
PL/SQL
Packages and Types Reference

10g Release 1 (10.1)

Part No. B10802-01

December 2003

PL/SQL Packages and Types Reference, 10g Release 1 (10.1)

Part No. B10802-01

Copyright © 1998, 2003 Oracle Corporation. All rights reserved.

Primary Author: Den Raphaely

Contributing Authors: Gina Abeles, Cathy Baird, Deanna Bradshaw, Craig Foch, Laurel Hale, Paul Lane,
Jeff Levinger, Roza Leyderman, Chuck Murray, Eric Paapanen, Kathy Rich, Vivian Schupmann, Ingrid
Stuart, Randy Urbano

Contributors: Ted Burroughs, Shelley, Higgins, Jennifer Polk, Colin McGregor, Chuck Murray, Richard
Smith

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle; they are provided under a license agreement containing restrictions on use and disclosure and
are also protected by copyright, patent and other intellectual and industrial property laws. Reverse
engineering, disassembly or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle does not warrant that this document is
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle, 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and ConText, Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i,
PL/SQL, Pro*C, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other
names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xxv

Preface... xxvii

Audience ... xxviii
Organization... xxviii
Related Documentation .. xxviii
Conventions.. xxix
Documentation Accessibility ... xxxi

What's New in PL/SQL Packages and Types Reference? .. xxxiii

Oracle Database 10g Release 1 (10.1) New Features ... xxxiv
Oracle9i Release 2 (9.2) New Features .. xl
Oracle9i Release 1 (9.0.1) New Features ... xlii
Oracle8i Release 2 (8.1.6) New Features ... xliii
Oracle8i Release 1 (8.1.5) New Features ... xliii
This book was new for release 8.1.5. ... xliii

1 Introduction

Package Overview .. 1-2
Abbreviations for Datetime and Interval Datatypes ... 1-7
Summary of Oracle Supplied PL/SQL Packages ... 1-7

iv

2 CTX_ADM

Documentation of CTX_ADM.. 2-2

3 CTX_CLS

Documentation of CTX_CLS .. 3-2

4 CTX_DDL

Documentation of CTX_DDL ... 4-2

5 CTX_DOC

Documentation of CTX_DOC... 5-2

6 CTX_OUTPUT

Documentation of CTX_OUTPUT... 6-2

7 CTX_QUERY

Documentation of CTX_QUERY .. 7-2

8 CTX_REPORT

Documentation of CTX_REPORT.. 8-2

9 CTX_THES

Documentation of CTX_THES ... 9-2

10 CTX_ULEXER

Documentation of CTX_ULEXER .. 10-2

11 DBMS_ADVANCED_REWRITE

Using DBMS_ADVANCED_REWRITE ... 11-2
Summary of DBMS_ADVANCED_REWRITE Subprograms.. 11-3

v

12 DBMS_ADVISOR

Using DBMS_ADVISOR .. 12-2
Summary of DBMS_ADVISOR Subprograms ... 12-20

13 DBMS_ALERT

Using DBMS_ALERT... 13-2
Summary of DBMS_ALERT Subprograms ... 13-6

14 DBMS_APPLICATION_INFO

Using DBMS_APPLICATION_INFO ... 14-2
Summary of DBMS_APPLICATION_INFO Subprograms.. 14-4

15 DBMS_APPLY_ADM

Summary of DBMS_APPLY_ADM Subprograms ... 15-2

16 DBMS_AQ

Using DBMS_AQ.. 16-2
Summary of DBMS_AQ Subprograms .. 16-6

17 DBMS_AQADM

Using DBMS_AQADM ... 17-2
Summary of DBMS_AQADM Subprograms.. 17-5

18 DBMS_AQELM

Summary of DBMS_AQELM Subprograms ... 18-2

19 DBMS_CAPTURE_ADM

Summary of DBMS_CAPTURE_ADM Subprograms... 19-2

20 DBMS_CDC_PUBLISH

Using DBMS_CDC_PUBLISH ... 20-3
Summary of DBMS_CDC_PUBLISH Subprograms.. 20-5

vi

21 DBMS_CDC_SUBSCRIBE

Using DBMS_CDC_SUBSCRIBE .. 21-2
Summary of DBMS_CDC_SUBSCRIBE Subprograms... 21-5

22 DBMS_CRYPTO

Using the DBMS_CRYPTO Subprograms ... 22-2
Summary of DBMS_CRYPTO Subprograms .. 22-10

23 DBMS_DATA_MINING

Using DBMS_DATA_MINING.. 23-2
Summary of DBMS_DATA_MINING Subprograms .. 23-19

24 DBMS_DATA_MINING_TRANSFORM

Using DBMS_DATA_MINING_TRANSFORM... 24-2
Summary of DBMS_DATA_MINING_TRANSFORM Subprograms 24-8

25 DBMS_DATAPUMP

Using DBMS_DATAPUMP... 25-2
Summary of DBMS_DATAPUMP Subprograms ... 25-9

26 DBMS_DDL

Using DBMS_DDL ... 26-2
Summary of DBMS_DDL Subprograms.. 26-3

27 DBMS_DEBUG

Using DBMS_DEBUG ... 27-2
Summary of DBMS_DEBUG Subprograms .. 27-16

28 DBMS_DEFER

Documentation of DBMS_DEFER... 28-2

vii

29 DBMS_DEFER_QUERY

Documentation of DBMS_DEFER_QUERY .. 29-2

30 DBMS_DEFER_SYS

Documentation of DBMS_DEFER_SYS... 30-2

31 DBMS_DESCRIBE

Using DBMS_DESCRIBE ... 31-2
Summary of DBMS_DESCRIBE Subprograms .. 31-8

32 DBMS_DIMENSION

Using DBMS_DIMENSION... 32-2
Summary of DBMS_DIMENSION Subprograms ... 32-3

33 DBMS_DISTRIBUTED_TRUST_ADMIN

Using DBMS_DISTRIBUTED_TRUST_ADMIN .. 33-2
Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms 33-5

