DDL.CREATE_STOPLIST.

7-40 Oracle Text Reference



OPTIMIZE_INDEX

OPTIMIZE_INDEX

Syntax

Use this procedure to optimize the index. You optimize your index after you
synchronize it. Optimizing an index removes old data and minimizes index
fragmentation, which can improve query response time. Querying and DML may
proceed while optimization takes place.

You can optimize in fast, full, rebuild, token, or token-type mode.
« Fast mode compacts data but does not remove rows.
« Full mode compacts data and removes rows.

= Optimize in rebuild mode rebuilds the $I table (the inverted list table) in its
entirety. Rebuilding an index is often significantly faster than performing a full
optimization, and is more likely to result in smaller indexes, especially if the index
is heavily fragmented.

Rebuild optimization creates a more compact copy of the $I table, and then
switches the original $I table and the copy. The rebuild operation will therefore
require enough space to store the copy as well as the original. (If redo logging is
enabled, then additional space is required in the redo log as well). At the end of
the rebuild operation, the original $I table is dropped, and the space can be
reused.

= Intoken mode, you specify a specific token to be optimized (for example, all rows
with documents containing the word elections). You can use this mode to optimize
index tokens that are frequently searched, without spending time on optimizing
tokens that are rarely referenced. An optimized token can improve query response
time (but only for queries on that token).

« Token-type optimization is similar to token mode, except that the optimization is
performed on field sections or MDATA sections (for example, sections with an <A>
tag). This is useful in keeping critical field or MDATA sections optimal.

A common strategy for optimizing indexes is to perform regular token optimizations
on frequently referenced terms, and to perform rebuild optimizations less frequently.
(Use CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made
most frequently.) You can perform full, fast, or token-type optimizations instead of
token optimizations.

Some users choose to perform frequent time-limited full optimizations along with
occasional rebuild optimizations.

Note: Optimizing an index can result in better response time only
if you insert, delete, or update documents in your base table after
your initial indexing operation.

Using this procedure to optimize your index is recommended over using the ALTER
| NDEX statement.

Optimization of a large index may take a long time. To monitor the progress of a
lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG and
check the resultant logfile from time to time.

CTX_DDL. OPTI M ZE_| NDEX(

CTX_DDL Package 7-41



OPTIMIZE_INDEX

idx_name IN VARCHAR?,

opt | evel IN VARCHARZ2,

maxti me IN NUMBER DEFAULT NULL,
t oken I N VARCHAR2 DEFAULT NULL,
part _name | N VARCHAR2 DEFAULT NULL,

token_type |N NUVBER DEFAULT NULL,

paral | el _degree |N VARCHAR?) ;
)

idx_name

Specify the name of the index. If you do not specify an index name, Oracle Text
chooses a single index to optimize.

optlevel

Specify optimization level as a string. You can specify one of the following methods

for optimization:

Value Description

FAST or CTX_DDL.OPTLEVEL_  This method compacts fragmented rows. However, old

FAST data is not removed.

FULL or CTX_DDL.OPTLEVEL_ In this mode you can optimize the entire index or a

FULL portion of the index. This method compacts rows and
removes old data (deleted rows). Optimizing in full
mode runs even when there are no deleted rows.

REBUILD or CTX_ This optlevel rebuilds the $I table (the inverted list

DDL.OPTLEVEL_REBUILD

TOKEN or CTX_
DDL.OPTLEVEL_TOKEN

TOKEN_TYPE or CTX_
DDL.OPTLEVEL_TOKEN_TYPE

table) to produce more compact token info rows. Like
FULL optimize, this mode also deletes information
pertaining to deleted rows of the base table.

REBUI LDis not supported for CTCAT, CTXRULE, or
CTXXPATHindexes. REBUI LD optimization is also not
supported for CONTEXT indexes that have substring
indexing enabled.

REBUI LD is not supported when the $I table is
partitioned.

PARALLEL REBUI LD optimization is permitted.

This method lets you specify a specific token to be
optimized. Oracle Text does a FULL optimization on
the token you specify with token.

Use this method to optimize those tokens that are
searched frequently.

Token optimization is not supported for CTXRULE
indexes.

This optlevel optimizes on demand all tokens in the
index matching the input token type.

When opt | evel is TOKEN_TYPE, token_type must be
provided. TOKEN_TYPE performs FULL optimize on
any token of the input token_type. Like a TOKEN
optimize, TOKEN_TYPE optimize does not change the
FULL optimize state, and runs to completion on each
invocation.

maxtime

Specify maximum optimization time, in minutes, for FULL optimize.

When you specify the symbol CTX_DDL.MAXTI ME_UNLI M TED (or pass in NULL), the

entire index is optimized. This is the default.

7-42 Oracle Text Reference



OPTIMIZE_INDEX

Examples

Notes

Related Topics

token
Specify the token to be optimized.

part_name
If your index is a local index, you must specify the name of the index partition to
synchronize otherwise an error is returned.

If your index is a global index, specify NULL, which is the default.

token_type
Specify the t oken_t ype to be optimized.

parallel_degree
Specify the parallel degree as a number for parallel optimization. The actual parallel
degree depends on your resources.

The following two examples are equivalent ways of optimizing an index using fast
optimization:
begi n
ctx_ddl . optim ze_i ndex(' nmyidx',' FAST');
end;

begin
ctx_ddl . optimize_index(' nyidx', CTX_DDL. OPTLEVEL_FAST);
end;

The following example optimizes the index token Oracle:

begin
ctx_ddl . optimze_index(' nyidx','token', TOKEN=>' Oracle');
end;

To optimize all tokens of field section MYSEC in index MYl NDEX:

begi n
ctx_ddl . optim ze_i ndex(' nyi ndex', ctx_ddl.optlevel _token_type,
token_type=> ctx_report.token_type(' nyindex','field nysec text'));
end;

You can run CTX_DDL. SYNCand CTX _DDL. OPTI M ZE at the same time. You can also
run CTX_DDL. SYNCand CTX_DDL. OPTI M ZE with parallelism at the same time.
However, you should not run CTX_DDL. SYNC with parallelism at the same time as
CTX_DDL. OPTI M ZE, nor CTX_DDL. SYNCwith parallelism at the same time as CTX_
DDL. OPTI M ZE with parallelism. If you should run one of these combinations, no
error is generated; however, one operation will wait until the other is done.

See also CTX_DDL.SYNC_INDEX and ALTER INDEX in Chapter 1, "Oracle Text SQL
Statements and Operators".

CTX_DDL Package 7-43



REMOVE_INDEX

REMOVE_INDEX

Removes the index with the specified column list from a CTXCAT index set preference.

Note: This procedure does not remove a CTXCAT sub-index from
the existing index. To do so, you must drop your index and
re-index with the modified index set preference.

Syntax

CTX_DDL. REMOVE_| NDEX(

set_name in varchar2,

colum_list in varchar2

| anguage in varchar2 default NULL

E

set_name
Specify the name of the index set

column_list
Specify the name of the column list to remove.

7-44 Oracle Text Reference



REMOVE_MDATA

REMOVE_MDATA

Syntax

Example

Related Topics

Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document. Only the owner of the index is allowed to call ADD_
MDATA and REMOVE_NDATA.

CTX_DDL. REMOVE_MDATA(

i dx_nane I N VARCHAR2,
secti on_nane I N VARCHAR?,
val ues SYS. ODCl VARCHAR2LI ST,
row ds SYS. ODCI RI DLI ST,
[ part _nane] I'N VARCHAR?]
);
idx_name

Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

rowids
rowids from which to remove the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes
and must be NULL for global indexes.

This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl . renove_ndata('idx_docs', 'bgcolor', 'blue', "rows');

See also "ADD_MDATA" on page 7-9; "ADD_MDATA_SECTION" on page 7-11;
"MDATA" on page 3-22; as well as the Section Searching chapter of the Oracle Text
Application Developer’s Guide.

CTX_DDL Package 7-45



REMOVE_SECTION

REMOVE_SECTION

Syntax 1

Syntax 2

Examples

Related Topics

The REMOVE_SECTI ON procedure removes the specified section from the specified
section group. You can specify the section by name or by id. You can view section id
with the CTX_USER_SECTI ONS view.

Use the following syntax to remove a section by section name:

CTX_DDL. REMOVE_SECTI ON\(
group_nane in var char 2,
secti on_nane in var char 2

)
group_name

Specify the name of the section group from which to delete section_name.

section_name
Specify the name of the section to delete from group_name.

Use the following syntax to remove a section by section id:

CTX_DDL. REMOVE_SECTI ON\(
group_nane in varchar 2,
section_id in nunber

)

group_name
Specify the name of the section group from which to delete section_id.

section_id
Specify the section id of the section to delete from group_name.

The following code drops a section called Ti t | e from the ht nmgr oup:

begi n
ctx_ddl . renove_section(' htmgroup', 'Title');
end;

ADD_FIELD_SECTION
ADD_SPECIAL_SECTION
ADD_ZONE_SECTION

7-46 Oracle Text Reference



REMOVE_STOPCLASS

REMOVE_STOPCLASS

Removes a stopclass from a stoplist.

Syntax

CTX_DDL. REMOVE_STOPCLASS(
stoplist_name in varchar2,
stopcl ass in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the name of the stopclass to be removed.

Example
The following code removes the stopclass NUMBERS from the stoplist myst op.

begin
ctx_ddl . renove_stopcl ass(' mystop', ' NUMBERS' );
end;

Related Topics
ADD_STOPCLASS

CTX_DDL Package 7-47



REMOVE_STOPTHEME

REMOVE_STOPTHEME

Removes a stoptheme from a stoplist.

Syntax

CTX_DDL. REMOVE_STOPTHEME(
stoplist_name in varchar2,
st opt herre in varchar2

)i

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be removed from stoplist_name.

Example
The following code removes the stoptheme banking from the stoplist nmyst op:

begin
ctx_ddl . remove_stopt heme(' nystop', 'banking');
end;

Related Topics
ADD_STOPTHEME

7-48 Oracle Text Reference



REMOVE_STOPWORD

REMOVE_STOPWORD

Syntax

Example

Related Topics

Removes a stopword from a stoplist. To have the removal of a stopword be reflected in
the index, you must rebuild your index.

CTX_DDL. REMOVE_STOPWORD(

stoplist_name in varchar2,

st opwor d in varchar2,

| anguage in varchar2 default NULL

)

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be removed from stoplist_name.

language

Specify the language of st opwor d to remove when the stoplist you specify with

st opl i st _nane is of type MULTI _STOPLI ST. You must specify the Globalization
Support name or abbreviation of an Oracle Text-supported language. You can also
remove ALL stopwords.

The following code removes a stopword because from the stoplist nyst op:

begin
ctx_ddl . renove_stopword(' nystop', "' because');
end;

ADD_STOPWORD

CTX_DDL Package 7-49



REPLACE_INDEX_METADATA

REPLACE_INDEX_METADATA

Syntax

Notes

Related Topics

Use this procedure to replace metadata in local domain indexes at the global level.

CTX_DDL. REPLACE_| NDEX_METADATA(i dx_name | N VARCHAR?,
parameter_string IN VARCHAR?);

idx_name
Specify the name of the index whose metadata you want to replace.

parameter_string
Specify the parameter string to be passed to ALTER | NDEX. This must begin with
'REPLACE METADATA.

ALTER | NDEX REBUI LD PARAMETER (' REPLACE METADATA' ) does not work for
a local partitioned index at the index (global) level; you cannot, for example, use that
ALTER | NDEX syntax to change a global preference, such as filter or lexer type,
without rebuilding the index. Therefore, CTX_DDL. REPLACE | NDEX_METADATA is
provided as a method of overcoming this limitation of ALTER | NDEX.

Though it is meant as a way to replace metadata for a local partitioned index, CTX_
DDL. REPLACE_| NDEX_METADATA can be used on a global index, as well.

REPLACE_| NDEX_METADATA cannot be used to change the sync type at the partition
level; that is, parameter_string cannot be 'REPLACE METADATA SYNC. For that
purpose, use ALTER | NDEX REBUI LD PARTI TI ONto change the sync type at the
partition level.

"ALTER INDEX REBUILD Syntax" on page 1-3

7-50 Oracle Text Reference



SET_ATTRIBUTE

SET_ATTRIBUTE

Syntax

Example

Sets a preference attribute. You use this procedure after you have created a preference
with CTX_DDL.CREATE_PREFERENCE.

CTX_DDL. SET_ATTRI BUTE( pr ef erence_nanme | N VARCHAR2,
attribute_name |N VARCHAR?,
attribute_value IN VARCHAR?) ;

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

attribute_value
Specify the attribute value. You can specify boolean values as TRUE or FALSE, T or F,
YES or NO, Yor N, ONor OFF, or 1 or O.

Specifying File Data Storage

The following example creates a data storage preference called f i | epr ef that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATHattribute to the directory

/ docs.

begin

ctx_ddl.create_preference('filepref', 'FlILE DATASTORE' );
ctx_ddl.set_attribute('filepref', 'PATH, '/docs');

end;

See Also: For more information about data storage, see
"Datastore Types" in Chapter 2, "Oracle Text Indexing Elements".

For more examples of using SET_ATTRI BUTE, see CREATE_
PREFERENCE.

CTX_DDL Package 7-51



SYNC_INDEX

SYNC_INDEX

Syntax

Example

Synchronizes the index to process inserts, updates, and deletes to the base table.

CTX_DDL. SYNC_| NDEX(

i dx_nane IN VARCHAR2 DEFAULT NULL
menory I'N VARCHAR2 DEFAULT NULL,
part_name | N VARCHAR2 DEFAULT NULL,
paral | el _degree IN NUMBER DEFAULT 1);

idx_name
Specify the name of the index.

memory
Specify the runtime memory to use for synchronization. This value overrides the
DEFAULT_I NDEX_MEMORY system parameter.

The memory parameter specifies the amount of memory Oracle Text uses for the
synchronization operation before flushing the index to disk. Specifying a large amount
of memory:

« improves indexing performance because there is less I/O
= improves query performance and maintenance because there is less fragmentation

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when runtime memory is scarce.

part_name
If your index is a local index, you must specify the name of the index partition to
synchronize otherwise an error is returned.

If your index is a global index, specify NULL, which is the default.

parallel_degree

Specify the degree to run parallel synchronize. A number greater than 1 turns on
parallel synchronize. The actual degree of parallelism might be smaller depending on
your resources.

The following example synchronizes the index nyi ndex with 2 megabytes of
memory:

begin
ctx_ddl . sync_i ndex(' nyi ndex', '2M);
end;

The following example synchronizes the par t 1 index partition with 2 megabytes of
memory:

begin

ctx_ddl . sync_i ndex(' nyi ndex', '2M, 'partl');

end,

7-52 Oracle Text Reference



SYNC_INDEX

Notes

Related Topics

You can run CTX_DDL. SYNCand CTX _DDL. OPTI M ZE at the same time. You can also
run CTX_DDL. SYNCand CTX_DDL. OPTI M ZE with parallelism at the same time.
However, you should not run CTX_DDL. SYNC with parallelism at the same time as
CTX_DDL. OPTI M ZE, nor CTX_DDL. SYNC with parallelism at the same time as CTX_
DDL. OPTI M ZE with parallelism. If you should run one of these combinations, no
error is generated; however, one operation will wait until the other is done.

ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators"

CTX_DDL Package 7-53



UNSET_ATTRIBUTE

UNSET_ATTRIBUTE

Syntax

Example

Related Topics

Removes a set attribute from a preference.

CTX_DDL. UNSET_ATTRI BUTE( pr ef er ence_nane var char 2,
attribute_name varchar2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

Enabling/Disabling Alternate Spelling

The following example shows how you can enable alternate spelling for German and
disable alternate spelling with CTX_DDL. UNSET_ATTRI BUTE:

begin

ctx_ddl.create_preference(' GERVAN_LEX' , 'BASI C LEXER );
ctx_ddl.set_attribute(' GERVAN_LEX , ' ALTERNATE SPELLING , 'GERMAN );
end;

To disable alternate spelling, use the CTX_DDL. UNSET_ATTRI BUTE procedure as
follows:

begin
ctx_ddl . unset _attribute(' GERVAN_LEX', ' ALTERNATE_SPELLING );
end;

SET_ATTRIBUTE on page 7-51

7-54 Oracle Text Reference



UPDATE_POLICY

UPDATE_POLICY

Syntax

Updates a policy created with CREATE_POLICY. Replaces the preferences of the
policy. Null arguments are not replaced.

CTX_DDL. UPDATE_PCLI CY(
pol i cy_name
filter
section_group
| exer
stopli st
wor dl i st

policy_name

I'N VARCHAR2
I'N VARCHAR2
I'N VARCHAR2
IN VARCHAR2
I'N VARCHAR2
I'N VARCHAR2

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL

DEFAULT NULL);

Specify the name of the policy to update.

filter

Specify the filter preference to use.

section_group

Specify the section group to use.

lexer

Specify the lexer preference to use.

stoplist

specify the stoplist to use.

wordlist

Specify the wordlist to use.

CTX_DDL Package 7-55



UPDATE_POLICY

7-56 Oracle Text Reference



38

CTX_DOC Package

This chapter describes the CTX_DOCPL/SQL package for requesting document
services, such as highlighting extracted text or generating a list of themes for a
document.

Many of these procedures exist in two versions: those that make use of indexes, and
those that don't. Those that don't are called "policy-based" procedures. They are
offered because there are times when you might like to use document services on a
single document without creating a context index in advance. Policy-based
procedures enable you to do this.

The policy_* procedures mirror the conventional in-memory document services and
are used with policy name replacing index name, and document of type VARCHARZ2,
CLOB, BLOB or BFI LE replacing textkey. Thus, you need not create an index to obtain

document services output with these procedures.

The CTX_DOC package includes the following procedures and functions:

Name Description

FILTER Generates a plain text or HTML version of a document

GIST Generates a Gist or theme summaries for a document

HIGHLIGHT Generates plain text or HTML highlighting offset information
for a document

IFILTER Generates a plain text version of binary data. Can be called from
a USER_DATASTORE procedure.

MARKUP Generates a plain text or HTML version of a document with
query terms highlighted

PKENCODE Encodes a composite textkey string (value) for use in other CTX_

POLICY_FILTER

POLICY_GIST

POLICY_HIGHLIGHT

POLICY_MARKUP

POLICY_THEMES

DCC procedures

Generates a plain text or HTML version of a document, without
requiring an index.

Generates a Gist or theme summaries for a document, without
requiring an index.

Generates plain text or HTML highlighting offset information
for a document, without requiring an index.

Generates a plain text or HTML version of a document with
query terms highlighted, without requiring an index.

Generates a list of themes for a document, without requiring an
index.

CTX_DOC Package 8-1



Name

Description

POLICY_TOKENS

SET_KEY_TYPE

THEMES
TOKENS

Generates all index tokens for a document, without requiring an
index.

Sets CTX_DOC procedures to accept rowid or primary key
document identifiers.

Generates a list of themes for a document

Generates all index tokens for a document.

8-2 Oracle Text Reference



FILTER

FILTER

Use the CTX_DOC. FI LTER procedure to generate either a plain text or HTML version
of a document. You can store the rendered document in either a result table or in
memory. This procedure is generally called after a query, from which you identify the
document to be filtered.

Note: The resultant HTML document does not include graphics.

Syntax 1:In-memory Result Storage

CTX_DCC. FI LTER(
i ndex_nanme | N VARCHAR?,
t ext key I N VARCHAR?,
restab N OQUT NOCOPY CLOB,
pl ai nt ext IN BOOLEAN DEFAULT FALSE);

Syntax 2: Result Table Storage

CTX_DCC. FI LTER(
i ndex_name | N VARCHARZ,
t ext key I N VARCHARZ,
restab I N VARCHAR2,
query_id I N NUMBER DEFAULT 0,
pl ai nt ext IN BOOLEAN DEFAULT FALSE);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be one of the following:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. Use CTX_
DOC.PKENCODE.

= the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC.SET_KEY _
TYPE.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.

To store results to a table specify the name of the table. The result table must exist
before you make this call.

See Also: '"Filter Table" in Appendix A, "Oracle Text Result
Tables" for more information about the structure of the filter result
table.

CTX_DOC Package 8-3



FILTER

To store results in memory, specify the name of the CLOB locator. If restab is NULL, a
temporary CLOB is allocated and returned. You must de-allocate the locator after using
it with DBMS_LOB.FREETEMPORARY().

If restab is not NULL, the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext

Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the INSO filter or
indexing HTML documents.

Example

In-Memory Filter
The following code shows how to filter a document to HTML in memory.

decl are

nkl ob cl ob;

amt nunber := 40;
I'ine varchar2(80);

begin

ctx_doc.filter('nyindex',"1", nklob, FALSE);
- nklob is NULL when passed-in, so ctx-doc.filter will allocate a tenporary
- CLOB for us and place the results there.

dbrs_| ob. read(nkl ob, ant, 1, line);

dbns_out put . put _li ne(' FIRST 40 CHARS ARE:'||line);
- have to de-allocate the tenp lob

dbms_| ob. f r eet enpor ar y( nkl ob) ;

end;

Create the filter result table to store the filtered document as follows:
create table filtertab (query_id nunber,
docunent clob);
To obtain a plaintext version of document with textkey 20, issue the following

statement:

begin
ctx_doc.filter(' newsindex', '20', 'filtertab', '0', TRUE);
end;

8-4 Oracle Text Reference



GIST

GIST

Use the CTX_DOC. @ ST procedure to generate gist and theme summaries for a
document. You can generate paragraph-level or sentence-level gists or theme
summaries.

Note: CTX_DOC. G ST requires an installed knowledge base. A
knowledge base may or may not have been installed with Oracle Text.
For more information on knowledge bases, see the Oracle Text
Application Developer's Guide.

Syntax 1: In-Memory Storage

CTX_DCC. d ST(

i ndex_nane I N VARCHARZ,

t ext key I N VARCHAR?,

restab IN QUT CLOB,

gl evel I N VARCHAR2 DEFAULT 'P',

pov I N VARCHAR2 DEFAULT ' GENERIC ,
nunPar agr aphs | N NUVBER DEFAULT 16,

maxPer cent I N NUMBER DEFAULT 10,

numthemes | N NUMBER DEFAULT 50);

Syntax 2: Result Table Storage

CTX_DCC. d ST(

i ndex_nane IN VARCHARZ,

t ext key I N VARCHAR?,

restab I N VARCHAR2,

query_id I'N NUMBER DEFAULT 0,

gl evel IN VARCHAR2 DEFAULT 'P',
pov I N VARCHAR2 DEFAULT NULL,
nunPar agr aphs | N NUMBER DEFAULT 16,
maxPer cent I N NUMBER DEFAULT 10,
num t hemes I'N NUMBER DEFAULT 50);
index_name

Specify the name of the index associated with the text column containing the
document identified by t ext key.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be one of the following:
= asingle column primary key value

= an encoded specification for a composite (multiple column) primary key. To
encode a composite textkey, use the CTX_DOC. PKENCODE procedure.

« the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC. SET_KEY_
TYPE.

restab
You can specify that this procedure store the gist and theme summaries to either a
table or to an in-memory CLOB.

CTX_DOC Package 8-5



GIST

To store results to a table specify the name of the table.

See Also: "Gist Table" in Appendix A, "Oracle Text Result Tables"
for more information about the structure of the gist result table, see

To store results in memory, specify the name of the CLOB locator. If restab is NULL, a
temporary CLOB is allocated and returned. You must de-allocate the locator after using
it.

If r est ab is not NULL, the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row(s) inserted into restab.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

« P for paragraph

= S for sentence

The default is P.

pov

Specify whether a gist or a single theme summary is generated. The type of gist or

theme summary generated (sentence-level or paragraph-level) depends on the value
specified for gl evel .

To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as the
value for pov.

When using result table storage and you do not specify a value for pov, this procedure
returns the generic gist plus up to fifty theme summaries for the document.

When using in-memory result storage to a CLOB, you must specify a pov. However, if
you do not specify pov, this procedure generates only a generic gist for the document.

Note: The pov parameter is case sensitive. To return a gist for a
document, specify 'GENERI C in all uppercase. To return a theme
summary, specify the theme exactly as it is generated for the
document.

Only the themes generated by THEMES for a document can be
used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note: The nunPar agr aphs parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the maxPer cent parameter.

This means that the system always returns the smallest size gist or
theme summary.

8-6 Oracle Text Reference



GIST

Examples

maxPercent

Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note: The maxPer cent parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the nunPar agr aphs parameter.

This means that the system always returns the smallest size gist or
theme summary.

num_themes

Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then
de-allocates the returned CLOB locator after using it.

set serveroutput on;
decl are
gkl ob cl ob;
amt nunber := 40;
I'ine varchar2(80);

begin

ctx_doc. gi st (' newsi ndex',"' 34', gkl ob, pov =>'CGENERI C , nunPar agraphs => 10);
- gklob is NULL when passed-in, so ctx-doc.gist will allocate a tenporary
- CLOB for us and place the results there.

dbms_| ob. read(gkl ob, ant, 1, line);

dbms_out put. put _|ine(' FIRST 40 CHARS ARE:'||line);
- have to de-allocate the tenp lob

dbns_| ob. freet enporary( gkl ob) ;

end;

Result Table Gists
The following example creates a gist table called CTX_G ST:

create table CTX_ G ST (query_id nunber,
pov var char 2( 80),
gi st CLOB);

Gists and Theme Summaries
The following example returns a default sized paragraph level gist for document 34 as
well as the top 10 theme summaries in the document:

begi n

CTX_DOC Package 8-7



GIST

ctx_doc. gi st (' newsi ndex',"' 34", CTX_A ST', 1, numthenmes=>10);
end;

The following example generates a non-default size gist of at most 10 paragraphs:
begin

ctx_doc. gi st (' newsindex',"'34',' CTX_A ST', 1, pov =>' GENERI C', nunPar agr aphs=>10) ;
end;

The following example generates a gist whose number of paragraphs is at most 10
percent of the total paragraphs in document:
begin

ctx_doc. gi st (' newsi ndex',"'34','CTX_ @ ST",1,pov => "GENERIC, nmxPercent => 10);
end,

Theme Summary
The following example returns a paragraph level theme summary for insects for
document 34. The default theme summary size is returned.

begin
ctx_doc. gi st (' newsi ndex',"'34','CTX_A ST", 1, pov => 'insects');
end;

8-8 Oracle Text Reference



HIGHLIGHT

HIGHLIGHT

Use the CTX_DOC. HI GHLI GHT procedure to generate highlight offsets for a document.
The offset information is generated for the terms in the document that satisfy the
query you specify. These highlighted terms are either the words that satisfy a word
query or the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. The table returned by CTX_DCC. Hl GHLI GHT does not include any
graphics found in the original document. You can apply the offset information to the
same documents filtered with CTX_DOC.FILTER.

You usually call this procedure after a query, from which you identify the document to
be processed.

You can store the highlight offsets in either an in-memory PL/SQL table or a result
table.

Syntax 1:In-Memory Result Storage

CTX_DQOC. HI GHLI GHT(
i ndex_name | N VARCHAR?,

t ext key I N VARCHARZ,
text_query | N VARCHARZ,
restab IN QUT NOCOPY HI GHLI GHT_TAB,

pl ai nt ext IN BOOLEAN DEFAULT FALSE);

Syntax 2:Result Table Storage

CTX_DOC. HI GHLI GHT(
i ndex_name | N VARCHAR2

t ext key I N VARCHAR?,
text_query | N VARCHARZ,
restab I N VARCHAR?2,

query_id N NUMBER  DEFAULT 0,
pl ai nt ext I N BOOLEAN DEFAULT FALSE);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be one of the following:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

= the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC.SET_KEY _
TYPE.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

CTX_DOC Package 8-9



HIGHLIGHT

Examples

If t ext _query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, H GHLI GHT does not highlight the stopwords.

If t ext _query contains the threshold operator, the operator is ignored. The
HI GHLI GHT procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store highlight offsets to either a table or to an
in-memory PL/SQL table.

To store results to a table specify the name of the table. The table must exist before you
call this procedure.

See Also: see "Highlight Table" in Appendix A, "Oracle Text
Result Tables" for more information about the structure of the
highlight result table.

To store results to an in-memory table, specify the name of the in-memory table of type
CTX_DOC. Hl GHLI GHT_TAB. The Hl GHLI GHT_TAB datatype is defined as follows:

type highlight_rec is record (
of fset nunber,
I ength nunber

)i
type highlight_tab is table of highlight_rec index by binary_integer;

CTX_DOC. HI GHLI GHT clears Hl GHLI GHT_TAB before the operation.

query_id
Specify the identifier used to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext
Specify TRUE to generate a plaintext offsets of the document.

Specify FALSE to generate HTML offsets of the document if you are using the INSO
filter or indexing HTML documents.

Create Highlight Table
Create the highlight table to store the highlight offset information:

create table hightab(query_id number,
of f set nunber,
| 'ength nunber);

Word Highlight Offsets

To obtain HTML highlight offset information for document 20 for the word dog:
begin

ctx_doc. hi ghli ght (' newsi ndex', '20', 'dog', 'hightab', 0, FALSE);

end,

Theme Highlight Offsets

Assuming the index newsindex has a theme component, you obtain HTML highlight
offset information for the theme query of politics by issuing the following query:

8-10 Oracle Text Reference



HIGHLIGHT

begin
ctx_doc. hi ghl'i ght (" newsi ndex', '20', "about(politics)', 'hightab', 0, FALSE);
end;

The output for this statement are the offsets to highlighted words and phrases that
represent the theme of politics in the document.

CTX_DOC Package 8-11



IFILTER

IFILTER

Requirements

Syntax

Example

Use this procedure when you need to filter binary data to text.

This procedure takes binary data (BLOB | N), filters the data through with the Inso
filter, and writes the text version to a CLOB. (Any graphics in the original document
are ignored.) CTX_DCC. | FI LTERemploys the safe callout, and it does not require an
index to use, as CTX_DOC. FI LTER does.

Note: This procedure will not be supported in future releases.
Programs should make use of CTX_DOC.POLICY_FILTER instead.

Because CTX_DOC. | FI LTER employs the safe callout mechanism, the SQL*Net
listener must be running and configured for ext pr oc agent startup.

CTX_DCC. | FI LTER(data IN BLOB, text IN OUT NOCOPY CLCB);

data
Specify the binary data to be filtered.

text

Specify the destination CLOB. The filtered data is placed in here. This parameter must
be a valid CLOB locator that is writable. Passing NULL or a non-writable CLOB will
result in an error. Filtered text will be appended to the end of existing content, if any.

The document text used in a MATCHES query can be VARCHARZ or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you must
filter the binary content to CLOB using the INSO filter. Assuming the document data is
in bind variable : doc_bl ob:

decl are
doc_text clob;
begin
- create a tenporary CLOB to hold the docunment text
doc_text := dbns_| ob. createtenporary(doc_text, TRUE, DBMS_LOB. SESSI ON);

- call ctx_doc.ifilter to filter the BLOB to CLOB data
ctx_doc.ifilter(:doc_blob, doc_text);

- now do the nmatches query using the CLOB version
for cl in (select * fromqueries where matches(query_string, doc_text)>0)
| oop
- do what you need to do here
end | oop;

dbrs_| ob. freet enporary(doc_text);
end;

8-12 Oracle Text Reference



MARKUP

MARKUP

The CTX_DCOC. MARKUP procedure takes a query specification and a document textkey
and returns a version of the document in which the query terms are marked up. These
marked-up terms are either the words that satisfy a word query or the themes that
satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML. The marked-up
document returned by CTX_DOC. MARKUP does not include any graphics found in the
original document.

You can use one of the pre-defined tagsets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

You usually call CTX_DOC. MARKUP after a query, from which you identify the
document to be processed.

You can store the marked-up document either in memory or in a result table.

Note: Oracle Text does not guarantee well-formed output from
CTX. DCC. MARKUP, especially for terms that are already marked up
with HTML or XML. In particular, unexpected nesting of markup
tags may occasionally result.

Syntax 1: In-Memory Result Storage

CTX_DOC. MARKUP(

i ndex_nane I N VARCHAR?,

t ext key I N VARCHAR?,

text _query I'N VARCHARZ,

restab I'N OUT NOCOPY CLOB,

pl ai nt ext IN BOOLEAN  DEFAULT FALSE,

tagset IN VARCHAR2 DEFAULT ' TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,

endt ag I'N VARCHAR2 DEFAULT NULL,

prevtag IN VARCHAR2 DEFAULT NULL,

nexttag IN VARCHAR2 DEFAULT NULL);

Syntax 2: Result Table Storage

CTX_DOC. MARKUP(

i ndex_nane I N VARCHAR?,

t ext key I N VARCHARZ,

text _query I N VARCHAR2,

restab I N VARCHAR?,

query_id IN NUMBER  DEFAULT 0,

pl ai nt ext I N BOOLEAN  DEFAULT FALSE,
t agset I'N VARCHAR2 DEFAULT ' TEXT_DEFAULT',
starttag I N VARCHAR?2 DEFAULT NULL,
endt ag I N VARCHAR2 DEFAULT NULL,
prevtag I'N VARCHAR2 DEFAULT NULL,
nexttag I'N VARCHAR2 DEFAULT NULL);
index_name

Specify the name of the index associated with the text column containing the
document identified by textkey.

CTX_DOC Package 8-13



MARKUP

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be one of the following:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

» the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_
TYPE.

text_query
Specify the original query expression used to retrieve the document.

If text_query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, MARKUP does not highlight the stopwords.

If text_query contains the threshold operator, the operator is ignored. The MARKUP
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.

To store results to a table specify the name of the table. The result table must exist
before you call this procedure.

See Also: For more information about the structure of the
markup result table, see "Markup Table" in Appendix A, "Oracle
Text Result Tables".

To store results in memory, specify the name of the CLOB locator. If restab is NULL, a
temporary CLOB is allocated and returned. You must de-allocate the locator after
using it.

If restab is not NULL, the CLOB is truncated before the operation.

query_id
Specify the identifier used to identify the row inserted into restab.

When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext

Specify TRUE to generate plaintext marked-up document. Specify FALSE to generate a
marked-up HTML version of document if you are using the INSO filter or indexing
HTML documents.

tagset
Specify one of the following pre-defined tagsets. The second and third columns show
how the four different tags are defined for each tagset:

Tagset Tag Tag Value
TEXT_DEFAULT starttag <<<
endtag >>>

8-14 Oracle Text Reference



MARKUP

Examples

Tagset Tag Tag Value
prevtag
nexttag
HTML_DEFAULT starttag <B>
endtag </ B>
prevtag
nexttag
HTM__NAVI GATE starttag <A NAME=ct x “CURNUM><B>
endtag </ B></ A>
prevtag <A HREF=#ct x%PREVNUM>&I t ; </ A>
nexttag <A HREF=#ct x¥NEXTNUM>&gt ; </ A>
starttag

Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.

The sequence of starttag, endtag, prevtag and nexttag with respect to the highlighted word
is as follows:

. prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.

In the markup sequences prevtag and nexttag, you can specify the following offset
variables which are set dynamically:

Offset Variable Value

YCURNUM the current offset number
%°REVNUM the previous offset number
YNEXTNUM the next offset number

See the description of the HTML_NAVI GATE tagset for an example.

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.

Within the markup sequence, you can use the same offset variables you use for prevtag.
See the explanation for prevtag and the HTM__NAVI GATE tagset for an example.

In-Memory Markup

The following code takes document (the dog chases the cat), performs the assigned
markup on it, and stores the result in memory.

CTX_DOC Package 8-15



MARKUP

set serveroutput on

drop table mark_tab;
create table mark_tab (id nunber primary key, text varchar2(80) );
insert into mark_tab values ('1', 'The dog chases the cat.’);

create index mark_tab_idx on mark_tab(text)
i ndextype is ctxsys.context parameters
("filter ctxsys.null filter");

decl are

nkl ob cl ob;

ant nunber := 40;
I'ine varchar2(80);

begin
ctx_doc. markup(' mark_tab_idx’,'1','dog AND cat’, mklob);
- mklob is NULL when passed-in, so ctx_doc. markup will
- allocate a tenporary CLOB for us and place the results there.
dbms_| ob. read(nkl ob, anmt, 1, line);
dbns_out put . put _line(’ FIRST 40 CHARS ARE:'||line);
- have to de-allocate the tenp lob
dbrs_| ob. f reet enpor ar y(nkl ob) ;
end;
/

The output from this example shows what the marked-up document looks like:

FI RST 40 CHARS ARE: The <<<dog>>> chases the <<<cat>>>,

Markup Table
Create the highlight markup table to store the marked-up document as follows:

create table markuptab (query_id nunber,
docunent cl ob);

Word Highlighting in HTML

You can also store your MARKUP results in a table. To create HTML highlight markup
for the words dog or cat for document 23, issue the following statement:

begin
ctx_doc. narkup(i ndex_nane => 'ny_index',

textkey => '23",
text _query => 'dog|cat',
restab => 'markuptab',
query_id =>"1",
tagset => 'HTM._DEFAULT');

end;

Theme Highlighting in HTML

To create HTML highlight markup for the theme of politics for document 23, issue the
following statement:

begin
ctx_doc. mar kup(i ndex_name => 'ny_i ndex',
textkey =>'23',
text_query => "about(politics)',
restab => 'narkuptab',
query_id =>"'1",

8-16 Oracle Text Reference



MARKUP

tagset => 'HTM__DEFAULT');
end;

CTX_DOC Package 8-17



PKENCODE

PKENCODE

The CTX_DCC. PKENCCDE function converts a composite textkey list into a single
string and returns the string.

The string created by PKENCODE can be used as the primary key parameter textkey in
other CTX_DQOC procedures, such as CTX_DOC.THEMES and CTX_DOC.GIST.

Syntax
CTX_DOC. PKENCODE(
pkl I'N VARCHAR?,
pk2 I'N VARCHAR2 DEFAULT NULL,
pk4 N VARCHAR2 DEFAULT NULL,
pk5 I'N VARCHAR2 DEFAULT NULL,
pké I'N VARCHARZ2 DEFAULT NULL,
pk7 I'N VARCHARZ2 DEFAULT NULL,
pk8 I'N VARCHAR2 DEFAULT NULL,
pk9 I'N VARCHAR2 DEFAULT NULL,
pk10 IN VARCHAR2 DEFAULT NULL,
pk1l  IN VARCHAR2 DEFAULT NULL,
pk12 I N VARCHAR2 DEFAULT NULL,
pk13 I N VARCHAR2 DEFAULT NULL,
pk14 I N VARCHAR2 DEFAULT NULL,
pk15 I N VARCHAR2 DEFAULT NULL,
pk16 I N VARCHAR2 DEFAULT NULL)
RETURN VARCHARZ;
pkl-pk16
Each PK argument specifies a column element in the composite textkey list. You can
encode at most 16 column elements.
Returns
String that represents the encoded value of the composite textkey.
Examples
begin
ctx_doc. gi st (' newsi ndex', CTX_DOC. PKENCODE(' smith', 14), 'CTX G ST');
end,

In this example, smith and 14 constitute the composite textkey value for the document.

8-18 Oracle Text Reference



POLICY_FILTER

POLICY_FILTER

Syntax

Generates a plain text or an HTML version of a document. With this procedure, no
CONTEXT index is required.

This procedure uses a trusted callout.

ctx_doc.policy_filter(policy_name in VARCHARZ,

docunent in [ VARCHAR2| CLOB| BLOB| BFI LE],
restab in out nocopy CLOB,
pl ai nt ext in BOOLEAN default FALSE);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. Using an index
name will result in an error.

document
Specify the document to filter.

restab
Specify the name of the result table.

plaintext

Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the INSO filter or
indexing HTML documents.

CTX_DOC Package 8-19



POLICY_GIST

POLICY_GIST

Generates a Gist or theme summary for document.You can generate paragraph-level
or sentence-level gists or theme summaries. With this procedure, no CONTEXT index is
required.

Note: CTX_DCC. PCLI CY_Q ST requires an installed knowledge
base. A knowledge base may or may not have been installed with
Oracle Text. For more information on knowledge bases, see the Oracle
Text Application Developer’s Guide.

Syntax
ctx_doc. policy_gist(policy_name i n VARCHAR?,

document in [ VARCHAR2| CLOB| BLOB| BFI LE],
restab in out nocopy CLOB,
gl evel in VARCHAR2 default 'P',
pov in VARCHAR?2 default 'GENERIC ,
nunPar agr aphs in VARCHAR2 default NULL,
maxPer cent in NUVBER default NULL,
num t henmes in NUMBER default 50);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. Using an index
name will result in an error.

document
Specify the document for which to generate the Gist or theme summary.

restab
Specify the name of the result table.

gl)ee\i:iy the type of gist or theme summary to produce. The possible values are:

= P for paragraph

= S for sentence

The default is P.

pov

Specify whether a gist or a single theme summary is generated. The type of gist or

theme summary generated (sentence-level or paragraph-level) depends on the value
specified for gl evel .

To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as the
value for pov.

When using result table storage and you do not specify a value for pov, this procedure
returns the generic gist plus up to fifty theme summaries for the document.

8-20 Oracle Text Reference



POLICY_GIST

Note: The pov parameter is case sensitive. To return a gist for a
document, specify 'GENERI C in all uppercase. To return a theme
summary, specify the theme exactly as it is generated for the
document.

Only the themes generated by THEMES for a document can be
used as input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries. The default is 16.

Note: The nunPar agr aphs parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the maxPer cent parameter.

This means that the system always returns the smallest size gist or
theme summary.

maxPercent

Specify the maximum number of document paragraphs (or sentences) selected for the
document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note: The maxPer cent parameter is used only when this
parameter yields a smaller gist or theme summary size than the gist
or theme summary size yielded by the nunPar agr aphs parameter.

This means that the system always returns the smallest size gist or
theme summary.

num_themes

Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

CTX_DOC Package 8-21



POLICY_HIGHLIGHT

POLICY_HIGHLIGHT

Syntax

Generates plain text or HTML highlighting offset information for a document.With
this procedure, no CONTEXT index is required.

The offset information is generated for the terms in the document that satisfy the
query you specify. These highlighted terms are either the words that satisfy a word
query or the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. You can apply the offset information to the same documents filtered with
CTX_DOC.FILTER.

ctx_doc. policy_highlight(policy_name in VARCHAR?,

docunent in [VARCHAR2| CLOB| BLOB| BFI LE],
text_query in VARCHAR?,

restab in out nocopy highlight_tab,

pl ai nt ext in bool ean FALSE);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. Using an index
name will result in an error.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If t ext _query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, this procedure does not highlight the stopwords.

If t ext _query contains the threshold operator, the operator is ignored. This
procedure always returns highlight information for the entire result set.

restab
Specify the name of the result table. The table must exist before you call this
procedure.

See Also: see "Highlight Table" in Appendix A, "Oracle Text
Result Tables" for more information about the structure of the
highlight result table.

plaintext
Specify TRUE to generate a plaintext offsets of the document.

Specify FALSE to generate HTML offsets of the document if you are using the INSO
filter or indexing HTML documents.

8-22 Oracle Text Reference



POLICY_MARKUP

POLICY_MARKUP

Syntax

Generates plain text or HTML version of a document with query terms
highlighted.With this procedure, no CONTEXT index is required.

The CTX_DCC. POLI CY_MARKUP procedure takes a query specification and a
document and returns a version of the document in which the query terms are
marked up. These marked-up terms are either the words that satisfy a word query or
the themes that satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML.

You can use one of the pre-defined tagsets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

ctx_doc. pol i cy_markup(policy_name in VARCHAR?,
docunent in [ VARCHAR2| CLOB| BLOB| BFI LE],
text_query in VARCHAR?,
restab in out nocopy CLOB,
pl ai nt ext in BOOLEAN defaul t FALSE,
t agset in VARCHAR2 default ' TEXT _DEFAULT',
starttag in VARCHAR2 default NULL,
endt ag in VARCHAR2 default NULL,
prevtag in VARCHAR? default NULL,
nexttag in VARCHAR2 default NULL);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. Using an index
name will result in an error.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If t ext _query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, this procedure does not highlight the stopwords.

If t ext _query contains the threshold operator, the operator is ignored. This
procedure always returns highlight information for the entire result set.

restab
Specify the name of the result table. The table must exist before you call this
procedure.

See Also: see "Markup Table" in Appendix A, "Oracle Text Result
Tables" for more information about the structure of the highlight
result table.

plaintext

Specify TRUE to generate plaintext marked-up document. Specify FALSE to generate a
marked-up HTML version of document if you are using the INSO filter or indexing
HTML documents.

CTX_DOC Package 8-23



POLICY_MARKUP

tagset
Specify one of the following pre-defined tagsets. The second and third columns show
how the four different tags are defined for each tagset:

Tagset Tag Tag Value
TEXT_DEFAULT starttag <<<
endtag >>>
prevtag
nexttag
HTML_DEFAULT starttag <B>
endtag </ B>
prevtag
nexttag
HTML_NAVI GATE starttag <A NAME=ct X “CURNUM><B>
endtag </ B></ A>
prevtag <A HREF=#ct x%PREVNUM>&I t ; </ A>
nexttag <A HREF=#ct x¥NEXTNUM>&gt ; </ A>
starttag

Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.

The sequence of starttag, endtag, prevtag and nexttag with regard to the highlighted word is
as follows:

. prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.

In the markup sequences prevtag and nexttag, you can specify the following offset
variables which are set dynamically:

Offset Variable Value

YCURNUM the current offset number
Y%PREVNUM the previous offset number
YNEXTNUM the next offset number

See the description of the HTML_NAVI GATE tagset for an example.

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.

Within the markup sequence, you can use the same offset variables you use for prevtag.
See the explanation for prevtag and the HTML_NAVI GATE tagset for an example.

8-24 Oracle Text Reference



POLICY_THEMES

POLICY_THEMES

Syntax

Example

Generates a list of themes for a document. With this procedure, no CONTEXT index is
required.

Note: CTX_DCC. PCLI CY_THEMES requires an installed knowledge
base. A knowledge base may or may not have been installed with
Oracle Text. For more information on knowledge bases, see the Oracle
Text Application Developer’s Guide.

ctx_doc. policy_thenes(policy_name i n VARCHAR?,

docunent in [ VARCHAR2| CLOB| BLOB| BFI LE],
restab in out nocopy theme_tab,
ful'l _themes in BOOLEAN defaul t FALSE,
num t hemes in nunber defaul t 50);

policy_name
Specify the policy you create with CTX_DDL.CREATE_POLICY. Using an index name
will result in an error.

document
Specify the document for which to generate a list of themes.

restab
Specify the name of the result table.

See Also: "Theme Table" in Appendix A, "Oracle Text Result
Tables" for more information about the structure of the theme result
table.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of parent
themes (full themes) for each document theme.

Specify TRUE for this procedure to write full themes to the THEME column of the result
table.

Specify FALSE for this procedure to write single theme information to the THEME
column of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10, up
to first 10 themes are returned for the document. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the first 50 themes show conceptual
hierarchy.

Create a policy:

exec ctx_ddl.create_policy('nypolicy');

CTX_DOC Package 8-25



POLICY_THEMES

Run themes:
decl are
la var char 2(200) ;
rtab ctx_doc. thene_t ab;
begin

ctx_doc. policy_thenmes(' nypolicy',
"To define true madness, Wat is''t but to be nothing but
mad?', rtab);

for i in 1..rtab.count |oop
dbns_out put. put _line(rtab(i).theme||"':"||rtab(i).weight);
end | oop;
end;

8-26 Oracle Text Reference



POLICY_TOKENS

POLICY_TOKENS

Syntax

Example

Generate all index tokens for document.With this procedure, no CONTEXT index is
required.

ctx_doc. policy_tokens(policy_name in VARCHARZ,

docunent in [VARCHAR2| CLOB| BLOB| BFI LE],
restab in out nocopy token_tab,

| anguage in VARCHAR2 default NULL,

f or mat in VARCHAR2 default NULL,
charset in VARCHAR2 default NULL);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. Using an index
name will result in an error.

document
Specify the document for which to generate tokens.

restab
Specify the name of the result table.

The tokens returned are those tokens which are inserted into the index for the
document. Stop words are not returned. Section tags are not returned because they are
not text tokens.

Token tables can be named anything, but must include the following columns, with
names and data types as follows.

language
Specify the language of the document.

format
Specify the format of the document.

charset
Specify the character set of the document.

Table 8-1 Required Columns for Token Tables

Column

Name Type Description

QUERY_I D NUVBER The identifier for the results generated by a particular
call to CTX_DOC. TOKENS (only populated when table is
used to store results from multiple TOKEN calls)

TOKEN VARCHAR2( 64) The token string in the text.

OFFSET NUVBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUVBER The character length of the token.

Get tokens:

CTX_DOC Package 8-27



POLICY_TOKENS

decl are
la var char 2(200);
rtab ctx_doc.token_tab;
begin
ctx_doc. policy_tokens(' nmypolicy',
"To define true madness, What is''t but to be nothing but mad?',rtab);

for i in 1..rtab.count |oop
dbms_out put. put _line(rtab(i).offset||":"||rtab(i).token);
end | oop;
end;

8-28 Oracle Text Reference



SET_KEY_TYPE

SET_KEY_TYPE

Syntax

Example

Use this procedure to set the CTX_DOC procedures to accept either the ROA D or the
PRI MARY_KEY document identifiers. This setting affects the invoking session only.

ctx_doc. set_key_type(key_type in varchar2);

key_type
Specify either RON D or PRI MARY_KEY as the input key type (document identifier) for
CTX_DOQC procedures.

This parameter defaults to the value of the CTX_DOC_KEY_TYPE system parameter.

Note: When your base table has no primary key, setting key_type
to PRI MARY_KEY is ignored. The textkey parameter you specify for
any CTX_DOC procedure is interpreted as a ROW D.

To set CTX_DOC procedures to accept primary key document identifiers, do the
following:

begin
ctx_doc. set _key_type(' PRI MARY_KEY');
end

CTX_DOC Package 8-29



THEMES

THEMES

Use the CTX_DOC. THEMES procedure to generate a list of themes for a document. You
can store each theme as a row in either a result table or an in-memory PL/SQL table
you specify.

Note: CTX_DOC. THEMES requires an installed knowledge base. A
knowledge base may or may not have been installed with Oracle Text.
For more information on knowledge bases, see the Oracle Text
Application Developer's Guide.

Syntax 1: In-Memory Table Storage

CTX_DOC. THEMVES(

i ndex_nane I N VARCHAR?,

t ext key I N VARCHAR?,

restab N QUT NOCOPY THEME_TAB,
full _themes I N BOOLEAN DEFAULT FALSE,
num t hemes I'N NUMBER DEFAULT 50);

Syntax 2: Result Table Storage

CTX_DOC. THEMES(

i ndex_nane I N VARCHARZ,

t ext key I N VARCHAR?,

restab I N VARCHAR?,

query_id I N NUMBER DEFAULT O,

full themes I N BOOLEAN DEFAULT FALSE,
num t hemes I'N NUMBER DEFAULT 50);
index_name

Specify the name of the index for the text column.

textkey

Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:

= asingle column primary key value

= an encoded specification for a composite (multiple column) primary key. When
textkey is a composite key, you must encode the composite textkey string using
the CTX_DOC.PKENCODE procedure.

« the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC. SET_KEY_
TYPE.

restab
You can specify that this procedure store results to either a table or to an in-memory
PL/SQL table.

To store results in a table, specify the name of the table.
See Also: "Theme Table" in Appendix A, "Oracle Text Result

Tables" for more information about the structure of the theme result
table.

8-30 Oracle Text Reference



THEMES

Examples

To store results in an in-memory table, specify the name of the in-memory table of type
THEME_TAB. The THEME_TAB datatype is defined as follows:

type theme_rec is record (
theme var char 2(2000),
wei ght nunber

)

type theme_tab is table of theme_rec index by binary_integer;
CTX_DOC. THEMES clears the THEME_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of parent
themes (full themes) for each document theme.

Specify TRUE for this procedure to write full themes to the THEME column of the result
table.

Specify FALSE for this procedure to write single theme information to the THEME
column of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10, up
to first 10 themes are returned for the document. The default is 50.

If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the first 50 themes show conceptual
hierarchy.

In-Memory Themes

The following example generates the first 10 themes for document 1 and stores them in
an in-memory table called t he_t hemes. The example then loops through the table to
display the document themes.

decl are
the_thenes ctx_doc.thene_tab;

begin
ctx_doc. themes(' nyindex',"'1',the_themes, nunthemes=>10);
for i in 1..the_themes.count |oop
dbms_out put. put _line(the_thenes(i).thene||":"||the_themes(i).weight);
end | oop;
end;

Theme Table
The following example creates a theme table called CTX_THEMES:

create table CTX_THEMES (query_id nunber,
t heme varchar 2(2000),
wei ght nunber);

CTX_DOC Package 8-31



THEMES

Single Themes

To obtain a list of up to the first 20 themes where each element in the list is a single
theme, issue a statement like the following:

begin

ctx_doc. t hemes(' newsi ndex','34"',' CTX_THEMES , 1, ful | _thenes => FALSE,
num t hemes=> 20);

end;

Full Themes

To obtain a list of the top 20 themes where each element in the list is a hierarchical list
of parent themes, issue a statement like the following:

begin

ctx_doc. t hemes(' newsindex','34',"' CTX_THEMES' , 1,full _thenes => TRUE, num_
t hemes=>20) ;

end;

8-32 Oracle Text Reference



TOKENS

TOKENS

Use this procedure to identify all text tokens in a document. The tokens returned are
those tokens which are inserted into the index. This feature is useful for implementing
document classification, routing, or clustering.

Stopwords are not returned. Section tags are not returned because they are not text
tokens.

Syntax 1: In-Memory Table Storage

CTX_DCC. TOKENS(i ndex_nane I N VARCHARZ,
t ext key I N VARCHAR?,
restab IN OUT NOCOPY TOKEN TAB);

Syntax 2: Result Table Storage

CTX_DCC. TOKENS(i ndex_nane I N VARCHAR2,

t ext key I N VARCHAR?,

restab I N VARCHAR?2,

query_id I N NUMBER DEFAULT 0);
index_name

Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be one of the following:
= asingle column primary key value

= encoded specification for a composite (multiple column) primary key. To encode a
composite textkey, use the CTX_DOC.PKENCODE procedure.

= the rowid of the row containing the document

You toggle between primary key and rowid identification using CTX_DOC.SET_KEY _
TYPE.

restab

You can specify that this procedure store results to either a table or to an in-memory
PL/SQL table.

The tokens returned are those tokens which are inserted into the index for the
document (or row) named with t ext key. Stop words are not returned. Section tags
are not returned because they are not text tokens.

Specifying a Token Table

To store results to a table, specify the name of the table. Token tables can be named
anything, but must include the following columns, with names and data types as
specified.

CTX_DOC Package 8-33



TOKENS

Examples

Table 8-2 Required Columns for Token Tables

Column

Name Type Description

QUERY_I D NUMBER The identifier for the results generated by a particular
call to CTX_DOC. TOKENS (only populated when table is
used to store results from multiple TOKEN calls)

TOKEN VARCHAR2(64) The token string in the text.

OFFSET NUVBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUVBER The character length of the token.

Specifying an In-Memory Table
To store results to an in-memory table, specify the name of the in-memory table of type
TOKEN_TAB. The TOKEN_TAB datatype is defined as follows:

type token_rec is record (
token varchar2(64),

of fset nunber,

I ength nunber

)i
type token_tab is table of token_rec index by binary_integer;
CTX_DOC. TOKENS clears the TOKEN_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

In-Memory Tokens

The following example generates the tokens for document 1 and stores them in an
in-memory table, declared as t he_t okens. The example then loops through the table
to display the document tokens.

decl are
the_tokens ctx_doc.token_tab;

begin
ctx_doc. tokens(' nyindex',"' 1", the_tokens);
for i in 1..the_tokens.count |oop
dbms_out put . put _| i ne(the_tokens(i).token);
end | oop;
end;

8-34 Oracle Text Reference



9

CTX_OUTPUT Package

This chapter provides reference information for using the CTX_OUTPUT PL/SQL

package.

CTX_QUTPUT contains the following stored procedures:

Name Description

ADD_EVENT Add an event to the index log.

ADD_TRACE Enable tracing.

END_LOG Halt logging of index and document services requests.

END_QUERY_LOG
GET_TRACE_VALUE
LOG_TRACES
LOGFILENAME
REMOVE_EVENT
REMOVE_TRACE
RESET_TRACE
START_LOG
START_QUERY_LOG

Stop logging queries into a logfile.

Return the value of a trace.

Print traces to logfile.

Return the name of the current log file.

Remove an event from the index log.

Disable tracing.

Clear a trace.

Start logging index and document service requests.

Create a log file of queries.

CTX_OUTPUT Package 9-1



ADD_EVENT

ADD_EVENT

Use this procedure to add an event to the index log for more detailed log output.

Syntax
CTX_QUTPUT. ADD_EVENT( event in NUMBER);
event
Specify the type of index event to log. You can add the following events:
« CTX_QUTPUT. EVENT_I NDEX_PRI NT_ROW D, which logs the rowid of each row
after it is indexed. This is useful for debugging a failed index operation.
« CTX_QUTPUT. EVENT_OPT_PRI NT_TOKEN, which prints each token as it is being
optimized.
« CTX_QUTPUT. EVENT_| NDEX_PRI NT_TOKEN, which prints the each token as it is
being indexed.
Example
begi n
CTX_OUTPUT. ADD_EVENT( CTX_OUTPUT. EVENT_| NDEX_PRI NT_ROW D) ;
end;
Related Topics

See Also: REMOVE_EVENT on page 9-9

9-2 Oracle Text Reference



ADD_TRACE

ADD_TRACE

Syntax

Notes

Related Topics

Use this procedure to enable a trace. If the trace has not been enabled, this call adds
the trace to the list of active traces and resets its value to 0. If the trace has already
been enabled, an error is raised.

CTX_OUTPUT. ADD_TRACE(trace_id Bl NARY_| NTEGER) ;

trace_id

Specify the ID of the trace to enable. See Table 9-1 for possible trace values.

Table 9-1 shows the available traces:

Table 9—-1 Available Traces

Symbol ID Metric

I DX_USER _DATASTORE 1 time spent executing user datastore

I DX_I NSO _FI LTER 2 time spent invoking the INSO filter

QRY_XX_TI ME 3  time spent executing the $X cursor

QRY_XF_TI ME 4  time spent fetching from $X

QRY_X_ROWS 5  total number of rows whose token metadata was fetched
from $X

QRY_I F_TI ME 6 time spent fetching the LOB locator from $I

QRY_I R_TI ME 7  time spent reading $| LOB information

QRY_I _RONB 8 number of rows whose $I t oken_i nf o was actually read

QRY_I _SI ZE 9  number of bytes read from $I LOBs

QRY_R_TI ME 10 time spent fetching and reading $R information

QRY_CON_TI ME 11 time spent in CONTAI NS processing

(drexrcontai ns/ drexrstart/drexrfetch)

Tracing is independent of logging. Logging does not have to be on to start tracing, and

vice-versa.

See Also: "REMOVE_TRACE" on page 9-10, "LOG_TRACES" on
page 9-7, and "RESET_TRACE" on page 9-11, as well as the Oracle
Text Application Developer’s Guide

CTX_OUTPUT Package 9-3



END_LOG

END_LOG

Halt logging index and document service requests
Syntax

CTX_OUTPUT. END_LOG,
Example

begin

CTX_OUTPUT. END_LOG,

end,

9-4 Oracle Text Reference



END_QUERY_LOG

END_QUERY_LOG

Use this procedure to stop logging queries into a logfile created with CTX_
QUTPUT. START_QUERY_LOG

Syntax
CTX_OUTPUT. END_QUERY_LOG

Example
begin
CTX_OUTPUT. START_QUERY_LOG' nyl ogl');
< get queries >
CTX_OUTPUT. END QUERY_LOG
end;

CTX_OUTPUT Package 9-5



GET_TRACE_VALUE

GET_TRACE_VALUE

Use this procedure to programmatically retrieve the current value of a trace.

Syntax
CTX_OUTPUT. GET_TRACE_VALUE(trace_id BI NARY_| NTEGER) ;
trace_id
Specify the trace ID whose value you want. See Table 9-1, " Available Traces" on
page 9-3 for possible values.
Example
This sets the value of the variable value:
value := ctx_output.get _trace_value(trace_id);
Notes

You can also retrieve trace values through SQL:

select * fromctx_trace_val ues;

See "CTX_TRACE_VALUES" on page G-10 for the entries in the CTX_TRACE_VALUES
view.

If the trace has not been enabled, an error is raised.

Traces are not reset to 0 by this call.

Related Topics

See Also: ADD_TRACE on page 9-3 and the Oracle Text
Application Developer’s Guide

9-6 Oracle Text Reference



LOG_TRACES

LOG_TRACES

Use this procedure to print all active traces to the logfile.

Syntax
CTX_OUTPUT. LOG_TRACES;

Notes

If logging has not been started, an error is raised.
Traces are not reset to 0 by this call.

This procedure looks for the logfile in the directory specified by the LOG_DI RECTORY
system parameter, which is $ORACLE_HOME/ ct x/ | og on UNIX. You can query the
CTX_PARAMNETERS view to find the current setting.

Related Topics

See Also: ADD_TRACE on page 9-3 and the Oracle Text
Application Developer’s Guide

CTX_OUTPUT Package 9-7



LOGFILENAME

LOGFILENAME

Returns the filename for the current log. This procedure looks for the logfile in the
directory specified by the LOG_DI RECTORY system parameter, which is $ORACLE_
HOVE/ ct x/ | og on UNIX. You can query the CTX_PARAMETERS view to find the
current setting.

Syntax
CTX_QUTPUT. LOGFI LENAME RETURN VARCHARZ;
Returns
Log file name.
Example
declare
| ogname var char 2(100) ;
begin
| ognanme : = CTX_CUTPUT. LOGFI LENAME;
dbms_out put. put _line(' The current log file is: "||lognane);
end;

9-8 Oracle Text Reference



REMOVE_EVENT

REMOVE_EVENT

Use this procedure to remove an event from the index log.

Syntax
CTX_OUTPUT. REMOVE_EVENT(event in NUVBER);
event
Specify the type of index event to remove from the log. You can remove the following
events:
« CTX_QUTPUT. EVENT_I NDEX_PRI NT_ROW D, which logs the rowid of each row
after it is indexed. This is useful for debugging a failed index operation.
« CTX_QUTPUT. EVENT_OPT_PRI NT_TOKEN, which prints each token as it is being
optimized.
«  CTX_QUTPUT. EVENT_| NDEX_PRI NT_TOKEN, which prints the each token as it is
being indexed.
Example
begi n
CTX_OUTPUT. REMOVE_EVENT( CTX_OUTPUT. EVENT | NDEX_PRI NT_RON' D) ;
end;
Related Topics

See Also: ADD_EVENT on page 9-2

CTX_OUTPUT Package 9-9



REMOVE_TRACE

REMOVE_TRACE

Use this procedure to disable a trace.

Syntax
CTX_OUTPUT. REMOVE_TRACE(trace_i d Bl NARY_| NTEGER);
trace_id
Specify the ID of the trace to disable. See Table 9-1, " Available Traces" on page 9-3 for
possible values.
Notes

If the trace has not been enabled, an error is raised.

Related Topics

See Also: ADD_TRACE on page 9-3 and the Oracle Text
Application Developer’s Guide

9-10 Oracle Text Reference



RESET_TRACE

RESET_TRACE

Use this procedure to clear a trace (that is, reset it to 0).

Syntax
CTX_OUTPUT. RESET_TRACE(trace_i d BI NARY | NTEGER) ;
trace_id
Specify the ID of the trace to reset. See Table 9-1, " Available Traces" on page 9-3 for
possible values.
Notes

If the trace has not been enabled, an error is raised.

Related Topics

See Also: ADD_TRACE on page 9-3 and the Oracle Text
Application Developer’s Guide

CTX_OUTPUT Package 9-11



START_LOG

START_LOG

Syntax

Example

Notes

Begin logging index and document service requests.

CTX_QUTPUT. START_LOG(l ogfile in varchar2, overwite in default true);

logfile
Specify the name of the log file. The log is stored in the directory specified by the
system parameter LOG_DI RECTCORY.

overwrite

Specify whether you want to overwrite or append to the original query log file
specified by logfile, if it already exists. The default is to overwrite the original query
log file.

begin
CTX_QUTPUT. START_LOH ' nyl ogl');
end;

Logging is independent of tracing. Logging does not have to be on to start tracing,
and vice-versa.

Filenames used in CTX_QUTPUT. START_LCOGare restricted to the following
characters: alphanumeric, minus, period, space, hash, underscore, single and double
quotes. Any other character in the filename will raise an error.

9-12 Oracle Text Reference



START_QUERY_LOG

START_QUERY_LOG

Syntax

Example

Notes

Begin logging query requests into a query log file.

Use CTX_QUTPUT. END_QUERY_LOGto stop logging queries. Use CTX_
REPORT. QUERY_LOG_SUMVARY to obtain reports on logged queries, such as which
queries returned successfully the most times.

The query log includes the query string, the index name, and the timestamp of the
query, as well as whether or not the query successfully returned a hit. A successful
query for the phrase Blues Guitarists made at 6:46 (local time) on November 11th, 2003,
would be entered into the query log in this form:

<Quer ySet ><Ti neSt anp>18: 46: 51 02/ 04/ 03</ Ti meSt anp><I ndexNane>
| DX_SEARCH_TABLE</ | ndexNanme><Quer y>Bl ues
Gui tari st s</ Query><Ret ur nHi t >Yes</ Ret ur nHi t ></ Quer ySet >

CTX_QUTPUT. START_QUERY_LOG | ogfile in varchar2, overwite in default true);

logfile
Specify the name of the query log file. The query log is stored in the directory specified
by the system parameter LOG_DI RECTORY.

overwrite

Specify whether you want to overwrite or append to the original query log file
specified by logfile, if it already exists. The default is to overwrite the original query
log file.

begin

CTX_QUTPUT. START_QUERY_LOG(' nyl ogl');
< get queries >

CTX_OQUTPUT. END_QUERY_LOG,

end;

Filenames used in CTX_QUTPUT. START_QUERY_LOGare restricted to the following
characters: alphanumeric, minus, period, space, hash, underscore, single and double
quotes. Any other character in the filename will raise an error.

CTX_OUTPUT Package 9-13



START_QUERY_LOG

9-14 Oracle Text Reference



10

CTX_QUERY Package

This chapter describes the CTX_QUERY PL/SQL package you can use for generating
query feedback, counting hits, and creating stored query expressions.

Note:: You can use this package only when your index type is
CONTEXT. This package does not support the CTXCAT index type.

The CTX_QUERY package includes the following procedures and functions:

Name Description

BROWSE_WORDS Returns the words around a seed word in the index.
COUNT_HITS Returns the number hits to a query.

EXPLAIN Generates query expression parse and expansion information.
HFEEDBACK Generates hierarchical query feedback information (broader term,

narrower term, and related term).
REMOVE_SQE Removes a specified stored query expression from the SQL tables.

STORE_SQE Executes a query and stores the results in stored query expression
tables.

CTX_QUERY Package 10-1



BROWSE_WORDS

BROWSE_WORDS

This procedure enables you to browse words in an Oracle Text index. You specify a
seed word and BROASE WORDS returns the words around it in the index, and an
approximate count of the number of documents that contain each word.

This feature is useful for refining queries. You can identify the following:
« unselective words (words that have low document count)

= misspelled words in the document set

Syntax 1: To Store Results in Table

ctx_query. browse_wor ds(

index_name |IN VARCHAR?,

seed IN  VARCHARZ2,

restab IN  VARCHAR?2,

browse_id IN NUVBER DEFAULT 0,

numaor ds IN NUMBER DEFAULT 10,

direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

)

Syntax 2: To Store Results in Memory

ctx_query. browse_wor ds(

index_nane IN VARCHAR?,

seed I'N VARCHAR?,

resarr IN OQUT BRONSE TAB,

numaor ds I'N NUMBER  DEFAULT 10,

direction IN VARCHAR2 DEFAULT BROASE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

index

Specify the name of the index. You can specify schema. nanme. Must be a local index.

seed

Specify the seed word. This word is lexed before browse expansion. The word need
not exist in the token table. seed must be a single word. Using multiple words as the
seed will result in an error.

restab

Specify the name of the result table. You can enter restab as schema. name. The table
must exist before you call this procedure, and you must have | NSERT permissions on
the table. This table must have the following schema.

Column Datatype
browse_id number
word varchar2(64)
doc_count number

Existing rows in restab are not deleted before BROASE_WORDS is called.

10-2 Oracle Text Reference



BROWSE_WORDS

Example

resarr
Specify the name of the result array. resarr is of type ctx_query.browse_tab.

type browse_rec is record (
wor d var char 2( 64),
doc_count nunber

)

type browse_tab is table of browse_rec index by binary_integer;

browse_id

Specify a numeric identifier between 0 and 2°°. The rows produced for this browse
have a value of in the browse_id column in restab. When you do not specify browse_id, it
defaults to 0.

232

numwords
Specify the number of words returned.

direction
Specify the direction for the browse. You can specify one of:

value behavior

BEFORE Browse seed word and words alphabetically before the seed.

AROUND Browse seed word and words alphabetically before and after the seed.
AFTER Browse seed word and words alphabetically after the seed.

Symbols CTX_QUERY. BROASE_BEFCORE, CTX_QUERY. BROASE_ARCUND, and CTX_
QUERY. BROASE_AFTER are defined for these literal values as well.

part_name
Specify the name of the index partition to browse.

Browsing Words with Result Table

begin

ctx_query. browse_words(' myi ndex', "' dog',"' nyres', numwor ds=>5, direction=> AROUND );
end;

sel ect word, doc_count frommyres order by word,;

WORD DOC_COUNT
CZAR 15
DARLING 5

DOC 73

DUNK 100

EAR 3

Browsing Words with Result Array

set serveroutput on;
decl are
resarr ctx_query. browse_tab;
begin
ctx_query. browse_words(' myi ndex', "' dog',resarr,5, CTX_QUERY. BROASE_AROUND) ;

CTX_QUERY Package 10-3



BROWSE_WORDS

for i in 1..resarr.count |oop

dbms_out put. put _line(resarr(i).word || ":' || resarr(i).doc_count);
end | oop;
end;

10-4 Oracle Text Reference



COUNT_HITS

COUNT_HITS

Syntax

Notes

Returns the number of hits for the specified query. You can call COUNT_HI TS in exact
or estimate mode. Exact mode returns the exact number of hits for the query. Estimate
mode returns an upper-bound estimate but runs faster than exact mode.

CTX_QUERY. COUNT_HI TS (
i ndex_name | N VARCHAR?,
text_query | N VARCHARZ,
exact N BOOLEAN DEFAULT TRUE,
part_name | N VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

index_name
Specify the index name.

text_query
Specify the query.

exact
Specify TRUE for an exact count. Specify FALSE for an upper-bound estimate.

Specifying FALSE returns a less accurate number but runs faster. Specifying FALSE
might return a number which is too high if rows have been updated or deleted since
the last FULL index optimize. Optimizing in full mode removes these false hits, and
then EXACT set to FALSE will return the same number as EXACT set to TRUE.

part_name
Specify the name of the index partition to query.

If the query contains structured criteria, you should use SELECT COUNT( *).

If the index was created with the TRANSACTI ONAL parameter, then COUNT_HI TS will
include pending rowids as well as those that have been synchronized.

CTX_QUERY Package 10-5



EXPLAIN

EXPLAIN

Syntax

Use CTX_QUERY. EXPLAI Nto generate explain plan information for a query
expression. The EXPLAI Nplan provides a graphical representation of the parse tree for
a Text query expression. This information is stored in a result table.

This procedure does not execute the query. Instead, this procedure can tell you how a
query is expanded and parsed before you issue the query. This is especially useful for
stem, wildcard, thesaurus, fuzzy, soundex, or about queries. Parse trees also show the
following information:

« order of execution (precedence of operators)
= ABQUT query normalization

= query expression optimization

« stop-word transformations

« breakdown of composite-word tokens

Knowing how Oracle Text evaluates a query is useful for refining and debugging
queries. You can also design your application so that it uses the explain plan
information to help users write better queries.

CTX_QUERY. EXPLAI N(

i ndex_name I N VARCHARZ,
text _query I N VARCHARZ,
explain_table | N VARCHARZ,
shar el evel | N NUMBER DEFAULT 0,
explain_id IN VARCHAR2 DEFAULT NULL,
part_nane I N VARCHAR2 DEFAULT NULL
)
index_name

Specify the name of the index to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

When you include a wildcard, fuzzy, or soundex operator in text_query, this procedure
looks at the index tables to determine the expansion.

Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy
deletes as in regular queries.

explain_table

Specify the name of the table used to store representation of the parse tree for text_
query. You must have at least | NSERT and DELETE privileges on the table used to store
the results from EXPLAI N.

See Also: For more information about the structure of the explain
table, see "EXPLAIN Table" in Appendix A, "Oracle Text Result
Tables".

10-6 Oracle Text Reference



EXPLAIN

Example

sharelevel
Specify whether explain_table is shared by multiple EXPLAI N calls. Specify 0 for
exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the result table before the next
call to EXPLAI N.

When you specify 1 for shared use, this procedure does not truncate the result table.
Only results with the same explain_id are updated. When no results with the same
explain_id exist, new results are added to the EXPLAI N table.

explain_id

Specify a name that identifies the explain results returned by an EXPLAI N procedure
when more than one EXPLAI N call uses the same shared EXPLAI Ntable. This
parameter defaults to NULL.

part_name
Specify the name of the index partition to query.

Creating the Explain Table

To create an explain table called t est _expl ai n for example, use the following SQL
statement:

create table test_explain(
expl ain_i d varchar2(30),
id nunber,
parent _id nunber,
operation varchar2(30),
options varchar2(30),
obj ect _name var char 2(64),
position nunber,
cardinality number);

Executing CTX_QUERY.EXPLAIN
To obtain the expansion of a query expression such as comp% OR ?smith, use CTX_
QUERY. EXPLAI Nas follows:

ctx_query. expl ai n(
i ndex_nane => 'newi ndex',
text_query => 'conp% OR ?smith',
explain_table => "test_explain',
sharel evel => 0,
explain_id => 'Test');

Retrieving Data from Explain Table
To read the explain table, you can select the columns as follows:

select explain_id, id, parent_id, operation, options, object_nane, position
fromtest_explain order by id,;
The output is ordered by ID to simulate a hierarchical query:

EXPLAIN_I D I D PARENT_| D OPERATI ON CPTI ONS OBJECT_NAME PCSI Tl ON

Test 1 0 R NULL NULL 1
Test 2 1 EQUI VALENCE NULL COVP% 1
Test 3 2 WORD NULL COMPTROLLER 1

CTX_QUERY Package 10-7



EXPLAIN

Test 4 2 WORD NULL COVPUTER 2
Test 5 1 EQUI VALENCE (?) SM TH 2
Test 6 5 WORD NULL SMTH 1
Test 7 5 WORD NULL SMYTHE 2

Notes
You cannot use EXPLAI Nwith remote queries.
If the query utilizes themes (for example, with an ABOUT query), then a knowledge
base must be installed; such a knowledge base may or may not have been installed
with Oracle Text. For more information on knowledge bases, see the Oracle Text
Application Developer’s Guide.

Related Topics

Chapter 3, "Oracle Text CONTAINS Query Operators"

Appendix H, "Stopword Transformations in Oracle Text"

10-8 Oracle Text Reference



HFEEDBACK

HFEEDBACK

Syntax

In English or French, this procedure generates hierarchical query feedback information
(broader term, narrower term, and related term) for the specified query.

Broader term, narrower term, and related term information is obtained from the
knowledge base. However, only knowledge base terms that are also in the index are
returned as query feedback information. This increases the chances that terms
returned from HFEEDBACK produce hits over the currently indexed document set.

Hierarchical query feedback information is useful for suggesting other query terms to
the user.

Note: CTX_QUERY. HFEEDBACK is only supported in English and
French.

Note: CTX_QUERY. HFEEDBACK requires an installed knowledge
base. A knowledge base may or may not have been installed with
Oracle Text. For more information on knowledge bases, see the Oracle
Text Application Developer’s Guide.

CTX_QUERY. HFEEDBACK(

i ndex_nane I N VARCHAR?,

text _query I N VARCHAR2,
feedback_table IN VARCHAR?,

sharel evel I'N NUMBER DEFAULT 0,
feedback_i d | N VARCHAR2 DEFAULT NULL,
part_name I N VARCHAR2 DEFAULT NULL

)

index_name
Specify the name of the index for the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the table used to store the feedback terms.

See Also: For more information about the structure of the explain
table, see "HFEEDBACK Table" in Appendix A, "Oracle Text Result
Tables".

sharelevel
Specify whether f eedback_t abl e is shared by multiple HFEEDBACK calls. Specify 0
for exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the feedback table before the
next call to HFEEDBACK.

CTX_QUERY Package 10-9



HFEEDBACK

When you specify 1 for shared use, this procedure does not truncate the feedback
table. Only results with the same f eedback_i d are updated. When no results with
the same feedback_id exist, new results are added to the feedback table.

feedback_id

Specify a value that identifies the feedback results returned by a call to HFEEDBACK
when more than one HFEEDBACK call uses the same shared feedback table. This
parameter defaults to NULL.

part_name
Specify the name of the index partition to query.

Example

Create HFEEDBACK Result Table
Create a result table to use with CTX_ QUERY. HFEEDBACK as follows:

CREATE TABLE restab (
feedback_i d VARCHAR2(30),
id NUMBER,
parent _id  NUMBER,
operation  VARCHAR2(30),
options VARCHAR2( 30) ,
obj ect _name VARCHAR2(80),
posi tion NUMBER,
bt _feedback ctxsys.ctx_feedback_type,
rt _feedback ctxsys. ctx_feedback_type,
nt _feedback ctxsys. ctx_feedback_type
) NESTED TABLE bt _feedback STORE AS res_bt
NESTED TABLE rt feedback STORE AS res_rt
NESTED TABLE nt _feedback STORE AS res_nt;

CTX_FEEDBACK_TYPE is a system-defined type in the CTXSYS schema.
See Also: For more information about the structure of the

HFEEDBACK table, see "HFEEDBACK Table" in Appendix A,
"Oracle Text Result Tables".

Call CTX_QUERY.HFEEDBACK
The following code calls the HFEEDBACK procedure with the query computer industry.

BEG N
ctx_query. hf eedback (i ndex_name => 'ny_index',
text _query => 'conputer industry',
feedback_table => 'restab',
shar el evel => 0,
f eedback_i d => ' queryl0’
)
END;

Select From the Result Table
The following code extracts the feedback data from the result table. It extracts broader
term, narrower term, and related term feedback separately from the nested tables.

DECLARE
i NUMBER,
BEG N

10-10 Oracle Text Reference



HFEEDBACK

Sample Output

s

s

),

FOR frec IN (
SELECT obj ect _nane, bt_feedback, rt_feedback, nt_feedback
FROM r est ab
VHERE feedback_id = 'queryl0" AND object_name IS NOT NULL
) LOoP

dbms_out put . put _li ne(' Broader term feedback for ' || frec.object_name ||

i .= frec.bt_feedback. FIRST;

WH LE i IS NOT NULL LOOP
dbns_out put. put _Iine(frec. bt _feedback(i).text);
i := frec.bt_feedback. NEXT(i);

END LOOP;

dbns_out put. put _line(' Rel ated term feedback for ' || frec.object_nanme ||

i :=frec.rt_feedback. FIRST;

WH LE i IS NOT NULL LOOP
dbns_out put. put _line(frec.rt_feedback(i).text);
i = frec.rt_feedback. NEXT(i);

END LOCP;

dbrs_out put. put _line(' Narrower term feedback for ' || frec.object_nane ||
i .= frec.nt_feedback. FI RST;

VWH LE i |'S NOT NULL LOOP

dbns_out put. put _line(frec.nt_feedback(i).text);

i .= frec.nt_feedback. NEXT(i);
END LOOP;

END LOCP;
END;

The following output is for the preceding example, which queries on computer industry:

Broader term feedback for conputer industry
hard sciences

Rel ated term feedback for conputer industry
conput er networki ng

el ectronics

know edge

library science

mat hemat i cs

optical technol ogy

robotics

satellite technol ogy

senm conductors and superconductors

synbolic logic

t el ecommuni cations industry

Narrower term feedback for conputer industry:
ABEND - abnormal end of task

AT&T Starl ans

ATl Technol ogi es, |ncorporated

ActivCard

Actrade International Ltd

Al ta Technol ogy

Ani ga For mat

Am ga Library Services

CTX_QUERY Package 10-11



HFEEDBACK

Am ga Shopper
Amstrat Action
Appl e Conputer, Incorporated

Note: The HFEEDBACK information you obtain depends on the
contents of your index and knowledge base and as such might
differ from the sample shown.

10-12 Oracle Text Reference



REMOVE_SQE

REMOVE_SQE

The CTX_QUERY. REMOVE_SCE procedure removes the specified stored query
expression.

Syntax
CTX_QUERY. REMOVE_SQE( query_nanme | N VARCHAR?) ;

query_name
Specify the name of the stored query expression to be removed.

Examples

begi n
ctx_query. remove_sqe(' disasters');
end;

CTX_QUERY Package 10-13



STORE_SQE

STORE_SQE

This procedure creates a stored query expression. Only the query definition is stored.

Supported Operators

Stored query expressions support all of the CONTAI NS query operators. Stored query
expressions also support all of the special characters and other components that can be
used in a query expression, including other stored query expressions.

Privileges

Users are allowed to create and remove stored query expressions owned by them.
Users are allowed to use stored query expressions owned by anyone. The CTXSYS user
can create or remove stored query expressions for any user.

Syntax

CTX_QUERY. STORE_SQE( query_nane I N VARCHAR?,
text _query IN VARCHAR?) ;

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression to be associated with query_name.

Examples

begin
ctx_query.store_sqe(' disasters', 'hurricanes | earthquakes');
end;

10-14 Oracle Text Reference



11

CTX_REPORT

This chapter describes how to use the CTX_REPORT package to create reports on
indexing and querying. These reports can help you troubleshoot problems or
fine-tune your applications.

This chapter contains the following topics:
= Procedures in CTX_REPORT
= Using the Function Versions

For an overview of the CTX_REPORT package and how you can use the various
procedures described here, see the Oracle Text Application Developer’s Guide.

Procedures in CTX_REPORT

The CTX_REPORT package contains the following procedures:

Name Description

DESCRIBE_INDEX Creates a report describing the index.
DESCRIBE_POLICY Creates a report describing a policy.
CREATE_INDEX_SCRIPT Creates a SQL*Plus script to duplicate the named index.

CREATE_POLICY_SCRIPT Creates a SQL*Plus script to duplicate the named policy.

INDEX_SIZE Creates a report to show the internal objects of an index,
their tablespaces and used sizes.