34 DBMS_FGA

Using DBMS_FGA ... 34-2
Summary of DBMS_FGA Subprograms .. 34-3

35 DBMS_FILE_TRANSFER

Summary of DBMS_FILE_TRANSFER Subprograms .. 35-2

36 DBMS_FLASHBACK

Using DBMS_FLASHBACK... 36-2
Summary of DBMS_FLASHBACK Subprograms ... 36-8

37 DBMS_FREQUENT_ITEMSET

Summary of DBMS_FREQUENT_ITEMSET Subprograms .. 37-2

viii

38 DBMS_HS_PASSTHROUGH

Summary of DBMS_HS_PASSTHROUGH Subprograms ... 38-2

39 DBMS_IOT

Summary of DBMS_IOT Subprograms ... 39-2

40 DBMS_JAVA

Documentation of DBMS_JAVA .. 40-2

41 DBMS_JOB

Using DBMS_JOB... 41-2
Summary of DBMS_JOB Subprograms ... 41-5

42 DBMS_LDAP

Documentation of DBMS_LDAP... 42-2

43 DBMS_LDAP_UTL

Documentation of DBMS_LDAP_UTL .. 43-2

44 DBMS_LIBCACHE

Using DBMS_LIBCACHE ... 44-2
Summary of DBMS_LIBCACHE Subprograms ... 44-3

45 DBMS_LOB

Using DBMS_LOB.. 45-2
Summary of DBMS_LOB Subprograms .. 45-15

46 DBMS_LOCK

Using DBMS_LOCK .. 46-2
Summary of DBMS_LOCK Subprograms ... 46-5

ix

47 DBMS_LOGMNR

Using DBMS_LOGMNR... 47-2
Summary of DBMS_LOGMNR Subprograms ... 47-6

48 DBMS_LOGMNR_D

Using DBMS_LOGMNR_D ... 48-2
Summary of DBMS_LOGMNR_D Subprograms .. 48-3

49 DBMS_LOGSTDBY

Using DBMS_LOGSTBY .. 49-2
Summary of DBMS_LOGSTDBY Subprograms.. 49-3

50 DBMS_METADATA

Using DBMS_METADATA... 50-2
Summary of DBMS_METADATA Subprograms ... 50-8

51 DBMS_MGWADM

Using DBMS_MGWADM... 51-2
Summary of DBMS_MGWADM Subprograms ... 51-29

52 DBMS_MGWMSG

Using DBMS_MGWMSG ... 52-2
Summary of DBMS_MGWMSG Subprograms.. 52-24

53 DBMS_MONITOR

Summary of DBMS_MONITOR Subprograms.. 53-2

54 DBMS_MVIEW

Using DBMS_MVIEW ... 54-2
Summary of DBMS_MVIEW Subprograms.. 54-3

x

55 DBMS_OBFUSCATION_TOOLKIT

Using DBMS_OBFUSCATION_TOOLKIT... 55-2
Summary of DBMS_OBFUSCATION Subprograms... 55-6

56 DBMS_ODCI

Summary of DBMS_ODCI Subprograms.. 56-2

57 DBMS_OFFLINE_OG

Documentation of DBMS_OFFLINE_OG.. 57-2

58 DBMS_OLAP

Using DBMS_OLAP ... 58-3
Summary of DBMS_OLAP Subprograms ... 58-10

59 DBMS_OUTLN

Using DBMS_OUTLN ... 59-2
Summary of DBMS_OUTLN Subprograms .. 59-3

60 DBMS_OUTLN_EDIT

Summary of DBMS_OUTLN_EDIT Subprograms .. 60-2

61 DBMS_OUTPUT

Using DBMS_OUTPUT ... 61-2
Summary of DBMS_OUTPUT Subprograms ... 61-7

62 DBMS_PCLXUTIL

Using DBMS_PCLXUTIL .. 62-2
Summary of DBMS_PCLXUTIL Subprograms... 62-5

63 DBMS_PIPE

Using DBMS_PIPE ... 63-2
Summary of DBMS_PIPE Subprograms .. 63-18

xi

64 DBMS_PROFILER

Using DBMS_PROFILER.. 64-2
Summary of DBMS_PROFILER Subprograms .. 64-8

65 DBMS_PROPAGATION_ADM

Summary of DBMS_PROPAGATION_ADM Subprograms ... 65-2

66 DBMS_RANDOM

Using DBMS_RANDOM .. 66-2
Summary of DBMS_RANDOM Subprograms... 66-3

67 DBMS_RECTIFIER_DIFF

Documentation of DBMS_RECTIFIER_DIFF... 67-2

68 DBMS_REDEFINITION

Using DBMS_REDEFINITION ... 68-2
Summary of DBMS_REDEFINITION Subprograms .. 68-4

69 DBMS_REFRESH

Documentation of DBMS_REFRESH ... 69-2

70 DBMS_REPAIR

Using DBMS_REPAIR ... 70-2
Summary of DBMS_REPAIR Subprograms.. 70-5

71 DBMS_REPCAT

Documentation of DBMS_REPCAT.. 71-2

72 DBMS_REPCAT_ADMIN

Documentation of DBMS_REPCAT_ADMIN .. 72-2

xii

73 DBMS_REPCAT_INSTANTIATE

Documentation of DBMS_REPCAT_INSTANTIATE.. 73-2

74 DBMS_REPCAT_RGT

Documentation of DBMS_REPCAT_RGT ... 74-2

75 DBMS_REPUTIL

Documentation of DBMS_REPUTIL .. 75-2

76 DBMS_RESOURCE_MANAGER

Using DBMS_RESOURCE_MANAGER.. 76-2
Summary of DBMS_RESOURCE_MANAGER Subprograms .. 76-8