INDEX_STATS Creates a report to show the various statistics of an index.
QUERY_LOG_SUMMARY Creates a report showing query statistics

TOKEN_INFO Creates a report showing the information for a token,
decoded.
TOKEN_TYPE Translates a name and returns a numeric token type.

Using the Function Versions

Some of the procedures in the CTX_REPORT package have function versions. You can
call these functions as follows:

sel ect ctx_report.describe_index(' MYINDEX' ) from dual;

In SQL*Plus, to generate an output file to send to support, you can do:

set | ong 64000
set pages O

CTX_REPORT 11-1



Using the Function Versions

set heading of f

set feedback of f

spool outputfile

sel ect ctx_report.describe_index(' MYINDEX' ) from dual;
spool of f

11-2 Oracle Text Reference



DESCRIBE_INDEX

DESCRIBE_INDEX

Syntax

Creates a report describing the index. This includes the settings of the index metadata,
the indexing objects used, the settings of the attributes of the objects, and index
partition descriptions, if any.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

procedure CTX_REPORT. DESCRI BE_| NDEX(
i ndex_name IN VARCHARZ,
report IN OUT NOCOPY CLOB,
report_format | N VARCHAR2 DEFAULT FMI_TEXT

)i

function CTX_REPORT. DESCRI BE_| NDEX(

i ndex_name I N VARCHARZ,

report_format | N VARCHAR2 DEFAULT FMI_TEXT
) return CLOB;
index_name

Specify the name of the index to describe.

report
Specify the CLOB locator to which to write the report.

If report is NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

report_format

Specify whether the report should be generated as 'TEXT' or as ' XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_
REPORT.FMT_XML.

CTX_REPORT 11-3



DESCRIBE_POLICY

DESCRIBE_POLICY

Creates a report describing the policy. This includes the settings of the policy
metadata, the indexing objects used, the settings of the attributes of the objects.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax
procedure CTX_REPORT. DESCRI BE_PQOLI CY(
pol i cy_name I N VARCHAR?,
report IN OUT NOCOPY CLOB,
report_format | N VARCHAR2 DEFAULT FMI_TEXT

)i

function CTX_REPORT. DESCRI BE_PQOLI CY(

pol i cy_name I N VARCHAR?,

report_format | N VARCHAR2 DEFAULT FMI_TEXT
) return CLOB;

report
Specify the CLOB locator to which to write the report.

If report is NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before r eport is generated, so any existing
contents will be overwritten by this call.

report_format

Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_
REPORT.FMT_XML.

policy_name
Specify the name of the policy to describe

11-4 Oracle Text Reference



CREATE_INDEX_SCRIPT

CREATE_INDEX_SCRIPT

Syntax

Creates a SQL*Plus script which will create a text index that duplicates the named text
index.

The created script will include creation of preferences identical to those used in the
named text index. However, the names of the preferences will be different.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

procedure CTX_REPORT. CREATE_| NDEX_SCRI PT(
i ndex_nane in varchar2,
report in out nocopy clob,
prefnane_prefix in varchar2 default null

)i

function CTX_REPORT. CREATE_| NDEX_SCRI PT(
i ndex_nane in varchar2,
prefnane_prefix in varchar2 default null
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the script.

If report is NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

prefname_prefix
Specify optional prefix to use for preference names.

If pr ef nanme_pr ef i x is omitted or NULL, index name will be used. The pr ef nane_
pr ef i x follows index length restrictions.

CTX_REPORT 11-5



CREATE_POLICY_SCRIPT

CREATE_POLICY_SCRIPT

Creates a SQL*Plus script which will create a text policy that duplicates the named text
policy.

The created script will include creation of preferences identical to those used in the
named text policy.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax
procedure CTX_REPORT. CREATE_POLI CY_SCRI PT(
pol i cy_name in varchar2,
report in out nocopy clob,

prefnane_prefix in varchar2 default null

)i

function CTX_REPORT. CREATE_PCLI CY_SCRI PT(
pol i cy_name in varchar2,
prefnane_prefix in varchar2 default null
) return clob;

policy_name
Specify the name of the policy.

report
Specify the locator to which to write the script.

If report is NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

prefname_prefix

Specify the optional prefix to use for preference names. If pr ef name_pr ef i x is
omitted or NULL, policy name will be used. pr ef nane_pr ef i x follows policy length
restrictions.

11-6 Oracle Text Reference



INDEX_SIZE

INDEX_SIZE

Syntax

Creates a report showing the internal objects of the text index or text index partition,
and their tablespaces, allocated, and used sizes.

You can call this operation as a procedure with an IN OUT CLOB parameter, or as a
function that returns the report as a CLOB.

procedure CTX_REPORT. | NDEX_SI ZE(

i ndex_name IN VARCHARZ,
report IN OUT NOCOPY CLOB,
part_name N VARCHAR2 DEFAULT NULL,

report_format | N VARCHAR2 DEFAULT FMI_TEXT
)

function CTX_REPORT. | NDEX_SI ZE(
i ndex_name I N VARCHARZ,
part _name IN VARCHAR2 DEFAULT NULL,
report_format | N VARCHAR2 DEFAULT FMI_TEXT
) return clob;

index_name
Specify the name of the index to describe

report
Specify the CLOB locator to which to write the report.

If report is NULL, a session-duration temporary CLOB will be created and returned.
It is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call

part_name

Specify the name of the index partition (optional). If par t _name is NULL, and the
index is a local partitioned text index, then all objects of all partitions will be
displayed. If par t _nane is provided, then only the objects of a particular partition
will be displayed.

report_format

Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_
REPORT.FMT_XML.

CTX_REPORT 11-7



INDEX_STATS

INDEX_STATS

Example

Creates a report showing various calculated statistics about the text index.

This procedure will fully scan the text index tables, so it may take a long time to run
for large indexes.

procedure index_stats(

i ndex_name I N VARCHARZ,

report I'N QUT NOCOPY CLOB,
part_name IN VARCHAR2 DEFAULT NULL,
frag_stats I N BOOLEAN DEFAULT TRUE,
l'ist_size I'N NUMBER DEFAULT 100,

report_format | N VARCHAR2 DEFAULT FMI_TEXT
)

index_name
Specify the name of the index to describe. This must be a CONTEXT index.

report

Specify the CLOB locator to which to write the report.If report is NULL, a
session-duration temporary CLOB will be created and returned. It is the caller's
responsibility to free this temporary CLOB as needed.

The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call.

part_name

Specify the name of the index partition. If the index is a local partitioned index, then
par t _nanme must be provided. INDEX_STATS will calculate the statistics for that
index partition.

frag_stats

Specify TRUE to calculate fragmentation statistics. If f r ag_st at s is FALSE, the
report will not show any statistics relating to size of index data. However, the
operation should take less time and resources to calculate the token statistics.

list_size
Specify the number of elements in each compiled list. | i St _Si ze has a maximum
value of 1000.

report_format

Specify whether the report should be generated as TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_
REPORT.FMT_XML.

Here's an example of using CTX_REPORT. | NDEX_STATS:

create table output (result CLOB);

declare
x clob :=null;

begin
ctx_report.index_stats('tdrbprx21',x);
insert into output values (x);
comm t;

11-8 Oracle Text Reference



INDEX_STATS

dbms_| ob. freet enporary(x);
end;
/

set [ong 32000

set head off

set pagesi ze 10000
select * from output;

The following is sample output for | NDEX_STATS on a context index. This report has
been truncated for clarity. It shows some of the token statistics and all of the

fragmentation statistics.

The fragmentation statistics are at the end of the report. It tells you optimal row
fragmentation, an estimated amount of garbage data in the index, and a list of the
most fragmented tokens. Running CTX_DDL. OPTI M ZE_| NDEX cleans up the index.

STATI STI CS FOR "DR_TEST". " TDRBPRX21"

i ndexed docunents: 53
al l ocated doci ds: 68
$I rows: 16, 259

uni que tokens: 13, 445
average $I rows for each token: 1.21
tokens with nost $I rows:

t el ecommuni cations industry ( THEME) 6
sci ence and technol ogy ( THEME) 6
EMAI L (FI ELD SECTI ON " SOURCE") 6
DEC (FI ELD SECTI ON " Tl MESTAMP") 6
electronic mail (THEME) 6
conput er networking ( THEME) 6
comuni cati ons ( THEMVE) 6
95 (FI ELD SECTI ON "TI MESTAMP") 6
15 (FI ELD SECTI ON " Tl MESTAMP") 6
HEADLI NE (ZONE SECTI ON) 6
average size for each token: 8
tokens with largest size:
T (NORVAL) 405
SAI D ( NORVAL) 313
HEADLI NE (ZONE SECTI ON) 272
NEW ( NORMAL) 267
I (NORMAL) 230
M LLI ON ( PREFI X) 222
D ( NORMAL) 219
M LLI ON ( NORMAL) 215
U (NORMAL) 192
DEC (FI ELD SECTI ON " TI MESTAVP") 186
average frequency for each token: 2.00
most frequent tokens:
HEADLI NE (ZONE SECTI ON) 68

CTX_REPORT 11-9



INDEX_STATS

DEC (FI ELD SECTI ON " TI MESTAVP") 62

95 (FIELD SECTI ON " TI MESTAMP") 62

15 (FI ELD SECTI ON " TI MESTAMP") 62

T (NORMAL) 61

D (NORMAL) 59

881115 ( THEME) 58

881115 ( NORMAL) 58

[ (NORMAL) 55

geogr aphy ( THEME) 52

token statistics by type:

t oken type: NORMAL
uni que tokens: 6, 344
total rows: 7,631
average rows: 1.20
total size: 67,445 (65.86 KB)
average size: 11
average frequency: 2.33
most frequent tokens:

T 61
D 59
881115 58
I 55
SAI D 45
C 43
NEW 36
M LLION 32
FI RST 28
COVPANY 27

t oken type: THEME
uni que tokens: 4,563
total rows: 5,523
average rows: 1.21
total size: 21,930 (21.42 KB)
average size: 5
average frequency: 2.40
most frequent tokens:

881115 58
political geography 52
geogr aphy 52
United States 51
busi ness and econoni cs 50
abstract ideas and concepts 48
North America 48
sci ence and technol ogy 46
NKS 34
nulls 34

The fragmentation portion of this report is as follows:

total size of $I data: 116, 772 (114. 04 KB)
$I rows: 16, 259
estimated $I rows if optimal: 13, 445
estimated row fragnentation: 17 %

11-10 Oracle Text Reference



INDEX_STATS

garbage doci ds: 15

estimted garbage size: 21,379 (20.88 KB)

most fragmented tokens:
t el ecommuni cations industry ( THEME) 83 %
sci ence and technol ogy ( THEME) 83 %
EMAI L (FIELD SECTI ON " SOURCE") 83 %
DEC (FI ELD SECTI ON " TI MESTAVP") 83 %
el ectronic mail (THEME) 83 %
conmput er networ ki ng ( THEME) 83 %
comuni cati ons ( THEME) 83 %
95 (FI ELD SECTI ON "TI MESTAMP") 83 %
HEADLI NE (ZONE SECTI ON) 83 %
15 (FI ELD SECTI ON " TI MESTAMP") 83 %

CTX_REPORT 11-11



QUERY_LOG_SUMMARY

QUERY_LOG_SUMMARY

Syntax

Obtain a report of logged queries.

QUERY_LOG_SUMVARY enables you to analyze queries you have logged. For example,
suppose you have an application that searches a database of large animals, and your
analysis of queries against it shows that users are continually searching for the word
mouse; this analysis might induce you to rewrite your application so that a search for
mouse redirects the user to a database for small animals instead of simply returning an
unsuccessful search.

With query analysis, you can find out

= which queries were made

= which queries were successful

= which queries were unsuccessful

« how many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

Query logging is begun with CTX_OUTPUT. START_QUERY_LOGand terminated with
CTX_OUTPUT. END_QUERY_LCG

Note: You must connect as CTXSYS to use CTX_REPORT. QUERY_
LOG_SUMVARY.

See Also: START_QUERY_LOG and END_QUERY_LOG in
Chapter 9, "CTX_OUTPUT Package".

procedure CTX_REPORT. QUERY_LOG SUMVARY(

logfile I' N VARCHAR2,
i ndexname I N VARCHAR2 DEFAULT NULL,
result _table |N OQUT NOCOPY QUERY TABLE,
row_num I N NUMBER,
most_freq | N BOOLEAN DEFAULT TRUE,
has_hi t I N BOOLEAN DEFAULT TRUE
);
logfile

Specify the name of the logfile that contains the queries.

indexname
Specify the name of the context index for which you want the summary report. If you
specify NULL, the procedure provides a summary report for all context indexes.

result_table

Specify the name of the in-memory table of type TABLE OF RECORD where the results
of the QUERY_LOG_SUMVARY are to go. The default is the location specified by the
system parameter LOG_DI RECTCRY.

11-12 Oracle Text Reference



QUERY_LOG_SUMMARY

row_num

The number of rows of results from QUERY_LOG_SUMVARY to be reported into the
table named by restab. For example, if this is number is 10, most_freq is TRUE, and has_
hit is TRUE, then the procedure returns the 10 most frequent queries that were
successful (that is, returned hits).

most_freq

Specify whether QUERY_LOG_SUMVARY should return the most frequent or least
frequent queries. The default is most frequent queries. If most_freq is set to FALSE, the
procedure returns the least successful queries.

has_hit

Specify whether QUERY_LOG_SUMVARY should return queries that are successful (that
is, that generate hits) or unsuccessful queries. The default is to count successful
queries; set has_hit to FALSE to return unsuccessful queries.

Example
The following example shows how a query log can be used.
First connect as CTXSYS. Then create and populate two tables, and then create an
index for each:
create table glogtabl (tk nunber primary key, text varchar2(2000));
insert into glogtabl values(1l, 'The Ronman nanme for France was Gaul.');
insert into glogtabl values(2, 'The Tour de France is held each sumrer.');
insert into glogtabl val ues(3, 'Jacques Anatole Thibault took the pen name Anatole France.');
create index idx_glogl on gl ogtabl(text) indextype is ctxsys.context;
create table gl ogtab2 (tk number primary key, text varchar2(2000));
insert into glogtab2 values(1l, 'The Great Wall of China is about 2400 kilometers long');
insert into glogtab2 values(2, 'Soccer dates back at least to 217 CE');
insert into qglogtab2 values(3, 'The Corn Palace is a tourist attraction in South Dakota.');
create index idx_glog2 on gl ogtab2(text) indextype is ctxsys.context;

Turn on query logging, creating a log called query_| og:

exec ctx_output.start_query_log('query.log');

sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect
sel ect

Now make some queries (some of which will be unsuccessful):

text from gl ogtabl where contains
text from gl ogtabl where contains
text fromglogtabl where contains
text from gl ogtab2 where contains
text from gl ogtab2 where contains
text from gl ogtabl where contains
text from gl ogtab2 where contains
text from gl ogtabl where contains
text from gl ogtab2 where contains
text fromglogtabl where contains
text from gl ogtab2 where contains
text fromglogtabl where contains
text from gl ogtabl where contains
text from gl ogtabl where contains
text from gl ogtab2 where contains
text fromglogtabl where contains
text from gl ogtabl where contains
text from gl ogtabl where contains

text, 'France',1)>0;

text, 'cheese',1)>0;

text, 'Text Wzard',1)>0;
text, 'Corn Pal ace',1)>0;
text, 'China',1)>0;

text, 'Text Wzards', 1)>0;
text, 'South Dakota', 1)>0;
text, 'Text Wzard',1)>0;
text, 'China',1)>0;

text, 'Text Wzard',1)>0;
text, 'conpany', 1)>0;
text, 'Text Wzard',1)>0;
text, 'France',1)>0;

text, 'database',1)>0;
text, 'high-tech', 1)>0;
text, 'database', 1)>0;
text, 'France',1)>0;

text, 'Japan',1)>0;

N AN~~~ A A A AAAAAAAAAA

CTX_REPORT 11-13



QUERY_LOG_SUMMARY

select text from gl ogtabl where contains
select text from gl ogtabl where contains
sel ect text from gl ogtabl where contains
sel ect text fromqlogtabl where contains
sel ect text from gl ogtabl where contains
select text from gl ogtabl where contains
select text from gl ogtabl where contains
select text from gl ogtabl where contains

text, 'Egypt',1)>0;

text, 'Argentina', 1)>0;
text, 'Argentina', 1) >0;
text, 'Argentina', 1)>0;
text, 'Japan',1)>0;

text, 'Egypt',1)>0;

text, "Air Shuttle',1)>0;
text, 'Argentina', 1)>0;

o~~~ o~~~ =~

With the querying over, turn query logging off:

exec ctx_output.end_query_| og;

Use QUERY_LOG_SUMMARY to get query reports. In the first instance, you ask to see
the three most frequent queries that return successfully. First declare the results table
(t he_queri es).

set serveroutput on;

declare
the_queries ctx_report.query_table;

begi n
ctx_report.query_|l og_summary(' query.log', null, the_queries,

row_nun¥>3, nost_freq=>TRUE, has_hi t =>TRUE);

dbms_out put. put _| i ne(* The 3 nost frequent queries returning hits');
dbns_out put . put _li ne(' number of times query string');

for i in 1..the_queries.count |oop
dbms_out put . put _|i ne(the_queries(i).tinmes||' "||the_queries(i).query);
end | oop;
end;

/

This returns the following;:

TThe 3 nost frequent queries returning hits
nunber of times query string

3 France
2 Chi na
1 Corn Pal ace

Next, look for the three most frequent queries on i dx_gl 0g1l that were successful.

decl are
the_queries ctx_report.query_table;
begin
ctx_report.query_|l og_summary('query.log', "idx_glogl', the_queries,

row_nun¥>3, nost_freq=>TRUE, has_hi t=>TRUE);
dbns_out put . put _l'ine(' The 3 nost frequent queries returning hits for index idx_glogl');
dbns_out put. put _| i ne(' number of times query string');

for i in 1..the_queries.count |oop
dbns_out put . put _line(the_queries(i).times||" "||the_queries(i).query);
end | oop;
end;

/

Because only the queries for France were successful, ct x_r eport . query_| og_
summary returns the following:

11-14 Oracle Text Reference



QUERY_LOG_SUMMARY

The 3 nmost frequent queries returning hits for index idx_glogl
nunber of times query string
3 France

Lastly, ask to see the three least frequent queries that returned no hits (that is, queries
that were unsuccessful and called infrequently). In this case, you are interested in
queries on both context indexes, so you set the indexname parameter to NULL.

decl are
the_queries ctx_report.query_table;
begin
ctx_report.query_| og_summary(' query.log', null, the_queries, row_num=>3,
most _freq=>FALSE, has_hit=>FALSE);
dbns_out put. put _line(' The 3 | east frequent queries returning no hit');
dbns_out put. put _|i ne(' number of times query string');

for i in 1..the_queries.count |oop
dbms_out put . put _| i ne(the_queries(i).times||’ "||the_queries(i).query);
end | oop;
end;

/

This returns the following:

The 3 least frequent queries returning no hit
nunber of times query string

1 hi gh-tech
1 conpany
1 cheese

Argentina and Japan do not make this list, because they are queried more than once,
while Corn Palace does not make this list because it is successfully queried.

CTX_REPORT 11-15



TOKEN_INFO

TOKEN_INFO

Creates a report showing the information for a token, decoded. This procedure will
fully scan the info for a token, so it may take a long time to run for really large tokens.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax
procedure CTX_REPORT. TOKEN | NFQ(
i ndex_name I'N VARCHARZ,
report I'N OUT NOCOPY CLCB,
t oken I N VARCHAR?,
t oken_type I'N NUMBER,
part_name I N VARCHAR2 DEFAULT NULL,
raw_i nfo IN BOOLEAN DEFAULT FALSE,

decoded_i nfo I N BOOLEAN DEFAULT TRUE,
report _format I'N VARCHAR2 DEFAULT FMI_TEXT

)

function CTX _REPORT. TOKEN | NFQ(

i ndex_nane I'N VARCHAR?,

t oken I N VARCHAR?,

t oken_t ype I'N NUMBER,

part_name I'N VARCHAR2 DEFAULT NULL,
raw_info IN VARCHAR2 DEFAULT 'N,

decoded_i nfo I'N VARCHAR2 DEFAULT 'Y',
report_format I N VARCHAR2 DEFAULT FMTI_TEXT
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the report.

If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.

The r eport CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call token may be case-sensitive, depending on the
passed-in token type.

token
Specify the token text.

token_type
Specify the token type. THEME, ZONE, ATTR, PATH, and PATH ATTR tokens are
case-sensitive.

Everything else gets passed through the lexer, so if the index's lexer is case-sensitive,
the token input is case-sensitive.

part_name
Specify the name of the index partition.

If the index is a local partitioned index, then part_name must be provided. TOKEN_
INFO will apply to just that index partition.

11-16 Oracle Text Reference



TOKEN_INFO

raw_info
Specify TRUE to include a hex dump of the index data. If raw_info is TRUE, the report
will include a hex dump of the raw data in the t oken_i nf o column.

decoded_info

Specify decode and include docid and offset data. If decoded_i nf o is FALSE, CTX_
REPORT will not attempt to decode the token information. This is useful when you just
want a dump of data.

report_format

Specify whether the report should be generated as 'TEXT' or as ' XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_
REPORT.FMT_XML.

CTX_REPORT 11-17



TOKEN_TYPE

TOKEN_TYPE

This is a helper function which translates an English name into a numeric token type.
This is suitable for use with t oken_i nf o, or any other CTX API which takes in a

t oken_t ype.

function token_type(
i ndex_nane in varchar2,
type_nane in varchar2
) return nunber;

TOKEN_TYPE_TEXT const ant
TOKEN_TYPE_THEME const ant
TOKEN_TYPE_ZONE_SEC const ant
TOKEN_TYPE_ORI G const ant
TOKEN_TYPE_ATTR_TEXT const ant
TOKEN_TYPE_ATTR _SEC const ant
TOKEN_TYPE_PREFI X const ant
TOKEN_TYPE_PATH_SEC const ant
TOKEN_TYPE_PATH_ATTR const ant
TOKEN_TYPE_STEM const ant

index_name
Specify the name of the index.

type_name

nurmber
nunber :
nunber :
nunber :
nunber :
nurmber :
nurmber
nunber :
nunber :
nunber :

XN RrONMNRO

Specify an English name for t oken_t ype. The following strings are legal input. All
input is case-insensitive.

Input Meaning Type Returned
TEXT Normal text token. 0
THEME Theme token. 1
ZONE SEC Zone token. 2
ORIGINAL Original form token 3
ATTR TEXT Text that occurs in attribute. 4
ATTR SEC Attribute section. 5
PREFIX Prefix token. 6
PATH SEC Path section. 7
PATH ATTR Path attribute section. 8
STEM Stem form token. 9
FIELD <name> TEXT  Text token in field section <name>  16-79
FILED <name> PREFIX Prefix token in field section <name> 616-916

FIELD <name> STEM

Stem token in field section <name> 916-979

For FIELD types, the index metadata needs to be read, so if you are going to be calling
this a lot for such things, you might want to consider caching the values in local
variables rather than calling token_type over and over again.

11-18 Oracle Text Reference



TOKEN_TYPE

The constant types (0 - 9) also have constants in this package defined.

Example
typenum : = ctx_report.token_type(' nyindex', 'field author text');

CTX_REPORT 11-19



TOKEN_TYPE

11-20 Oracle Text Reference



12

CTX_THES Package

This chapter provides reference information for using the CTX_THES package to
manage and browse thesauri. These thesaurus functions are based on the ISO-2788
and ANSI Z39.19 standards except where noted.

Knowing how information is stored in your thesaurus helps in writing queries with
thesaurus operators. You can also use a thesaurus to extend the knowledge base,
which is used for ABOUT queries in English and French and for generating document

themes.

CTX_THES contains the following stored procedures and functions:

Name

Description

ALTER_PHRASE
ALTER_THESAURUS
BT

BTG

BTI

BTP

CREATE_PHRASE
CREATE_RELATION
CREATE_THESAURUS
CREATE_TRANSLATION
DROP_PHRASE
DROP_RELATION
DROP_THESAURUS
DROP_TRANSLATION
HAS_RELATION

NT

NTG

NTI

NTP

OUTPUT_STYLE

PT

Alters thesaurus phrase.

Renames or truncates a thesaurus.

Returns all broader terms of a phrase.

Returns all broader terms generic of a phrase.
Returns all broader terms instance of a phrase.
Returns all broader terms partitive of a phrase.
Adds a phrase to the specified thesaurus.
Creates a relation between two phrases.

Creates the specified thesaurus.

Creates a new translation for a phrase.

Removes a phrase from thesaurus.

Removes a relation between two phrases.

Drops the specified thesaurus from the thesaurus tables.
Drops a translation for a phrase.

Tests for the existence of a thesaurus relation.
Returns all narrower terms of a phrase.

Returns all narrower terms generic of a phrase.
Returns all narrower terms instance of a phrase.
Returns all narrower terms partitive of a phrase.
Sets the output style for the expansion functions.

Returns the preferred term of a phrase.

CTX_THES Package 12-1



Name Description

RT Returns the related terms of a phrase

SN Returns scope note for phrase.

SYN Returns the synonym terms of a phrase

THES_TT Returns all top terms for phrase.

TR Returns the foreign equivalent of a phrase.

TRSYN Returns the foreign equivalent of a phrase, synonyms of
the phrase, and foreign equivalent of the synonyms.

TT Returns the top term of a phrase.

UPDATE_TRANSLATION Updates an existing translation.

See Also: Chapter 3, "Oracle Text CONTAINS Query Operators"
for more information about the thesaurus operators.

12-2 Oracle Text Reference



ALTER_PHRASE

ALTER_PHRASE

Syntax

Examples

Alters an existing phrase in the thesaurus. Only CTXSYS or thesaurus owner can alter
a phrase.

CTX_THES. ALTER_PHRASE( t name in varchar2,

phrase in varchar2,

op in varchar2,

oper and in varchar2 default null);
tname

Specify thesaurus name.

phrase
Specify phrase to alter.

op
Specify the alter operation as a string or symbol. You can specify one of the following
operations with the op and operand pair:'

op meaning operand

RENAME Rename phrase. If the new Specify new phrase. You can

or phrase already exists inthe  include qualifiers to change,
thesaurus, this procedure add, or remove qualifiers

CTX_THES. OP_RENAME raises an exception. from phrases.

PT Make phrase the preferred (none)

term. Existing preferred terms

or in the synonym ring becomes

CTX_THES. OP_PT non-preferred synonym.

SN Change the scope note on the Specify new scope note.
or phrase.

CTX_THES. OP_SN

operand
Specify argument to the alter operation. See table for op.

Correct misspelled word in thesaurus:

ctx_thes.alter_phrase('thesl', 'tee', 'rename', 'tea');

Remove qualifier from mercury (metal):

ctx_thes.alter_phrase('thesl', 'mercury (metal)', 'renane', 'nercury');

Add qualifier to mercury:

ctx_thes.alter_phrase('thesl', 'mercury', 'renanme', 'nercury (planet)');

Make Kowalski the preferred term in its synonym ring:

ctx_thes.alter_phrase('thesl', 'Kowalski', 'pt');

CTX_THES Package 12-3



ALTER_PHRASE

Change scope note for view cameras:

ctx_thes.alter_phrase('thesl', 'view cameras', 'sn', 'Caneras with |lens

focusing');

12-4 Oracle Text Reference



ALTER_THESAURUS

ALTER_THESAURUS

Syntax

Examples

Use this procedure to rename or truncate an existing thesaurus. Only the thesaurus
owner or CTXSYS can invoke this function on a given thesaurus.

CTX_THES. ALTER_THESAURUS(t nane in varchar2,
op in varchar2,
operand in varchar2 default null);

tname
Specify the thesaurus name.

op
Specify the alter operation as a string or symbol. You can specify one of two
operations:

op Meaning operand
RENAME Rename thesaurus. Returns ~ Specify new thesaurus
or an error if the new name name.

already exists.
CTX_THES. OP_RENAVE

TRUNCATE Truncate thesaurus. None.
or

CTX_THES. OP_TRUNCATE

operand
Specify the argument to the alter operation. See table for op.

Rename thesaurus THES1 to MEDI CAL:

ctx_thes.alter_thesaurus('thesl', 'rename', 'nedical');

or

ctx_thes.alter_thesaurus('thesl', ctx_thes.op_rename, 'nedical');

You can use symbols for any op argument, but all further examples will use strings.
Remove all phrases and relations from thesaurus THES1:

ctx_thes.alter_thesaurus('thesl', 'truncate');

CTX_THES Package 12-5



BT

BT

This function returns all broader terms of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES. BT(restab I N QUT NOCOPY EXP_TAB,
phrase I N VARCHAR?,
[ vl N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. BT( phrase | N VARCHAR?,

[ vl N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms in the form:

{bt1}|{bt2}|{bt3} ...
Example

String Result
Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
BT1 feline

12-6 Oracle Text Reference



BT

Related Topics

BT2 mammal
BT3 vertebrate
BT4 ani mal
To look up the broader terms for cat up to two levels, issue the following statements:

set serveroutput on

decl are

terns varchar2(2000);
begin

terns := ctx_thes.bt('CAT', 2, 'MY_THES);

dbrs_out put . put _|'i ne(' The broader expansion for CAT is: '||terms);
end;

This code produces the following output:

The broader expansion for CAT is: {cat}|{feline}|{manmal}

Table Result
The following code does an broader term lookup for white wolf using the table result:

set serveroutput on

decl are
xtab ctx_thes. exp_tab;
begin
ctx_thes.bt(xtab, "white wolf', 2, 'ny_thesaurus');
for i in 1..xtab.count |oop
dbrms_out put. put _line(xtab(i).rel||" "||xtab(i).phrase);
end | oop;
end;

This code produces the following output:

PHRASE VH TE WOLF
BT WOLF

BT CANI NE

BT ANl MAL

OUTPUT_STYLE

Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS
Query Operators"

CTX_THES Package 12-7



BTG

BTG

This function returns all broader terms generic of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES. BTG restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. BTG phrase IN VARCHARZ,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms generic in the form:

{bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms generic for cat up to two levels, issue the following
statements:

set serveroutput on
decl are

terms varchar2(2000);
begin

12-8 Oracle Text Reference



BTG

terms := ctx_thes.btg(' CAT", 2, 'MY_THES);
dbms_out put . put _li ne(' the broader expansion for CAT is: '||terms);
end;

Related Topics
OUTPUT_STYLE

Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS
Query Operators"

CTX_THES Package 12-9



BTI

BTI

This function returns all broader terms instance of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES. BTl (restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. BTl (phrase IN VARCHARZ,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms instance in the form:

{bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms instance for cat up to two levels, issue the following
statements:

set serveroutput on
decl are

terms varchar2(2000);
begin

12-10 Oracle Text Reference



BTI

terms := ctx_thes.bti(' CAT", 2, 'MY_THES);
dbms_out put . put _li ne(' the broader expansion for CAT is: '||terms);
end;

Related Topics
OUTPUT_STYLE

Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS
Query Operators"

CTX_THES Package 12-11



BTP

BTP

This function returns all broader terms partitive of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES. BTP(restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. BTP(phrase IN VARCHARZ,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, the system default thesaurus is used.

Returns
This function returns a string of broader terms in the form:
{(bt1}|{bt2}|{bt3} ...
Example
To look up the 2 broader terms partitive for cat, issue the following statements:
declare
terns varchar2(2000);
begi n
terms := ctx_thes.btp(' CAT", 2, 'MY_THES);
dbms_out put . put _li ne(' the broader expansion for CAT is: '||terms);

12-12 Oracle Text Reference



BTP

end;

Related Topics
OUTPUT_STYLE

Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS
Query Operators"

CTX_THES Package 12-13



CREATE_PHRASE

CREATE_PHRASE

The CREATE_PHRASE procedure adds a new phrase to the specified thesaurus.

Note: Even though you can create thesaurus relations with this
procedure, Oracle recommends that you use CTX_THES. CREATE_
RELATI ONrather than CTX_THES. CREATE_PHRASE to create
relations in a thesaurus.

Syntax
CTX_THES. CREATE_PHRASE(tname | N VARCHAR?,
phrase | N VARCHARZ,
rel I'N VARCHAR2 DEFAULT NULL,
rel name | N VARCHAR2 DEFAULT NULL);
tname
Specify the name of the thesaurus in which the new phrase is added or the existing
phrase is located.
phrase
Specify the phrase to be added to a thesaurus or the phrase for which a new
relationship is created.
rel
Specify the new relationship between phrase and relname. This parameter is supported
only for backward compatibility. Use CTX_THES.CREATE_RELATION to create new
relations in a thesaurus.
relname
Specify the existing phrase that is related to phrase. This parameter is supported only
for backward compatibility. Use CTX_THES.CREATE_RELATION to create new
relations in a thesaurus.
Returns
The ID for the entry.
Examples

Creating Entries for Phrases

In this example, two new phrases (0s and operating system) are created in a thesaurus
named t ech_t hes.

begin
ctx_thes.create_phrase('tech_thes','o0s');
ctx_thes.create_phrase('tech_thes', ' operating system);
end;

12-14 Oracle Text Reference



CREATE_RELATION

CREATE_RELATION

Syntax

Notes

Creates a relation between two phrases in the thesaurus.

Note: Oracle recommends that you use CTX_THES. CREATE_
RELATI ONrather than CTX_THES. CREATE_PHRASE to create
relations in a thesaurus.

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

CTX_THES. CREATE_RELATI ON(t nane in var char 2,
phrase in var char 2,
rel in varchar 2,

rel phrase in var char 2);

tname
Specify the thesaurus name

phrase
Specify the phrase to alter or create. If phr ase is a disambiguated homograph, you
must specify the qualifier. If phr ase does not exist in the thesaurus, it is created.

rel
Specify the relation to create.The relation is from phr ase tor el phr ase. You can
specify one of the following relations:

relation meaning relphrase
BT*/NT* Add hierarchical relation. Specify related phrase. The relationship is
interpreted from phrase to relphrase.

RT Add associative relation. Specify phrase to associate.

SYN Add phrase to a synonym  Specify an existing phrase in the synonym
ring. ring.

Specify Add translation for a Specify new translation phrase.

language phrase.

relphrase

Specify the related phrase. If relphrase does not exist in thame, relphrase is created. See
table for rel.

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
BT ani nal
To add this relation, specify the arguments as follows:

begi n
CTX_THES. CREATE_RELATI ON(' t hes', ' dog',' BT', " aninal');

CTX_THES Package 12-15



CREATE_RELATION

end;

Note: The order in which you specify arguments for CTX_
THES. CREATE_RELATI ONis different from the order you specify
them with CTX_THES. CREATE PHRASE.

Examples
Create relation VEHICLE NT CAR:

ctx_thes.create_relation('thesl', 'vehicle', "NI', 'car');

Create Japanese translation for you:

ctx_thes.create_relation('thesl', 'you', 'JAPANESE ', "kim"');

12-16 Oracle Text Reference



CREATE_THESAURUS

CREATE_THESAURUS

Syntax

Example

The CREATE_THESAURUS procedure creates an empty thesaurus with the specified
name in the thesaurus tables.

CTX_THES. CREATE_THESAURUS( nane I N VARCHAR2,
casesens I'N BOOLEAN DEFAULT FALSE);

name

Specify the name of the thesaurus to be created. The name of the thesaurus must be
unique. If a thesaurus with the specified name already exists, CREATE_THESAURUS
returns an error and does not create the thesaurus.

casesens

Specify whether the thesaurus to be created is case-sensitive. If casesens is true, Oracle
Text retains the cases of all terms entered in the specified thesaurus. As a result,
queries that use the thesaurus are case-sensitive.

begin
ctx_thes.create_thesaurus('tech_thes', FALSE);
end;

CTX_THES Package 12-17



CREATE_TRANSLATION

CREATE_TRANSLATION

Use this procedure to create a new translation for a phrase in a specified language.

Syntax

CTX_THES. CREATE_TRANSLATI ON(t nane in var char 2,
phrase in var char 2,
| anguage in var char 2,
translation in varchar 2);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to add a translation. Phrase must already
exist in the thesaurus, or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

translation
Specify the translated term, using no more than 256 characters.

If a translation for this phrase already exists, this new translation is added without
removing that original translation, so long as that original translation is not the same.
Adding the same translation twice results in an error.

Example
The following code adds the Spanish translation for dog to my_thes:

begin
ctx_thes.create_translation('my_thes', 'dog', 'SPANISH, 'PERRO);
end;

12-18 Oracle Text Reference



DROP_PHRASE

DROP_PHRASE

Syntax

Example

Removes a phrase from the thesaurus. Only thesaurus owner and CTXSYS can invoke
this procedure on a given thesaurus.

CTX_THES. DROP_PHRASE( t nane in varchar2,
phrase in varchar2);

tname
Specify thesaurus name.

phrase
Specify phrase to drop. If phrase is a disambiguated homograph, you must include the
qualifier. When phrase does not exist in tname, this procedure raises and exception.

BT* / NT* relations are patched around the dropped phrase. For example, if A has a
BT B, and B has BT C, after B is dropped, A has BT C.

When a word has multiple broader terms, then a relationship is established for each
narrower term to each broader term.

Note that BT, BTG, BTP, and BTI are separate hierarchies, so if A has BTG B, and B has
BTI C, when B is dropped, there is no relation implicitly created between A and C.

RT relations are not patched. For example, if A has RT B, and B has RT C, then if B is
dropped, there is no associative relation created between A and C.

Assume you have the following relations defined in mythes:

wol f

BT cani ne
cani ne

BT ani ma

You drop phrase canine:

begin
ctx_thes.drop_phrase(' nythes', 'canine');
end;

The resulting thesaurus is patched and looks like:

wol f
BT ani mal

CTX_THES Package 12-19



DROP_RELATION

DROP_RELATION

Removes a relation between two phrases from the thesaurus.

Note: CTX_THES. DROP_RELATI ONremoves only the relation
between two phrases. Phrases are never removed by this call.

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

Syntax
CTX_THES. DROP_RELATI ON(t nane in varchar 2,
phrase in var char 2,
rel in var char 2,

rel phrase in varchar2 default null);

tname
Specify thesaurus name.

phrase
Specify the filing phrase.

rel
Specify relation to drop. The relation is from phrase to relphrase. You can specify one of
the following relations:

relation meaning relphrase
BT*/NT* Remove hierarchical Optional specify relphrase. If not provided,
relation. all relations of that type for the phrase are
removed.

RT Remove associative relation. Optionally specify relphrase. If not
provided, all RT relations for the phrase are
removed.

SYN Remove phrase from its (none)

synonym ring.

PT Remove preferred term (none)
designation from the
phrase. The phrase remains
in the synonym ring.

language Remove a translation from a Optionally specify relphrase. You can
phrase. specify relphrase when there are multiple
translations for a phrase for the language,
and you want to remove just one
translation.

If relphrase is NULL, all translations for the
phrase for the language are removed.

relphrase
Specify the related phrase.

12-20 Oracle Text Reference



DROP_RELATION

Notes

Example

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
BT ani nal
To remove this relation, specify the arguments as follows:

begin
CTX_THES. DROP_RELATI ON(' t hes', ' dog',' BT',"animal");
end;

You can also remove this relation using NT as follows:

begin
CTX_THES. DROP_RELATI ON(' thes',"animal'," NT', " dog');
end;

Remove relation VEHICLE NT CAR:

ctx_thes.drop_relation('thesl", 'vehicle', 'NI", 'car');

Remove all narrower term relations for vehicle:

ctx_thes.drop_relation('thesl', 'vehicle', 'NI');

Remove Japanese translations for me:

ctx_thes.drop_relation('thesl', 'nme', 'JAPANESE ');
Remove a specific Japanese translation for me:

ctx_thes.drop_relation('thesl', 'ne', 'JAPANESE ', 'boku')

CTX_THES Package 12-21



DROP_THESAURUS

DROP_THESAURUS

The DROP_THESAURUS procedure deletes the specified thesaurus and all of its entries
from the thesaurus tables.

Syntax
CTX_THES. DROP_THESAURUS( name | N VARCHAR?) ;

name
Specify the name of the thesaurus to be dropped.

Examples

begi n
ctx_thes. drop_thesaurus('tech_thes');
end;

12-22 Oracle Text Reference



DROP_TRANSLATION

DROP_TRANSLATION

Syntax

Example

Use this procedure to remove one or more translations for a phrase.

CTX_THES. DROP_TRANSLATI ON (t nane in var char 2,
phrase in var char 2,
| anguage in varchar2 default null,

translation in varchar2 default null);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to remove a translation. The phrase must
already exist in the thesaurus or an error is raised.

language

Optionally, specify the language of the translation, using no more than 10 characters. If
not specified, the translation must also not be specified and all translations in all
languages for the phrase are removed. An error is raised if the phrase has no
translations.

translation
Optionally, specify the translated term to remove, using no more than 256 characters.
If no such translation exists, an error is raised.

The following code removes the Spanish translation for dog:

begin
ctx_thes.drop_translation('ny_thes', 'dog', 'SPANISH, 'PERRO);
end;

To remove all translations for dog in all languages:

begin
ctx_thes.drop_translation('ny_thes', "dog');
end;

CTX_THES Package 12-23



HAS_RELATION

HAS_RELATION

Syntax

Example

Use this procedure to test that a thesaurus relation exists without actually doing the
expansion. The function returns TRUE if the phrase has any of the relations in the
specified list.

CTX_THES. HAS_RELATI ON( phrase in varchar?2,
rel in varchar?2,
tname in varchar2 default ' DEFAULT')
returns bool ean;

phrase
Specify the phrase.

rel
Specify a single thesaural relation or a comma-delimited list of relations, except PT.
Specify ' ANY" for any relation.

tname
Specify the thesaurus name.