77 DBMS_RESOURCE_MANAGER_PRIVS

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms.................................. 77-2

78 DBMS_RESUMABLE

Using DBMS_RESUMABLE... 78-2
Summary of DBMS_RESUMABLE Subprograms ... 78-3

79 DBMS_RLS

Using DBMS_RLS .. 79-2
Summary of DBMS_RLS Subprograms ... 79-4

80 DBMS_ROWID

Using DBMS_ROWID ... 80-2
Summary of DBMS_ROWID Subprograms.. 80-6

81 DBMS_RULE

Using DBMS_RULE ... 81-2
Summary of DBMS_RULE Subprograms .. 81-3

xiii

82 DBMS_RULE_ADM

Using DBMS_RULE_ADM... 82-2
Summary of DBMS_RULE_ADM Subprograms ... 82-3

83 DBMS_SCHEDULER

Using DBMS_SCHEDULER... 83-2
Summary of DBMS_SCHEDULER Subprograms ... 83-3

84 DBMS_SERVER_ALERT

Using DBMS_SERVER_ALERT... 84-2
Summary of DBMS_SERVER_ALERT Subprograms ... 84-11

85 DBMS_SERVICE

Using DBMS_SERVICE .. 85-2
Summary of DBMS_SERVICE Subprograms ... 85-3

86 DBMS_SESSION

Using DBMS_SESSION .. 86-2
Summary of DBMS_SESSION Subprograms... 86-3

87 DBMS_SHARED_POOL

Using DBMS_SHARED_POOL ... 87-2
Summary of DBMS_SHARED_POOL Subprograms.. 87-3

88 DBMS_SPACE

Using DBMS_SPACE ... 88-2
Summary of DBMS_SPACE Subprograms.. 88-3

89 DBMS_SPACE_ADMIN

Using DBMS_SPACE_ADMIN.. 89-2
Summary of DBMS_SPACE_ADMIN Subprograms .. 89-4

xiv

90 DBMS_SQL

Using DBMS_SQL ... 90-2
Summary of DBMS_SQL Subprograms... 90-25

91 DBMS_SQLTUNE

Using DBMS_SQLTUNE... 91-2
Summary of DBMS_SQLTUNE Subprograms ... 91-4

92 DBMS_STAT_FUNCS

Summary of DBMS_STAT_FUNCS Subprograms... 92-2

93 DBMS_STATS

Using DBMS_STATS.. 93-2
Summary of DBMS_STATS Subprograms .. 93-11

94 DBMS_STORAGE_MAP

Using DBMS_STORAGE_MAP .. 94-2
Summary of DBMS_STORAGE_MAP Subprograms ... 94-4

95 DBMS_STREAMS

Using DBMS_STREAMS .. 95-2
Summary of DBMS_STREAMS Subprograms ... 95-3

96 DBMS_STREAMS_ADM

Using DBMS_STREAMS_ADM.. 96-2
Summary of DBMS_STREAMS_ADM Subprograms .. 96-11

97 DBMS_STREAMS_AUTH

Summary of DBMS_STREAMS_AUTH Subprograms... 97-2

98 DBMS_STREAMS_MESSAGING

Summary of DBMS_STREAMS_MESSAGING Subprograms ... 98-2

xv

99 DBMS_STREAMS_TABLESPACE_ADM

Using DBMS_STREAMS_TABLESPACE_ADM.. 99-2
Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms 99-5

100 DBMS_TRACE

Using DBMS_TRACE .. 100-2
Summary of DBMS_TRACE Subprograms... 100-7

101 DBMS_TRANSACTION

Using DBMS_TRANSACTION... 101-2
Summary of DBMS_TRANSACTION Subprograms ... 101-3

102 DBMS_TRANSFORM

Summary of DBMS_TRANSFORM Subprograms.. 102-2

103 DBMS_TYPES

Using DBMS_TYPES ... 103-2

104 DBMS_UTILITY

Using DBMS_UTILITY ... 104-2
Summary of DBMS_UTILITY Subprograms .. 104-4

105 DBMS_WARNING

Using DBMS_WARNING... 105-2
Summary of DBMS_WARNING Subprograms ... 105-3

106 DBMS_WORKLOAD_REPOSITORY

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms....................................... 106-2

107 DBMS_WM

Documentation of DBMS_WM.. 107-2

xvi

108 DBMS_XDB

Using DBMS_XDB.. 108-2
Summary of DBMS_XDB Subprograms .. 108-4

109 DBMS_XDB_VERSION

Summary of DBMS_XDB_VERSION Subprograms ... 109-2

110 DBMS_TTS

Using DBMS_TTS .. 110-2
Summary of DBMS_TTS Subprograms ... 110-3

111 DBMS_XDBT

Using DBMS_XDBT ... 111-2
Summary of DBMS_XDBT Subprograms ... 111-5

112 DBMS_XDBZ

Summary of DBMS_XDBZ Subprograms ... 112-2

113 DBMS_XMLDOM

Using DBMS_XMLDOM .. 113-2
Subprogram Groups ... 113-7
Summary of DBMS_XMLDOM Subprograms .. 113-28

114 DBMS_XMLGEN

Summary of DBMS_XMLGEN Subprograms... 114-2

115 DBMS_XMLPARSER

Summary of DBMS_XMLPARSER Subprograms.. 115-2

116 DBMS_XMLQUERY

Using DBMS_XMLQUERY ... 116-2
Summary of DBMS_XMLQUERY Subprograms ... 116-3

xvii

117 DBMS_XMLSAVE

Using DBMS_XMLSAVE .. 117-2
Summary of DBMS_XMLSAVE Subprograms ... 117-3

118 DBMS_XMLSCHEMA

Constants of DBMS_XMLSCHEMA... 118-2
Summary of DBMS_XMLSCHEMA Subprograms ... 118-3
Catalog Views of the DBMS_XMLSCHEMA.. 118-18

119 DBMS_XMLSTORE

Using DBMS_XMLSTORE ... 119-2
Summary of DBMS_XMLSTORE Subprograms.. 119-3

120 DBMS_XPLAN

Using DBMS_XPLAN .. 120-2
Summary of DBMS_XPLAN Subprograms... 120-8

121 DBMS_XSLPROCESSOR

Summary of DBMS_XSLPROCESSOR Subprograms .. 121-2

122 DEBUG_EXTPROC

Using DEBUG_EXTPROC .. 122-2
Summary of DEBUG_EXTPROC Subprograms ... 122-4

123 HTF

Using HTF .. 123-2
Summary of Tags... 123-4
Summary of HTF Subprograms ... 123-9

124 HTMLDB_CUSTOM_AUTH

Documentation of HTMLDB_CUSTOM_AUTH ... 124-2

xviii

125 HTMLDB_APPLICATION

Documentation of HTMLDB_APPLICATION ... 125-2

126 HTMLDB_ITEM

Documentation of HTMLDB_ITEM ... 126-2

127 HTMLDB_UTIL

Documentation of HTMLDB_UTIL .. 127-2

128 HTP

Using HTP .. 128-2
Summary of Tags... 128-4
Summary of HTP Subprograms ... 128-9

129 OWA_CACHE

Using OWA_CACHE .. 129-2
Summary of OWA_CACHE Subprograms... 129-3

130 OWA_COOKIE

Using OWA_COOKIE .. 130-2
Summary of OWA_COOKIE Subprograms... 130-3

131 OWA_CUSTOM

Using OWA_CUSTOM .. 131-2
Summary of OWA_CUSTOM Subprograms... 131-3

132 OWA_IMAGE

Using OWA_IMAGE .. 132-2
Summary of OWA_IMAGE Subprograms... 132-3

133 OWA_OPT_LOCK

Using OWA_OPT_LOCK .. 133-2

xix

Summary of OWA_OPT_LOCK Subprograms... 133-3

134 OWA_PATTERN

Using OWA_PATTERN ... 134-2
Summary of OWA_PATTERN Subprograms .. 134-5

135 OWA_SEC

Using OWA_SEC... 135-2
Summary of OWA_SEC Subprograms ... 135-3

136 OWA_TEXT

Using OWA_TEXT .. 136-2
Summary of OWA_TEXT Subprograms... 136-3

137 OWA_UTIL

Using OWA_UTIL... 137-2
Summary of OWA_UTIL Subprograms ... 137-4

138 SDO_CS

Documentation of SDO_CS.. 138-2

139 SDO_GCDR

Documentation of SDO_GCDR... 139-2

140 SDO_GEOM

Documentation of SDO_GEOM .. 140-2

141 SDO_GEOR

Documentation of SDO_GEOR ... 141-2

142 SDO_GEOR_UTL

Documentation of SDO_GEOR_UTL... 142-2

xx

143 SDO_LRS

Documentation of SDO_LRS ... 143-2

144 SDO_MIGRATE

Documentation of SDO_MIGRATE.. 144-2

145 SDO_NET

Documentation of SDO_NET... 145-2

146 SDO_SAM

Documentation of SDO_SAM.. 146-2

147 SDO_TOPO

Documentation of SDO_TOPO ... 147-2

148 SDO_TOPO_MAP

Documentation of SDO_TOPO_MAP .. 148-2

149 SDO_TUNE

Documentation of SDO_TUNE.. 149-2

150 SDO_UTIL

Documentation of SDO_UTIL ... 150-2

151 UTL_COLL

Summary of UTL_COLL Subprograms .. 151-2

152 UTL_COMPRESS

Using UTL_COMPRESS.. 152-2
Summary of UTL_COMPRESS Subprograms .. 152-4

xxi

153 UTL_DBWS

Using UTL_DBWS.. 153-2
Summary of UTL_DBWS Subprograms .. 153-3

154 UTL_ENCODE

Summary of UTL_ENCODE Subprograms ... 154-2

155 UTL_FILE

Using UTL_FILE.. 155-2
Summary of UTL_FILE Subprograms .. 155-8

156 UTL_HTTP

Using UTL_HTTP ... 156-2
Subprogram Groups... 156-21
Summary of UTL_HTTP Subprograms.. 156-30