The following example returns TRUE if the phrase cat in the DEFAULT thesaurus has
any broader terms or broader generic terms:

set serveroutput on
result bool ean;

begin
result := ctx_thes.has_relation('cat','BT,BTG);
if (result) then dbms_output.put_|ine(' TRUE);
el se dbns_out put. put _|ine(' FALSE );
end if;
end;

12-24 Oracle Text Reference



NT

NT

This function returns all narrower terms of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES. NT(restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. NT( phrase | N VARCHAR?,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms in the form:

{nt1}|{nt2}[{nt3} ...
Example

String Result
Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
NT donestic cat

CTX_THES Package 12-25



NT

Related Topics

NT wild cat

BT manmal
mamal

BT ani mal
donestic cat

NT Persian cat
NT Si anese cat

To look up the narrower terms for cat down to two levels, issue the following
statements:

declare

terns varchar2(2000);
begin

terms := ctx_thes.nt(' CAT', 2, "MY_THES);

dbms_out put. put _line('the narrower expansion for CAT is: "||terns);
end;

This code produces the following output:

the narrower expansion for CAT is: {cat}|{domestic cat}|{Persian cat}|{Sianese
cat}| {wld cat}

Table Result
The following code does an narrower term lookup for canine using the table result:

decl are
xtab ctx_thes. exp_tab;

begin
ctx_thes.nt(xtab, 'canine', 2, 'ny_thesaurus');
for i in 1..xtab.count |oop

dbns_out put . put _li ne(lpad(" ', 2*xtab(i).xlevel) ||
xtab(i).xrel || " ' || xtab(i).xphrase);
end | oop;

end;

This code produces the following output:

PHRASE CANI NE
NT WOLF (Cani s | upus)
NT WHI TE WOLF
NT GREY WOLF
NT DOG (Canis familiaris)
NT PI T BULL
NT DASCHUND
NT CHI HUAHUA
NT HYENA (Cani s nesonel as)
NT COYOTE (Canis |atrans)

OUTPUT_STYLE

Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text
CONTAINS Query Operators"

12-26 Oracle Text Reference



NTG

NTG

This function returns all narrower terms generic of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES. NTG(restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. NTG( phrase IN VARCHARZ,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms generic in the form:

(nt1}{nt2}|{nt3} ...

Example

To look up the narrower terms generic for cat down to two levels, issue the following
statements:

decl are
terns varchar2(2000);
begi n
terms := ctx_thes.ntg(' CAT", 2, 'MY_THES);

CTX_THES Package 12-27



NTG

dbms_out put . put _line('the narrower expansion for CAT is: '"||terns);
end;

Related Topics
OUTPUT_STYLE

Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text
CONTAINS Query Operators"

12-28 Oracle Text Reference



NTI

NTI

This function returns all narrower terms instance of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES. NTI (restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. NTI (phrase IN VARCHARZ,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns
This function returns a string of narrower terms instance in the form:
(nt1}{nt2}{nt3} ...
Example
To look up the narrower terms instance for cat down to two levels, issue the following
statements:
decl are
terns varchar2(2000);
begi n

terms := ctx_thes.nti(' CAT", 2, 'MY_THES);

CTX_THES Package 12-29



NTI

dbms_out put . put _line('the narrower expansion for CAT is: '"||terns);
end;

Related Topics
OUTPUT_STYLE

Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text
CONTAINS Query Operators"

12-30 Oracle Text Reference



NTP

NTP

This function returns all narrower terms partitive of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES. NTP(restab I N QUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
[ vl | N NUMBER DEFAULT 1,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. NTP( phrase IN VARCHAR2,

[vl I N NUMBER DEFAULT 1,

tname | N VARCHAR2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

vl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns
This function returns a string of narrower terms partitive in the form:
(nt1}{nt2}{nt3} ...
Example
To look up the narrower terms partitive for cat down to two levels, issue the following
statements:
decl are
terns varchar2(2000);
begi n

terms := ctx_thes.ntp(' CAT", 2, 'MY_THES);

CTX_THES Package 12-31



NTP

dbms_out put . put _line('the narrower expansion for CAT is: '"||terns);
end;

Related Topics
OUTPUT_STYLE

Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text
CONTAINS Query Operators"

12-32 Oracle Text Reference



OUTPUT_STYLE

OUTPUT_STYLE

Syntax

Notes

Sets the output style for the return string of the CTX_THES expansion functions. This
procedure has no effect on the table results to the CTX_THES expansion functions.

CTX_THES. QUTPUT_STYLE (

show evel I N BOOLEAN DEFAULT FALSE,
showqual i fy I N BOOLEAN DEFAULT FALSE,
showpt I N BOOLEAN DEFAULT FALSE,
showi d I N BOOLEAN DEFAULT FALSE
)
showlevel

Specify TRUE to show level in BT/ NT expansions.

showqualify
Specify TRUE to show phrase qualifiers.

showpt
Specify TRUE to show preferred terms with an asterisk *.

showid
Specify TRUE to show phrase ids.

The general syntax of the return string for CTX_THES expansion functions is:

{pt indicator:phrase (qualifier):level:phraseid}

Preferred term indicator is an asterisk then a colon at the start of the phrase. The
qualifier is in parentheses after a space at the end of the phrase. Level is a number.

The following is an example return string for turkey the bird:

*: TURKEY (BIRD):1:1234

CTX_THES Package 12-33



PT

PT

This function returns the preferred term of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES. PT(restab I N QUT NOCOPY EXP_TAB,

phrase I N VARCHAR?,

tname | N VARCHAR2 DEFAULT ' DEFAULT')
RETURN var char 2;

Syntax 2: String Result

Returns

Example

CTX_THES. PT(phrase I N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT')
RETURN var char 2;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2( 256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This function returns the preferred term as a string in the form:

{pt}

Consider a thesaurus MY_THES with the following preferred term definition for
automobile:

AUTOMOBI LE
PT CAR

To look up the preferred term for automobile, execute the following code:

decl are
terns varchar2(2000);
begin
terms := ctx_thes.pt(' AUTOMOBILE ,' MY_THES );

12-34 Oracle Text Reference



PT

dbms_out put. put _line(' The prefered termfor autonobile is: '||terns);
end;

Related Topics
OUTPUT_STYLE

Preferred Term (PT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"

CTX_THES Package 12-35



RT

RT

This function returns the related terms of a term in the specified thesaurus.

Syntax 1: Table Result

CTX_THES. RT(restab I N QUT NOCOPY EXP_TAB,
phrase I N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

Returns

Example

CTX_THES. RT(phrase | N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT')
RETURN var char 2;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This function returns a string of related terms in the form:

{red}{rt2}|{rt3}]

Consider a thesaurus MY_THES with the following related term definition for dog:

DOG
RT WOLF
RT HYENA

To look up the related terms for dog, execute the following code:

declare

terns varchar2(2000);
begi n

terms := ctx_thes.rt('DOG,' MY_THES );

dbms_out put. put _line(' The related terns for dog are: '||terms);
end;

12-36 Oracle Text Reference



RT

This codes produces the following output:

The related terns for dog are: {dog}|{wolf}|{hyena}

Related Topics
OUTPUT_STYLE

Related Term (RT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"

CTX_THES Package 12-37



SN

SN

Syntax

Returns

Example

This function returns the scope note of the given phrase.

CTX_THES. SN(phrase | N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT')
RETURN VARCHARZ;

phrase
Specify phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This function returns the scope note as a string.

declare
note varchar2(80);
begin
note := ctx_thes.sn('canera','nythes');
dbms_out put . put _| i ne(" CAVERA');
dbms_out put.put_line(" SN' || note);
end;

sanpl e out put:

CAMERA
SN Optical caneras

12-38 Oracle Text Reference



SYN

SYN
This function returns all synonyms of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
CTX_THES. SYN(restab | N OUT NOCOPY EXP_TAB,
phrase IN VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT');
Syntax 2: String Result
CTX_THES. SYN( phrase | N VARCHAR?,
tname | N VARCHARZ2 DEFAULT ' DEFAULT")
RETURN VARCHARZ;
restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:
type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2(256)
)i
type exp_tab is table of exp_rec index by binary_integer;
See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.
phrase
Specify phrase to lookup in thesaurus.
tname
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of the form:
{syn1}|{syn2}|{syn3} ...
Example

String Result
Consider a thesaurus named ANl MALS that has an entry for cat as follows:
CAT

SYN KI TTY
SYN FELI NE

To look-up the synonym for cat and obtain the result as a string, issue the following
statements:

decl are
synonyns var char 2(2000);
begin

CTX_THES Package 12-39



SYN

synonyns : = ctx_thes.syn(' CAT',' ANl MALS');
dbms_out put . put _l i ne(' the synonym expansion for CAT is: '||synonyns);
end;

This code produces the following output:
the synonym expansi on for CAT is: {CAT}|{KITTY}|{FELI NE}

Table Result

The following code looks up the synonyms for canine and obtains the results in a table.
The contents of the table are printed to the standard output.

decl are
xtab ctx_thes. exp_tab;

begin
ctx_thes.syn(xtab, 'canine', 'ny_thesaurus');
for i in 1..xtab.count |oop

dbns_out put . put _li ne(l pad(" ', 2*xtab(i).xlevel) ||
xtab(i).xrel || " ' || xtab(i).xphrase);
end | oop;
end;

This code produces the following output:

PHRASE CANI NE
PT DOG

SYN PUPPY
SYN MJUTT

SYN MONGREL

Related Topics
OUTPUT_STYLE

SYNonym (SYN) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"

12-40 Oracle Text Reference



THES_TT

THES_TT

Large Thesauri

Syntax

Returns

This procedure finds and returns all top terms of a thesaurus. A top term is defined as
any term which has a narrower term but has no broader terms.

This procedure differs from TT in that TT takes in a phrase and finds the top term for
that phrase, but THES_TT searches the whole thesaurus and finds all top terms.

Since this procedure searches the whole thesaurus, it can take some time on large
thesauri. Oracle recommends that you not call this often for such thesauri. Instead,
your application should call this once, store the results in a separate table, and use
those stored results.

CTX_THES. THES TT(restab | N OUT NOCOPY EXP_TAB,
tname | N VARCHAR? DEFAULT ' DEFAULT');

restab
Specify the name of the expansion table to store the results. This table must be of type
EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
xl evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This procedure returns all top terms and stores them in restab.

CTX_THES Package 12-41



TR

TR

For a given mono-lingual thesaurus, this function returns the foreign language
equivalent of a phrase as recorded in the thesaurus.

Note: Foreign language translation is not part of the ISO-2788 or
ANSI 739.19 thesaural standards. The behavior of TR is specific to
Oracle Text.

Syntax 1: Table Result

CTX_THES. TR(restab | N OUT NOCOPY EXP_TAB,
phrase I N VARCHAR?,
lang | N VARCHAR2 DEFAULT NULL,
tname | N VARCHAR2 DEFAULT ' DEFAULT')

Syntax 2: String Result

Returns

Example

CTX_THES. TR(phrase | N VARCHAR?,
lang  IN VARCHAR? DEFAULT NULL,
tname | N VARCHAR2 DEFAULT ' DEFAULT')

RETURN VARCHAR?;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2( 256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify ' ALL" for all translations of phr ase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This function returns a string of foreign terms in the form:

(Pt} {ft2}]{ft3} ...

Consider a thesaurus MY_THES with the following entries for cat:

12-42 Oracle Text Reference



TR

Related Topics

cat
SPANI SH: gato
FRENCH. chat
SYN lion
SPANI SH: | eon

To look up the translation for cat, you can issue the following statements:

decl are
trans var char 2(2000) ;
span_trans varchar2(2000);
begin

trans := ctx_thes.tr('CAT',"ALL',"' M\Y_THES');
span_trans := ctx_thes.tr(' CAT',"' SPANISH ,' MY_THES')

dbms_out put.put _line('the translations for CAT are: '||trans);
dbms_out put . put _l i ne('the Spanish translations for CAT are: '|]|span_trans);
end;

This codes produces the following output:

the translations for CAT are: {CAT}|{CHAT}| {GATC
the Spanish translations for CAT are: {CAT}|{GATO

OUTPUT_STYLE

Translation Term (TR) Operator in Chapter 3, "Oracle Text CONTAINS Query
Operators"

CTX_THES Package 12-43



TRSYN

TRSYN

For a given mono-lingual thesaurus, this function returns the foreign equivalent of a
phrase, synonyms of the phrase, and foreign equivalent of the synonyms as recorded
in the specified thesaurus.

Note: Foreign language translation is not part of the ISO-2788 or
ANSI Z39.19 thesaural standards. The behavior of TRSYNis specific
to Oracle Text.

Syntax 1: Table Result

CTX_THES. TRSYN(restab | N OUT NOCOPY EXP_TAB,
phrase I N VARCHAR?,
lang | N VARCHAR2 DEFAULT NULL,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

CTX_THES. TRSYN( phr ase | N VARCHAR?,
lang |N VARCHAR2 DEFAULT NULL,
tname | N VARCHAR2 DEFAULT ' DEFAULT')

RETURN VARCHAR?;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2( 256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify ' ALL" for all translations of phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of foreign terms in the form:

(Pt} {ft2}]{ft3} ...

Example
Consider a thesaurus MY_THES with the following entries for cat:

12-44 Oracle Text Reference



TRSYN

Related Topics

cat
SPANI SH: gato
FRENCH. chat
SYN lion
SPANI SH: | eon

To look up the translation and synonyms for cat, you can issue the following
statements:

decl are
synonynms  var char 2(2000);
span_syn varchar2(2000);
begin
synonyns : = ctx_thes.trsyn(' CAT"," ALL',' MY_THES');
span_syn := ctx_thes.trsyn(' CAT',' SPANISH ," MY_THES )

dbms_out put. put _line('all synonyms for CAT are: '||synonyns);
dbms_out put . put _l i ne(' the Spani sh synonyns for CAT are: '||span_syn);
end;

This codes produces the following output:

all synonyms for CAT are: {CAT}|{CHAT}|{GATC | {LI ON}|{ LEON}
the Spani sh synonyns for CAT are: {CAT}|{GATG | {LI ON} | { LEON}

OUTPUT_STYLE

Translation Term Synonym (TRSYN) Operator in Chapter 3, "Oracle Text CONTAINS
Query Operators"

CTX_THES Package 12-45



T

TT

This function returns the top term of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES. TT(restab I N QUT NOCOPY EXP_TAB,
phrase I N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT');

Syntax 2: String Result

Returns

Example

CTX_THES. TT(phrase I N VARCHAR?,
tname | N VARCHAR2 DEFAULT ' DEFAULT')
RETURN var char 2;

restab
Optionally, specify the name of the expansion table to store the results. This table must
be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2(256)

)

type exp_tab is table of exp_rec index by binary_integer;

See Also: "CTX_THES Result Tables and Data Types" in
Appendix A, "Oracle Text Result Tables" for more information
about EXP_TAB.

phrase
Specify phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

This function returns the top term string in the form:

{tt}

Consider a thesaurus MY_THES with the following broader term entries for dog:

DOG
BT1 CANI NE
BT2 MAMVAL
BT3 VERTEBRATE
BT4 AN MAL

To look up the top term for DOG, execute the following code:

decl are
ternms varchar2(2000);
begin
ternms ;= ctx_thes.tt('DOG,' W_THES );

12-46 Oracle Text Reference



T

dbms_out put. put _line(' The top termfor DOGis: '||terns);
end;

This code produces the following output:

The top termfor dog is: {AN MAL}

Related Topics
OUTPUT_STYLE

Top Term (TT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"

CTX_THES Package 12-47



UPDATE_TRANSLATION

UPDATE_TRANSLATION

Syntax

Example

Use this procedure to update an existing translation.

CTX_THES. UPDATE_TRANSLATI ON(t nane in var char 2,
phrase in var char 2,
| anguage in var char 2,
translation in var char 2,

new translation in varchar2);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to update a translation. The phrase must
already exist in the thesaurus or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

translation
Specify the translated term to update. If no such translation exists, an error is raised.

You can specify NULL if there is only one translation for the phrase. An error is raised if
there is more than one translation for the term in the specified language.

new_translation
Optionally, specify the new form of the translated term.

The following code updates the Spanish translation for dog:

begi n
ctx_thes.update_translation('my_thes', 'dog', 'SPANISH.', 'PERRO, 'CAN);
end;

12-48 Oracle Text Reference



13

CTX _ULEXER Package

This chapter provides reference information for using the CTX_ULEXER PL/SQL
package to use with the user-lexer.

CTX_ULEXER declares the following type:

Name Description

WILDCARD_TAB Index-by table type you use to specify the offset of
characters to be treated as wildcard characters by the
user-defined lexer query procedure.

CTX_ULEXER Package 13-1



WILDCARD_TAB

WILDCARD_TAB

TYPE W LDCARD_TAB |'S TABLE OF NUMBER | NDEX BY BI NARY_I NTECER;

Use this index-by table type to specify the offset of those characters in the query word
to be treated as wildcard characters by the user-defined lexer query procedure.

13-2 Oracle Text Reference



14

Oracle Text Executables

This chapter discusses the executables shipped with Oracle Text. The following topics
are discussed:

«  Thesaurus Loader (ctxload)
= Knowledge Base Extension Compiler (ctxkbtc)

= Lexical Compiler (ctxlc)

Thesaurus Loader (ctxload)

Text Loading

Use ct x| oad to do the following with a thesaurus:
= import a thesaurus file into the Oracle Text thesaurus tables.
= export a loaded thesaurus to a user-specified operating-system file.

An import file is an ASCII flat file that contains entries for synonyms, broader terms,
narrower terms, or related terms which can be used to expand queries.

See Also: For examples of import files for thesaurus importing,
see "Structure of ctxload Thesaurus Import File" in Appendix C,
"Text Loading Examples for Oracle Text".

The ct x| oad program no longer supports the loading of text columns. To load files to
a text column in batch, Oracle recommends that you use SQL*Loader.

See Also: "SQL*Loader Example" in Appendix C, "Text Loading
Examples for Oracle Text"

ctxload Syntax

ctxl oad -user usernane[/password][ @ql net _address]
-nane obj ect _nane
-file file_nane

-t hes]
-thescase y|n]
-t hesdunp]

-log file_nane]
-trace]

- pK]

-export]

- updat €]

Oracle Text Executables 14-1



Thesaurus Loader (ctxload)

Mandatory Arguments

-user
Specify the user name and password of the user running ctxload.

The user name and password can be followed immediately by @sglnet_address to
permit logon to remote databases. The value for sqlnet_address is a database connect
string. If the TWO_TASK environment variable is set to a remote database, you do not
have to specify a value for sqlnet_address to connect to the database.

-name object_name
When you use ct x| oad to export/import a thesaurus, use object_name to specify the
name of the thesaurus to be exported /imported.

You use obj ect _nane to identify the thesaurus in queries that use thesaurus
operators.

Note: Thesaurus name must be unique. If the name specified for
the thesaurus is identical to an existing thesaurus, ct x| oad returns
an error and does not overwrite the existing thesaurus.

When you use ct x| oad to update/export a text field, use object_name to specify the
index associated with the text column.

-file file_name
When ct x| oad is used to import a thesaurus, use file_name to specify the name of the
import file which contains the thesaurus entries.

When ct x| oad is used to export a thesaurus, use file_name to specify the name of the
export file created by ct x| oad.

Note: If the name specified for the thesaurus dump file is identical
to an existing file, ct x| oad overwrites the existing file.

Optional Arguments

-thes
Import a thesaurus. Specify the source file with the -file argument. You specify the
name of the thesaurus to be imported with -name.

-thescasey | n

Specify y to create a case-sensitive thesaurus with the name specified by -name and
populate the thesaurus with entries from the thesaurus import file specified by -file. If
-thescase is y (the thesaurus is case-sensitive), ct x| oad enters the terms in the
thesaurus exactly as they appear in the import file.

The default for -thescase is n (case-insensitive thesaurus)

Note: -thescase is valid for use with only the -thes argument.

14-2 Oracle Text Reference



Thesaurus Loader (ctxload)

-thesdump
Export a thesaurus. Specify the name of the thesaurus to be exported with the -name
argument. Specify the destination file with the -file argument.

-log

Specify the name of the log file to which ct x| oad writes any national-language
supported (Globalization Support) messages generated during processing. If you do
not specify a log file name, the messages appear on the standard output.

-trace

Enables SQL statement tracing using ALTER SESSI ON SET SQL_ TRACE TRUE. This
command captures all processed SQL statements in a trace file, which can be used for
debugging. The location of the trace file is operating-system dependent and can be
modified using the USER_DUMP_DEST initialization parameter.

See Also: For more information about SQL trace and the USER _
DUMP_DEST initialization parameter, see Oracle Database
Administrator’s Guide

_pk
Specify the primary key value of the row to be updated or exported.

When the primary key is compound, you must enclose the values within double
quotes and separate the keys with a comma.

-export

Exports the contents of a CLOB or BLOB column in a database table into the operating
system file specified by -file. ct x| oad exports the CLOB or BLOB column in the row
specified by -pk.

When you use the -export, you must specify a primary key with -pk.

-update

Updates the contents of a CLOB or BLOB column in a database table with the contents

of the operating system file specified by -file. ctxload updates the CLOB or BLOB
column in for the row specified by -pk.

When you use -update, you must specify a primary key with -pk.

ctxload Examples

This section provides examples for some of the operations that ct x| oad can perform.

See Also: For more document loading examples, see Appendix C,
"Text Loading Examples for Oracle Text".

Thesaurus Import Example

The following example imports a thesaurus named t ech_doc from an import file
named t ech_t hesaurus. txt:

ctxl oad -user jsmith/123abc -thes -nane tech_doc -file tech_thesaurus.txt

Thesaurus Export Example

The following example dumps the contents of a thesaurus named t ech_doc into a file
named t ech_t hesaur us. out:

ctxl oad -user jsmith/123abc -thesdunp -name tech_doc -file tech_thesaurus. out

Oracle Text Executables 14-3



Knowledge Base Extension Compiler (ctxkbtc)

Knowledge Base Extension Compiler (ctxkbtc)

The knowledge base is the information source Oracle Text uses to perform theme
analysis, such as theme indexing, processing ABOUT queries, and document theme
extraction with the CTX_DOC package. A knowledge base is supplied for English and
French.

With the ct xkbt ¢ compiler, you can do the following;:

= Extend your knowledge base by compiling one or more thesauri with the Oracle
Text knowledge base. The extended information can be application-specific terms
and relationships. During theme analysis, the extended portion of the knowledge
base overrides any terms and relationships in the knowledge base where there is
overlap.

«  Create a new user-defined knowledge base by compiling one or more thesauri. In
languages other than English and French, this feature can be used to create a
language-specific knowledge base.

Note: Only CTXSYS can extend the knowledge base.

See Also: For more information about the knowledge base
packaged with Oracle Text, see
http://otn.oracl e. com products/text/

For more information about the ABOUT operator, see ABOUT
operator in Chapter 3, "Oracle Text CONTAINS Query Operators".

For more information about document services, see Chapter 8§,
"CTX_DOC Package".

Knowledge Base Character Set

Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WEBISO8859P1. You can store an extended knowledge base in another character

set such as US7ASCII.
ctxkbtc Syntax
ctxkbtc -user uname/ passwd
[-name thesnanel [thesnane2 ... thesnanel6]]
[-revert]
[-stoplist stoplistnang]
[-verbose]
[-Tog filenane]
-user

Specify the user name and password for the administrator creating an extended
knowledge base. This user must have write permission to the ORACLE_HOVE directory.

-name thesnamel [thesname2 ... thesname16]

Specify the name(s) of the thesauri (up to 16) to be compiled with the knowledge base
to create the extended knowledge base. The thesauri you specify must already be
loaded with ct x| oad with the "-t hescase Y" option

-revert
Reverts the extended knowledge base to the default knowledge base provided by
Oracle Text.

14-4 Oracle Text Reference



Knowledge Base Extension Compiler (ctxkbtc)

-stoplist stoplistname

Specify the name of the stoplist. Stopwords in the stoplist are added to the knowledge
base as useless words that are prevented from becoming themes or contributing to
themes. You can still add stopthemes after running this command using CTX_

DLL. ADD_STOPTHEME.

-verbose
Displays all warnings and messages, including non-Globalization Support messages,
to the standard output.

-log
Specify the log file for storing all messages. When you specify a log file, no messages
are reported to standard out.

ctxkbtc Usage Notes

= Before running ct xkbt ¢, you must set the NLS_LANGenvironment variable to
match the database character set.

= The user issuing ct xkbt ¢ must have write permission to the ORACLE_HOME,
since the program writes files to this directory.

= Before being compiled, each thesaurus must be loaded into Oracle Text case
sensitive with the "-t hescase Y"optionin ct x| oad.

= Running ct xkbt ¢ twice removes the previous extension.

ctxkbtc Limitations
The ct xkbt ¢ program has the following limitations:

= When upgrading or downgrading your database to a different release, Oracle
recommends that you recompile your extended knowledge base in the new
environment for theme indexing and related features to work correctly.

= Knowledge base extension cannot be performed when theme indexing is being
performed. In addition, any SQL sessions that are using Oracle Text functions
must be exited and reopened to make use of the extended knowledge base.

= There can be only one user extension for each language for each installation. Since
a user extension affects all users at the installation, only the CTXSYS user can
extend the knowledge base.

ctxkbtc Constraints on Thesaurus Terms

Terms are case sensitive. If a thesaurus has a term in uppercase, for example, the same
term present in lowercase form in a document will not be recognized.

The maximum length of a term is 80 characters.

Disambiguated homographs are not supported.

ctxkbtc Constraints on Thesaurus Relations

The following constraints apply to thesaurus relations:
= BTG and BTP are the same as BT. NTG and NTP are the same as NT.
= Only preferred terms can have a BT, NTs or RTs.

« Ifaterm has no USE relation, it will be treated as its own preferred term.

Oracle Text Executables 14-5



Knowledge Base Extension Compiler (ctxkbtc)

« Ifaset of terms are related by SYN relations, only one of them may be a preferred
term.

= An existing category cannot be made a top term.
= There can be no cycles in BT and NT relations.

= A term can have at most one preferred term and at most one BT. A term may have
any number of NTs.

= AnRT of a term cannot be an ancestor or descendent of the term. A preferred term
may have any number of RTs up to a maximum of 32.

« The maximum height of a tree is 16 including the top term level.

= When multiple thesauri are being compiled, a top term in one thesaurus should
not have a broader term in another thesaurus.

Note: The thesaurus compiler will tolerate certain violations of
the preceding rules. For example, if a term has multiple BTs, it
ignores all but the last one it encounters.

Similarly, BTs between existing knowledge base categories will only
result in a warning message.

Such violations are not recommended since they might produce
undesired results.

Extending the Knowledge Base

You can extend the supplied knowledge base by compiling one or more thesauri with
the Oracle Text knowledge base. The extended information can be application-specific
terms and relationships. During theme analysis, the extended portion of the
knowledge base overrides any terms and relationships in the knowledge base where
there is overlap.

When extending the knowledge base, Oracle recommends that new terms be linked to
one of the categories in the knowledge base for best results in theme proving when
appropriate.

See Also: For complete description of the supplied knowledge
base, see htt p: // ot n. oracl e. com products/text/

If new terms are kept completely disjoint from existing categories, fewer themes from
new terms will be proven. The result of this is poorer precision and recall with ABOUT
queries as well poor quality of gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term for
the new terms.

Example for Extending the Knowledge Base

You purchase a medical thesaurus medt hes containing a hierarchy of medical terms.
The four top terms in the thesaurus are the following:

= Anesthesia and Analgesia
= Anti-Allergic and Respiratory System Agents
= Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

= Antineoplastic and Immunosuppressive Agents

14-6 Oracle Text Reference



Knowledge Base Extension Compiler (ctxkbtc)

To link these terms to the existing knowledge base, add the following entries to the
medical thesaurus to map the new terms to the existing health and medicine branch:

heal th and nedicine
NT Anesthesia and Anal gesi a
NT Anti-Allergic and Respiratory System Agents
NT Anti-Inflamammat ory Agents, Antirheunatic Agents, and Inflamation Mediators
NT Antineopl astic and | munosuppressive Agents

Set your Globalization Support language environment variable to match the database
character set. For example, if your database character set is WESISO8859P1 and you
are using American English, set your NLS_LANG as follows:

setenv NLS_LANG AVMERI CAN_AMERI CA. VE8I SOB859P1

Assuming the medical thesaurus is in a file called med.thes, you load the thesaurus as
medt hes with ct x| oad as follows:

ctxload -thes -thescase y -name nmedthes -file med.thes -user ctxsys/ctxsys

To link the loaded thesaurus medt hes to the knowledge base, use ct xkbt ¢ as
follows:

ctxkbtc -user ctxsys/ctxsys -name nedthes

Adding a Language-Specific Knowledge Base

You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single-byte whitespace delimited language,
including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and
the generation of themes, gists, and theme summaries with the CTX_DOCPL/SQL
package.

You extend theme functionality by adding a user-defined knowledge base. For
example, you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:
1. Load your custom thesaurus using ct x| oad.

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus using ct xkbt c:

ctxkbtc -user ctxsys/ctxsys -name ny_| ang_t hes

This command compiles your language-specific knowledge base from the loaded
thesaurus. To use this knowledge base for theme analysis during indexing and ABOUT
queries, specify the NLS_LANGlanguage as the THEME_LANGUAGE attribute value for
the BASI C_LEXER preference.

Limitations for Adding a Knowledge Base
The following limitations hold for adding knowledge bases:

= Oracle Text supplies knowledge bases in English and French only. You must
provide your own thesaurus for any other language.

= You can only add knowledge bases for languages with single-byte character sets.
You cannot create a knowledge base for languages which can be expressed only in
multibyte character sets. If the database is a multibyte universal character set, such

Oracle Text Executables 14-7



Lexical Compiler (ctxic)

as UTF-8, the NLS_LANG parameter must still be set to a compatible single-byte
character set when compiling the thesaurus.

= Adding a knowledge base works best for whitespace delimited languages.

= You can have at most one knowledge base for each Globalization Support
language.

= Obtaining hierarchical query feedback information such as broader terms,
narrower terms and related terms does not work in languages other than English
and French. In other languages, the knowledge bases are derived entirely from
your thesauri. In such cases, Oracle recommends that you obtain hierarchical
information directly from your thesauri.

Order of Precedence for Multiple Thesauri

When multiple thesauri are to be compiled, precedence is determined by the order in
which thesauri are listed in the arguments to the compiler (most preferred first). A
user thesaurus always has precedence over the built-in knowledge base.

Size Limits for Extended Knowledge Base

The following table lists the size limits associated with creating and compiling an
extended knowledge base:

Description of Parameter Limit
Number of RTs (from + to) for each term 32
Number of terms for each single hierarchy (for 64000

example, all narrower terms for a given top term)
Number of new terms in an extended knowledge base 1 million

Number of separate thesauri that can be compiled into 16
a user extension to the KB

Lexical Compiler (ctxlc)

The Lexical Compiler (ct x| ¢) is a command-line utility that enables you to create
your own Chinese and Japanese lexicons (dictionaries). Such a lexicon may either be
generated from a user-supplied word list or from the merging of a word list with the
system lexicon for that language.

ct x| ¢ creates the new lexicon in your current directory. The new lexicon consists of
three files, dr ol d. dat, dr ol k. dat ,and drol i . dat. To change your system lexicon
for Japanese or Chinese, overwrite the system lexicon with these files.

The Lexical Compiler can also generate wordlists from the system lexicons for
Japanese and Chinese, enabling you to see their contents. These word lists go to the
standard output and thus can be redirected into a file of your choice.

After overwriting the system lexicon, you need to re-create your indexes before
querying them.

Syntax of ctxlc
ct x| ¢ has the following syntax:

ctxlc -ja | -zh [ -n] -ics character_set -i input_file

14-8 Oracle Text Reference



Lexical Compiler (ctxic)

ctxlc -ja | -zh -ocs character_set [ > output_file ]

Mandatory Arguments

-ja|-zh
Specify the language of the lexicon to modify or create. -] a indicates the Japanese
lexicon; - zh indicates the Chinese lexicon.

-ics character_set
Specify the character set of the input file denoted by - i input_file. input_file is the list
of words, one word to a line, to use in creating the new lexicon.

-i input_file
Specify the file containing words to use in creating a new lexicon.

-0cs character_set
Specify the character set of the text file to be output.

Optional Arguments

-n

Specify - n to create a new lexicon that consists only of user-supplied words taken
from input_file. If - n is not specified, then the new lexicon consists of a merge of the
system lexicon with input_file. Also, when - n is not selected, a text file called

drol t. dat, is created in the current directory to enable you to inspect the contents of
the merged lexicon without having to issue another ct x| ¢ command.

Performance Considerations

You can add up to 1,000,000 new words to a lexicon. However, creating a very large
lexicon can cause a performance hit in indexing and querying. Performance is best
when the lexicon character set is UTF-8. There is no performance impact on the
Chinese or Japanese V-gram lexers, as they do not use lexicons.

ctxlc Usage Notes

Example

Oracle recommends the following practices with regard to ct xI c:
= Save your plain text dictionary file in your environment for emergency use.

=« When upgrading or downgrading your database to a different release, recompile
your plain text dictionary file in the new environment so that the user lexicon will
work correctly.

In this example, you create a new Japanese lexicon from the file j adi ct . t xt, a word
list that uses the JA16EUC character set. Because you are not specifying - n, the new
lexicon is the result of merging j adi ct . t xt with the system Japanese lexicon. You
then replace the existing Japanese lexicon with the new, merged one.

%ctxlc -ja -ics JALIGEUC -i jadict.txt

This creates new files in the current directory:

%ls

Oracle Text Executables 14-9



Lexical Compiler (ctxic)

drol d. dat
drol k. dat
droli.dat
drolt.dat

The system lexicon files for Japanese and Chinese are named dr ol dxx. dat

dr ol kxx. dat, and dr ol i xx. dat , where xx is either JA (for Japanese) or ZH (for
Chinese). Rename the three new files and copy them to the directory containing the
system Japanese lexicon.

% nv drol d.dat drol dJA dat
% mv drol k. dat drol kJA. dat
%nmv droli.dat droliJA dat
%cp *dat $ORACLE_HOVE/ ct x/ data/j al x

This replaces the system Japanese lexicon with one that is a merge of the old system
lexicon and your wordlist from j adi ct . t xt .

You can also use ct x| ¢ to get a dump of a system lexicon. This example dumps the
Chinese lexicon to a file called new_chi nese_di ct . t xt in the current directory:

%ctxlc -zh -ocs UTF8 > new _chinese_dict.txt

This creates a file, new_j apanese. di ct . t xt, using the UTF8 character set, in the
current directory.

14-10 Oracle Text Reference



15

Oracle Text Alternative Spelling

This chapter describes various ways that Oracle Text handles alternative spelling of
words. It also documents the alternative spelling conventions that Oracle Text uses in
the German, Danish, and Swedish languages.

The following topics are covered:
= Overview of Alternative Spelling Features
= Opverriding Alternative Spelling Features

= Alternative Spelling Conventions

Overview of Alternative Spelling Features

Some languages have alternative spelling forms for certain words. For example, the
German word Schoen can also be spelled as Schon.

The form of a word is either original or normalized. The original form of the word is
how it appears in the source document. The normalized form is how it is transformed,
if it is transformed at all. Depending on the word being indexed and which system
preferences are in effect (these are discussed in this chapter), the normalized form of a
word may be the same as the original form. Also, the normalized form may comprise
more than one spelling. For example, the normalized form of Schoen is both Schoen
and Schon.

Oracle Text handles indexing of alternative word forms in the following ways:
= Alternate Spelling—indexing of alternative forms is enabled

« Base-Letter Conversion—accented letters are transformed into non-accented
representations

= New German Spelling—reformed German spelling is accepted

You enable these features by specifying the appropriate attribute to the BASI C_LEXER.
For instance, you enable Alternate Spelling by specifying either GERMAN, DANI SH, or
SVEEDI SH for the ALTERNATE_SPELLI NGattribute. As an example, here is how to
enable Alternate Spelling in German:

begin

ctx_ddl.create_preference(' GERVAN_LEX' , 'BASIC LEXER );

ctx_ddl.set_attribute(' GERVAN LEX' , ' ALTERNATE SPELLING , ' GERVAN );
end,

To disable alternate spelling, use the CTX_DDL. UNSET_ATTRI BUTE procedure as
follows:

begin

Oracle Text Alternative Spelling 15-1



Overview of Alternative Spelling Features

ctx_ddl . unset _attribute(' GERVMAN_LEX , ' ALTERNATE_SPELLING );
end;

Oracle Text converts query terms to their normalized forms before lookup. As a result,
users can query words with either spelling. If Schoen has been indexed as both Schoen
and Schén, a query with Schin returns documents containing either form.

Alternate Spelling

When Swedish, German, or Danish has more than one way of spelling a word, Oracle
Text normally indexes the word in its original form; that is, as it appears in the source
document.

When Alternate Spelling is enabled, Oracle Text indexes words in their normalized
form. So, for example, Schoen is indexed both as Schoen and as Schén, and a query on
Schoen will return documents containing either spelling. (The same is true of a query
on Schon.)

To enable Alternate Spelling, set the BASI C_LEXER attribute ALTERNATE_SPELLI NG
to GERMAN, DANI SH, or SWEDI SH. See BASIC_LEXER on page 2-27 for more
information.

Base-Letter Conversion

Besides alternative spelling, Oracle Text also handles base-letter conversions. With
base-letter conversions enabled, letters with umlauts, acute accents, cedillas, and the
like are converted to their basic forms for indexing, so fiancé is indexed both as fiancé
and as fiance, and a query of fiancé returns documents containing either form.

To enable base-letter conversions, set the BASI C_LEXER attribute BASE LETTER to
YES. See BASIC_LEXER on page 2-27 for more information.

When Alternate Spelling is also enabled, Base-Letter Conversion may need to be
overridden to prevent unexpected results. See Overriding Base-Letter
Transformations with Alternate Spelling on page 15-3 for more information.

Generic Versus Language-Specific Base-Letter Conversions

The BASE_LETTER_TYPE attribute affects the way base-letter conversions take place.
It has two possible values: GENERI Cor SPECI FI C.

The GENERI Cvalue is the default and specifies that base letter transformation uses one
transformation table that applies to all languages.

The SPECI FI Cvalue means that a base-letter transformation that has been specifically
defined for your language will be used. This enables you to use accent-sensitive
searches for words in your own language, while ignoring accents that are from other
languages.

For example, both the GENERI Cand the Spanish SPECI FI Ctables will transform é
into e. However, they treat the letter i distinctly. The GENERI Ctable treats 7 as an n
with an accent (actually, a tilde), and so transforms 7i to n. The Spanish SPECI FI C
table treats 7i as a separate letter of the alphabet, and thus does not transform it.

New German Spelling

In 1996, new spelling rules for German were approved by representatives from all
German-speaking countries. For example, under the spelling reforms, Potential
becomes Potenzial, Schiffahrt becomes Schifffahrt, and schneuzen becomes schniuzen.

15-2 Oracle Text Reference



Alternative Spelling Conventions

When the BASI C_LEXER attribute NEW GERMAN_SPELLI NGis set to YES, then a
CONTAI NS query on a German word that has both new and traditional forms will
return documents matching both forms. For example, a query on Potential returns
documents containing both Potential and Potenzial. The default setting is NO.

Note: Under reformed German spelling, many words
traditionally spelled as one word, such as soviel, are now spelled as
two (so viel). Currently, Oracle Text does not make these
conversions, nor conversions from two words to one (for example,
weh tun to wehtun).

The case of the transformed word is determined from the first two characters of the
word in the source document; that is, schiffahrt becomes schifffahrt, Schiffahrt becomes
Schifffahrt, and SCHIFFAHRT becomes SCHIFFFAHRT.

As many new German spellings include hyphens, it is recommended that users
choosing NEW GERVMAN_SPEL LI NGdefine hyphens as pri ntj oi ns.

See BASIC_LEXER on page 2-27 for more information on setting this attribute.

Overriding Alternative Spelling Features

Even when alternative spelling features have been specified by lexer preference, it is
possible to override them. Overriding takes the following form:

«  Overriding of base-letter conversion when Alternate Spelling is used, to prevent
characters with alternate spelling forms, such as ii, d, and 4, from also being
transformed to the base letter forms.

Overriding Base-Letter Transformations with Alternate Spelling

Transformations caused by turning on al t er nat e_spel | i ng are performed before
those of base_| et t er , which can sometimes cause unexpected results when both are
enabled.

When Alternate Spelling is enabled, Oracle Text converts two-letter forms to
single-letter forms (for example, ue to ii), so that words can be searched in both their
base and alternate forms. Therefore, with Alternate Spelling enabled, a search for
Schoen will return documents with both Schoen and Schon.

However, when Base-letter Transformation is also enabled, the ¢ in Schon is
transformed into an o, producing the non-existent word (in German, anyway) Schon,
and the word is indexed in all three forms.

To prevent this secondary conversion, set the OVERRI DE_BASE_LETTER attribute to
TRUE.

OVERRI DE_BASE_LETTER only affects letters with umlauts; accented letters, for
example, are still transformed into their base forms.

For more on BASE_LETTER, see Base-Letter Conversion on page 15-2.

Alternative Spelling Conventions

The following sections show the alternative spelling substitutions used by Oracle Text.

Oracle Text Alternative Spelling 15-3



Alternative Spelling Conventions

German Alternate Spelling Conventions

The German alphabet is the English alphabet plus the additional characters: & 6 i f3.
The following table lists the alternate spelling conventions Oracle Text uses for these

characters.