157 UTL_I18N

Using UTL_I18n .. 157-2
Summary of UTL_I18N Subprograms .. 157-3

158 UTL_INADDR

Using UTL_INADDR... 158-2
Summary of UTL_INADDR Subprograms ... 158-3

159 UTL_LMS

Using UTL_LMS ... 159-2
Summary of UTL_LMS Subprograms .. 159-3

160 UTL_MAIL

Using UTL_MAIL ... 160-2
Summary of UTL_MAIL Subprograms.. 160-3

xxii

161 UTL_RAW

Using UTL_RAW... 161-2
Summary of UTL_RAW Subprograms ... 161-3

162 UTL_RECOMP

Using UTL_RECOMP .. 162-2
Summary of UTL_RECOMP Subprograms ... 162-4

163 UTL_REF

Using UTL_REF ... 163-2
Summary of UTL_REF Subprograms ... 163-5

164 UTL_SMTP

Using UTL_SMTP ... 164-2
Summary of UTL_SMTP Subprograms ... 164-9

165 UTL_TCP

Using UTL_TCP .. 165-2
Summary of UTL_TCP Subprograms ... 165-7

166 UTL_URL

Using UTL_URL .. 166-2
Summary of UTL_URL Subprograms... 166-4

167 WPG_DOCLOAD

Using WPG_DOCLOAD ... 167-2
Summary of WPG_DOCLOAD Subprograms.. 167-3

168 ANYDATA TYPE

Using ANYDATA TYPE... 168-2
Summary of ANYDATA Subprograms... 168-5

xxiii

169 ANYDATASET TYPE

Construction... 169-2
Summary of ANYDATASET TYPE Subprograms.. 169-3

170 ANYTYPE TYPE

Summary of ANYTYPE Subprograms.. 170-2

171 Oracle Streams AQ TYPEs

Summary of Types .. 171-2

172 Database URI TYPEs

Summary of URITYPE Supertype Subprograms ... 172-2
Summary of HTTPURITYPE Subtype Subprograms .. 172-9
Summary of DBURITYPE Subtype Subprogams... 172-18
Summary of XDBURITYPE Subtype Subprograms .. 172-27
Summary of URIFACTORY Package Subprograms .. 172-36

173 JMS Types

Using JMS Types... 173-2
Summary of JMS Types ... 173-14

174 Logical Change Record TYPEs

Summary of Logical Change Record Types... 174-2
Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD 174-33

175 interMedia ORDAudio TYPE

Documentation of ORDAudio ... 175-2

176 interMedia ORDDoc TYPE

Documentation of ORDDoc ... 176-2

xxiv

177 interMedia ORDImage TYPE

Documentation of ORDImage ... 177-2

178 interMedia ORDImageSignature TYPE

Documentation of ORDImageSignature.. 178-2

179 interMedia SQL/MM Still Image TYPE

Documentation of SQL/MM Still Image.. 179-2

180 interMedia ORDVideo TYPE

Documentation of ORDVideo .. 180-2

181 Rule TYPEs

Summary of Rule Types... 181-2

182 XMLTYPE

Summary of XMLType Subprograms ... 182-2

Index

xxv

Send Us Your Comments

PL/SQL Packages and Types Reference, 10g Release 1 (10.1)

Part No. B10802-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxvi

xxvii

Preface

This reference manual describes the Oracle PL/SQL packages shipped with the
Oracle database server. This information applies to versions of the Oracle database
server that run on all platforms unless otherwise specified.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xxviii

Audience
PL/SQL Packages and Types Reference is intended for programmers, systems analysts,
project managers, and others interested in developing database applications. This
manual assumes a working knowledge of application programming and familiarity
with SQL to access information in relational database systems. Some sections also
assume a knowledge of basic object-oriented programming.

Organization
See Table 1–1, " Summary of Oracle Supplied PL/SQL Packages" on page 1-8 for
information about the organization of this reference.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Application Developer's Guide - Fundamentals

■ PL/SQL User's Guide and Reference

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

xxix

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

The JRepUtil class implements these
methods.

xxx

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

xxxi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxxii

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

xxxiii

What's New in PL/SQL Packages and Types
Reference?

The following sections describe the new features in Oracle PL/SQL Packages and
Types Reference:

■ Oracle Database 10g Release 1 (10.1) New Features

■ New Packages

■ New Types

■ Updated Packages

■ Updated Types

■ Oracle9i Release 2 (9.2) New Features

■ Oracle9i Release 1 (9.0.1) New Features

■ Oracle8i Release 2 (8.1.6) New Features

■ Oracle8i Release 1 (8.1.5) New Features

xxxiv

Oracle Database 10g Release 1 (10.1) New Features

New Packages
■ DBMS_ADVANCED_REWRITE

■ DBMS_ADVISOR

■ DBMS_CRYPTO

■ DBMS_DATAPUMP

■ DBMS_DATA_MINING

■ DBMS_DATA_MINING_TRANSFORM

■ DBMS_DIMENSION

■ DBMS_FILE_TRANSFER

■ DBMS_FREQUENT_ITEMSET

■ DBMS_JAVA

■ DBMS_MONITOR

■ DBMS_SCHEDULER

■ DBMS_SERVER_ALERT

■ DBMS_SERVICE

■ DBMS_SQLTUNE

■ DBMS_STAT_FUNCS

■ DBMS_STREAMS_AUTH

■ DBMS_STREAMS_MESSAGING

■ DBMS_STREAMS_TABLESPACE_ADM

■ DBMS_WARNING

■ DBMS_WORKLOAD_REPOSITORY

■ DBMS_XDBZ

■ DBMS_XMLSTORE

■ HTF

■ HTMLDB_CUSTOM_AUTH

xxxv

■ HTMLDB_APPLICATION

■ HTMLDB_ITEM

■ HTMLDB_UTIL

■ HTP

■ OWA_CACHE

■ OWA_COOKIE

■ OWA_CUSTOM

■ OWA_IMAGE

■ OWA_OPT_LOCK

■ OWA_PATTERN

■ OWA_SEC

■ OWA_TEXT

■ OWA_UTIL

■ SDO_GCDR

■ SDO_GEOR

■ SDO_GEOR_UTL

■ SDO_NET

■ SDO_SAM

■ SDO_TOPO

■ SDO_TOPO_MAP

■ UTL_COMPRESS

■ UTL_DBWS

■ UTL_I18N

■ UTL_LMS

■ UTL_MAIL

■ UTL_RECOMP

■ WPG_DOCLOAD

xxxvi

New Types
■ Database URI TYPEs

■ XMLTYPE

Updated Packages
■ DBMS_APPLICATION_INFO

■ DBMS_APPLY_ADM

■ DBMS_AQ

■ DBMS_AQADM

■ DBMS_AQELM

■ DBMS_CAPTURE_ADM

■ DBMS_CDC_PUBLISH

■ DBMS_CDC_SUBSCRIBE

■ DBMS_DDL

■ DBMS_DESCRIBE

■ DBMS_DISTRIBUTED_TRUST_ADMIN

■ DBMS_FGA

■ DBMS_JOB

■ DBMS_LIBCACHE

■ DBMS_LOB

■ DBMS_LOGMNR

■ DBMS_LOGMNR_D

■ DBMS_METADATA

xxxvii

■ DBMS_MGWADM

■ DBMS_MGWMSG

■ DBMS_MVIEW

■ DBMS_OBFUSCATION_TOOLKIT

■ DBMS_OLAP

■ DBMS_OUTLN

■ DBMS_OUTLN_EDIT

■ DBMS_OUTPUT

■ DBMS_PROPAGATION_ADM

■ DBMS_REDEFINITION

■ DBMS_REDEFINITION

■ DBMS_RESOURCE_MANAGER

■ DBMS_RLS

■ DBMS_ROWID

■ DBMS_RULE

■ DBMS_RULE_ADM

xxxviii

■ DBMS_SESSION

■ DBMS_SPACE

■ DBMS_SQL

■ DBMS_STATS

■ DBMS_STREAMS

■ DBMS_STREAMS_ADM

■ DBMS_TTS

■ DBMS_TYPES

■ DBMS_UTILITY

■ DBMS_WM

■ DBMS_XDB

■ DBMS_XDB_VERSION

■ DBMS_XMLGEN

■ DBMS_XMLSCHEMA

■ DBMS_XPLAN

■ DBMS_XSLPROCESSOR

■ DBMS_WM

■ SDO_CS

■ SDO_GEOM

■ SDO_LRS

■ SDO_MIGRATE

■ SDO_TUNE

■ SDO_UTIL

■ UTL_ENCODE

■ UTL_FILE

■ UTL_RAW

■ UTL_URL

xxxix

Updated Types
■ ANYDATA TYPE

■ ANYDATASET TYPE

■ Oracle Streams AQ TYPEs

■ Logical Change Record TYPEs

■ Rule TYPEs

xl

Oracle9i Release 2 (9.2) New Features
This release includes the following new chapters:

■ Advanced Queuing Types

■ DBMS_APPLY_ADM

■ DBMS_CAPTURE_ADM

■ DBMS_LOGSTDBY

■ DBMS_MGWADM

■ DBMS_MGWMSG

■ DBMS_PROPAGATION_ADM

■ DBMS_RULE

■ DBMS_RULE_ADM

■ DBMS_STORAGE_MAP

■ DBMS_STREAMS

■ DBMS_STREAMS_ADM

■ DBMS_XDB

■ DBMS_XDBT

■ DBMS_XDB_VERSION

■ DBMS_XMLDOM

■ DBMS_XMLPARSER

■ DBMS_XPLAN

■ DBMS_XSLPROCESSOR

■ JMS Types

■ Logical Change Record Types

■ Rule Types

This release includes changes to the following chapters:

xli

■ DBMS_DDL

■ DBMS_FLASHBACK

■ DBMS_LOB

■ DBMS_LOGMNR

■ DBMS_LOGMNR_CDC_PUBLISH

■ DBMS_LOGMNR_CDC_SUBSCRIBE

■ DBMS_LOGMNR_D

■ DBMS_METADATA

■ DBMS_REDEFINITION

■ DBMS_RLS

■ DBMS_SPACE_ADMIN

■ DBMS_STATS

■ DBMS_TRANSFORM

■ DBMS_WM

■ DBMS_XMLGEN

■ DBMS_XMLQUERY

■ DBMS_XMLSAVE

■ DBMS_XMLSchema

■ UTL_FILE

■ UTL_HTTP

xlii

Oracle9i Release 1 (9.0.1) New Features
This release includes the following new packages:

■ DBMS_AQELM

■ DBMS_ENCODE

■ DBMS_FGA

■ DBMS_FLASHBACK

■ DBMS_LDAP

■ DBMS_LibCache

■ DBMS_LOGMNR_CDC_PUBLISH

■ DBMS_LOGMNR_CDC_SUBSCRIBE

■ DBMS_METADATA

■ DBMS_ODCI

■ DBMS_OUTLN_EDIT

■ DBMS_REDEFINITION

■ DBMS_TRANSFORM

■ DBMS_URL

■ DBMS_WM

■ DBMS_XMLGEN

■ DBMS_XMLQuery

■ DMBS_XMLSave

■ UTL_ENCODE

This release includes new information about types:

■ DBMS_TYPES

■ ANYDATA_TYPE

■ ANYDATASET_TYPE

■ ANYTYPE_TYPE

This release includes enhancements to the following packages:

xliii

■ UTL_FILE

■ UTL_HTTP

■ UTL_RAW

Oracle8i Release 2 (8.1.6) New Features
This release included the following new packages

■ DBMS_BACKUP_RESTORE

■ DBMS_OBFUSCATION_TOOLKIT

■ UTL_INADDR

■ UTL_SMTP

■ UTL_TCP

This release included enhancements to the following packages:

■ DBMS_DEBUG

■ DBMS_DISTRIBUTED_TRUST_ADMIN

■ DBMS_LOGMINER

■ DBMS_LOGMINER_D

■ DBMS_PCLXUTIL

■ DMBS_PROFILER

■ DBMS_REPAIR

■ DBMS_RESOURCE_MANAGER

■ DBMS_ROWID

■ DBMS_SQL

■ DBMS_UTILITY

■ UTL_HTTP

Oracle8i Release 1 (8.1.5) New Features

This book was new for release 8.1.5.

xliv

Introduction 1-1

1
Introduction

Oracle supplies many PL/SQL packages with the Oracle server to extend database
functionality and provide PL/SQL access to SQL features. You can use the supplied
packages when creating your applications or for ideas in creating your own stored
procedures.