Character Alternate Spelling Substitution
a ae

u ue

0 oe

A AE

U UE

O OE

it ss

Danish Alternate Spelling Conventions

The Danish alphabet is the Latin alphabet without the w, plus the special characters: ¢
@ d. The following table lists the alternate spelling conventions Oracle Text uses for
these characters.

Character Alternate Spelling Substitution
x ae

%] oe

a aa

£ AE

(%) OE

A AA

Swedish Alternate Spelling Conventions

The Swedish alphabet is the English alphabet without the w, plus the additional
characters: a & 6. The following table lists the alternate spelling conventions Oracle
Text uses for these characters.

Old Spelling New (Reformed) Spelling
a ae

a aa

0 oe

A AE

A AA

O OE

15-4 Oracle Text Reference



A

Oracle Text Result Tables

This appendix describes the structure of the result tables used to store the output
generated by the procedures in the CTX_QUERY, CTX_DOC, and CTX_THES packages.

The following topics are discussed in this appendix:
« CTX_QUERY Result Tables

«  CTX_DOC Result Tables

«  CTX_THES Result Tables and Data Types

CTX_QUERY Result Tables

For the CTX_QUERY procedures that return results, tables for storing the results must
be created before the procedure is called. The tables can be named anything, but must
include columns with specific names and data types.

This section describes the following types of result tables, and their required columns:
« EXPLAIN Table
« HFEEDBACK Table

EXPLAIN Table

Table A-1 describes the structure of the table to which CTX_QUERY.EXPLAIN writes
its results.

Table A-1 EXPLAIN Result Table

Column Name Datatype Description

EXPLAI N_I D VARCHAR2(30)  The value of the explain_id argument specified in the
FEEDBACK call.

I D NUMBER A number assigned to each node in the query

execution tree. The root operation node has ID =1.
The nodes are numbered in a top-down, left-first
manner as they appear in the parse tree.

PARENT_I D NUVBER The ID of the execution step that operates on the
output of the ID step. Graphically, this is the parent
node in the query execution tree. The root operation
node (ID =1) has PARENT_ID = 0.

OPERATI ON VARCHAR2(30)  Name of the internal operation performed. Refer to
Table A-2 for possible values.

Oracle Text Result Tables A-1



CTX_QUERY Result Tables

Table A-1 (Cont.) EXPLAIN Result Table

Column Name Datatype Description

OPTI ONS VARCHAR2(30)  Characters that describe a variation on the operation
described in the OPERATION column. When an
OPERATION has more than one OPTIONS
associated with it, OPTIONS values are
concatenated in the order of processing. See
Table A-3 for possible values.

OBJECT_NAME VARCHAR2(80)  Section name, wildcard term, weight, or threshold
value or term to lookup in the index.

POsSI TI ON NUMVBER The order of processing for nodes that all have the
same PARENT_ID.The positions are numbered in
ascending order starting at 1.

CARDI NALI TY NUMBER Reserved for future use. You should create this
column for forward compatibility.

Operation Column Values
Table A-2 shows the possible values for the OPERATI ON column of the EXPLAI Ntable.

Table A—2 EXPLAIN Table OPERATION Column

Operation Value Query Operator Equivalent Symbol
ABOUT ABOUT (none)
ACCUMULATE ACCUM ,

AND AND &

COWPCOSI TE (none) (none)

EQUI VALENCE EQUI V =

M NUS M NUS -

NEAR NEAR ;

NOT NOT ~

NO H TS (no hits will result from this query)

R OR |

PHRASE (a phrase term)

SECTI ON (section)

THRESHOLD > >

VEI GHT * *

W THI N within (none)

WORD (a single term)

OPTIONS Column Values

The following table list the possible values for the OPTI ONS column of the EXPLAI N
table.

Table A-3 EXPLAIN Table OPTIONS Column

Options Value Description
(%) Stem

A-2 Oracle Text Reference



CTX_QUERY Result Tables

Table A—3 (Cont.) EXPLAIN Table OPTIONS Column

Options Value Description

(?) Fuzzy

(1) Soundex

(7 Order for ordered Near.

(P Order for unordered Near.

(n) A number associated with the max_span parameter for the

Near operator.

HFEEDBACK Table
Table A—4 describes the table to which CTX_QUERY.HFEEDBACK writes its results.

Table A~4 HFEEDBACK Results Table

Column Name Datatype Description

FEEDBACK_| D VARCHAR2( 30) The value of the feedback_id argument
specified in the HFEEDBACK call.

I D NUMBER A number assigned to each node in the
query execution tree. The root operation
node has ID =1. The nodes are numbered in
a top-down, left-first manner as they appear
in the parse tree.

PARENT_I D NUMBER The ID of the execution step that operates on
the output of the ID step. Graphically, this is
the parent node in the query execution tree.
The root operation node (ID =1) has

PARENT_ID =0.
OPERATI ON VARCHAR2( 30) Name of the internal operation performed.
Refer to Table A-5 for possible values.
OPTI ONS VARCHAR2( 30) Characters that describe a variation on the

operation described in the OPERATION
column. When an OPERATION has more
than one OPTIONS associated with it,
OPTIONS values are concatenated in the
order of processing. See Table A-6 for
possible values.

OBJECT_NAME VARCHAR2( 80) Section name, wildcard term, weight,
threshold value or term to lookup in the
index.

PCsSI TI ON NUVBER The order of processing for nodes that all

have the same PARENT_ID.The positions are
numbered in ascending order starting at 1.

BT_FEEDBACK CTX_FEEDBACK_TYPE Stores broader feedback terms. See
Table A-7.

PT_FEEDBACK CTX_FEEDBACK_TYPE Stores related feedback terms. See Table A-7.

NT_FEEDBACK CTX_FEEDBACK_TYPE Stores narrower feedback terms. See
Table A-7.

Operation Column Values

Table A-5 shows the possible values for the OPERATI ON column of the HFEEDBACK
table.

Oracle Text Result Tables A-3



CTX_QUERY Result Tables

Table A-5 HFEEDBACK Results Table OPERATION Column

Operation Value Query Operator Equivalent Symbol
ABOUT ABOUT (none)
ACCUMULATE ACCUM ,

AND AND &
EQUI VALENCE EQUI V =

M NUS M NUS -
NEAR NEAR

NOT NOT ~

OR OR

SECTI ON (section)

TEXT word or phrase of a text query

THEME word or phrase of an ABOUT query
THRESHOLD > >

VEEI GHT * *

W THI N within (none)
OPTIONS Column Values

The following table list the values for the OPTI ONS column of the HFEEDBACK table.

Table A-6 HFEEDBACK Results Table OPTIONS Column

Options Value Description

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with the max_span parameter for the

Near operator.

CTX_FEEDBACK_TYPE

The CTX_FEEDBACK_TYPE is a nested table of objects. This datatype is pre-defined in
the CTXSYS schema. Use this type to define the columns BT_FEEDBACK, RT_
FEEDBACK, and NT_FEEDBACK.

The nested table CTX_FEEDBACK_TYPE holds objects of type CTX_FEEDBACK_| TEM_
TYPE, which is also pre-defined in the CTXSYS schema. This object is defined with
three members and one method as follows:

Table A—-7 CTX_FEEDBACK_ITEM_TYPE

CTX_FEEDBACK_ITEM_TYPE

Members and Methods Type Description

text member Feedback term.
cardinality member (reserved for future use.)
score member (reserved for future use.)

The SQL code that defines these objects is as follows:

A-4 Oracle Text Reference



CTX_DOC Result Tables

CREATE OR REPLACE TYPE ctx_feedback_type AS TABLE OF ctx_feedback_item type;

CREATE OR REPLACE TYPE ctx_feedback_itemtype AS OBJECT

(text VARCHAR2( 80) ,
cardinal ity NUMBER,
score NUMBER,

MAP MEMBER FUNCTI ON rank RETURN REAL,
PRAGVA RESTRI CT_REFERENCES (rank, RNDS, WADS, RNPS, WWAPS)

)i

CREATE OR REPLACE TYPE BODY ctx_feedback_itemtype AS
MAP MEMBER FUNCTI ON rank RETURN REAL 1S
BEG N
RETURN score;
END r ank;
END;

See Also: For an example of how to select from the HFEEDBACK
table and its nested tables, refer to CTX_QUERY.HFEEDBACK in
Chapter 10, "CTX_QUERY Package".

CTX_DOC Result Tables

Filter Table

The CTX_DCC procedures return results stored in a table. Before calling a procedure,
you must create the table. The tables can be named anything, but must include
columns with specific names and data types.

This section describes the following result tables and their required columns:
= Filter Table

= Gist Table

= Highlight Table

= Markup Table

= Theme Table

A filter table stores one row for each filtered document returned by CTX_
DOC FILTER. Filtered documents can be plain text or HTML.

When you call CTX_DCC. FI LTERfor a document, the document is processed through
the filter defined for the text column and the results are stored in the filter table you
specify.

Filter tables can be named anything, but must include the following columns, with
names and datatypes as specified:

Table A-8 FILTER Result Table

Column Name Type Description

QUERY_I D NUMBER The identifier for the results generated by a particular
call to CTX_DCC. FI LTER (only populated when table
is used to store results from multiple FILTER calls)

DOCUMENT CLOB Text of the document, stored in plain text or HTML.

Oracle Text Result Tables A-5



CTX_DOC Result Tables

Gist Table

A Gist table stores one row for each Gist/theme summary generated by CTX_
DOC. G ST.

Gist tables can be named anything, but must include the following columns, with
names and data types as specified:

Table A-9 Gist Table

Column Name Type Description
QUERY_| D NUMBER Query ID.
POV VARCHAR2(80) Document theme. Case depends of how themes

were used in document or represented in the
knowledge base.

POV has the value of GENERIC for the document
GIST.

asT CLOB Text of Gist or theme summary, stored as plain text

Highlight Table

A highlight table stores offset and length information for highlighted terms in a
document. This information is generated by CTX_DOC.HIGHLIGHT. Highlighted
terms can be the words or phrases that satisfy a word or an ABOUT query.

If a document is formatted, the text is filtered into either plain text or HTML and the
offset information is generated for the filtered text. The offset information can be used
to highlight query terms for the same document filtered with CTX_DOC.FILTER.

Highlight tables can be named anything, but must include the following columns,
with names and datatypes as specified:

Table A-10 Highlight Table

Column

Name Type Description

QUERY_I D NUMBER The identifier for the results generated by a particular
call to CTX_DOC.HIGHLIGHT (only populated when
table is used to store results from multiple HIGHLIGHT
calls)

OFFSET NUVBER The position of the highlight in the document, relative to
the start of document which has a position of 1.

LENGTH NUVBER The length of the highlight.

Markup Table

A markup table stores documents in plain text or HTML format with the query terms
in the documents highlighted by markup tags. This information is generated when
you call CTX_DOC.MARKUP.

Markup tables can be named anything, but must include the following columns, with
names and datatypes as specified:

A-6 Oracle Text Reference



CTX_THES Result Tables and Data Types

Table A-11 Markup Table

Column Name Type Description

QUERY_I D NUMBER The identifier for the results generated by a particular
call to CTX_DOC. MARKUP (only populated when table
is used to store results from multiple MARKUP calls)

DOCUNVENT CcLOB Marked-up text of the document, stored in plain text or
HTML format

Theme Table

A theme table stores one row for each theme generated by CTX_DOC.THEMES. The
value stored in the THEME column is either a single theme phrase or a string of parent
themes, separated by colons.

Theme tables can be named anything, but must include the following columns, with
names and data types as specified:

Table A-12 Theme Table

Column

Name Type Description

QUERY_ID  NUMBER Query ID

THEME VARCHAR2(2000) Theme phrase or string of parent themes separated by
colons (2).

ViEI GHT NUMBER Weight of theme phrase relative to other theme phrases

for the document.

Token Table

A token table stores the text tokens for a document as output by the CTX_
DOC. TOKENS procedure. Token tables can be named anything, but must include the
following columns, with names and data types as specified.

Table A-13 Token Table

Column

Name Type Description

QUERY_I D NUMBER The identifier for the results generated by a particular
call to CTX_DOC.HIGHLIGHT (only populated when
table is used to store results from multiple HIGHLIGHT
calls)

TOKEN VARCHAR2( 64) The token string in the text.

OFFSET NUVBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUMBER The character length of the token.

CTX_THES Result Tables and Data Types

The CTX_THES expansion functions such as BT, NT, and SYN can return the expansions
in a table of type EXP_TAB. You can specify the name of your table with the restab
argument.

Oracle Text Result Tables A-7



CTX_THES Result Tables and Data Types

EXP_TAB Table Type
The EXP_TAB table type is a table of rows of type EXP_REC.

The EXP_REC and EXP_TAB types are defined as follows in the CTXSYS schema:

type exp_rec is record (
xrel varchar2(12),
x| evel nunber,
xphrase varchar 2(256)

)
type exp_tab is table of exp_rec index by binary_integer;

When you call a thesaurus expansion function and specify restab, the system returns
the expansion as an EXP_TAB table. Each row in this table is of type EXP_REC and
represents a word or phrase in the expansion. The following table describes the fields
in EXP_REC:

EXP_REC Field Description

xr el The xr el field contains the relation of the term to the input term (for
example, 'SYN', 'PT', 'RT', and so on). The xrel value is PHRASE when
the input term appears in the expansion. For translations, the xrel value
is the language.

x| evel The x| evel field is the level of the relation. This is used mainly when
xrel is a hierarchical relation (BT*/NT¥).

The x| evel field is 0 when xrel is PHRASE.
The x| evel field is 2 for translations of synonyms under TRSYN.

The x| evel field is 1 for operators that are not hierarchical, such as
PT and RT.

xphr ase The xphr ase is the related term. This includes a qualifier in
parentheses, if one exists for the related term. Compound terms are
not de-compounded.

A-8 Oracle Text Reference



B

Oracle Text Supported Document Formats

This appendix contains a list of the document formats supported by the Inso filtering
technology. The following topics are covered in this appendix:

= About Document Filtering Technology
= Supported Document Formats

= Restrictions on Format Support

About Document Filtering Technology

Oracle Text uses document filtering technology licensed from Stellent Chicago, Inc.
This filtering technology enables you to index most document formats. This
technology also enables you to convert documents to HTML for document
presentation with the CTX_DOC package. The software is based in part on the work of
the Independent JPEG Group.

See Also: For a list of supported formats, see "Supported
Document Formats" on page B-2.

To use Inso filtering for indexing and DML processing, you must specify the | NSO_
FI LTER object in your filter preference.

To use Inso filtering technology for converting documents to HTML with the CTX_DOC
package, you need not use the | NSO_FI LTER indexing preference, but you must still
set up your environment to use this filtering technology as described in this appendix.

To convert documents to HTML format, Inso filtering technology relies on shared
libraries and data files licensed from Stellent Chicago, Inc.

The following sections discuss the supported platforms and how to enable Inso
filtering on the different platforms.

Latest Updates for Patch Releases

The supported platforms and formats listed in this appendix apply for this release.
These supported formats are updated for patch releases. To view the latest formats,
refer to the Oracle Technology Network:

http://otn.oracle. com products/text/content. htn

Supported Platforms

Several platforms can take advantage of Inso filter technology.

Oracle Text Supported Document Formats B-1



Supported Document Formats

Supported Platforms
Inso filter technology is supported on the following platforms:

«  Sun Solaris on SPARC 32-bit and 64-bit (6 - 9.0)
« IBM AIX 32-bit and 64-bit (4.3,5.1, 5.2)
«  HP-UX 32-bit and 64-bit (10.0 - 11.0)
« Red Hat Linux on Intel x86 (7.1, 7.2, 8.0, 9.0)
«  SuSE Linux on Intel x86 (7.x and 8.x)
«  Microsoft Windows (32-bit)
«  Windows NT (4.0 and above)
= Windows 95
= Windows 98
= Windows 98SE
=« Windows ME
= Windows 2000
=« Windows XP
= Windows 2003
«  Microsoft Windows (64-bit)
= Windows .Net Server 2003 Enterprise Edition

Environment Variables

All environment variables related to Inso filtering must be made visible to Oracle Text.

Requirements for UNIX Platforms
The following requirements apply to Solaris, IBM AIX, HP/UX, and Linux platforms:

= Set the $HOME environment variable to enable Inso technology to write files to a
subdirectory (. 0i t ) in $HOME directory.

Supported Document Formats

The tables in this section list the document formats that Oracle Text supports for
filtering. Document filtering is used for indexing, DML, and for converting documents
to HTML with the CTX_DOC package. This filtering technology is based on Outside In
HTML Export and Outside In Viewer Technology, licensed from Stellent Chicago, Inc.

Note: These lists do not represent the complete list of formats that
Oracle Text is able to process. The external filter framework enables
Oracle Text to process any document format, provided an external
filter exists that can filter all the formats to text.

B-2 Oracle Text Reference



Supported Document Formats

Word Processing Formats - Generic Text

Format Version

ASCII Text 7- & 8-bit

ANSI Text 7- & 8-bit

Unicode Text All versions

HTML Versions through 3.0 (some
limitations)

IBM Revisable Form Text All versions

IBM FFT All versions

Microsoft Rich Text Format (RTF)

All versions

WML Version 5.2
Word Processing Formats - DOS

Format Version

DEC WPS Plus (WPL) Versions through 4.1

DEC WPS Plus (DX) Versions through 4.0

DisplayWrite 2 & 3 (TXT) All versions

DisplayWrite 4 & 5 Versions through Release 2.0

Enable Versions 3.0, 4.0 and 4.5

First Choice Versions through 3.0

Framework Version 3.0

IBM Writing Assistant Version 1.01

Lotus Manuscript Version 2.0

MASSI1 Versions through 8.0

Microsoft Word Versions through 6.0

Microsoft Works Versions through 2.0

MultiMate Versions through 4.0

Navy DIF All versions

Nota Bene Version 3.0

Novell Word Perfect Versions through 6.1

Office Writer Version 4.0 to 6.0

PC-File Letter Versions through 5.0

PC-File+ Letter Versions through 3.0

PFS:Write Versions A, B, and C

Professional Write
Q&A
Samna Word

Versions through 2.1
Version 2.0

Versions through Samna Word
IV+

Oracle Text Supported Document Formats B-3



Supported Document Formats

Format Version

SmartWare II Version 1.02

Sprint Versions through 1.0

Total Word Version 1.2

Volkswriter 3 & 4 Versions through 1.0

Wang PC (IWP) Versions through 2.6
WordMARC Versions through Composer Plus
WordStar Versions through 7.0

WordStar 2000 Versions through 3.0

XyWrite Versions through III Plus

Word Processing Formats - Windows

Format Version

Hangul Version 97

Novell/Corel WordPerfect for Windows Versions through 11

JustWrite Versions through 3.0
JustSystems Ichitaro Version 5.0, 6.0, 8.0, 9.0, and 10.0
Legacy Versions through 1.1

Lotus AMI/AMI Professional Versions through 3.1

Lotus WordPro (Non-32-bit-Windows platforms Version 96 through Millennium
are Text-only) Edition 9.6

Microsoft Works for Windows Versions through 4.0

Microsoft Windows Write Versions through 3.0

Microsoft Word for Windows Versions through 2003
Microsoft WordPad All versions

Novell Perfect Works Version 2.0

Professional Write Plus Version 1.0

Q&A Write for Windows Version 3.0

StarOffice Writer for Windows and UNIX (Text ~ Version 5.2

only)

WordStar for Windows Version 1.0

Adobe FrameMaker (MIF) Version 6.0

Word Processing Formats - Macintosh

Format Version

Microsoft Word for Mac Versions 3.0 - 4.0, 98, 2001
Novell WordPerfect Versions 1.02 through 3.0
Microsoft Works for Mac Versions through 2.0

B-4 Oracle Text Reference



Supported Document Formats

Format Version

MacWrite 11 Version 1.1

Spreadsheet Formats

Format Version

Enable Versions 3.0, 4.0 and 4.5
First Choice Versions through 3.0
Framework Version 3.0

Lotus 1-2-3 (DOS & Windows) Versions through 5.0

Lotus 1-2-3 for SmartSuite Version 97 - Millennium 9.6
Lotus 1-2-3 Charts (DOS & Windows)  Versions through 5.0

Lotus 1-2-3 (0OS/2) Versions through 2.0

Lotus Symphony
Microsoft Excel Windows

Microsoft Excel Macintosh

Versions 1.0,1.1 and 2.0
Versions 2.2 through 2003
Versions 3.0 - 4.0,98 and 2001

Microsoft Excel Charts Versions 2.x - 7.0
Microsoft Multiplan Version 4.0
Microsoft Works for Windows Versions through 4.0
Microsoft Works (DOS) Versions through 2.0
Microsoft Works (Mac) Versions through 2.0
Mosaic Twin Version 2.5

Novell Perfect Works Version 2.0

Quattro Pro for DOS Versions through 5.0

Quattro Pro for Windows Versions through 11

PFS:Professional Plan Version 1.0

SuperCalc 5 Version 4.0

SmartWare II Version 1.02

StarOffice Calc for Windows and Version 5.2

UNIX

VP Planner 3D Version 1.0
Database Formats

Format Version

Access Versions through 2.0

dBASE Versions through 5.0

DataEase Version 4.x

dBXL Version 1.3

Enable Versions 3.0, 4.0 and 4.5

Oracle Text Supported Document Formats B-5



Supported Document Formats

Format Version

First Choice Versions through 3.0
FoxBase Version 2.1
Framework Version 3.0
Microsoft Works for Windows Versions through 4.0
Microsoft Works (DOS) Versions through 2.0
Microsoft Works (Mac) Versions through 2.0
Paradox (DOS) Versions through 4.0
Paradox (Windows) Versions through 1.0
Personal R:BASE Version 1.0

R:BASE 5000 Versions through 3.1
R:BASE System V Version 1.0

Reflex Version 2.0

Q&A Versions through 2.0

SmartWare II

Version 1.02

Display Formats

Format

Version

PDF - Portable Document Format

Adobe Acrobat Versions through 6.0 including
Chinese (simplified and traditional), Japanese,
Korean, and read-only PDF

Encrypted (password protected) PDF is not
supported.

PDF containing embedded fonts without
included character mapping is partially
supported: characters that are represented by
means of embedded fonts without included
character mapping show up as meaningless
output; however, all remaining characters (if
any) in such a PDF document are still filtered
correctly.

Presentation Formats

Format

Version

Corel/Novell Presentations
Harvard Graphics for DOS
Harvard Graphics for Windows
Freelance for Windows

Freelance for OS/2

Microsoft PowerPoint for Windows
Microsoft PowerPoint for Macintosh

StarOffice Impress for Windows and UNIX

Versions through 11

Versions 2.x & 3.x

Windows versions

Versions through Millennium 9.6
Versions through 2.0

Versions 3.0 through 2003
Version 4.0 and 2001

Version 5.2

B-6 Oracle Text Reference



Supported Document Formats

Graphic Formats

The following table lists the graphic formats that the INSO filter recognizes. This
means that indexing a text column that contains any of these formats produces no
error. As such, it is safe for the column to contain any of these formats.

Note: The INSO filter cannot extract textual information from
graphics.

Table B-1 Supported Graphics Formats for INSO Filter

Graphics Format Version

Adobe Photoshop (PSD) Version 4.0

Adobe Illustrator Versions through 7.0, 9.0

Adobe FrameMaker graphics (FMV)
Ami Draw (SDW)

AutoCAD Interchange and Native Drawing
formats (DXF and DWG)

AutoShade Rendering (RND)
Binary Group 3 Fax

Bitmap (BMP, RLE, ICO, CUR, OS/2 DIB &
WARP)

CALS Raster (GP4)

Corel Clipart format (CMX)

Corel Draw (CDR)

Corel Draw (CDR with TIFF header)
Computer Graphics Metafile (CGM)
Encapsulated PostScript (EPS)
Graphics Environment Manager (GEM)
GEM Paint (IMG)

Graphics Interchange Format (GIF)

Hewlett Packard Graphics Language (HPGL)

IBM Graphics Data Format (GDF)
IBM Picture Interchange Format (PIF)
Initial Graphics Exchange Spec (IGES)
JFIF (JPEG not in TIFF format)

JPEG (Including EXIF)

Kodak Flash Pix (FPX)

Kodak Photo CD (PCD)

Lotus Snapshot

Lotus PIC

Macintosh PICT1 & PICT2

MacPaint (PNTG)

Vector/raster through 5.0
Ami Draw

AutoCAD Drawing Versions 2.5-2.6, 9.0 -
14.0, 2000i and 2002

Version 2.0
All versions

No specific version

Type I and Type II
Versions 5 through 6
Versions 6.0 - 8.0
Versions 2.0 - 9.0
ANSI, CALS NIST version 3.0
TIFF header only
Bitmap & vector

No specific version
No specific version
Version 2

Version 1.0

Version 1.0

Version 5.1

All versions

No specific version
No specific version
Version 1.0

All versions

No specific version
Bitmap only

No specific version

Oracle Text Supported Document Formats B-7



Supported Document Formats

Table B-1 (Cont.) Supported Graphics Formats for INSO Filter

Graphics Format Version

Micrografx Draw (DRW) Versions through 4.0
Micrografx Designer (DRW) Versions through 3.1
Micrografx Designer (DSF) Windows 95, version 6.0
Novell PerfectWorks (Draw) Version 2.0

0OS/2 PM Metafile (MET) Version 3.0

Paint Shop Pro 6 (PSP) (Windows platform Versions5.0 - 6.0
only)

PC Paintbrush (PCX and DCX) No specific version
Portable Bitmap (PBM) All versions
Portable Graymap (PGM) No specific version
Portable Network Graphics (PNG) Version 1.0

Portable Pixmap (PPM) No specific version
Postscript (PS) Level II

Progressive JPEG No specific version
Sun Raster (SRS) No specific version
TIFF Versions through 6
TIFF CCITT Group 3 & 4 Versions through 6
Truevision TGA (TARGA) Version 2

Visio (Preview) Version 4

Visio Versions 5, 2000 and 2002
WBMP No specific version
Windows Enhanced Metafile (EMF) No specific version
Windows Metafile (WMF) No specific version
WordPerfect Graphics (WPG & WPG2) Versions through 2.0
X-Windows Bitmap (XBM) x10 compatible
X-Windows Dump (XWD) x10 compatible
X-Windows Pixmap (XPM) x10 compatible

Other Document Formats

Format Version

Executable (EXE, DLL) No specific version

Executable for Windows NT No specific version

Microsoft Project (Text only) Versions 98, 2000, 2002, and 2003
Microsoft Outlook Message No specific version

(MSG): (Text only)

vCard Version 2.1

B-8 Oracle Text Reference



Restrictions on Format Support

Restrictions on Format Support

Password-protected documents and documents with password-protected content are
not supported by the Inso filter.

Oracle Text Supported Document Formats B-9



Restrictions on Format Support

B-10 Oracle Text Reference



C

Text Loading Examples for Oracle Text

This appendix provides examples of how to load text into a text column. It also
describes the structure of ct x| oad import files:

= SQL INSERT Example
= SQL*Loader Example

= Structure of ctxload Thesaurus Import File

SQL INSERT Example

A simple way to populate a text table is to create a table with two columns, i d and

t ext, using CREATE TABLE and then use the | NSERT statement to load the data. This
example makes the i d column the primary key, which is optional. The t ext column is
VARCHAR2:

create table docs (id number primary key, text varchar2(80));

To populate the t ext column, use the | NSERT statement as follows:

insert into docs values(1l, 'this is the text of the first document');
insert into docs values(12, "this is the text of the second docunent');

SQL*Loader Example

The following example shows how to use SQL*Loader to load mixed format
documents from the operating system to a BLOB column. The example has two steps:

« create the table

« issue the SQL*Loader command that reads control file and loads data into table

See Also: For a complete discussion on using SQL*Loader, see
Oracle9i Database Ultilities

Creating the Table

This example loads to a table ar t i cl es_f or mat t ed created as follows:

CREATE TABLE articles_formatted (
ARTICLE_ID  NUMBER PRI MARY KEY |,

AUTHOR VARCHAR2( 30) ,
FORMAT VARCHAR2( 30) ,
PUB_DATE DATE,

TI TLE VARCHAR2( 256) ,
TEXT BLOB

Text Loading Examples for Oracle Text C-1



SQL*Loader Example

)

The arti cl e_i d column is the primary key. Documents are loaded in the t ext
column, which is of type BLOB.

Issuing the SQL*Loader Command
The following command starts the loader, which reads the control file LOADERL. DAT:

sql I dr userid=deno/ denmp control =l oader 1. dat | og=l oader.|og

Example Control File: | oader 1. dat

This SQL*Loader control file defines the columns to be loaded and instructs the loader
to load the data line by line from | oader 2. dat into thearticl es_formatted
table. Each line in | oader 2. dat holds a comma separated list of fields to be loaded.

- load file exanple
| oad data
I NFI LE ' | oader 2. dat '
I NTO TABLE articles formatted
APPEND
FI ELDS TERM NATED BY ',"'
(article_id SEQUENCE (MAX 1),
aut hor CHAR(30),
format,
pub_dat e SYSDATE,
title,
ext _fname FILLER CHAR(80),
text LOBFILE(ext_fnanme) TERM NATED BY ECF)

This control file instructs the loader to load data from | oader 2. dat to the
articl es_formatted table in the following way:

1. The ordinal position of the line describing the document fields in | oader 2. dat is
written to the arti cl e_i d column.

The first field on the line is written to aut hor column.
The second field on the line is written to the f or mat column.

The current date given by SYSDATE is written to the pub_dat e column.

o &~ w0 N

The title of the document, which is the third field on the line, is written to the
titl e column.

6. The name of each document to be loaded is read into the ext _f name temporary
variable, and the actual document is loaded in the t ext BLOB column:

Example Data File: | oader 2. dat

This file contains the data to be loaded into each row of the table, arti cl es__
formatted.

Each line contains a comma separated list of the fields to be loaded inarti cl es_
f or mat t ed. The last field of every line names the file to be loaded in to the text
column:

Ben Kanobi, plaintext, Kawasaki news article,../sanple_docs/kawasaki .txt,

Joe Bl oggs, plaintext,Java plug-in,../sanple_docs/javaplugin.txt,

John Hancock, plaintext,Declaration of |Independence,../sanple_docs/indep.txt,
M S. Devel oper, Wrd7, Newsl etter exanple,../sanple_docs/ newsletter.doc,

C-2 Oracle Text Reference



Structure of ctxload Thesaurus Import File

M S. Devel oper, Wrd7, Resume exanple,../sanmpl e_docs/resune. doc,

X. L. Devel oper, Excel 7, Common exanpl e, ../sanpl e_docs/ common. xI s,

X. L. Devel oper, Excel 7, Conpl ex exanple,../sanpl e_docs/sol vsanp. x| s,

Pow R Point, Powerpoint7, Generic presentation,../sanple_docs/generic. ppt,
Pow R Point, Powerpoint7, Meeting presentation,../sanple_docs/neeting. ppt,
Java Man, PDF, Java Beans paper,../sanpl e_docs/j _bean. pdf,

Java Man, PDF,Java on the server paper,../sanple_docs/j_svr. pdf,

Ora Webmaster, HTM, Oracle home page, ../ sanpl e_docs/oramu97. ht i,

Ora Webnmaster, HTM., Oracle Conpany Overview,../sanpl e_docs/ oraoverview htnl,
John Constable, G F, Laurence J. Ellison : portrait,../sanple_docs/larry.gif,
Al an Geenspan, G F,Oracle revenues : Graph,../sanpl e_docs/oragraph97.gif,
Gorgio Armani, G F,Oracle Revenues : Trend,../sanple_docs/oratrend.gif,

Structure of ctxload Thesaurus Import File

The import file must use the following format for entries in the thesaurus:

phrase

BT broader_term
NT narrower _ternt
NT narrower _tern?
NT narrower _ternmN
BTG broader _term
NTG narrower _terntl
NTG narrower _tern2
NTG narrower _ternN
BTP broader _term
NTP narrower _ternt
NTP narrower _tern2
NTP narrower _ternN
BTl broader_term
NTI narrower_terntl
NTI narrower_tern?

NTI narrower ternN

SYN synonyni
SYN synonyn?

SYN synonymN
USE synonyml or SEE synonynl or PT synonyni

RT related_ternml
RT related_tern?

RT related_ternN
SN t ext

| anguage_key: term

Text Loading Examples for Oracle Text C-3



Structure of ctxload Thesaurus Import File

phrase
is a word or phrase that is defined as having synonyms, broader terms, narrower
terms, or related terms.

In compliance with ISO-2788 standards, a TT marker can be placed before a phrase to
indicate that the phrase is the top term in a hierarchy; however, the TT marker is not
required. In fact, ctxload ignores TT markers during import.

A top term is identified as any phrase that does not have a broader term (BT, BTG,
BTP, or BTI).

Note: The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTl ,
NT, NTG, NTP, NTI , and RT) are reserved words and, thus, cannot be
used as phrases in thesaurus entries.

BT, BTG, BTP, BTl broader_termN
are the markers that indicate broader_termN is a broader (generic | partitive | instance)
term for phrase.

broader_termN is a word or phrase that conceptually provides a more general description
or category for phrase. For example, the word elephant could have a broader term of
land mammal.

NT, NTG, NTP, NTI narrower_termN
are the markers that indicate narrower_termN is a narrower (generic | partitive | instance)
term for phrase.

If phrase does not have a broader (generic | partitive | instance) term, but has one or
more narrower (generic | partitive | instance) terms, phrase is created as a top term in the
respective hierarchy (in an Oracle Text thesaurus, the BT /NT, BIG/NTG, BTP/NTP,
and BTI/NTI hierarchies are separate structures).

narrower_termN is a word or phrase that conceptually provides a more specific
description for phrase. For example, the word elephant could have a narrower terms of
indian elephant and african elephant.

SYN synonymN
is a marker that indicates phrase and synonymN are synonyms within a synonym ring.

synonymN is a word or phrase that has the same meaning for phrase. For example, the
word dog could have a synonym of canine.

Note: Synonym rings are not defined explicitly in Oracle Text
thesauri. They are created by the transitive nature of synonymes.

USE SEE PT synonyml1
are markers that indicate phrase and synonym1 are synonyms within a synonym ring
(similar to SYN).

The markers USE, SEE or PT also indicate synonym1 is the preferred term for the
synonym ring. Any of these markers can be used to define the preferred term for a
synonym ring.

RT related_termN
is the marker that indicates related_termN is a related term for phrase.

C-4 Oracle Text Reference



Structure of ctxload Thesaurus Import File

related_termN is a word or phrase that has a meaning related to, but not necessarily
synonymous with phrase. For example, the word dog could have a related term of wolf.

Note: Related terms are not transitive. If a phrase has two or more
related terms, the terms are related only to the parent phrase and
not to each other.

SN text
is the marker that indicates the following text is a scope note (for example, comment)
for the preceding entry.

language_key term
term is the translation of phrase into the language specified by language_key.

Alternate Hierarchy Structure

In compliance with thesauri standards, the load file supports formatting hierarchies
(BT/NT, BIG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term
and using NT (or NTG, NTP, NTI) markers that include the level for the term:

phrase
NT1 narrower terni
NT2 narrower _terml. 1
NT2 narrower _terml. 2
NT3 narrower_ternl. 2.1
NT3 narrower _ternt. 2.2
NT1 narrower _tern

NT1 narrower _ternmN

Using this method, the entire branch for a top term can be represented hierarchically
in the load file.

Usage Notes for Terms in Import Files
The following conditions apply to the structure of the entries in the import file:

= each entry (phrase, BT, NT, or SYN) must be on a single line followed by a newline
character

= entries can consist of a single word or phrases

= the maximum length of an entry (phrase, BT, NT, or SYN) is 255 characters, not
including the BT, NT, and SYN markers or the newline characters

= entries cannot contain parentheses or plus signs.

= each line of the file that starts with a relationship (BT, NT, and so on) must begin
with at least one space

« aphrase can occur more than once in the file

« each phrase can have one or more narrower term entries (NT, NTG, NTP), broader
term entries (BT, BTG, BTP), synonym entries, and related term entries

= each broader term, narrower term, synonym, and preferred term entry must start
with the appropriate marker and the markers must be in capital letters

= the broader terms, narrower terms, and synonyms for a phrase can be in any order

Text Loading Examples for Oracle Text C-5



Structure of ctxload Thesaurus Import File

homographs must be followed by parenthetical disambiguators everywhere they
are used

For example: cranes (birds), cranes (lifting equipnent)

compound terms are signified by a plus sign between each factor (for example.
buildings + construction)

compound terms are allowed only as synonyms or preferred terms for other
terms, never as terms by themselves, or in hierarchical relations.

terms can be followed by a scope note (SN), total maximum length of 2000
characters, on subsequent lines

multi-line scope notes are allowed, but require an SN marker on each line of the
note

Example of Incorrect SN usage:

VI EW CAMERAS

SN Caneras with through-the lens focusing and a

range of novenents of the lens plane relative to
the filmplane

Example of Correct SN usage:
VI EW CAMERAS

SN Caneras with through-the lens focusing and a
SN range of movenents of the |lens plane relative
SN to the filmplane

Multi-word terms cannot start with reserved words (for example, use is a reserved
word, so use other door is not an allowed term; however, use is an allowed term)

Usage Notes for Relationships in Import Files

The following conditions apply to the relationships defined for the entries in the
import file:

related term entries must follow a phrase or another related term entry

related term entries start with one or more spaces, the RT marker, followed by
white space, then the related term on the same line

multiple related terms require multiple RT markers
Example of incorrect RT usage:

MOVI NG PI CTURE CAMERAS
RT CI NE CAMERAS
TELEVI SI ON CAMERAS

Example of correct RT usage:

MOVI NG PI CTURE CAMERAS
RT CI NE CAMERAS
RT TELEVI SI ON CAMERAS

Terms are allowed to have multiple broader terms, narrower terms, and related
terms

Examples of Import Files

This section provides three examples of correctly formatted thesaurus import files.

C-6 Oracle Text Reference



Structure of ctxload Thesaurus Import File

Example 1 (Flat Structure)

cat

SYN feline

NT donestic cat

NT wild cat

BT mamma
manma

BT ani ma
donestic cat

NT Persian cat

NT Si anese cat
wild cat

NT tiger
tiger

NT Bengal tiger
dog

BT manmal

NT domestic dog

NT wild dog

SYN cani ne
donestic dog

NT Gernman Shepard
wild dog

NT Di ngo

Example 2 (Hierarchical)

ani m
NT1 manmmal
NT2 cat
NT3 donestic cat

NT4 Persian cat
NT4 Si amese cat

NT3 wild cat
NT4 tiger

NT5 Bengal tiger

NT2 dog
NT3 donestic dog

NT4 German Shepard

NT3 wild dog
NT4 Di ngo
cat
SYN feline
dog
SYN cani ne

Example 3

35MV CAMERAS
BT M NI ATURE CAMERAS
CAMERAS
BT OPTI CAL EQUI PMENT
NT MOVI NG PI CTURE CAMERAS
NT STEREO CAMERAS
LAND CAMERAS
USE VI EW CAMERAS
VI EW CAMVERAS

SN Caneras with through-the Iens focusing and a range of
SN nmoverents of the lens plane relative to the filmplane

UF LAND CAMERAS

Text Loading Examples for Oracle Text C-7



Structure of ctxload Thesaurus Import File

BT STILL CAMERAS

C-8 Oracle Text Reference



D

Introduction

Indexing

Index Types

Oracle Text Multilingual Features

This Appendix describes the multi-lingual features of Oracle Text. The following
topics are discussed:

= Introduction

= Indexing

= Querying

= Supplied Stop Lists
«  Knowledge Base

= Multi-Lingual Features Matrix

This appendix summarizes the main multilingual features for Oracle Text.

For a complete list of Oracle Globalization Support languages and character set
support, refer to the Oracle Database Globalization Support Guide.

The following sections describe the multi-lingual indexing features.

The following sections describes the supported multilingual features for the Oracle
Text index types.

CONTEXT Index Type

The CONTEXT index type fully supports multi-lingual features including use of the
language and character set columns, use of the MULTI_LEXER, and use of all Chinese,
Japanese, and Korean language lexers.

CTXCAT Index Type

CTXCAT supports the multi-lingual features of the BASIC_LEXER with the exception
of indexing themes.

CTXCAT also supports the following lexers:
» CHINESE_LEXER
» CHINESE_VGRAM_LEXER

Oracle Text Multilingual Features D-1



Indexing

« JAPANESE_LEXER

« JAPANESE_VGRAM_LEXER
« KOREAN_LEXER

« KOREAN_MORP_LEXER.

CTXRULE Index Type

The CTXRULE index type supports the multi-lingual features of the BASIC_LEXER
including ABOUT and STEM operators. It also supports Japanese, Chinese, and
Korean.

Lexer Types

Oracle Text supports the indexing of different languages by enabling you to choose a
lexer in the indexing process. The lexer you employ determines the languages you can
index. The following table describes the supported lexers:

Lexer Supported Languages

BASIC_LEXER English and most western European languages that use
white space delimited words.

MULTI_LEXER Lexer for indexing tables containing documents of different
languages such as English, German, and Japanese.

CHINESE_VGRAM Lexer for extracting tokens from Chinese text.

CHINESE_LEXER Lexer for extracting tokens from Chinese text. This lexer
offers the following benefits over the CHINESE_VGRAM
lexer:

= generates a smaller index
= better query response time

= generates real world tokens resulting in better query
precision

= supports stop words

JAPANESE_VGRAM Lexer for extracting tokens from Japanese text.