This chapter contains the following topics:

■ Package Overview

■ Abbreviations for Datetime and Interval Datatypes

■ Summary of Oracle Supplied PL/SQL Packages

Note: This manual covers the packages provided with the Oracle
database server. Packages supplied with other products, such as
Oracle Developer or the Oracle Application Server, are not covered.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information on how to create your own packages

Package Overview

1-2 PL/SQL Packages and Types Reference

Package Overview

A package is an encapsulated collection of related program objects stored together in
the database. Program objects are procedures, functions, variables, constants,
cursors, and exceptions.

Packages have many advantages over standalone procedures and functions. For
example, they:

■ Let you organize your application development more efficiently.

■ Let you grant privileges more efficiently.

■ Let you modify package objects without recompiling dependent schema objects.

■ Enable Oracle to read multiple package objects into memory at once.

■ Let you overload procedures or functions. Overloading means creating multiple
procedures with the same name in the same package, each taking arguments of
different number or datatype.

■ Can contain global variables and cursors that are available to all procedures and
functions in the package.

Package Components
PL/SQL packages have two parts: the specification and the body, although
sometimes the body is unnecessary. The specification is the interface to your
application; it declares the types, variables, constants, exceptions, cursors, and
subprograms available for use. The body fully defines cursors and subprograms,
and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested.
However, the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS -- specification (visible part)
 -- public type and item declarations
 -- subprogram specifications
END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)
 -- private type and item declarations
 -- subprogram bodies
[BEGIN
 -- initialization statements]

Package Overview

Introduction 1-3

END [name];
The specification holds public declarations that are visible to your application. The
body holds implementation details and private declarations that are hidden from
your application. You can debug, enhance, or replace a package body without
changing the specification. You can change a package body without recompiling
calling programs because the implementation details in the body are hidden from
your application.

Using Oracle Supplied Packages
Most Oracle supplied packages are automatically installed when the database is
created and the CATPROC.SQL script is run. For example, to create the DBMS_ALERT
package, the DBMSALRT.SQL and PRVTALRT.PLB scripts must be run when
connected as the user SYS. These scripts are run automatically by the CATPROC.SQL
script.

Certain packages are not installed automatically. Special installation instructions for
these packages are documented in the individual chapters.

To call a PL/SQL function from SQL, you must either own the function or have
EXECUTE privileges on the function. To select from a view defined with a PL/SQL
function, you must have SELECT privileges on the view. No separate EXECUTE
privileges are needed to select from the view. Instructions on special requirements
for packages are documented in the individual chapters.

Creating New Packages
To create packages and store them permanently in an Oracle database, use the
CREATE PACKAGE and CREATE PACKAGE BODY statements. You can execute these
statements interactively from SQL*Plus or Enterprise Manager.

To create a new package, do the following:

1. Create the package specification with the CREATE PACKAGE statement.

You can declare program objects in the package specification. Such objects are
called public objects. Public objects can be referenced outside the package, as
well as by other objects in the package.

Note: It is often more convenient to add the OR REPLACE clause in
the CREATE PACKAGE statement.

Package Overview

1-4 PL/SQL Packages and Types Reference

2. Create the package body with the CREATE PACKAGE BODY statement.

You can declare and define program objects in the package body.

■ You must define public objects declared in the package specification.

■ You can declare and define additional package objects, called private objects.
Private objects are declared in the package body rather than in the package
specification, so they can be referenced only by other objects in the package.
They cannot be referenced outside the package.

Separating the Specification and Body
The specification of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body
of a package defines the objects declared in the specification, as well as private
objects that are not visible to applications outside the package.

Oracle stores the specification and body of a package separately in the database.
Other schema objects that call or reference public program objects depend only on
the package specification, not on the package body. Using this distinction, you can
change the definition of a program object in the package body without causing
Oracle to invalidate other schema objects that call or reference the program object.
Oracle invalidates dependent schema objects only if you change the declaration of
the program object in the package specification.

Creating a New Package: Example The following example shows a package
specification for a package named EMPLOYEE_MANAGEMENT. The package contains
one stored function and two stored procedures.

CREATE PACKAGE employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER;
 PROCEDURE fire_emp (emp_id NUMBER);

See Also:

■ PL/SQL User's Guide and Reference

■ Oracle Database Application Developer's Guide - Fundamentals

for more information on creating new packages

■ Oracle Database Concepts

for more information on storing and executing packages

Package Overview

Introduction 1-5

 PROCEDURE sal_raise (emp_id NUMBER, sal_incr NUMBER);
END employee_management;

The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER IS

The function accepts all arguments for the fields in the employee table except for
the employee number. A value for this field is supplied by a sequence. The function
returns the sequence number generated by the call to this function.

 new_empno NUMBER(10);

 BEGIN
 SELECT emp_sequence.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, name, job, mgr,
 hiredate, sal, comm, deptno);
 RETURN (new_empno);
 END hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

The procedure deletes the employee with an employee number that corresponds to
the argument emp_id. If no employee is found, then an exception is raised.