JAPANESE_LEXER Lexer for extracting tokens from Japanese text. This lexer
offers the following advantages over the JAPANESE_
VGRAM lexer:

= generates smaller index

= better query response time

= generates real world tokens resulting in better precision
KOREAN_LEXER Lexer for extracting tokens from Korean text.

KOREAN_MORPH_LEXER Lexer for extracting tokens from Korean text. This lexer
offers the following benefits over the KOREAN_LEXER:

= better morphological analysis of Korean text
« faster indexing
= smaller indexes

. more accurate query searching

USER_LEXER Lexer you create to index a particular language.

D-2 Oracle Text Reference



Indexing

Basic Lexer Features

The following features are supported with the BASIC_LEXER preference. You enable
these features with attributes of the BASIC_LEXER. Features such as alternate spelling,
composite, and base letter can be enabled together for better search results.

Theme Indexing

Enables the indexing and subsequent querying of document concepts with the
ABOUT operator with CONTEXT index types. These concepts are derived from the
Oracle Text knowledge base. This feature is supported for English and French.

This feature is not supported with CTXCAT index types.

Alternate Spelling

This feature enables you to search on alternate spellings of words. For example, with
alternate spelling enabled in German, a query on gross returns documents that contain
grof$ and gross.

This feature is supported in German, Danish, and Swedish.

Additionally, German can be indexed according to both traditional and reformed
spelling conventions.

See Also:  "Alternate Spelling" on page 15-2 and "New German
Spelling" on page 15-2.

Base Letter Conversion

This feature enables you to query words with or without diacritical marks such as
tildes, accents, and umlauts. For example, with a Spanish base-letter index, a query of
energia matches documents containing both energia and energia.

This feature is supported for English and all other supported whitespace delimited
languages. In English and French, you can use the basic lexer to enable theme
indexing.

See Also: "Base-Letter Conversion" on page 15-2

Composite

This feature enables you to search on words that contain the specified term as a
sub-composite. You must use the stem ($) operator. This feature is supported for
German and Dutch.

For example, in German, a query of $register finds documents that contain
Bruttoregistertonne and Registertonne.

Index stems

This feature enables you to specify a stemmer for stem indexing. Tokens are stemmed
to a single base form at index time in addition to the normal forms. Indexing stems
enables better query performance for stem queries, such as $computed.

This feature is supported for English, Dutch, French, German, Italian, Spanish.

Multi Lexer Features

The MULTI_LEXER lexer enables you to index a column that contains documents of
different languages. During indexing Oracle Text examines the language column and

Oracle Text Multilingual Features D-3



Indexing

switches in the language-specific lexer to process the document. You define the lexer
preferences for each language before indexing.

The multi lexer enables you to set different preferences for languages.For example,
you can have composite set to TRUE for German documents and composite set to
FALSE for Dutch documents.

World Lexer Features

Like MULTI _LEXER, the WORLD_LEXER lexer enables you to index documents that
contain different languages; however, it automatically detects the languages of a
document and so does not require you to create a language column in the base table.

WORLD_LEXER processes most languages whose characters are defined as part of
Unicode 4.0. For WORLD_LEXER to be effective, documents with multiple languages
must use AL32UTF-8 or UTFS8 Oracle character set encoding (including
supplementary, or "surrogate-pair," characters).

Table D-1 and Table D-2 show the languages supported by WORLD_LEXER Note: this
list may change as the Unicode standard changes, and in any case should not be
considered exhaustive. (Languages are group by Unicode writing system, not by
natural language groupings.)

Table D-1 Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Arabic Arabic, Farsi, Kurdish, Pashto, Sindhi, Urdu

Armenian Armenian

Bengali Assamese, Bengali

Bopomofo Hakka Chinese, Minnan Chinese

Cyrillic Over 50 languages, including Belorussian, Bulgarian,
Macedonian, Moldavian, Russian, Serbian, Serbo-Croatian,
Ukrainian

Devenagari Bhojpuri, Bihari, Hindi, Kashmiri, Marathi, Napali, Pali,
Sanskrit

Ethiopic Ambharic, Ge'ez, Tigrinya, Tirgre

Georgian Georgian

Greek Greek

Gujarati Gujarati, Kacchi

Gurmukhi {Punjabi

Hebrew Hebrew, Ladino, Yiddish

Kaganga Redjang

Kannada Kanarese, Kannada

Korean Korean, Hanja Hangul

D-4 Oracle Text Reference



Indexing

Table D-1 (Cont.) Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Latin Afrikaans, Albanian, Basque, Breton, Catalan, Croatian, Czech,
Danish, Dutch, English, Esperanto, Estonian, Faeroese, Fijian,
Finnish, Flemish, French, Frisian, German, Hawaiian,
Hungarian, Icelandic, Indonesian, Irish, Italian, Lappish,
Classic Latin, Latvian, Lithuanian, Malay, Maltese, Pinyin
Mandarin, Maori, Norwegian, Polish, Portuguese, Provencal,
Romanian, Rumanian, Samoan, Scottish Gaelic, Slovak,
Slovene, Slovenian, Sorbian, Spanish, Swahili, Swedish,
Tagalog, Turkish, Vietnamese, Welsh

Malayalam Malayalam

Mongolian Mongolian

Oriya Oriya

Sinhalese, Sinhala Pali, Sinhalese

Syriac Aramaic, Syriac

Tamil Tamil

Telugu Telugu

Thaana Dhiveli, Divehi, Maldivian

Table D-2 Languages Supported by the World Lexer (Non-space-separated)

Language Group Languages Include

Chinese Cantonese, Mandarin, Pinyin phonograms
Japanese Japanese (Hiragana, Kanji, Katakana)
Khmer Cambodian, Khmer

Lao Lao

Myanmar Burmese

Thai Thai

Tibetan Dzongkha, Tibetan

Table D-3 shows languages not supported by the World Lexer.

Table D-3 Languages Not Supported by the World Lexer

Language Group Languages Include

Buhid Buhid

Canadian Syllabics Blackfoot, Carrier, Cree, Dakhelh, Inuit, Inuktitut, Naskapi,
Nunavik, Nunavut, Ojibwe, Sayisi, Slavey

Cherokee Cherokee

Cypriot Cypriot

Limbu Limbu

Oghem Oghem

Runic Runic

Tai Le (Tai Lu, Lue, Dai Le) TaiLe

Ugaritic Ugaritic

Oracle Text Multilingual Features D-5



Querying

Table D-3 (Cont.) Languages Not Supported by the World Lexer

Language Group Languages Include
Yi Yi
Yijang Hexagram Yijang

Querying

Oracle Text supports the use of different query operators. Some operators can be set to
behave in accordance with your language. This section summarizes the multilingual
query features for these operators.

ABOUT Operator

Use the ABOUT operator to query on concepts. The system looks up concept
information in the theme component of the index.

This feature is supported for English and French with CONTEXT indexes only.

Fuzzy Operator

This operator enables you to search for words that have similar spelling to specified
word. Oracle Text supports fuzzy for English, German, Italian, Dutch, Spanish,
Japanese, Korean, Chinese, Optical Character recognition (OCR), and automatic
language detection.

Stem Operator

This operator enables you to search for words that have the same root as the specified
term. For example, a stem of $sing expands into a query on the words sang, sung, sing.
The Oracle Text stemmer supports the following languages: English, French, Spanish,
Italian, German, Japanese and Dutch.

Supplied Stop Lists

A stoplist is a list of words that do not get indexed. These are usually common words
in a language such as this, that, and can in English.

Oracle Text provides a default stoplist for English, Chinese (traditional and
simplified), Danish, Dutch, Finnish, French, German, Italian, Portuguese, Spanish, and
Swedish.

Knowledge Base

An Oracle Text knowledge base is a hierarchical tree of concepts used for theme
indexing, ABOUT queries, and deriving themes for document services.

Oracle Text supplies knowledge bases in English and French only.

Knowledge Base Extension

You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single byte white space delimited language,
including Spanish.

D-6 Oracle Text Reference



Multi-Lingual Features Matrix

Multi-Lingual Features Matrix

The following table summarizes the multilingual features for the supported languages.

Table D—4 Multilingual Features for Supported Languages

LANGUAGE
ALTERNATE FUzZzY SPECIFIC DEFAULT

LANGUAGE SPELLING MATCHING LEXER STOP LIST STEMMING
ENGLISH N/A Yes Yes Yes Yes
GERMAN 'Yes 'Yes 'Yes 'Yes Yes
TAPANESE N/A Yes Yes No N/A
FRENCH N/A Yes Yes Yes Yes
SPANISH IN/A Yes Yes Yes Yes
ITALIAN IN/A Yes Yes Yes Yes
DUTCH IN/A Yes Yes Yes Yes
IPORTUGUESE IN/A 'Yes 'Yes 'Yes No
KOREAN IN/A No Yes No N/A
SIMPLIFIED CHINESE IN/A No Yes INo N/A
TRADITIONAL CHINESE IN/A INo Yes No IN/A
IDANISH Yes No Yes No No
SWEDISH Yes No Yes Yes No
FINNISH IN/A No Yes No No

Oracle Text Multilingual Features D-7



Multi-Lingual Features Matrix

D-8 Oracle Text Reference



E

Oracle Text Supplied Stoplists

This appendix describes the default stoplists for all the different languages supported
and list the stopwords in each. The following stoplists are described:

= English Default Stoplist

= Chinese Stoplist (Traditional)
= Chinese Stoplist (Simplified)
= Danish (dk) Default Stoplist
= Dutch (nl) Default Stoplist

«  Finnish (sf) Default Stoplist

= French (f) Default Stoplist

= German (d) Default Stoplist

« Italian (i) Default Stoplist

= Portuguese (pt) Default Stoplist
= Spanish (e) Default Stoplist

= Swedish (s) Default Stoplist

English Default Stoplist

The following English words are defined as stop words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a be had it only she was
about because has its of some we
after been have last on such were
all but he more one than when
also by her most or that which
an can his mr other the who
any co if mrs out their will
and corp in ms over there with
are could inc mz s they would
as for into no S0 this up

at from is not says to

Oracle Text Supplied Stoplists E-1



Chinese Stoplist (Traditional)

Chinese Stoplist (Traditional)

The following traditional Chinese words are defined in the default stoplist for this
language.

Heg Bt K B o W5 &=
Ak A WL wmR S OHE WA ES
B2 MHE Hf Hih @ T e
vwiE o Bk 22 pibl Bk #%F mil
R —k e A mH 5
BRr A o miE oEeE  gal e BEE
e BN HE Ry TFE  H®/E CEE
#E g Ag DR ET —H A
VAT EHE & LH #Ffi #HE 20 B
ﬁk A #Erm BE HE BE EH
HE &R WA A wik AF

Chinese Stoplist (Simplified)

The following simplified Chinese words are defined in the default stoplist for this
language.

R e FIE T R B 1§

gl oy BRT e W A FER
rEl KRB Wk o wE  HeE I [3E

e HMT &4 mH  mE Al RAMm
=k HE O % dF K/KD BE dE

ETES/ R 7 W= E S~ : NI o a | I W

RE ®m= BAf "R ®LL KkEH  FAD

Z— wAH Hm WE PE  HE 4R

i ft4, SEE Pim FrE BRY {iRf]

AT Bl A HE O MHE B #%

e HEk B2 LHE RHiE HH

Danish (dk) Default Stoplist

The following Danish words are defined in the default stoplist for this language:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

af en god hvordan med og udenfor
aldrig et han I meget oppe under
alle endnu her De mellem pa ved
altid fa hos i mere rask vi
bagved lidt hovfor imod mindre hurtig

de fjernt hun ja nar sammen

der for hvad jeg hvonar temmelig

du foran hvem langsom nede nok

E-2 Oracle Text Reference



Finnish (sf) Default Stoplist

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

efter fra hvor mange nej til

eller gennem hvorhen maske nu uden

Dutch (nl) Default Stoplist

The following Dutch words are defined in the default stoplist for this language:

Stop word  Stop word Stop word  Stop word  Stop word Stop word  Stop word Stop word  Stop word
aan betreffende eer had juist na overeind van weer
aangaande bij eerdat hadden jullie naar overigens vandaan weg
aangezien  binnen eerder hare kan nadat pas vanuit wegens
achter binnenin eerlang heb klaar net precies vanwege wel
achterna boven eerst hebben kon niet reeds veeleer weldra
afgelopen  bovenal elk hebt konden noch rond verder welk

al bovendien elke heeft krachtens  nog rondom vervolgens welke
aldaar bovengenoemd en hem kunnen nogal sedert vol wie
aldus bovenstaand enig hen kunt nu sinds volgens wiens
alhoewel = bovenvermeld  enigszins het later of sindsdien voor wier
alias buiten enkel hierbeneden liever ofschoon slechts vooraf wij

alle daar er hierboven = maar om sommige vooral wijzelf
allebei daarheen erdoor hij mag omdat spoedig vooralsnog  zal
alleen daarin even hoe meer omhoog steeds voorbij ze
alsnog daarna eveneens hoewel met omlaag tamelijk voordat zelfs
altijd daarnet evenwel hun mezelf omstreeks tenzij voordezen  zichzelf
altoos daarom gauw hunne mij omtrent terwijl voordien  zij
ander daarop gedurende ik mijn omver thans voorheen  zijn
andere daarvanlangs geen ikzelf mijnent onder tijdens voorop zijne
anders dan gehad in mijner ondertussen toch vooruit Z0
anderszins  dat gekund inmiddels  mijzelf ongeveer toen vrij zodra
behalve de geleden inzake misschien  ons toenmaals vroeg zonder
behoudens die gelijk is mocht onszelf toenmalig waar zou
beide dikwijls gemoeten  jezelf mochten onze tot waarom zouden
beiden dit gemogen iij moest ook totdat wanneer zowat
ben door geweest jijzelf moesten op tussen want zulke
beneden doorgaand gewoon jou moet opnieuw uit waren zullen
bent dus gewoonweg jouw moeten opzij uitgezonderd was zult
bepaald echter haar jouwe mogen over vaak wat

Finnish (sf) Default Stoplist

The following Finnish words are defined in the default stoplist for this language:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

aina hyvin kesken me nyt takia yhdessa

Oracle Text Supplied Stoplists E-3



French (f) Default Stoplist

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

alla hoikein kukka mika oikea tassa ylos
ansiosta ilman kylla miksi oikealla te

ei ja kylliksi milloin paljon ulkopuolella
enemman jalkeen tarpeeksi milloinkan siella vahan

ennen jos lahella koskaan sind vahemmaén

etessa kanssa lapi mind ssa vasen

haikki kaukana liian missa sta vasenmalla

hin kenties lla miten suoraan vastan

he ehka luona kuinkan tai vield

hitaasti keskelld lla nopeasti takana vieressa

French (f) Default Stoplist

The following French words are defined in the default stoplist for this language:

Stop word  Stop word  Stop word Stop word  Stop word Stop word  Stop word Stop word Stop word
a beaucoup  comment  encore lequel moyennant pres ses toujours
afin ca concernant entre les ne puis sien tous
ailleurs ce dans et lesquelles  ni puisque sienne toute
ainsi ceci de étaient lesquels non quand siennes toutes
alors cela dedans était leur nos quant siens tres
apres celle dehors étant leurs notamment que soi trop
attendant celles déja etc lors notre quel soi-méme  tu

au celui dela eux lorsque notres quelle soit un
aucun cependant  depuis furent lui notre quelqu'un sont une
aucune certain des grace ma notres quelqu''une suis vos
au-dessous  certaine desquelles  hormis mais nous quelque sur votre
au-dessus certaines desquels hors malgré nulle quelques-unes  ta votre
aupres certains dessus ici me nulles quelques-uns  tandis votres
auquel ces des il méme on quels tant vous
aussi cet donc ils meémes ou qui te vu
aussitot cette donné jadis mes ol quiconque telle y
autant ceux dont je mien par quoi telles

autour chacun du jusqu mienne parce quoique tes

aux chacune duquel jusque miennes parmi sa tienne

auxquelles  chaque durant la miens plus sans tiennes

auxquels chez elle laquelle moins plusieurs  sauf tiens

avec combien elles la moment pour se toi

a comme en le mon pourquoi  selon ton

German (d) Default Stoplist

The following German words are defined in the default stoplist for this language:

E-4 Oracle Text Reference



Italian (i) Default Stoplist

Stop word  Stop word  Stop word  Stop word Stop word  Stop word Stop word Stop word  Stop word
ab dann des es ihnen keinem obgleich sondern welchem
aber daran desselben etwa ihr keinen oder sonst welchen
allein darauf dessen etwas ihre keiner ohne soviel welcher
als daraus dich euch Thre keines paar soweit welches
also darin die euer ihrem man sehr uber wem

am dartiiber dies eure Threm mehr sei um wen

an darum diese eurem ihren mein sein und wenn
auch darunter dieselbe euren Thren meine seine uns wer

auf das dieselben eurer Threr meinem seinem unser weshalb
aus dasselbe diesem eures ihrer meinen seinen unsre wessen
aufler daf3 diesen fiir ihres meiner seiner unsrem wie

bald davon dieser flirs Thres meines seines unsren wir

bei davor dieses ganz im mich seit unsrer WO

beim dazu dir gar in mir seitdem unsres womit
bin dazwischen doch gegen ist mit selbst vom zu

bis dein dort genau ja nach sich von zum
bifichen deine du gewesen je nachdem  Sie vor zur

bist deinem ebenso her jedesmal namlich sie wihrend zwar

da deinen ehe herein jedoch neben sind war zwischen
dabei deiner ein herum jene nein S0 wére zwischens
dadurch deines eine hin jenem nicht sogar wiren

dafiir dem einem hinter jenen nichts solch warum

dagegen demselben  einen hintern jener noch solche was

dahinter den einer ich jenes nun solchem wegen

damit denn eines ihm kaum nur solchen weil

danach der entlang ihn kein ob solcher weit

daneben derselben er Thnen keine ober solches welche

ltalian (i) Default Stoplist

The following Italian words are defined in the default stoplist for this language:

Stop word Stop word Stop word Stop word Stop word Stop word  Stop word
a da durante lo o seppure un
affinche dache e loro onde si una
agl" dagl" egli ma oppure siccome uno
agli dagli eppure mentre ossia sopra voi

ai dai essere mio ovvero sotto vostro
al dal essi ne per su

all" dall" finché neanche perche subito

alla dalla fino negl" percio sugl"

alle dalle fra negli pero sugli

allo dallo giacche nei poiche sui

Oracle Text Supplied Stoplists E-5



Portuguese (pt) Default Stoplist

Stop word Stop word Stop word Stop word Stop word Stop word  Stop word

anziche degl" gl" nel prima sul
avere degli gli nell" purche sull”
bensi dei grazie nella quand"anche sulla
che del I nelle quando sulle
chi dell" il nello quantunque  sullo
cioe delle in nemmeno quasi suo
come dello inoltre neppure quindi talche
comunque di io noi se tu
con dopo 1" nonche sebbene tuo
contro dove la nondimeno  sennonche tuttavia
cosa dunque le nostro senza tutti

Portuguese (pt) Default Stoplist

The following Portuguese words are defined in the default stoplist for this language:

Stop word Stop word Stop word Stop word Stop word  Stop word Stop word
a bem e longe para se vocé
abaixo com ela mais por sem vocés
adiante como elas menos porque sempre

agora contra éle muito pouco sim

ali debaixo eles nao préximo sob

antes demais em ninguem qual sobre

aqui depois entre nods quando talvez

até depressa eu nunca quanto todas

atras devagar fora onde que todos

bastante direito junto ou quem vagarosamente

Spanish (e) Default Stoplist

The following Spanish words are defined in the default stoplist for this language:

Stop word Stop word  Stop word  Stop word Stop word  Stop word  Stop word Stop word  Stop word

a aqui cuantos esta misma nosotras querer tales usted
aca cada cuan estar mismas nosotros qué tan ustedes
ahi cierta cuanto estas mismo nuestra quien tanta varias
ajena ciertas cuantos este mismos nuestras quienes tantas varios
ajenas cierto de estos mucha nuestro quienesquiera tanto vosotras
ajeno ciertos dejar hacer muchas nuestros quienquiera  tantos vosotros
ajenos como del hasta muchisima nunca quién te vuestra
al como demasiada  jamas muchisimas os ser tener vuestras
algo con demasiadas junto muchisimo  otra si ti vuestro
alguna conmigo demasiado  juntos muchisimos otras siempre toda vuestros
algunas consigo demasiados la mucho otro si todas y

E-6 Oracle Text Reference



Swedish (s) Default Stoplist

Stop word Stop word  Stop word  Stop word Stop word  Stop word  Stop word Stop word  Stop word
alguno contigo demas las muchos otros sin todo yo
algunos cualquier el lo muy para Sr todos

algin cualquiera  ella los nada parecer Sra tomar

alla cualquieras ellas mas ni poca Sres tuya

alli cuan ellos mas ninguna pocas Sta tuyo

aquel cuanta él me ningunas poco suya ta

aquella cuantas esa menos ninguno pocos suyas un

aquellas cuanta esas mia ningunos por suyo una

aquello cuantas ese mientras no porque suyos unas

aquellos cuanto esos mio nos que tal unos

Swedish (s) Default Stoplist

The following Swedish words are defined in the default stoplist for this language:

Stop word Stop word Stop word Stop word
ab efter ja sin

aldrig efterét jag skall

all eftersom langsamt som

alla €j langt till

alltid eller lite tillrackligt
an emot man tillsammans
dnnu en med trots att
anyo ett medan under

ar fastan mellan uppe

att for mer ut

av fort mera utan
avser framfor mindre utom
avses frén mot vad
bakom genom myckett val

bra gott nar var
bredvid hamske ndra varfor

da han nej vart

dar har nere varthan
de hellre ni vem

dem hon nu vems

den hos och vi

denna hur oksa vid

deras i om vilken
dess in over

det ingen pa

detta innan sa

du inte sddan

Oracle Text Supplied Stoplists E-7



Swedish (s) Default Stoplist

E-8 Oracle Text Reference



-

The Oracle Text Scoring Algorithm

This appendix describes the scoring algorithm for word queries.You obtain score using
the SCORE operator.

Note: This appendix discusses how Oracle Text calculates score
for word queries, which is different from the way it calculates score
for ABOUT queries in English.

Scoring Algorithm for Word Queries

To calculate a relevance score for a returned document in a word query, Oracle Text
uses an inverse frequency algorithm based on Salton's formula.

Inverse frequency scoring assumes that frequently occurring terms in a document set
are noise terms, and so these terms are scored lower. For a document to score high, the
query term must occur frequently in the document but infrequently in the document
set as a whole.

The following table illustrates Oracle Text's inverse frequency scoring. The first
column shows the number of documents in the document set, and the second column
shows the number of terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

Number of Documents in Occurrences of Term in Document Needed to Score
Document Set 100
1 34
5 20
10 17
50 13
100 12
500 10
1,000 9
10,000 7
100,000 5
1,000,000 4

The Oracle Text Scoring Algorithm  F-1



Scoring Algorithm for Word Queries

Example

The table illustrates that if only one document contained the query term and there
were five documents in the set, the term would have to occur 20 times in the document
to score 100. Whereas, if there were 1,000,000 documents in the set, the term would
have to occur only 4 times in the document to score 100.

You have 5000 documents dealing with chemistry in which the term chemical occurs at
least once in every document. The term chemical thus occurs frequently in the
document set.

You have a document that contains 5 occurrences of chemical and 5 occurrences of the
term hydrogen. No other document contains the term hydrogen. The term hydrogen
thus occurs infrequently in the document set.

Because chemical occurs so frequently in the document set, its score for the document is
lower with respect to hydrogen, which is infrequent is the document set as a whole. The
score for hydrogen is therefore higher than that of chemical. This is so even though both
terms occur 5 times in the document.

Note: Even if the relatively infrequent term hydrogen occurred 4
times in the document, and chemical occurred 5 times in the
document, the score for hydrogen might still be higher, because
chemical occurs so frequently in the document set (at least 5000
times).

Inverse frequency scoring also means that adding documents that contain hydrogen
lowers the score for that term in the document, and adding more documents that do
not contain hydrogen raises the score.

DML and Scoring

Because the scoring algorithm is based on the number of documents in the document
set, inserting, updating or deleting documents in the document set is likely change the
score for any given term before and after the DML.

If DML is heavy, you or your Oracle Database administrator must optimize the index.
Perfect relevance ranking is obtained by executing a query right after optimizing the
index.

If DML is light, Oracle Database still gives fairly accurate relevance ranking.

In either case, you or your Oracle Database administrator must synchronize the index
with CTX_DDL.SYNC_INDEX.

F-2 Oracle Text Reference



G

Oracle Text Views

This appendix lists all of the views provided by Oracle Text. The system provides the
following views:

CTX_CLASSES
CTX_INDEXES
CTX_INDEX_ERRORS
CTX_INDEX_OBJECTS
CTX_INDEX_PARTITIONS
CTX_INDEX_SETS
CTX_INDEX_SET_INDEXES
CTX_INDEX_SUB_LEXERS
CTX_INDEX_SUB_LEXER_VALUES
CTX_INDEX_VALUES
CTX_OBJECTS
CTX_OBJECT_ATTRIBUTES
CTX_OBJECT_ATTRIBUTE_LOV
CTX_PARAMETERS
CTX_PENDING
CTX_PREFERENCES
CTX_PREFERENCE_VALUES
CTX_SECTIONS
CTX_SECTION_GROUPS
CTX_SQES

CTX_STOPLISTS
CTX_STOPWORDS
CTX_SUB_LEXERS
CTX_THESAURI
CTX_THES_PHRASES
CTX_TRACE_VALUES

Oracle Text Views G-1



CTX_CLASSES

« CTX_USER_INDEXES

« CTX_USER_INDEX_ERRORS

« CTX_USER_INDEX_OBJECTS

«  CTX_USER_INDEX_PARTITIONS

« CTX_USER_INDEX_SETS

« CTX_USER_INDEX_SET_INDEXES
« CTX_USER_INDEX_SUB_LEXERS

« CTX_USER_INDEX_SUB_LEXER_VALS
« CTX_USER_INDEX_VALUES

« CTX_USER_PENDING

« CTX_USER_PREFERENCES

«» CTX_USER_PREFERENCE_VALUES
« CTX_USER_SECTIONS

« CTX_USER_SECTION_GROUPS

« CTX_USER_SQES

« CTX_USER_STOPLISTS

« CTX_USER_STOPWORDS

« CTX_USER_SUB_LEXERS

« CTX_USER_THESAURI

« CTX_USER_THES_PHRASES

« CTX_VERSION

CTX_CLASSES

This view displays all the preference categories registered in the Text data dictionary. It
can be queried by any user.

Column Name Type Description

CLA_NAME VARCHAR2( 30) Class name

CLA DESCRI PTION  VARCHAR2( 80) Class description
CTX_INDEXES

This view displays all indexes that are registered in the Text data dictionary for the
current user. It can be queried by CTXSYS.

Column Name Type Description

| DX_CHARSET_COLUWN  VARCHAR2( 256) Name of the charset column in base
table.

| DX_DOCI D_CQUNT NUMBER Number of documents indexed.

| DX_FORVAT_CCOLUWNS  VARCHAR2( 256) Name of the format column in base
table.

G-2 Oracle Text Reference



CTX_INDEX_PARTITIONS

Column Name Type Description

| DX_KEY_NAME VARCHAR2( 256) Primary key column(s).

I DX_I D NUVBER Internal index id.

| DX_LANGUAGE_COLUMN  VARCHAR2( 256) Name of the language column in base
table.

I DX_NAME VARCHAR2( 30) Name of index.

| DX_OMNER VARCHAR2( 30) Owner of index.

| DX_STATUS VARCHAR2( 12) Status.

I DX_SYNC_TYPE VARCHAR2( 20) Type of synching: MANUAL,
AUTOMATIC, or ON COMMIT.

| DX_TABLE VARCHAR2( 30) Table name.

| DX_TABLE_OWNER VARCHAR2( 30) Owner of table.

| DX_TEXT_NAVME VARCHAR2( 30) Text column name.

CTX_INDEX_ERRORS

This view displays the DML errors and is queryable by CTXSYS.

Column Name Type Description

ERR_| NDEX_OMNER VARCHAR2( 30) Index owner.

ERR_| NDEX_NAME VARCHAR2( 30) Name of index.

ERR_TI MESTAMP DATE Time of error.

ERR_TEXTKEY VARCHAR2( 18) ROWID of errored document or
name of errored operation (for
example, ALTER INDEX)

ERR_TEXT VARCHAR2(4000) Error text.

CTX_INDEX_OBJECTS

This view displays the objects that are used for each class in the index. It can be

queried by CTXSYS.

Column Name Type Description
1 XO_| NDEX_OANER VARCHAR2( 30) Index owner.
1 XO_| NDEX_NAME VARCHAR2( 30) Index name.
| XO_CLASS VARCHAR2( 30) Class name.

| XO_OBJECT VARCHAR2( 30) Object name.

CTX_INDEX_PARTITIONS

This view displays all index partitions. It can be queried by CTXSYS.

Column Name Type Description
I XP_I D NUMBER( 38) Index partition id.
I XP_I NDEX_OWNER VARCHAR2( 30) Index owner.

Oracle Text Views G-3



CTX_INDEX_SETS

Column Name Type
I XP_1 NDEX_NAME VARCHAR2( 30)
I XP_I NDEX_PARTI TI ON_ VARCHAR2( 30)

Description

Index name.

Index partition name.

NANVE

| XP_SYNC_TYPE VARCHAR2( 20) Type of synching: MANUAL,
AUTOMATIC, or ON COMMIT.

| XP_TABLE_ONNER VARCHAR2( 30) Table owner.

| XP_TABLE_NAME VARCHAR2( 30) Table name.

| XP_TABLE_PARTI TI ON_ VARCHAR2( 30)
NAME

Table partition name.

| XP_DOCI D_COUNT NUVBER( 38) Number of documents associated
with the partition.
| XP_STATUS VARCHAR2( 12) Partition status.

CTX_INDEX_SETS

This view displays all index set names. It can be queried by any user.

Column Name Type Description
I XS_OMNNER VARCHAR2( 30) Index set owner.
I XS_NAME VARCHAR2( 30) Index set name.

CTX_INDEX_SET_INDEXES

This view displays all the sub-indexes in an index set. It can be queried by any user.

Column Name Type

I XX_| NDEX_SET_OWNER  VARCHAR2( 30)
I XX_| NDEX_SET_NAME  VARCHARZ2( 30)
I XX_COLLI ST VARCHAR2( 500)
I XX_STORAGE VARCHAR2( 500)

Description

Index set owner.
Index set name.
Column list of the sub-index.

Storage clause of the sub-index.

CTX_INDEX_SUB_LEXERS

This view shows the sub-lexers for each language for each index. It can be queried by

CTXSYS.

Column Name Type Description

I SL_1 NDEX_OWNER VARCHAR2( 30) Index owner.

I SL_1 NDEX_NAME VARCHAR2( 30) Index name.

I SL_LANGUAGE VARCHAR2( 30) Language of sub-lexer

I SL_ALT_VALUE VARCHAR2( 30) Alternate value of language.

I SL_OBJECT VARCHAR2( 30) Name of lexer object used for this

language.

G-4 Oracle Text Reference



CTX_OBJECT_ATTRIBUTES

CTX_INDEX_SUB_LEXER_VALUES

Shows the sub-lexer attributes and their values. Accessible by CTXSYS.

Column Name Type Description

| SV_I NDEX_OWNER VARCHAR2( 30) Index owner.

1 SV_I NDEX_NAME VARCHAR2( 30) Index name.

I SV_LANGUAGE VARCHARZ2( 30) Language of sub-lexer

1 SV_OBJECT VARCHAR2( 30) Name of lexer object used for this
language.

| SV_ATTRI BUTE VARCHAR2( 30) Name of sub-lexer attribute.

I SV_VALUE VARCHAR2( 500) Value of attribute of sub-lexer.

CTX_INDEX_VALUES

This view displays attribute values for each object used in indexes. This view is

queryable by CTXSYS.

Column Name Type Description

I XV_I NDEX_OWNER VARCHAR2( 30) Index owner.

I XV_I NDEX_NAME VARCHAR2( 30) Index name.

I XV_CLASS VARCHAR2( 30) Class name.

I XV_OBJECT VARCHAR2( 30) Object name.

I XV_ATTRI BUTE VARCHAR2( 30) Attribute name
I XV_VALUE VARCHAR2( 500) Attribute value.

CTX_OBJECTS

This view displays all of the Text objects registered in the Text data dictionary. This
view can be queried by any user.

Column Name Type Description

OBJ_CLASS VARCHAR2( 30) Object class (Datastore, Filter, Lexer, and so
on)

OBJ_NAME VARCHAR2( 30) Object name

OBJ_DESCRI PTION  VARCHAR2( 80) Object description

CTX_OBJECT_ATTRIBUTES

This view displays the attributes that can be assigned to preferences of each object. It
can be queried by all users.

Column Name Type Description

OAT_CLASS VARCHAR2( 30) Object class (Data Store, Filter, Lexer, and so
on)

OAT_OBJECT VARCHAR2( 30) Object name

Oracle Text Views G-5



CTX_OBJECT_ATTRIBUTE_LOV

Column Name Type Description

OAT_ATTRI BUTE VARCHAR2( 64) Attribute name

OAT_DESCRI PTION  VARCHAR2( 80) Description of attribute

OAT_REQUI RED VARCHAR2( 1) Required attribute, either Y or N.

OAT_STATIC VARCHAR2( 1) Not currently used.

CAT_DATATYPE VARCHAR2( 64) Attribute datatype. The value PROCEDURE
indicates that the attribute of the object
should be a stored procedure name.

OAT_DEFAULT VARCHAR2( 500) Default value for attribute.

OAT_M N NUMBER Minimum value.

QAT _MAX NUMBER Maximum value.

OAT_MAX_LENGTH NUVBER Maximum length.

CTX_OBJECT_ATTRIBUTE_LOV

This view displays the allowed values for certain object attributes provided by Oracle

Text. It can be queried by all users.

Column Name Type Description

OAL_CLASS NUVBER( 38) Class of object.
OAL_OBJECT VARCHAR2( 30) Object name.

OAL_ATTRI BUTE VARCHAR2( 32) Attribute name.

OAl _LABEL VARCHAR2( 30) Attribute value label.
OAL_VALUE VARCHAR2( 64) Attribute value.
QAL_DESCRI PTION  VARCHAR2( 80) Attribute value description.

CTX_PARAMETERS

This view displays all system-defined parameters as defined by CTXSYS. It can be

queried by any user.

G-6 Oracle Text Reference



CTX_PENDING

Column
Name Type

Description

PAR NAVE  VARCHARZ2( 30)

PAR VALUE  VARCHAR?2(500)

Parameter name:

nax_i ndex_nenory
ctx_doc_key_type

def aul t _i ndex_nenory
def aul t _dat astore
default _filter_binary
default _filter_text
default filter _file
defaul t _section_htm
defaul t _secti on_xn
def aul t _secti on_t ext
def aul t _| exer

defaul t _stopli st

def aul t _storage

defaul t _wordli st
defaul t _ctxcat _| exer
def aul t _ct xcat _i ndex_set
def aul t _ctxcat_stopl i st
def aul t _ctxcat_st or age
def aul t _ctxcat_wordl i st
defaul t _ctxrul e_| exer
def aul t _ctxrule_st opl i st
def aul t _ctxrule_st or age
def aul t _ctxrule_wor dl i st
log_directory
file_access_role

Parameter value. For nax_i ndex_nenory and
def aul t _i ndex_menory, PAR_VALUE stores a

string consisting of the memory

amount. For the

other parameter names, PAR_VALUE stores the
names of the preferences used as defaults for index

creation.

CTX_PENDING

This view displays a row for each of the user's entries in the DML Queue. It can be

queried by CTXSYS.

Column Name Type Description
PND_| NDEX_OANER VARCHAR2( 30) Index owner.
PND | NDEX_ NAME VARCHAR2( 30) Name of index.

Oracle Text Views G-7



CTX_PREFERENCES

Column Name Type Description

PND_PARTI TI ON_NAME  VARCHARZ2( 30) Name of partition for local partition
indexes. NULL for normal indexes.

PND_ROW D ROW D ROWID to be indexed

PND_TI MESTAVP DATE Time of modification

CTX_PREFERENCES

This view displays preferences created by Oracle Text users, as well as all the
system-defined preferences included with Oracle Text. The view contains one row for
each preference. It can be queried by all users.

Column Name Type Description

PRE_OMNER VARCHAR2( 30) Username of preference owner.
PRE_NAVE VARCHAR2( 30) Preference name.

PRE_CLASS VARCHAR2( 30) Preference class.

PRE_OBJECT VARCHAR2( 30) Object used.

CTX_PREFERENCE_VALUES

This view displays the values assigned to all the preferences in the Text data
dictionary. The view contains one row for each value. It can be queried by all users.

Column Name Type Description

PRV_OMER VARCHAR2( 30) Username of preference owner.
PRV_PREFERENCE VARCHAR2( 30) Preference name.

PRV_ATTRI BUTE VARCHAR2( 64) Attribute name

PRV_VALUE VARCHAR2( 500) Attribute value

CTX_SECTIONS

This view displays information about all the sections that have been created in the Text
data dictionary. It can be queried by any user.

Column Name Type Description

SEC_OMNER VARCHAR2( 30) Owner of the section group.

SEC_SECTI ON_GROUP VARCHAR2( 30) Name of the section group.

SEC TYPE VARCHAR2( 30) Type of section, either ZONE, FIELD,
SPECIAL, ATTR, STOP.

SEC ID NUMBER Section id.

SEC_NAME VARCHAR2( 30) Name of section.

SEC TAG VARCHAR2( 64) Section tag

SEC VI SI BLE VARCHAR2( 1) Y or N visible indicator for field sections

only.

G-8 Oracle Text Reference



CTX_SUB_LEXERS

CTX_SECTION_GROUPS

CTX_SQES

This view displays information about all the section groups that have been created in
the Text data dictionary. It can be queried by any user.

Column Name Type Description
SGP_OMER VARCHAR2( 30) Owner of section group.
SGP_NAME VARCHAR2( 30) Name of section group.
SGP_TYPE VARCHAR2( 30) Type of section group

This view displays the definitions for all SQEs that have been created by users. It can
be queried by all users.

Column Name Type Description
SQE_ OMNER VARCHAR2( 30) Owner of SQE.
SQE_NAVE VARCHAR2( 30) Name of SQE.
SQE_QUERY VARCHAR2( 2000) Query Text

CTX_STOPLISTS

This view displays stoplists. Queryable by all users.

Column Name Type Description

SPL_OMER VARCHAR2( 30) Owner of stoplist.

SPL_NAME VARCHAR2( 30) Name of stoplist.

SPL_COUNT NUMBER Number of stopwords

SPL_TYPE VARCHAR2( 30) Type of stoplist, MULTI or BASIC.

CTX_STOPWORDS

This view displays the stopwords in each stoplist. Queryable by all users.

Column Name Type Description

SPW OMNER VARCHAR2( 30) Stoplist owner.

SPW STOPLI ST VARCHAR2( 30) Stoplist name.

SPW TYPE VARCHAR2( 10) Stop type, either STOP_WORD, STOP_
CLASS, STOP_THEME.

SPW WORD VARCHAR2( 80) Stopword.

SPW_LANGUAGE VARCHAR2( 30) Stopword language.

CTX_SUB_LEXERS

This view contains information on multi-lexers and the sub-lexer preferences they

contain. It can be queried by any user.

Oracle Text Views G-9



CTX_THESAURI

Column Name Type Description
SLX_OWNER VARCHAR2( 30) Owner of the multi-lexer preference.
SLX_NAME VARCHAR2( 30) Name of the multi-lexer preference.
SLX_LANGUAGE VARCHAR2( 30) Language of the referenced lexer (full
name, not abbreviation).
SLX_ALT_VALUE VARCHAR2( 30) An alternate value for the language.
SLX_SUB_OMNER VARCHAR2( 30) Owner of the sub-lexer.
SLX_SUB_NAME VARCHAR2( 30) Name of the sub-lexer.

CTX_THESAURI

This view displays information about all the thesauri that have been created in the
Text data dictionary. It can be queried by any user.

Column Name Type Description
THS_OWNER VARCHAR2( 30) Thesaurus owner.
THS_NAME VARCHAR2( 30) Thesaurus name.

CTX_THES_PHRASES

This view displays phrase information for all thesauri in the Text data dictionary. It can
be queried by any user.

Column Name Type Description
THP_THESAURUS VARCHAR2( 30) Thesaurus name.
THP_PHRASE VARCHAR2( 256) Thesaurus phrase.
THP_QUALI FI ER VARCHAR2( 256) Thesaurus qualifier.
THP_SCOPE_NOTE VARCHARZ2(2000) Thesaurus scope notes.

CTX_TRACE_VALUES

This view contains one row for each active trace, and shows the current value of each
trace.

Column Name Type Description
TRC_ID Bl NARY_I NTEGER Trace ID.
TRC_VALUE NUMBER Current trace value.

CTX_USER_INDEXES

This view displays all indexes that are registered in the Text data dictionary for the
current user. It can be queried by all users.

G-10 Oracle Text Reference



CTX_USER_INDEX_ERRORS

Column Name Type Description

| DX_CHARSET_CCOLUWN VARCHAR2( 256) Name of the charset column of
base table.

| DX_DOCI D_COUNT NUMBER Number of documents indexed.

| DX_FORMAT_COLUWN VARCHAR2( 256) Name of the format column of
base table.

IDX_I D NUMBER Internal index id.

| DX_KEY_NAME VARCHAR( 256) Primary key column(s).

I DX_LANGUAGE_COLUMWN VARCHAR2( 256) Name of the language column of
base table.

| DX_NAME VARCHAR2( 30) Name of index.

| DX_STATUS VARCHAR2( 12) Status, either INDEXED or
INDEXING.

| DX_SYNC | NTERVAL VARCHAR2(2000) This is the interval string required

by scheduler job. Only
meaningful for AUTOMATIC
sync. Always null for MANUAL
and ON COMMIT sync.

| DX_SYNC_JOBNAME VARCHAR2( 50) This is the scheduler job name for
automatic sync. Only meaningful
for AUTOMATIC sync and always
null for other types of sync.

| DX_SYNC_MEMORY VARCHAR2( 100 The sync memory size. Only
meaningful for ON COMMIT and
AUTOMATIC types of sync. For
MANUAL syng, this is always

null.

| DX_SYNC_PARA_DEGREE NUVBER Degree of parallelism for sync.
Only meaningful for the
AUTOMATIC type of sync;
always null for MANUAL and
ON COMMIT syncs.

| DX_SYNC_TYPE VARCHAR2( 20) Type of synching: AUTOMATIC,
MANUAL or ON COMMIT.

| DX_TABLE VARCHAR2( 30) Table name.

| DX_TABLE_OMNER VARCHAR2( 30) Owner of table.

| DX_TEXT_NAME VARCHAR2( 30) Text column name.

| DX_TYPE VARCHAR2( 30) Type of index: CONTEXT,

CTXCAT, OR CTXRULE

CTX_USER_INDEX_ERRORS

This view displays the indexing errors for the current user and is queryable by all
users.

Oracle Text Views G-11



CTX_USER_INDEX_OBJECTS

Column Name Type Description

ERR_| NDEX_NAME VARCHAR2( 30) Name of index.

ERR_TI MESTANVP DATE Time of error.

ERR_TEXTKEY VARCHAR2( 18) ROWID of errored document or
name of errored operation (for
example, ALTER INDEX)

ERR_TEXT VARCHAR2( 4000) Error text.

CTX_USER_INDEX_OBJECTS

This view displays the preferences that are attached to the indexes defined for the
current user. It can be queried by all users.

Column Name Type Description

I XO_| NDEX_NAME  VARCHARZ2( 30) Name of index.

| XO_CLASS VARCHAR2( 30) Object name

| XO_OBJECT VARCHAR2( 80) Object description

CTX_USER_INDEX_PARTITIONS

This view displays all index partitions for the current user. It is queryable by all users.

Column Name Type Description

| XP_DOCI D_COUNT NUVBER( 38) Number of documents associated
with the index partition.

I XP_I D NUMBER( 38) Index partition id.

I XP_I NDEX_NAME VARCHAR2( 30) Index name.

I XP_I NDEX_PARTI TI ON_ VARCHAR2( 30)

NAME

| DX_SYNC_| NTERVAL VARCHAR2( 2000)

| DX_SYNC_JOBNANVE

| DX_SYNC_MENORY

VARCHAR2( 50)

VARCHAR2( 100

| DX_SYNC_PARA DEGREE NUMBER

| DX_SYNC_TYPE

G-12 Oracle Text Reference

VARCHAR2( 20)

Index partition name.

This is the interval string required
by scheduler job. Only meaningful
for AUTOMATIC sync. Always
null for MANUAL and ON
COMMIT sync.

This is the scheduler job name for
automatic sync. It's only
meaningful for AUTOMATIC sync
and always null for other types of
sync.

The sync memory size. Only
meaningful for ON COMMIT and
AUTOMATIC types of sync. For
MANUAL syng, this is always null.

Degree of parallelism for sync. Only
meaningful for the AUTOMATIC
type of sync; always null for
MANUAL and ON COMMIT
syncs.

Type of synching: AUTOMATIC,
MANUAL or ON COMMIT.



CTX_USER_INDEX_SUB_LEXER_VALS

Column Name Type Description

| XP_STATUS VARCHAR2( 12) Partition status.

| XP_TABLE_ONNER VARCHAR2( 30) Table owner.

| XP_TABLE_NAME VARCHAR2( 30) Table name.

:\lil\P/E TABLE_PARTI TI ON_ VARCHAR2( 30) Table partition name.

CTX_USER_INDEX_SETS

This view displays all index set names that belong to the current user. It is queryable
by all users.

Column Name Type Description

I XS_NAME VARCHAR2( 30) Index set name.

CTX_USER_INDEX_SET_INDEXES

This view displays all the indexes in an index set that belong to the current user. It is

queryable by all users.

Column Name Type Description

I XX_| NDEX_SET_NAME  VARCHARZ2( 30) Index set name.

I XX_COLLI ST VARCHAR2( 500) Column list of the index.

I XX_STORACE VARCHAR2( 500) Storage clause of the index.

CTX_USER_INDEX_SUB_LEXERS

This view shows the sub-lexers for each language for each index for the querying user.
This view can be queried by all users.

Column Name Type Description

I SL_1 NDEX_NAME VARCHAR2( 30) Index name.

I SL_LANGUAGE VARCHAR2( 30) Language of sub-lexer

I SL_ALT_VALUE VARCHAR2( 30) Alternate value of language.

I SL_OBJECT VARCHAR2( 30) Name of lexer object used for this
language.

CTX_USER_INDEX_SUB_LEXER_VALS

Shows the sub-lexer attributes and their values for the querying user. This view can be
queried by all users.

Oracle Text Views G-13



CTX_USER_INDEX_VALUES

Column Name Type Description

| SV_I NDEX_NAME VARCHAR2( 30) Index name.

I SV_LANGUAGE VARCHAR2( 30) Language of sub-lexer

I SV_OBJECT VARCHAR2( 30) Name of lexer object used for this
language.

| SV_ATTRI BUTE VARCHAR2( 30) Name of sub-lexer attribute.

I SV_VALUE VARCHAR2( 500) Value of sub-lexer attribute.

CTX_USER_INDEX_VALUES

This view displays attribute values for each object used in indexes for the current user.
This view is queryable by all users.

Column Name Type Description

I XV_1 NDEX_NAME VARCHAR2( 30) Index name.

I XV_CLASS VARCHAR2( 30) Class name.

I XV_OBJECT VARCHAR2( 30) Object name.

I XV_ATTRI BUTE VARCHAR2( 30) Attribute name
I XV_VALUE VARCHAR2( 500) Attribute value.

CTX_USER_PENDING

This view displays a row for each of the user's entries in the DML Queue. It can be
queried by all users.

Column Name Type Description

PND_| NDEX_NAME VARCHAR2( 30) Name of index.

PND_PARTI TI ON_NAME ~ VARCHAR2( 30) Name of partition for local partition
indexes. NULL for normal indexes.

PND_ROW D ROW D Rowid to be indexed.

PND_TI MESTAVP DATE Time of modification.

CTX_USER_PREFERENCES

This view displays all preferences defined by the current user. It can be queried by all

users.

Column Name Type Description
PRE_NAME VARCHAR2( 30) Preference name.
PRE_CLASS VARCHAR2( 30) Preference class.
PRE_OBJECT VARCHAR2( 30) Object used.

CTX_USER_PREFERENCE_VALUES

This view displays all the values for preferences defined by the current user. It can be
queried by all users.

G-14 Oracle Text Reference



CTX_USER_STOPLISTS

Column Name Type Description
PRV_PREFERENCE VARCHAR2( 30) Preference name.
PRV_ATTRI BUTE VARCHAR2( 64) Attribute name
PRV_VALUE VARCHAR2( 500) Attribute value

CTX_USER_SECTIONS

This view displays information about the sections that have been created in the Text
data dictionary for the current user. It can be queried by all users.

Column Name Type Description

SEC__SECTI ON_GROUP  VARCHAR2( 30) Name of the section group.

SEC _TYPE VARCHAR2( 30) Type of section, either ZONE, FIELD,
SPECIAL, STOP, or ATTR.

SEC | D NUMBER Section id.

SEC_NAME VARCHAR2( 30) Name of section.

SEC _TAG VARCHAR2( 64) Section tag

SEC_VI Sl BLE VARCHAR2( 1) Y or N visible indicator for field
sections.

CTX_USER_SECTION_GROUPS

This view displays information about the section groups that have been created in the
Text data dictionary for the current user. It can be queried by all users.

Column Name Type Description
SGP_NAME VARCHAR2( 30) Name of section group.
SGP_TYPE VARCHAR2( 30) Type of section group

CTX_USER_SQES

This view displays the definitions for all system and session SQEs that have been
created by the current user. It can be viewed by all users.

Column Name Type Description
SQE_ OMNER VARCHAR2( 30) Owner of SQE.
SQE_NAME VARCHARZ2( 30) Name of SQE.
SQE_QUERY VARCHAR2(2000) Query Text

CTX_USER_STOPLISTS

This view displays stoplists for current user. It is queryable by all users.

Column Name Type Description
SPL_NAME VARCHAR2( 30) Name of stoplist.
SPL_COUNT NUVBER Number of stopwords

Oracle Text Views G-15



CTX_USER_STOPWORDS

Column Name Type

SPL_TYPE VARCHAR2( 30)

Description

Type of stoplist, MULTT or BASIC.

CTX_USER_STOPWORDS

This view displays stopwords in each stoplist for current user. Queryable by all users.

Column Name Type Description

SPW STOPLI ST VARCHAR2( 30) Stoplist name.

SPW TYPE VARCHAR2( 10) Stop type, either STOP_WORD, STOP_
CLASS, STOP_THEME.

SPW WORD VARCHAR2( 80) Stopword.

SPW_LANGUAGE VARCHAR2( 30) Stopword language.

CTX_USER_SUB_LEXERS

For the current user, this view contains information on multi-lexers and the sub-lexer
preferences they contain.It can be queried by any user.

Column Name Type Description
SLX_NAME VARCHAR2( 30) Name of the multi-lexer preference.
SLX_LANGUAGE VARCHAR2( 30) Language of the referenced lexer (full

name, not abbreviation).

SLX_ALT_VALUE VARCHAR2( 30) An alternate value for the language.
SLX_SUB_OMNER VARCHAR2( 30) Owner of the sub-lexer.
SLX_SUB_NAME VARCHAR2( 30) Name of the sub-lexer.

CTX_USER_THESAURI

This view displays the information about all of the thesauri that have been created in
the system by the current user. It can be viewed by all users.

Column Name Type
THS_NAME VARCHAR2( 30)

Description

Thesaurus name

CTX_USER_THES_PHRASES

This view displays the phrase information of all thesaurus owned by the current user.
It can be queried by all users.

Column Name Type Description
THP_THESAURUS VARCHAR2( 30) Thesaurus name.
THP_PHRASE VARCHAR2( 256) Thesaurus phrase.
THP_QUALI FI ER VARCHAR2( 256) Phrase qualifier.
THP_SCOPE_NOTE VARCHAR2( 2000) Scope note of the phrase.

G-16 Oracle Text Reference



CTX_VERSION

CTX_VERSION

This view displays the CTXSYS data dictionary and code version number information.

Column Name Type Description

VER_DI CT CHAR( 9) The CTXSYS data dictionary version
number.

VER_CODE VARCHAR2( 9) The version number of the code linked in to

the Oracle Database shadow process.

This column fetches the version number for
linked-in code. Thus, you can use this
column to detect and verify patch releases.

Oracle Text Views G-17



CTX_VERSION

G-18 Oracle Text Reference



H

Stopword Transformations in Oracle Text

This appendix describes stopword transformations. The following topic is covered:

= Understanding Stopword Transformations

Understanding Stopword Transformations

When you use a stopword or stopword-only phrase as an operand for a query
operator, Oracle Text rewrites the expression to eliminate the stopword or
stopword-only phrase and then executes the query.

The following section describes the stopword rewrites or transformations for each
operator. In all tables, the Stopword Expression column describes the query expression
or component of a query expression, while the right-hand column describes the way
Oracle Text rewrites the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all
non-stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither a
stopword nor a word that is indexed. For example, the + character by itself is an
example of a no_lex token.

When the Stopword Expression column completely describes the query expression, a
rewritten expression of no_token means that no hits are returned when you enter such
a query.

When the Stopword Expression column describes a component of a query expression
with more than one operator, a rewritten expression of no_token means that a no_token
value is passed to the next step of the rewrite.

Transformations that contain a no_token as an operand in the Stopword Expression
column describe intermediate transformations in which the no_token is a result of a
previous transformation. These intermediate transformations apply when the original
query expression has at least one stopword and more than one operator.

For example, consider the following compound query expression:

"(this NOT dog) AND cat'

Assuming that this is the only stopword in this expression, Oracle Text applies the
following transformations in the following order:

stopword NOT non-stopword => no_token

no_token AND non_stopword => non_stopword

Stopword Transformations in Oracle Text H-1



Understanding Stopword Transformations

The resulting expression is:

‘cat'
Word Transformations
Stopword Expression Rewritten Expression
stopword no_token
no_lex no_token

The first transformation means that a stopword or stopword-only phrase by itself in a
query expression results in no hits.

The second transformation says that a term that is not lexed, such as the + character,
results in no hits.

AND Transformations

Stopword Expression Rewritten Expression
non_stopword AND stopword non_stopword
non_stopword AND no_token non_stopword
stopword AND non_stopword non_stopword
no_token AND non_stopword non_stopword
stopword AND stopword no_token

no_token AND stopword no_token

stopword AND no_token no_token

no_token AND no_token no_token

OR Transformations

Stopword Expression Rewritten Expression
non_stopword OR stopword non_stopword
non_stopword OR no_token non_stopword
stopword OR non_stopword non_stopword
no_token OR non_stopword non_stopword
stopword OR stopword no_token

no_token OR stopword no_token

stopword OR no_token no_token

no_token OR no_token no_token

H-2 Oracle Text Reference



Understanding Stopword Transformations

ACCUMulate Transformations

Stopword Expression

Rewritten Expression

non_stopword ACCUM stopword
non_stopword ACCUM no_token
stopword ACCUM non_stopword
no_token ACCUM non_stopword
stopword ACCUM stopword
no_token ACCUM stopword
stopword ACCUM no_token
no_token ACCUM no_token

non_stopword
non_stopword
non_stopword
non_stopword
no_token
no_token
no_token

no_token

MINUS Transformations

Stopword Expression

Rewritten Expression

non_stopword MINUS stopword
non_stopword MINUS no_token
stopword MINUS non_stopword
no_token MINUS non_stopword
stopword MINUS stopword
no_token MINUS stopword
stopword MINUS no_token
no_token MINUS no_token

non_stopword
non_stopword
no_token
no_token
no_token
no_token
no_token

no_token

NOT Transformations

Stopword Expression

Rewritten Expression

non_stopword NOT stopword
non_stopword NOT no_token
stopword NOT non_stopword
no_token NOT non_stopword
stopword NOT stopword
no_token NOT stopword
stopword NOT no_token

no_token NOT no_token

non_stopword
non_stopword
no_token
no_token
no_token
no_token
no_token

no_token

EQUIValence Transformations

Stopword Expression

Rewritten Expression

non_stopword EQUIV stopword

non_stopword

Stopword Transformations in Oracle Text

H-3



Understanding Stopword Transformations

Stopword Expression

Rewritten Expression

non_stopword EQUIV no_token
stopword EQUIV non_stopword
no_token EQUIV non_stopword
stopword EQUIV stopword
no_token EQUIV stopword
stopword EQUIV no_token
no_token EQUIV no_token

non_stopword
non_stopword
non_stopword
no_token
no_token
no_token

no_token

Note: When you use query explain plan, not all of the equivalence
transformations are represented in the EXPLAIN table.

NEAR Transformations

Stopword Expression

Rewritten Expression

non_stopword NEAR stopword
non_stopword NEAR no_token
stopword NEAR non_stopword
no_token NEAR non_stopword
stopword NEAR stopword
no_token NEAR stopword
stopword NEAR no_token
no_token NEAR no_token

non_stopword
non_stopword
non_stopword
non_stopword
no_token
no_token
no_token

no_token

Weight Transformations

Stopword Expression

Rewritten Expression

stopword * n

no_token *n

no_token

no_token

Threshold Transformations

Stopword Expression

Rewritten Expression

stopword >n

no_token > n

no_token

no_token

H-4 Oracle Text Reference



Understanding Stopword Transformations

WITHIN Transformations
Stopword Expression Rewritten Expression
stopword WITHIN section no_token
no_token WITHIN section no_token

Stopword Transformations in Oracle Text H-5



Understanding Stopword Transformations

H-6 Oracle Text Reference



Symbols

! operator, 3-34

- operator, 3-24

$ operator, 3-35

% wildcard, 3-45

* operator, 3-43

, operator, 3-7

= operator, 3-12

> operator, 3-38

? operator, 3-13

\ escape character, 4-1
_wildcard, 3-45

{} escape character, 4-1

A

ABOUT query, 3-4

example, 3-5

highlight markup, 8-13, 8-23

highlight offsets, 8-9, 8-22

viewing expansion, 10-6
accumulate operator, 3-7

scoring, 3-7

stopword transformations, H-3
ADD_ATTR_SECTION procedure, 7-3
ADD_EVENT procedure, 9-2
ADD_FIELD_SECTION procedure, 7-4
ADD_MDATA procedure, 7-9
ADD_MDATA_SECTION procedure, 7-11
ADD_SPECIAL_SECTION procedure, 7-12
ADD_STOP_SECTION procedure, 7-15
ADD_STOPCLASS procedure, 7-14
ADD_STOPTHEME procedure, 7-17
ADD_STOPWORD procedure, 7-18
ADD_SUB_LEXER procedure, 7-20

example, 2-34
ADD_TRACE procedure, 9-3
ADD_ZONE_SECTION procedure, 7-22
adding a trace, 9-3
adding an event, 9-2
adding metadata, 7-9,7-11
AL32UTEFS8 character set, 2-35, 2-36, 2-37, 2-39
ALER TABLE

UPDATE GLOBAL INDEXES, 1-14,1-15
ALTER INDEX, 1-2

examples, 1-10

rebuild syntax, 1-3

rename syntax, 1-2
ALTER TABLE, 1-13
ALTER_PHRASE procedure, 12-3
ALTER_THESAURUS procedure, 12-5
alternate grammar template, 1-25
alternate language template, 1-26
alternate scoring template, 1-26
alternate spelling, 15-2

about, 15-1

base letter, 15-2

Danish, 15-4

disabling example, 7-54,15-1

enabling example, 15-1

German, 15-4

normalized vs. original, 15-1

overriding, 15-3

Swedish, 15-4
alternate_spelling attribute, 2-33, 15-2
American

index defaults, 2-68
analyzing queries, 11-12
AND operator, 3-9

stopword transformations, H-2
attribute section

defining, 7-3

dynamically adding, 1-12

querying, 3-47
attribute sections

adding dynamically, 1-9

WITHIN example, 3-49
attributes

alternate_spelling, 2-33,15-2

base_letter, 2-31,15-2

base_letter_type, 2-31

binary, 2-6

charset, 2-16

command, 2-22

composite, 2-31

continuation, 2-29

detail_key, 2-6

detail_lineno, 2-6

detail_table, 2-6

detail_text, 2-6

disabling, 7-54

Index

Index-1



endjoins, 2-30
ftp_proxy, 2-11
fuzzy_match, 2-55
fuzzy_numresults, 2-55
fuzzy_score, 2-55
http_proxy, 2-11
i_index_clause, 2-59
i_table_clause, 2-59
index_text, 2-33
index_themes, 2-32
inso_output_formatting, 2-21
k_table_clause, 2-59
maxthreads, 2-10
maxurls, 2-10
mixed_case, 2-31
n_table_clause, 2-59
new_german_spelling, 2-33,15-2
newline, 2-30
no_proxy, 2-11
numgroup, 2-29
numjoin, 2-29
output_formatting, 2-18
output_type, 2-13
override_base_letter, 15-3
p_table_clause, 2-59
path, 2-8
printjoins, 2-29
procedure, 2-12
punctuations, 2-29
r_table_clause, 2-59
setting, 7-51
skipjoins, 2-30
startjoins, 2-30
stemmer, 2-55
timeout, 2-10
urlsize, 2-10
viewing, G-5
viewing allowed values, G-6
whitespace, 2-30
AUTO stemming, 2-54
AUTO_SECTION_GROUP example, 2-62
AUTO_SECTION_GROUP object, 1-46,2-61, 7-32
AUTO_SECTION_GROUP system-defined
preference, 2-69
automatic index synchronization, 1-5, 1-37
available traces, 9-3

B

backslash escape character, 4-1
base_letter attribute, 2-31, 15-2
base_letter_type attribute, 2-31, 15-2
base-letter conversions, 15-2
base-letter conversions, overriding, 15-3
BASIC_LEXER object, 2-27

supported character sets, 2-27
BASIC_LEXER system-defined preference, 2-68
BASIC_LEXER type

example, 2-33
BASIC_SECTION_GROUP object, 1-46, 2-60, 7-31

Index-2

BASIC_STOPLIST type, 7-34
BASIC_STORAGE object
attributes for, 2-59
defaults, 2-59
example, 2-60
BASIC_WORDLIST object
attributes for, 2-53
example, 2-57
BFILE column
indexing, 1-32
binary attribute, 2-6,2-14
binary documents
filtering, 2-4
BINARY format column value, 1-35
BLOB column
indexing, 1-32
loading example, C-1
brace escape character, 4-1
brackets
altering precedence, 3-3,4-1
grouping character, 4-1
broader term operators
example, 3-10
broader term query feedback, 10-9
BROWSE_WORDS procedure, 10-2
browsing words in index, 10-2
BT function, 12-6
BT operator, 3-10
BTG function, 12-8
BTG operator, 3-10
BTI function, 12-10
BTI operator, 3-10
BTP function, 12-12
BTP operator, 3-10

C

case-sensitive

ABOUT queries, 3-5
case-sensitive index

creating, 2-31
CATSEARCH operator, 1-18
CHAR column

indexing, 1-32
character sets

Chinese, 2-35

Japanese, 2-36

Korean, 2-38,2-39
characters

continuation, 2-29

numgroup, 2-29

numjoin, 2-29

printjoin, 2-29

punctuation, 2-29

skipjoin, 2-30

specifying for newline, 2-30

specifying for whitespace, 2-30

startjoin and endjoin, 2-30
character-set

indexing mixed columns, 2-17



character-set conversion
with INSO_FILTER, 2-19
charset attribute, 2-16
charset column, 1-35
CHARSET_FILTER
attributes for, 2-16
mixed character-set example, 2-17
Chinese
fuzzy matching, 2-54
Chinese character sets supported, 2-35
Chinese lexicon, modifying, 14-8
Chinese text
indexing, 2-35
CHINESE_VGRAM_LEXER object, 2-35
classifying documents, 6-2
clustering, 2-64, 6-5
CLOB column
indexing, 1-32
clump, 3-28
clump size in near operator, 3-27
clustering, 2-64,6-5
KMEAN_CLUSTERING, 2-64
types, 2-64
CLUSTERING procedure, 6-5
clustering types, 2-64
columns types
supported for CTXCAT index, 1-43
supported for CTXRULE index, 1-45
supported for CTXXPATH index, 1-46
supported for indexing, 1-32
command attribute, 2-22
compiler, lexical, 14-8
compMem element, 2-51
composite attribute
BASIC_LEXER, 2-31
KOREAN_MORP_LEXER, 2-40
composite textkey
encoding, 8-18
composite word dictionary, 2-31
composite word index
creating for German or Dutch text, 2-31
composite words
viewing, 10-6
CONTAINS operator
example, 1-27
syntax, 1-24
CONTEXT index
about, 1-31
default parameters, 2-70
syntax, 1-31
context indextype, 1-31
continuation attribute, 2-29
control file example
SQL*Loader, C-2
COPY_POLICY procedure, 7-25
COUNT_HITS procedure, 10-5
CREATE INDEX, 1-31
CONTEXT, 1-31
CTXCAT, 1-42
CTXRULE, 1-45

CTXXPATH, 1-46
default parameters, 2-70
CREATE_INDEX_SCRIPT procedure, 11-5
CREATE_INDEX_SET procedure, 7-26,7-55
CREATE_PHRASE procedure, 12-14
CREATE_POLICY procedure, 7-27
CREATE_POLICY_SCRIPT procedure, 11-6
CREATE_PREFERENCE procedure, 7-29
CREATE_RELATION procedure, 12-15
CREATE_SECTION_GROUP procedure, 7-31
CREATE_STOPLIST procedure, 7-34
CREATE_THESAURUS function, 12-17
CREATE_TRANSLATION procedure, 12-18
creating an index report, 11-3
CTX_ADM package
RECOVER, 5-2
SET_PARAMETER, 5-3
CTX_CLASSES view, G-2
CTX_CLS
CLUSTERING, 6-5
TRAIN, 6-2
CTX_DDL package
ADD_ATTR_SECTION, 7-3
ADD_FIELD_SECTION, 7-4
ADD_MDATA, 7-9
ADD_MDATA_SECTION, 7-11
ADD_SPECIAL_SECTION, 7-12
ADD_STOP_SECTION, 7-15
ADD_STOPCLASS, 7-14
ADD_STOPTHEME, 7-17
ADD_STOPWORD, 7-18
ADD_SUB_LEXER, 7-20
ADD_ZONE_SECTION, 7-22
COPY_POLICY, 7-25
CREATE_INDEX_SET, 7-26,7-55
CREATE_POLICY, 7-27
CREATE_PREFERENCE, 7-29
CREATE_SECTION_GROUP, 7-31
CREATE_STOPLIST, 7-34
DROP_POLICY, 7-37
DROP_PREFERENCE, 7-38
DROP_STOPLIST, 7-40
OPTIMIZE_INDEX procedure, 7-41
REMOVE_MDATA, 7-45
REMOVE_SECTION, 7-46
REMOVE_STOPCLASS, 7-47
REMOVE_STOPTHEME, 7-48
REMOVE_STOPWORD, 7-49
REPLACE_INDEX_METADATA, 7-50
SET_ATTRIBUTE, 7-51
SYNC_INDEX procedure, 7-52
UNSET_ATTRIBUTE, 7-54
CTX_DOC package, 8-1
FILTER, 8-3
GIST, 8-5
HIGHLIGHT, 8-9
IFILTER, 8-12
MARKUP, 8-13
PKENCODE, 8-18
POLICY_FILTER, 8-19

Index-3



POLICY_GIST, 8-20

POLICY_HIGHLIGHT, 8-22

POLICY_MARKUP, 8-23

POLICY_THEMES, 8-25

POLICY_TOKENS, 8-27

result tables, A-5

SET_KEY_TYPE, 8-29

THEMES, 8-30

TOKENS, 8-33
CTX_DOC_KEY_TYPE system parameter, 2-70
CTX_FEEDBACK_ITEM_TYPE type, A-4
CTX_FEEDBACK_TYPE type, 10-10, A-4
CTX_INDEX_ERRORS view, G-3

example, 1-42
CTX_INDEX_OBJECTS view, G-3
CTX_INDEX_SET_INDEXES view

views

CTX_INDEX_SET_INDEXES, G-4
CTX_INDEX_SUB_LEXERS view, G-4,G-13
CTX_INDEX_SUB_LEXERS_VALUES view, G-5
CTX_INDEX_VALUES view, G-5
CTX_INDEXES view, G-2
CTX_OBJECT_ATTRIBUTE_LOV view, G-6
CTX_OBJECT_ATTRIBUTES view, G-5
CTX_OBJECTS view, G-5
CTX_OUTPUT package, 9-1

ADD_EVENT, 9-2

ADD_TRACE, 9-3

END_LOG, 9-4

GET_TRACE_VALUE, 9-6

LOG_TRACES, 9-7

LOGFILENAME, 9-8

REMOVE_EVENT, 9-9

REMOVE_TRACE, 9-10

RESET_TRACE, 9-11

START_LOG, 9-12
CTX_PARAMETERS view, 2-69, G-6
CTX_PENDING view, G-7
CTX_PREFERENCE_VALUES view, G-8
CTX_PREFERENCES view, G-8
CTX_QUERY package

BROWSE_WORDS, 10-2

COUNT_HITS, 10-5

EXPLAIN, 10-6

HFEEDBACK, 10-9

REMOVE_SQE, 10-13

result tables, A-1

STORE_SQE, 10-14
CTX_QUERY.disable_transactional_query session

variable, 1-39

CTX_REPORT output format, 11-3,11-4,11-7, 11-8,

11-17

CTX_REPORT package, 11-1
CREATE_INDEX_SCRIPT, 11-5
CREATE_POLICY_SCRIPT, 11-6
DESCRIBE_INDEX, 11-3
DESCRIBE_POLICY, 11-4
function versions of procedures, 11-1
INDEX_SIZE, 11-7
INDEX_STATS, 11-8

Index-4

QUERY_LOG_SUMMARY, 11-12

TOKEN_INFO, 11-16

TOKEN_TYPE, 11-18
CTX_SECTION_GROUPS view, G-9
CTX_SECTIONS view, G-8
CTX_SQES view, G-9
CTX_STOPLISTS view, G-9
CTX_STOPWORDS view, G-9
CTX_SUB_LEXERS view, G-9
CTX_THES package, 12-1

ALTER_PHRASE, 12-3

ALTER_THESAURUS, 12-5

BT, 12-6

BTG, 12-8

BTI, 12-10

BTP, 12-12

CREATE_PHRASE, 12-14

CREATE_RELATION, 12-15

CREATE_THESAURUS, 12-17

DROP_PHRASE, 12-19

DROP_RELATION, 12-20

DROP_THESAURUS, 12-22

NT, 12-25

NTG, 12-27

NTI, 12-29

NTP, 12-31

OUTPUT_STYLE, 12-33

PT, 12-34

result tables, A-7

RT, 12-36

SN, 12-38

SYN, 12-39

THES_TT, 12-41

TR, 12-42

TRSYN, 12-44

TT, 12-46
CTX_THESAURI view, G-10
CTX_THES.CREATE_TRANSLATION, 12-18
CTX_THES.DROP_TRANSLATION, 12-23
CTX_THES.UPDATE_TRANSLATION, 12-48
CTX_TRACE_VALUES view, G-10
CTX_ULEXER package, 13-1
CTX_USER_INDEX_ERRORS view, G-11

example, 1-42
CTX_USER_INDEX_OBJECTS view, G-12
CTX_USER_INDEX_SET_INDEXES view, G-13
CTX_USER_INDEX_SETS view, G-13
CTX_USER_INDEX_SUB_LEXERS view, G-13
CTX_USER_INDEX_VALUES view, G-14
CTX_USER_INDEXES view, G-10
CTX_USER_PENDING view, G-14
CTX_USER_PREFERENCE_VALUES view, G-14
CTX_USER_PREFERENCES view, G-14
CTX_USER_SECTION_GROUPS view, G-15
CTX_USER_SECTIONS view, G-15
CTX_USER_SQES view, G-15
CTX_USER_STOPLISTS view, G-15
CTX_USER_STOPWORDS view, G-16
CTX_USER_SUB_LEXERS view, G-16
CTX_USER_THES_PHRASES view, G-16



CTX_USER_THESAURI view, G-16
CTX_VERSION view, G-17
CTXCAT index
about, 1-31
default parameters, 2-71
supported preferences, 1-43
syntax, 1-42
unsupported preferences, 1-44
ctxkbtc complier, 14-4
ctxlc (lexical compiler), 14-8
ctxload, 14-1
examples, 14-3
import file structure, C-3
CTXRULE index
about, 1-31
and USER_LEXER, 2-42
default parameters, 2-71
lexer types, 1-45
syntax, 1-45
CTXXPATH index
about, 1-31
syntax, 1-46
CTXXPATH indextype
creating, 1-47

D

Danish
alternate spelling, 15-4
index defaults, 2-68
supplied stoplist, E-2
data storage
defined procedurally, 2-12
direct, 2-3
example, 7-29
external, 2-8
master/detail, 2-6
URL, 29
datastore types, 2-2
DATE column, 1-32
DBMS_PCLUTIL
BUILD_PART_INDEX, 1-41
default index
example, 1-39
default parameters
changing, 2-72
CONTEXT index, 2-70
CTXCAT index, 2-71
CTXRULE index, 2-71
viewing, 2-72
DEFAULT thesaurus, 3-10, 3-25

DEFAULT_CTXCAT_INDEX_SET system

parameter, 2-71
DEFAULT_CTXCAT_LEXER system
parameter, 2-71

DEFAULT_CTXCAT_STOPLIST system

parameter, 2-71

DEFAULT_CTXCAT_STORAGE system

parameter, 2-71

DEFAULT_CTXCAT_WORDLIST system

parameter, 2-71
DEFAULT_CTXRULE_LEXER system
parameter, 2-72
DEFAULT_CTXRULE_STOPLIST system
parameter, 2-72
DEFAULT_CTXRULE_WORDLIST system
parameter, 2-72
DEFAULT_DATASTORE system parameter, 2-70
DEFAULT_DATASTORE system-defined indexing
preference, 2-67
DEFAULT_FILTER_BINARY system
parameter, 2-70
DEFAULT_FILTER_FILE system parameter, 2-70
DEFAULT_FILTER_TEXT system parameter, 2-70
DEFAULT_INDEX_MEMORY system
parameter, 2-70
DEFAULT_LEXER system parameter, 2-71
DEFAULT_LEXER system-defined indexing
preference, 2-68
DEFAULT_RULE_STORAGE system
parameter, 2-72
DEFAULT_SECTION_HTML system
parameter, 2-71
DEFAULT_SECTION_TEXT system parameter, 2-71
DEFAULT_STOPLIST system parameter, 2-71
DEFAULT_STOPLIST system-defined
preference, 2-69
DEFAULT_STORAGE system parameter, 2-71
DEFAULT_STORAGE system-defined
preference, 2-69
DEFAULT_WORDLIST system parameter, 2-71
DEFAULT_WORDLIST system-defined
preference, 2-69
defaults for indexing
viewing, G-6
derivational stemming
enabling for English, 2-55
DESCRIBE_INDEX procedure, 11-3
DESCRIBE_POLICY procedure, 11-4
describing an index, 11-3
DETAIL_DATASTORE object, 2-6
example, 2-7
detail_key attribute, 2-6
detail_lineno attribute, 2-6
detail_table attribute, 2-6
detail_text attribute, 2-6
dictionary
Chinese, 14-8
Japanese, 14-8
Korean, 2-39
modifying, 14-8
user, 2-31
DIRECT_DATASTORE object, 2-3
example, 2-3
disabling transactional queries, 1-39
disambiguators
in thesaural queries, 3-10
in thesaurus import file, C-6
DML
affect on scoring, F-2

Index-5



DML errors environment variables

viewing, G-3 setting for Inso filter, B-2
DML processing equivalence operator, 3-12
batch, 1-3 stopword transformations, H-3
DML queue with NEAR, 3-28
viewing, G-7 errors
document indexing, 1-42
classifying, 6-2 escaping special characters, 4-1
clustering, 6-5 event
filtering to HTML and plain text, 8-3 adding, 9-2
document filtering removing, 9-9
Inso, B-1 EVERY parameter, 1-5,1-37
document formats example, 1-41
supported, B-2 EXP_TAB table type, A-8
unsupported, B-9 expansion operator
document loading soundex, 3-34
SQL*Loader, C-1 stem, 3-35
document presentation viewing, 10-6
procedures, 8-1 EXPLAIN procedure, 10-6
document services example, 10-7
logging result table, A-1
requests, 9-12 explain table
double-truncated queries, 3-45 creating, 10-7
double-truncated searching retrieving data example, 10-7
improving performance, 2-55 structure, A-1
DROP INDEX, 1-48 extending knowledge base, 14-4
DROP_PHRASE procedure, 12-19 external filters
DROP_POLICY procedure, 7-37 specifying, 2-22
DROP_PREFERENCE procedure, 7-38
DROP_RELATION procedure, 12-20 F
DROP_STOPLIST procedure, 7-40
DROP_THESAURUS procedure, 12-22 failed index operation
DROP_TRANSLATION procedure, 12-23 resuming, 1-7
duplicating indexes with scripts, 11-5 fast filtering, 2-18,2-21
duplicating policy with script, 11-6 features
Dutch new, Xxxvii
composite word indexing, 2-31 field section
fuzzy matching, 2-54 defining, 7-4
index defaults, 2-68 limitations, 7-5
stemming, 2-54 querying, 3-47
supplied stoplist, E-3 field sections
adding dynamically, 1-8
E repeated, 3-49
WITHIN example, 3-48
email file data storage
filtering and indexing, 2-20 example, 7-29
empty indexes FILE_DATASTORE object, 2-8
creating, 1-37 example, 2-9
EMPTY_STOPLIST system-defined preference, 2-69 FILE_DATASTORE system-defined preference, 2-67
enabling tracing, 9-3 filter attribute
END_LOG procedure, 9-4 MULTI_COLUMN_DATASTORE, 2-4
END_QUERY_LOG procedure, 9-5 filter formats
ending a log, 9-4 supported, B-2
ending a query log, 9-5 FILTER procedure, 8-3
endjoins attribute, 2-30 example, 8-4
English in-memory example, 8-4
fuzzy matching, 2-54 result table, A-5
index defaults, 2-68 filter table
supplied stoplist, E-1 structure, A-5
english attribute (Korean lexer), 2-40 filter types, 2-15

Index-6



filtering
fast, with INSO_OUTPUT_FORMATTING
attribute, 2-21
fast, with OUTPUT FORMATTING
attribute, 2-18
multi_column_datastore, 2-4
stored procedures, 2-23
to plain text, 8-12
to plain text and HTML, 8-3
filters
character-set, 2-16
Inso, 2-17,B-1
user, 2-22
Finnish
index defaults, 2-68
supplied stoplist, E-3
format column, 1-35
formatted documents
filtering, 2-17
fragmentation of index, 1-37
French
fuzzy matching, 2-54
supplied stoplist, E-4
French stemming, 2-54
ftp_proxy attribute, 2-11
fuzzy matching
automatic language detection, 2-54
example for enabling, 2-57
specifying a language, 2-55
fuzzy operator, 3-13
fuzzy_match attribute, 2-55
fuzzy_numresults attribute, 2-55
fuzzy_score attribute, 2-55

G

German
alternate spelling attribute, 2-33
alternate spelling conventions, 15-4
composite word indexing, 2-31
fuzzy matching, 2-54
index defaults, 2-68
new spelling, querying with, 2-33,15-2
stemming, 2-54
supplied stoplist, E-4
GET_TRACE_VALUE procedure, 9-6
Gist
generating, 8-20
gist
generating, 8-5
GIST procedure
example, 8-7
result table, A-6
updated syntax, 8-5
Gist table
structure, A-6

H

hanja attribute, 2-40

HASPATH operator, 3-15
HFEEDBACK procedure, 10-9
example, 10-10
result table, A-3
hierarchical query feedback information
generating, 10-9
hierarchical relationships
in thesaurus import file, C-5
HIGHLIGHT procedure, 8-9
example, 8-10
result table, A-6
highlight table
example, 8-10
structure, A-6
highlighting
generating markup, 8-13, 8-23
generating offsets, 8-9, 8-22
with NEAR operator, 3-29
hit counting, 10-5
HOME environment variable
setting for INSO, B-2
homographs
in broader term queries, 3-11
in queries, 3-10
in thesaurus import file, C-6
HTML
bypassing filtering, 2-19
filtering to, 8-3
generating, 8-19
generating highlight offsets for, 8-9, 8-22
highlight markup, 8-13,8-23
highlighting example, 8-16
indexing, 1-46, 2-20, 2-60, 7-31
zone section example, 7-22
HTML_SECTION_GROUP
example, 2-61
HTML_SECTION_GROUP object, 1-46, 2-60, 7-22,
7-31
with NULL_FILTER, 2-20
HTML_SECTION_GROUP system-defined
preference, 2-69
http_proxy attribute, 2-11

i_index_clause attribute, 2-59
i_table_clause attribute, 2-59
IFILTER procedure, 8-12
IGNORE format column value, 1-35
import file

examples of, C-6

structure, C-3
index

creating, 1-31

creating a report on, 11-3

creating index script, 11-5

describing, 11-3

duplicating with script, 11-5

renaming, 1-2

script, 11-5

Index-7



show size of objects, 11-7
show statistics, 11-8
synchronizing, 1-5,1-37
transactional, 10-5
transactional CONTEXT, 1-6, 1-38
viewing registered, G-2
index creation
custom preference example, 1-39
default example, 1-39
index creation parameters
example, 2-60
index errors
deleting, 1-42
viewing, 1-42
index fragmentation, 1-37
index maintenance, 1-2
index objects, 2-1
viewing, G-3,G-5
index optimization, 1-7
Index Organized Table IOT), 1-31
index preference
about, 2-1
creating, 2-2,7-29
index reports, 11-1
index requests
logging, 9-12
index tablespace parameters
specifying, 2-58
index tokens
generating for a document, 8-27, 8-33
INDEX_PROCEDURE user_lexer attribute, 2-42
INDEX_SIZE procedure, 11-7
INDEX_STATS procedure, 11-8
index_stems attribute, 2-33
index_text attribute, 2-33
index_themes attribute, 2-32
indexing
master/detail example, 2-8
multilingual documents, 2-34, 2-52, D-4
parallel, 1-9,1-33
themes, 2-32
indexing types
classifier, 2-62
clustering, 2-64
datastore, 2-2
filter, 2-15
lexer, 2-26
section group, 2-60
storage, 2-58
vs. preferences, 2-2
wordlist, 2-53
indexless document services, see policy-based
document services
indextype context, 1-31
inflectional stemming
enabling, 2-55
INPATH operator, 3-17
INPUT_TYPE user_lexer attribute, 2-43
INSERT statement
loading example, C-1

Index-8

Inso filter

index preference object, 2-17

setting up, B-1

supported formats, B-2

supported platforms, B-1, B-2

unsupported formats, B-9
INSO_FILTER object, 2-17

and transactional CONTEXT indexes, 1-39

character-set conversion, 2-19
INSO_FILTER system-defined preference, 2-67
INSO_OUTPUT_FORMATTING attribute, 2-21
inverse frequency scoring, F-1
IOT see Index Organized Table
Italian

fuzzy matching, 2-54

stemming, 2-54

supplied stoplist, E-5

J

JA16EUC character set, 2-36, 2-37
JA16EUCTILDE character set, 2-36, 2-37
JA16EUCYEN character set, 2-36,2-37
JA16S]JIS character set, 2-36, 2-37
JA16SJISTILDE character set, 2-36, 2-37
JA16SJISYEN character set, 2-36, 2-37
Japanese

fuzzy matching, 2-54

index defaults, 2-68

indexing, 2-36

stemming, 2-54
japanese attribute (Korean lexer), 2-40
Japanese character sets supported, 2-36
Japanese EUC character se, 2-37
Japanese lexicon, modifying, 14-8
Japanese stemming, 2-54, 3-35
JAPANESE_LEXER, 2-37
JAPANESE_VGRAM_LEXER object, 2-36
JOB_QUEUE_PROCESSES initialization

parameter, 1-33

K

k_table_clause attribute, 2-59
KMEAN_CLUSTERING object, 2-64
knowledge base

supported character set, 14-4

user-defined, 14-7
knowledge base extension compiler, 14-4
KO16KSC5601 character set, 2-38, 2-39
KO16MSWIN949 character set, 2-39
Korean

fuzzy matching, 2-54

index defaults, 2-68

unicode character support, 2-39
korean character sets supported, 2-38, 2-39
Korean text

indexing, 2-38
KOREAN_LEXER object, 2-38
KOREAN_MORP_LEXER, 2-38



composite example, 2-40 MATCH_SCORE operator, 1-51

supplied dictionaries, 2-39 MATCHES operator, 1-49
KOREAN_MORPH_LEXER MAX_INDEX_MEMORY system parameter, 2-70
Unicode support, 2-39 max_span parameter in near operator, 3-27
maxthreads attribute, 2-10
L maxurls attribute, 2-10
MDATA operator, 3-22
language MDATA section, 7-9,7-11,7-45
setting, 2-26 memory
language column, 1-36 for index synchronize, 1-8
left-truncated searching for indexing, 1-8,1-37, 1-46, 7-52
improving performance, 2-55 META tag
lexer types, 2-26 creating field sections for, 7-5
and CTXRULE index, 1-45 creating zone section for, 7-23
lexical compiler, 14-8 metadata, 1-4,3-22
lexicon. See entries under dictionary replacing, 7-50
loading text METADATA keyword, 1-4
SQL INSERT example, C-1 ALTER INDEX example, 1-11
SQL*Loader example, C-1 metadata section, 7-9,7-11, 7-45
loading thesaurus, 14-1 MINUS operator, 3-24
LOB columns stopword transformations, H-3
loading, C-1 mixed character-set columns
local partition index indexing, 2-17
parallelism, 1-41 mixed_case attribute, 2-31
local partitioned index, 1-33 mixed-format columns
LOG_DIRECTORY system parameter, 2-70,9-8 filtering, 2-17
LOG_TRACES procedure, 9-7 indexing, 2-19
LOGFILENAME procedure, 9-8 supported formats for, B-2
logging modifying user dictionary, 14-8
ending, 9-4 morpheme attribute, 2-40
ending alog, 9-5 MULTI_LEXER object
getting log file name, 9-8 CREATE INDEX example, 1-40
index requests, 9-12 example, 2-34
logging queries, 11-12 MULTI_LEXER type, 2-34
logging traces, 9-7 MULTI_STOPLIST type, 7-34
logical operators multi-language indexing, 2-34, 2-52, 7-20, D-4
with NEAR, 3-28 multi-language stoplist, 2-34, 2-66
LONG columns multi-language tables
indexing, 1-32 querying, 1-29,2-35
long_word attribute, 2-40 multi-lexer example
migrating from single language, 1-11
M
mail filter configuration file, 2-21 N
mail filtering, see email, 2-20 n_table_clause attribute, 2-59
MAIL_FILTER object, 2-20 narrower term operators
MAIL_FILTER_CONFIG_FILE system example, 3-25
parameter, 2-21 narrower term query feedback, 10-9
maintaining index, 1-2 NEAR operator
MARKUP procedure, 8-13 backward compatibility, 3-28
example, 8-16 highlighting, 3-29
HTML highlight example, 8-16 scoring, 3-28
result table, A-6 stopword transformations, H-4
markup table with other operators, 3-28
example, 8-16 with within, 3-48
structure, A-6 nested section searching, 3-48
master/detail data storage, 2-6 nested zone sections, 7-24
example, 2-7,7-29 nested_column attribute, 2-14
master/detail tables NESTED_DATASTORE attribute, 2-14
indexing example, 2-8 NESTED_DATASTORE object, 2-14

Index-9



nested_lineno attribute, 2-14
nested_text attribute, 2-14
nested_type attribute, 2-14
new features, xxvii
new_german_spelling attribute, 2-33, 15-2
newline attribute, 2-30
NEWS_SECTION_GROUP object, 2-61,7-32
no_proxy attribute, 2-11
nopopulate index parameter, 1-37
nopopulate parameter, 1-37
normalized word forms, 15-1
Norwegian

index defaults, 2-68
NOT operator, 3-30

stopword transformations, H-3
NT function, 12-25
NT operator, 3-25
NTG function, 12-27
NTG operator, 3-25
NTI function, 12-29
NTI operator, 3-25
NTP function, 12-31
NTP operator, 3-25
NULL_FILTER object, 2-20

NULL_FILTER system-defined preference, 2-67

NULL_SECTION_GROUP object, 2-60, 7-31

NULL_SECTION_GROUP system-defined
preference, 2-68

number attribute, 2-40

NUMBER column, 1-32

numgroup attribute, 2-29

numjoin attribute, 2-29

O

object values
viewing, G-5
objects
viewing index, G-5
offsets for highlighting, 8-9, 8-22
on commit, 1-5,1-37
one_char_word attribute, 2-40
OPERATION column of explain table
values, A-2
OPERATION column of hfeedback table
values, A-3
operator
ABOUT, 34
accumulate, 3-7
broader term, 3-10
equivalence, 3-12
fuzzy, 3-13
HASPATH, 3-15
INPATH, 3-17
MATCH_SCORE, 1-51
MATCHES, 1-49
MDATA, 3-22
MINUS, 3-24
narrower term, 3-25
NEAR

Index-10

NOT, 3-30

OR, 3-31

preferred term, 3-32

related term, 3-33

SCORE, 1-52

soundex, 3-34

SQE, 3-36

stem, 3-35

synonym, 3-37

threshold, 3-38

top term, 3-42

TRANSFORM, 1-25

translation term, 3-39

translation term synonym, 3-40

weight, 3-43

WITHIN, 3-47
operator expansion

viewing, 10-6
operator precedence, 3-2

examples, 3-3

viewing, 10-6
operators, 3-1
optimization, 7-41

strategies, 7-41
OPTIMIZE_INDEX procedure, 7-41
optimizing index, 1-7
OPTIONS column

explain table, A-2

hfeedback table, A-4
OR operator, 3-31

stopword transformations, H-2
original word forms, 15-1
OUTPUT_FORMATTING attribute, 2-18
OUTPUT_STYLE procedure, 12-33
output_type attribute, 2-13
overlapping zone sections, 7-24
override_base_letter attribute, 15-3
overriding alternate spelling, 15-3
overriding base-letter conversions, 15-3

P

p_table_clause, 2-59
PARAGRAPH keyword, 3-49
paragraph section

defining, 7-12

querying, 3-47
parallel index creation, 1-41
parallel indexing, 1-9,1-33

DBMS_PCLUTIL.BUILD_PART_INDEX,

example, 1-40

local partitioned index, 1-33
parameter

transactional, 1-6,1-38
parameters

setting, 5-3

viewing system-defined, G-6
parentheses

altering precedence, 3-3,4-1

grouping character, 4-1

1-41



partitioned index

creating local in parallel, 1-33

example, 1-40

local, 1-33

parallel creation, 1-41

rebuild example, 1-10
partitioned index creation

example, 1-41
partitioned tables

modifying, 1-13
path attribute, 2-8
PATH environment variable

setting for Inso, B-2
PATH_SECTION_GROUP

querying with, 3-17
PATH_SECTION_GROUP object, 2-61,7-32
PATH_SECTION_GROUP system-defined

preference, 2-69

pending DML

viewing, G-7
performance

wildcard searches, 3-45
PKENCODE function, 8-18
plain text

bypassing filtering, 2-19

filtering to, 8-3,8-12

highlight markup, 8-13, 8-23

indexing with NULL_FILTER, 2-20

offsets for highlighting, 8-9
policy, 8-1

create script, 11-6

duplicate with script, 11-6

report describing, 11-4
POLICY_FILTER procedure, 8-19
POLICY_GIST procedure, 8-20
POLICY_HIGHLIGHT procedure, 8-22
POLICY_MARKUP procedure, 8-23
POLICY_THEMES procedure

syntax, 8-25
POLICY_TOKENS procedure

syntax, 8-27
policy-based document services, 8-1
populate index parameter, 1-37
populate parameter, 1-37
Portuguese

supplied stoplist, E-6
precedence of operators, 3-2

altering, 3-3,4-1

equivalence operator, 3-12

example, 3-3

viewing, 10-6
preference classes

viewing, G-2
preference values

viewing, G-8
preferences

about, 2-1

changing, 1-4

creating, 7-29

dropping, 7-38

replacing, 1-3
specifying for indexing, 1-34
system-defined, 2-67
viewing, G-8
vs. types, 2-2
preferred term operator
example, 3-32
prefix_index attribute, 2-56
prefix_length_max attribute, 2-57
prefix_length_min attribute, 2-56
printjoins attribute, 2-29
privileges
required for indexing, 1-31
procedure
COPY_POLICY, 7-25
CTX_DDL.REPLACE_INDEX_
METADATA, 7-50
CTX_OUTPUT_LOG_TRACES, 9-7
CTX_OUTPUT.ADD_TRACE, 9-3
CTX_OUTPUT.END_QUERY_LOG, 9-5
CTX_OUTPUT.GET_TRACE_VALUE, 9-6
CTX_OUTPUT.REMOVE_TRACE, 9-10
CTX_OUTPUT.RESET_TRACE, 9-11
procedure attribute, 2-12
PROCEDURE_FILTER object, 2-23
progressive relaxation template, 1-25
prove_themes attribute, 2-32
proximity operator, see NEAR operator
PT function, 12-34
PT operator, 3-32
punctuations attribute, 2-29

Q

query
accumulate, 3-7
analysis, 11-12
AND, 39
broader term, 3-10
equivalence, 3-12
example, 1-27
hierarchical feedback, 10-9
MINUS, 3-24
narrower term, 3-25
NOT, 3-30
on unsynched index, 1-38
OR, 3-31
preferred term, 3-32
related term, 3-33
report of logged, 11-12
stored, 3-36
synonym, 3-37
threshold, 3-38
top term, 3-42
transactional, 1-38, 10-5
translation term, 3-39
translation term synonym, 3-40
weighted, 3-43
query relaxation template, 1-25
query rewrite template, 1-24

Index-11



query template, 1-20, 1-24
QUERY_LOG_SUMMARY procedure, 11-12
QUERY_PROCEDURE user_lexer attribute, 2-44

R

r_table_clause attribute, 2-59
rebuilding index

example, 1-10

syntax, 1-3
RECOVER procedure, 5-2
related term operator, 3-33
related term query feedback, 10-9
relaxing queries, 1-25
relevance ranking

word queries, F-1
REMOVE_EVENT procedure, 9-9
REMOVE_MDATA procedure, 7-45
REMOVE_SECTION procedure, 7-46
REMOVE_SQE procedure, 10-13
REMOVE_STOPCLASS procedure, 7-47
REMOVE_STOPTHEME procedure, 7-48
REMOVE_STOPWORD procedure, 7-49
REMOVE_TRACE procedure, 9-10
removing a trace, 9-10
removing metadata, 7-45
renaming index, 1-2
repeated field sections

querying, 3-49
REPLACE_INDEX_METADATA procedure, 7-50
replacing, 1-4
replacing metadata, 1-4
replacing preferences, 1-3
report

describing index, 11-3

describing policy, 11-4

index objects, 11-7

index size, 11-7

index statistics, 11-8

of logged queries, 11-12

token information, 11-16
reserved words and characters, 4-2

escaping, 4-1
RESET_TRACE procedure, 9-11
resetting a trace, 9-11
result table

TOKENS, A-7
result tables, A-1

CTX_DOC, A-5

CTX_QUERY, A-1

CTX_THES, A-7
resuming failed index, 1-7

example, 1-10
rewriting queries, 1-24
RFC 1738 URL specification, 2-9
RFC-2045 messages

filtering, 2-20
RFC-822 messages

filtering, 2-20
RT function, 12-36

Index-12

RT operator, 3-33
RULE_CLASSIFIER type, 2-62
rules

generating, 6-2

S

Salton’s formula for scoring, F-1

scope notes

finding, 12-38
SCORE operator, 1-52
scoring

accumulate, 3-7

effect of DML, F-2

for NEAR operator, 3-28
scoring algorithm

word queries, F-1
script

create index, 11-5

create policy, 11-6
section group

creating, 7-31

viewing information about, G-9

section group example, 2-61
section group types, 2-60,7-31
section searching, 3-47
nested, 3-48
sections
adding dynamically, 1-3

constraints for dynamic addition, 1-12

creating attribute, 7-3
creating field, 7-4
creating zone, 7-22
nested, 7-24
overlapping, 7-24
removing, 7-46
repeated field, 7-6
repeated zone, 7-23

viewing information on, G-8

SENTENCE keyword, 3-49
sentence section
defining, 7-12
querying, 3-47

SET_ATTRIBUTE procedure, 7-51
SET_KEY_TYPE procedure, 8-29

SET_PARAMETER procedure,
show size of index objects, 11-7
Simplified Chinese

index defaults, 2-68
single-byte languages

indexing, 2-27
skipjoins attribute, 2-30
SN procedure, 12-38
soundex operator, 3-34
Spanish

fuzzy matching, 2-54

stemming, 2-54

supplied stoplist, E-6
special section

defining, 7-12

2-69,5-3



querying, 3-47
spelling

alternate, 15-2

base letter, 15-2

new German, 15-2

overriding alternate, 15-3
spelling, alternate, 15-1
spelling, new German, 2-33
SQE operator, 3-36
SQL commands

ALTER INDEX, 1-2

CREATE INDEX, 1-31

DROP INDEX, 1-48
SQL operators

CONTAINS, 1-24

MATCH_SCORE, 1-51

MATCHES, 1-49

SCORE, 1-52
SQL*Loader
example, C-1

example control file, C-2

example data file, C-2
sqlldr example, C-2
START_LOG procedure, 9-12
startjoins attribute, 2-30
statistics, showing index, 11-8
stem indexing, 2-33
stem operator, 3-35
stemmer attribute, 2-55
stemming, 2-54, 2-55, 3-35

automatic, 2-54

example for enabling, 2-57
stop section

adding dynamically, 1-9

dynamically adding example, 1-12
stop sections

adding, 7-15
stop_dic attribute, 2-40
stopclass

defining, 7-14

removing, 7-47
stoplist

creating, 7-34

Danish, E-2

dropping, 7-40

Dutch, E-3

English, E-1

Finnish, E-3

French, E-4

German, E-4

Italian, E-5

modifying, 2-66

multi-language, 2-34, 2-66

Portuguese, E-6

Spanish, E-6

Swedish, E-7
stoplists

about, 2-65

creating, 2-66

viewing, G-9

stoptheme
defining, 7-17
removing, 7-48
stopword
adding dynamically, 1-3,1-8
defining, 7-18
removing, 7-49
viewing all in stoplist, G-9
stopword transformation, H-1
viewing, 10-6
stopwords
adding dynamically, 2-66
removing, 2-66
storage defaults, 2-59
storage index preference
example, 7-30
storage objects, 2-58
STORE_SQE procedure
example, 3-36
syntax, 10-14
stored queries, 3-36
stored query expression
creating, 10-14
removing, 10-13
viewing, G-15
viewing definition, G-9
sub-lexer values
viewing, G-5
sub-lexers
viewing, G-4,G-9,G-13
substring index
example for creating, 2-57
substring_index attribute, 2-55
supplied stoplists, E-1
Swedish
alternate spelling, 15-4
index defaults, 2-68
supplied stoplist, E-7
SYN function, 12-39
SYN operator, 3-37
SYNC EVERY parameter, 1-5,1-37
SYNC ON COMMIT parameter, 1-5,1-37
sync parameter, 1-5,1-37
SYNC_INDEX procedure, 7-52
synchronize index, 1-5,1-37
synonym operator, 3-37
system parameters, 2-69
defaults for indexing, 2-70
system recovery
manual, 5-2
system-defined preferences, 2-67

T

table structure
explain, A-1
filter, A-5
Gist, A-6
hfeedback, A-3
highlight, A-6

Index-13



markup, A-6
theme, A-7
tagged text
searching, 3-47
template query, 1-20, 1-24
text column
supported types, 1-32
Text data dictionary
cleaning up, 5-2
TEXT format column value, 1-35
text-only index
enabling, 2-33
example, 7-29
theme functionality
supported languages, 14-7
theme highlighting
generating markup, 8-13
generating offsets, 8-9, 8-22
HTML markup example, 8-16
HTML offset example, 8-10
theme index
as default in English, 2-68
creating, 2-32
theme proving
enabling, 2-32
theme summary
generating, 8-5
generating topn, 8-7
theme table
structure, A-7
theme_language attribute, 2-32
themes

generating for document, 8-25, 8-30
generating highlight markup, 8-13, 8-23

highlight offset example, 8-10
indexing, 2-32
obtaining top n, 8-32
THEMES procedure
result table, A-7
syntax, 8-30
THES_TT procedure, 12-41
thesaurus
compiling, 14-4
creating, 12-17
creating relationships, 12-14
DEFAULT, 3-10
dropping, 12-22
import/export examples, 14-3
importing/exporting, 14-1
procedures for browsing, 12-1
renaming and truncating, 12-5
viewing information about, G-10
thesaurus import file
examples, C-6
structure, C-3
thesaurus phrases
altering, 12-3
dropping, 12-19
thesaurus relations
creating, 12-15

Index-14

dropping, 12-20
thesaurus scope note
finding, 12-38
thesaurus top terms
finding all, 12-41
threshold operator, 3-38
stopword transformations, H-4
timeout attribute, 2-10
to_upper attribute, 2-40
token index optimization, 1-7
token report, generating, 11-16
token, translating name into, 11-18
TOKENL_INFO procedure, 11-16
TOKEN_TYPE procedure, 11-18
TOKENS procedure
result table, A-7
syntax, 8-33
top term, 3-42
top term operator, 3-42
TR function, 12-42
TR operator, 3-39
trace value
getting, 9-6
traces, available, 9-3
tracing
adding a trace, 9-3
available traces, 9-3
CTX_TRACE_VALUES view, G-10
enabling, 9-3
getting trace values, 9-6, G-10
logging traces, 9-7
removing trace, 9-10
resetting trace, 9-11
TRAIN procedure, 6-2

transactional CONTEXT index, 1-6, 1-38

transactional index, 10-5
transactional parameter, 1-6, 1-38
transactional text query, 1-6,1-38
disabling, 1-39
TRANSFORM operator, 1-25
transformation
stopword, H-1
translation term operator, 3-39

translation term synonym operator, 3-40

translations
adding to thesaurus, 12-18
dropping, 12-23

English name to numeric token, 11-18

updating, 12-48
TRSYN function, 12-44
TRSYN operator, 3-40
TT function, 12-46
TT operator, 3-42
type

MULTI_LEXER, 2-34

WORLD_LEXER, 2-52,D-4
types, 2-2

indexing, 2-2

see also indexing types



U

unicode support in Korean lexer, 2-39
UNIX platforms

setting variables for Inso, B-2
UNSET_ATTRIBUTE procedure, 7-54
unsupervised classification, see clustering
UPDATE GLOBAL INDEXES, 1-14,1-15
UPDATE_TRANSLATION procedure, 12-48
URL syntax, 2-9
URL_DATASTORE object

attributes for, 2-9

example, 2-11
URL_DATASTORE system-defined preference,
urlsize attribute, 2-10
user dictionary, modifying, 14-8
USER_DATASTORE object, 2-12

example, 2-13
USER_DATSTORE

filtering binary documents, 8-12
user_dic attribute, 2-40
USER_FILTER object, 2-22

example, 2-23
USER_LEXER object, 2-41

and CTXRULE index, 2-42
UTF-16 endian auto-detection, 2-16
UTF8, 2-37
UTF8 character set, 2-27, 2-36, 2-37, 2-38, 2-39
utilities

ctxload, 14-1

Vv

2-67

VARCHAR?2 column
indexing, 1-32

verb_adjective attribute, 2-40

version numbers
viewing, G-17

viewing
operator expansion, 10-6
operator precedence, 10-6

views, G-1
CTX_CLASSES, G-2
CTX_INDEX_ERRORS, G-3
CTX_INDEX_OBJECTS, G-3
CTX_INDEX_SUB_LEXER, G-4
CTX_INDEX_SUB_LEXERS, G-13
CTX_INDEX_SUB_LEXERS_VALUES, G-5
CTX_INDEX_VALUES, G-5
CTX_INDEXES, G-2
CTX_OBJECT_ATTRIBUTE_LOV, G-6
CTX_OBJECT_ATTRIBUTES, G-5
CTX_OBJECTS, G-5
CTX_PARAMETERS, G-6
CTX_PENDING, G-7
CTX_PREFERENCE_VALUES, G-8
CTX_PREFERENCES, G-8
CTX_SECTION_GROUPS, G-9
CTX_SECTIONS, G-8
CTX_SQES, G-9
CTX_STOPLISTS, G-9

CTX_STOPWORDS, G-9
CTX_SUB_LEXERS, G-9
CTX_THESAURI, G-10
CTX_TRACE_VALUES, G-10
CTX_USER_INDEX_ERRORS, G-11
CTX_USER_INDEX_OBJECTS, G-12
CTX_USER_INDEX_SET_INDEXES, G-13
CTX_USER_INDEX_SETS, G-13
CTX_USER_INDEX_SUB_LEXERS, G-13
CTX_USER_INDEX_VALUES, G-14
CTX_USER_INDEXES, G-10
CTX_USER_PENDING, G-14
CTX_USER_PREFERENCE_VALUES, G-14
CTX_USER_PREFERENCES, G-14
CTX_USER_SECTION_GROUPS, G-15
CTX_USER_SECTIONS, G-15
CTX_USER_SQES, G-15
CTX_USER_STOPLISTS, G-15
CTX_USER_STOPWORDS, G-16
CTX_USER_SUB_LEXERS, G-16
CTX_USER_THES_PHRASES, G-16
CTX_USER_THESAURI, G-16
CTX_VERSION, G-17

visible flag for field sections, 7-4

visible flag in field sections, 3-48

w

weight operator, 3-43

stopword transformations, H-4
whitespace attribute, 2-30
wildcard queries

improving performance, 2-56
wildcard searches, 3-45

improving performance, 3-45
wildcard_maxterms attribute, 2-57
WILDCARD_TAB type, 13-1
WITHIN operator, 3-47

attribute sections, 3-49

limitations, 3-47

nested, 3-48

precedence, 3-3

stopword transformations, H-5
word forms, 15-1

original vs. normalized, 15-1
WORLD_LEXER type, 2-52, D-4

X

XML documents
attribute sections, 7-3
doctype sensitive sections, 7-23
indexing, 1-46,2-61,7-32
querying, 3-49
XML report output format, 11-3, 11-4, 11-7, 11-8,
11-17
XML sectioning, 2-62
XML_SECTION_GROUP
example, 2-61
XML_SECTION_GROUP object, 1-46, 2-60, 7-31

Index-15



XMLType column
indexing, 1-47

Z

ZHS16CGB231280 character set, 2-35
ZHS16GBK character set, 2-35
ZHS32GB18030 character set, 2-35
ZHT16BIG5 character set, 2-35
ZHT16HKSCS character set, 2-36
ZHT16MSWIN950 character set, 2-35
ZHT32EUC character set, 2-35
ZHT32TRIS character set, 2-35
zone section

adding dynamically, 1-8

creating, 7-22

dynamically adding example, 1-12

querying, 3-47

repeating, 7-23

Index-16



	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documentation
	Conventions

	What's New in Oracle Text?
	Oracle Database 10g R1 New Features
	Security Improvements
	Classification and Clustering
	Indexing
	Language Features
	Querying
	Document Services

	1 Oracle Text SQL Statements and Operators
	ALTER INDEX
	ALTER TABLE: Supported Partitioning Statements
	CATSEARCH
	CONTAINS
	CREATE INDEX
	DROP INDEX
	MATCHES
	MATCH_SCORE
	SCORE

	2 Oracle Text Indexing Elements
	Overview
	Creating Preferences

	Datastore Types
	DIRECT_DATASTORE
	DIRECT_DATASTORE CLOB Example

	MULTI_COLUMN_DATASTORE
	Indexing and DML
	MULTI_COLUMN_DATASTORE Example
	MULTI_COLUMN_DATASTORE Filter Example
	Tagging Behavior
	Indexing Columns as Sections

	DETAIL_DATASTORE
	Synchronizing Master/Detail Indexes
	Example Master/Detail Tables
	Master Table Example
	Detail Table Example
	Detail Table Example Attributes
	Master/Detail Index Example


	FILE_DATASTORE
	PATH Attribute Limitations
	FILE_DATASTORE Example

	URL_DATASTORE
	URL Syntax
	URL_DATASTORE Attributes
	URL_DATASTORE Example

	USER_DATASTORE
	Constraints
	Editing Procedure after Indexing
	USER_DATASTORE with CLOB Example
	USER_DATASTORE with BLOB_LOC Example

	NESTED_DATASTORE
	NESTED_DATASTORE Example
	Create the Nested Table
	Insert Values into Nested Table
	Create Nested Table Preferences
	Create Index on Nested Table
	Query Nested Datastore



	Filter Types
	CHARSET_FILTER
	UTF-16 Big- and Little-Endian Detection
	Indexing Mixed-Character Set Columns
	Indexing Mixed-Character Set Example


	INSO_FILTER
	Indexing Formatted Documents
	Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
	Character Set Conversion With Inso

	NULL_FILTER
	Indexing HTML Documents

	MAIL_FILTER
	Filter Behavior
	About the Mail Filter Configuration File
	Mail File Configuration File Structure


	USER_FILTER
	User Filter Example

	PROCEDURE_FILTER
	Parameter Order
	Procedure Filter Execute Requirements
	Error Handling
	Procedure Filter Preference Example


	Lexer Types
	BASIC_LEXER
	Stemming User-Dictionaries
	BASIC_LEXER Example

	MULTI_LEXER
	Multi-language Stoplists
	MULTI_LEXER Example
	Querying Multi-Language Tables

	CHINESE_VGRAM_LEXER
	Character Sets

	CHINESE_LEXER
	Customizing the Chinese Lexicon

	JAPANESE_VGRAM_LEXER
	JAPANESE_VGRAM_LEXER Attribute
	JAPANESE_VGRAM_LEXER Character Sets

	JAPANESE_LEXER
	Customizing the Japanese Lexicon
	JAPANESE_LEXER Attribute
	JAPANESE LEXER Character Sets
	Japanese Lexer Example

	KOREAN_LEXER
	KOREAN_LEXER Character Sets
	KOREAN_LEXER Attributes
	Limitations

	KOREAN_MORPH_LEXER
	Supplied Dictionaries
	Supported Character Sets
	Unicode Support
	Limitations on Korean Unicode Support

	KOREAN_MORPH_LEXER Attributes
	Limitations
	KOREAN_MORPH_LEXER Example: Setting Composite Attribute
	NGRAM Example
	COMPONENT_WORD Example


	USER_LEXER
	Limitations
	USER_LEXER Attributes
	INDEX_PROCEDURE
	Requirements
	Parameters
	Restrictions

	INPUT_TYPE
	VARCHAR2 Interface
	CLOB Interface

	QUERY_PROCEDURE
	Requirements
	Restrictions
	Parameters

	Encoding Tokens as XML
	Limitations

	XML Schema for No-Location, User-defined Indexing Procedure
	Example
	Example
	Example

	XML Schema for User-defined Indexing Procedure with Location
	Example

	XML Schema for User-defined Lexer Query Procedure
	Example
	Example


	WORLD_LEXER
	WORLD_LEXER Example


	Wordlist Type
	BASIC_WORDLIST
	BASIC_WORDLIST Example
	Enabling Fuzzy Matching and Stemming
	Enabling Sub-string and Prefix Indexing
	Setting Wildcard Expansion Limit


	Storage Types
	BASIC_STORAGE
	Storage Default Behavior
	Storage Example


	Section Group Types
	Section Group Examples
	Creating Section Groups in HTML Documents
	Creating Sections Groups in XML Documents
	Automatic Sectioning in XML Documents


	Classifier Types
	RULE_CLASSIFIER
	SVM_CLASSIFIER

	Cluster Types
	KMEAN_CLUSTERING

	Stoplists
	Multi-Language Stoplists
	Creating Stoplists
	Modifying the Default Stoplist
	Dynamic Addition of Stopwords


	System-Defined Preferences
	Data Storage
	CTXSYS.DEFAULT_DATASTORE
	CTXSYS.FILE_DATASTORE
	CTXSYS.URL_DATASTORE

	Filter
	CTXSYS.NULL_FILTER
	CTXSYS.INSO_FILTER

	Lexer
	CTXSYS.DEFAULT_LEXER
	American and English Language Settings
	Danish Language Settings
	Dutch Language Settings
	German and German DIN Language Settings
	Finnish, Norwegian, and Swedish Language Settings
	Japanese Language Settings
	Korean Language Settings
	Chinese Language Settings
	Other Languages

	CTXSYS.BASIC_LEXER

	Section Group
	CTXSYS.NULL_SECTION_GROUP
	CTXSYS.HTML_SECTION_GROUP
	CTXSYS.AUTO_SECTION_GROUP
	CTXSYS.PATH_SECTION_GROUP

	Stoplist
	CTXSYS.DEFAULT_STOPLIST
	CTXSYS.EMPTY_STOPLIST

	Storage
	CTXSYS.DEFAULT_STORAGE

	Wordlist
	CTXSYS.DEFAULT_WORDLIST


	System Parameters
	General System Parameters
	Default Index Parameters
	CONTEXT Index Parameters
	CTXCAT Index Parameters
	CTXRULE Index Parameters
	Viewing Default Values
	Changing Default Values



	3 Oracle Text CONTAINS Query Operators
	Operator Precedence
	Group 1 Operators
	Group 2 Operators and Characters
	Procedural Operators
	Precedence Examples
	Altering Precedence

	ABOUT
	ACCUMulate ( , )
	AND (&)
	Broader Term (BT, BTG, BTP, BTI)
	EQUIValence (=)
	Fuzzy
	HASPATH
	INPATH
	MDATA
	MINUS (-)
	Narrower Term (NT, NTG, NTP, NTI)
	NEAR (;)
	NOT (~)
	OR (|)
	Preferred Term (PT)
	Related Term (RT)
	soundex (!)
	stem ($)
	Stored Query Expression (SQE)
	SYNonym (SYN)
	threshold (>)
	Translation Term (TR)
	Translation Term Synonym (TRSYN)
	Top Term (TT)
	weight (*)
	wildcards (% _)
	WITHIN

	4 Special Characters in Oracle Text Queries
	Grouping Characters
	Escape Characters
	Querying Escape Characters

	Reserved Words and Characters

	5 CTX_ADM Package
	RECOVER
	SET_PARAMETER

	6 CTX_CLS Package
	TRAIN
	CLUSTERING

	7 CTX_DDL Package
	ADD_ATTR_SECTION
	ADD_FIELD_SECTION
	ADD_INDEX
	ADD_MDATA
	ADD_MDATA_SECTION
	ADD_SPECIAL_SECTION
	ADD_STOPCLASS
	ADD_STOP_SECTION
	ADD_STOPTHEME
	ADD_STOPWORD
	ADD_SUB_LEXER
	ADD_ZONE_SECTION
	COPY_POLICY
	CREATE_INDEX_SET
	CREATE_POLICY
	CREATE_PREFERENCE
	CREATE_SECTION_GROUP
	CREATE_STOPLIST
	DROP_INDEX_SET
	DROP_POLICY
	DROP_PREFERENCE
	DROP_SECTION_GROUP
	DROP_STOPLIST
	OPTIMIZE_INDEX
	REMOVE_INDEX
	REMOVE_MDATA
	REMOVE_SECTION
	REMOVE_STOPCLASS
	REMOVE_STOPTHEME
	REMOVE_STOPWORD
	REPLACE_INDEX_METADATA
	SET_ATTRIBUTE
	SYNC_INDEX
	UNSET_ATTRIBUTE
	UPDATE_POLICY

	8 CTX_DOC Package
	FILTER
	GIST
	HIGHLIGHT
	IFILTER
	MARKUP
	PKENCODE
	POLICY_FILTER
	POLICY_GIST
	POLICY_HIGHLIGHT
	POLICY_MARKUP
	POLICY_THEMES
	POLICY_TOKENS
	SET_KEY_TYPE
	THEMES
	TOKENS

	9 CTX_OUTPUT Package
	ADD_EVENT
	ADD_TRACE
	END_LOG
	END_QUERY_LOG
	GET_TRACE_VALUE
	LOG_TRACES
	LOGFILENAME
	REMOVE_EVENT
	REMOVE_TRACE
	RESET_TRACE
	START_LOG
	START_QUERY_LOG

	10 CTX_QUERY Package
	BROWSE_WORDS
	COUNT_HITS
	EXPLAIN
	HFEEDBACK
	REMOVE_SQE
	STORE_SQE

	11 CTX_REPORT
	Procedures in CTX_REPORT
	Using the Function Versions
	DESCRIBE_INDEX
	DESCRIBE_POLICY
	CREATE_INDEX_SCRIPT
	CREATE_POLICY_SCRIPT
	INDEX_SIZE
	INDEX_STATS
	QUERY_LOG_SUMMARY
	TOKEN_INFO
	TOKEN_TYPE

	12 CTX_THES Package
	ALTER_PHRASE
	ALTER_THESAURUS
	BT
	BTG
	BTI
	BTP
	CREATE_PHRASE
	CREATE_RELATION
	CREATE_THESAURUS
	CREATE_TRANSLATION
	DROP_PHRASE
	DROP_RELATION
	DROP_THESAURUS
	DROP_TRANSLATION
	HAS_RELATION
	NT
	NTG
	NTI
	NTP
	OUTPUT_STYLE
	PT
	RT
	SN
	SYN
	THES_TT
	TR
	TRSYN
	TT
	UPDATE_TRANSLATION

	13 CTX_ULEXER Package
	WILDCARD_TAB

	14 Oracle Text Executables
	Thesaurus Loader (ctxload)
	Text Loading
	ctxload Syntax
	Mandatory Arguments
	Optional Arguments

	ctxload Examples
	Thesaurus Import Example
	Thesaurus Export Example


	Knowledge Base Extension Compiler (ctxkbtc)
	Knowledge Base Character Set
	ctxkbtc Syntax
	ctxkbtc Usage Notes
	ctxkbtc Limitations
	ctxkbtc Constraints on Thesaurus Terms
	ctxkbtc Constraints on Thesaurus Relations
	Extending the Knowledge Base
	Example for Extending the Knowledge Base

	Adding a Language-Specific Knowledge Base
	Limitations for Adding a Knowledge Base

	Order of Precedence for Multiple Thesauri
	Size Limits for Extended Knowledge Base

	Lexical Compiler (ctxlc)
	Syntax of ctxlc
	Mandatory Arguments
	Optional Arguments

	Performance Considerations
	ctxlc Usage Notes
	Example


	15 Oracle Text Alternative Spelling
	Overview of Alternative Spelling Features
	Alternate Spelling
	Base-Letter Conversion
	Generic Versus Language-Specific Base-Letter Conversions

	New German Spelling

	Overriding Alternative Spelling Features
	Overriding Base-Letter Transformations with Alternate Spelling

	Alternative Spelling Conventions
	German Alternate Spelling Conventions
	Danish Alternate Spelling Conventions
	Swedish Alternate Spelling Conventions


	A Oracle Text Result Tables
	CTX_QUERY Result Tables
	EXPLAIN Table
	Operation Column Values
	OPTIONS Column Values

	HFEEDBACK Table
	Operation Column Values
	OPTIONS Column Values
	CTX_FEEDBACK_TYPE


	CTX_DOC Result Tables
	Filter Table
	Gist Table
	Highlight Table
	Markup Table
	Theme Table
	Token Table

	CTX_THES Result Tables and Data Types
	EXP_TAB Table Type


	B Oracle Text Supported Document Formats
	About Document Filtering Technology
	Latest Updates for Patch Releases
	Supported Platforms
	Supported Platforms

	Environment Variables
	Requirements for UNIX Platforms

	Supported Document Formats
	Word Processing Formats - Generic Text
	Word Processing Formats - DOS
	Word Processing Formats - Windows
	Word Processing Formats - Macintosh
	Spreadsheet Formats
	Database Formats
	Display Formats
	Presentation Formats
	Graphic Formats
	Other Document Formats

	Restrictions on Format Support

	C Text Loading Examples for Oracle Text
	SQL INSERT Example
	SQL*Loader Example
	Creating the Table
	Issuing the SQL*Loader Command
	Example Control File: loader1.dat
	Example Data File: loader2.dat


	Structure of ctxload Thesaurus Import File
	Alternate Hierarchy Structure
	Usage Notes for Terms in Import Files
	Usage Notes for Relationships in Import Files
	Examples of Import Files
	Example 1 (Flat Structure)
	Example 2 (Hierarchical)
	Example 3



	D Oracle Text Multilingual Features
	Introduction
	Indexing
	Index Types
	CONTEXT Index Type
	CTXCAT Index Type
	CTXRULE Index Type

	Lexer Types
	Basic Lexer Features
	Theme Indexing
	Alternate Spelling
	Base Letter Conversion
	Composite
	Index stems

	Multi Lexer Features
	World Lexer Features

	Querying
	ABOUT Operator
	Fuzzy Operator
	Stem Operator

	Supplied Stop Lists
	Knowledge Base
	Knowledge Base Extension

	Multi-Lingual Features Matrix

	E Oracle Text Supplied Stoplists
	English Default Stoplist
	Chinese Stoplist (Traditional)
	Chinese Stoplist (Simplified)
	Danish (dk) Default Stoplist
	Dutch (nl) Default Stoplist
	Finnish (sf) Default Stoplist
	French (f) Default Stoplist
	German (d) Default Stoplist
	Italian (i) Default Stoplist
	Portuguese (pt) Default Stoplist
	Spanish (e) Default Stoplist
	Swedish (s) Default Stoplist

	F The Oracle Text Scoring Algorithm
	Scoring Algorithm for Word Queries
	Example
	DML and Scoring


	G Oracle Text Views
	CTX_CLASSES
	CTX_INDEXES
	CTX_INDEX_ERRORS
	CTX_INDEX_OBJECTS
	CTX_INDEX_PARTITIONS
	CTX_INDEX_SETS
	CTX_INDEX_SET_INDEXES
	CTX_INDEX_SUB_LEXERS
	CTX_INDEX_SUB_LEXER_VALUES
	CTX_INDEX_VALUES
	CTX_OBJECTS
	CTX_OBJECT_ATTRIBUTES
	CTX_OBJECT_ATTRIBUTE_LOV
	CTX_PARAMETERS
	CTX_PENDING
	CTX_PREFERENCES
	CTX_PREFERENCE_VALUES
	CTX_SECTIONS
	CTX_SECTION_GROUPS
	CTX_SQES
	CTX_STOPLISTS
	CTX_STOPWORDS
	CTX_SUB_LEXERS
	CTX_THESAURI
	CTX_THES_PHRASES
	CTX_TRACE_VALUES
	CTX_USER_INDEXES
	CTX_USER_INDEX_ERRORS
	CTX_USER_INDEX_OBJECTS
	CTX_USER_INDEX_PARTITIONS
	CTX_USER_INDEX_SETS
	CTX_USER_INDEX_SET_INDEXES
	CTX_USER_INDEX_SUB_LEXERS
	CTX_USER_INDEX_SUB_LEXER_VALS
	CTX_USER_INDEX_VALUES
	CTX_USER_PENDING
	CTX_USER_PREFERENCES
	CTX_USER_PREFERENCE_VALUES
	CTX_USER_SECTIONS
	CTX_USER_SECTION_GROUPS
	CTX_USER_SQES
	CTX_USER_STOPLISTS
	CTX_USER_STOPWORDS
	CTX_USER_SUB_LEXERS
	CTX_USER_THESAURI
	CTX_USER_THES_PHRASES
	CTX_VERSION

	H Stopword Transformations in Oracle Text
	Understanding Stopword Transformations
	Word Transformations
	AND Transformations
	OR Transformations
	ACCUMulate Transformations
	MINUS Transformations
	NOT Transformations
	EQUIValence Transformations
	NEAR Transformations
	Weight Transformations
	Threshold Transformations
	WITHIN Transformations


	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