 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
END fire_emp;

PROCEDURE sal_raise (emp_id IN NUMBER, sal_incr IN NUMBER) AS

The procedure accepts two arguments. Emp_id is a number that corresponds to an
employee number. Sal_incr is the amount by which to increase the employee's
salary.

 BEGIN

 -- If employee exists, then update salary with increase.

Package Overview

1-6 PL/SQL Packages and Types Reference

 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
 END sal_raise;
END employee_management;

Referencing Package Contents
To reference the types, items, and subprograms declared in a package specification,
use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

Note: If you want to try this example, then first create the
sequence number emp_sequence. You can do this using the
following SQL*Plus statement:

SQL> CREATE SEQUENCE emp_sequence
 > START WITH 8000 INCREMENT BY 10;

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-7

Abbreviations for Datetime and Interval Datatypes

Many of the datetime and interval datatypes have names that are too long to be
used with the procedures and functions in the replication management API.
Therefore, you must use abbreviations for these datatypes instead of the full names.
The following table lists each datatype and its abbreviation. No abbreviation is
necessary for the DATE and TIMESTAMP datatypes.

For example, if you want to use the DBMS_DEFER_QUERY.GET_datatype_ARG
function to determine the value of a TIMESTAMP LOCAL TIME ZONE argument in a
deferred call, then you substitute TSLTZ for datatype. Therefore, you run the
DBMS_DEFER_QUERY.GET_TSLTZ_ARG function.

Summary of Oracle Supplied PL/SQL Packages
Table 1–1 lists the supplied PL/SQL server packages. These packages run as the
invoking user, rather than the package owner. Unless otherwise noted, the packages
are callable through public synonyms of the same name.

Datatype Abbreviation

TIMESTAMP WITH TIME ZONE TSTZ

TIMESTAMP LOCAL TIME ZONE TSLTZ

INTERVAL YEAR TO MONTH IYM

INTERVAL DAY TO SECOND IDS

Caution:

■ The procedures and functions provided in these packages and
their external interfaces are reserved by Oracle and are subject
to change.

■ Modifying Oracle supplied packages can cause internal errors
and database security violations. Do not modify supplied
packages.

Summary of Oracle Supplied PL/SQL Packages

1-8 PL/SQL Packages and Types Reference

Table 1–1 Summary of Oracle Supplied PL/SQL Packages

Package Name Description

CTX_ADM Lets you administer servers and the data dictionary.

CTX_CLS Lets you generate CTXRULE rules for a set of
documents.

CTX_DDL Lets you create and manage the preferences, section lists
and stopgroups required for Text indexes.

CTX_DOC Lets you request document services.

CTX_OUTPUT Lets you manage the index log.

CTX_QUERY Lets you generate query feedback, count hits, and create
stored query expressions.

CTX_REPORT Lets you create various index reports.

CTX_THES Lets you to manage and browse thesauri.

CTX_ULEXER For use with the user-lexer.

DBMS_ADVANCED_REWRITE Contains interfaces for advanced query rewrite users to
create, drop, and maintain functional equivalence
declarations for query rewrite.

DBMS_ADVISOR Part of the SQLAccess Advisor, an expert system that
identifies and helps resolve performance problems
relating to the execution of SQL statements.

DBMS_ALERT Provides support for the asynchronous notification of
database events.

DBMS_APPLICATION_INFO Lets you register an application name with the database
for auditing or performance tracking purposes.

DBMS_APPLY_ADM Provides administrative procedures to start, stop, and
configure an apply process.

DBMS_AQ Lets you add a message (of a predefined object type)
onto a queue or to dequeue a message.

DBMS_AQADM Lets you perform administrative functions on a queue or
queue table for messages of a predefined object type.

DBMS_AQELM Provides procedures to manage the configuration of
Advanced Queuing asynchronous notification by e-mail
and HTTP.

DBMS_CAPTURE_ADM Describes administrative procedures to start, stop, and
configure a capture process; used in Streams.

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-9

DBMS_CDC_PUBLISH Identifies new data that has been added to, modified, or
removed from, relational tables and publishes the
changed data in a form that is usable by an application.

DBMS_CDC_SUBSCRIBE Lets you view and query the change data that was
captured and published with the DBMS_LOGMNR_CDC_
PUBLISH package.

DBMS_CRYPTO Lets you encrypt and decrypt stored data, can be used in
conjunction with PL/SQL programs running network
communications, and supports encryption and hashing
algorithms.

DBMS_DATA_MINING Lets you use data mining to discover hidden
patterns and use that knowledge to make
predictions.

DBMS_DATA_MINING_
TRANSFORM

Provides set of data transformation utilities
available for use with the DBMS_DATA_MINING
package for preparing mining data.

DBMS_DATAPUMP Lets you move all, or part of, a database between
databases, including both data and metadata.

DBMS_DDL Provides access to some SQL DDL statements from
stored procedures, and provides special administration
operations not available as DDLs.

DBMS_DEBUG Implements server-side debuggers and provides a way
to debug server-side PL/SQL program units.

DBMS_DEFER Provides the user interface to a replicated transactional
deferred remote procedure call facility. Requires the
Distributed Option.

DBMS_DEFER_QUERY Permits querying the deferred remote procedure calls
(RPC) queue data that is not exposed through views.
Requires the Distributed Option.

DMBS_DEFER_SYS Provides the system administrator interface to a
replicated transactional deferred remote procedure call
facility. Requires the Distributed Option.

DBMS_DESCRIBE Describes the arguments of a stored procedure with full
name translation and security checking.

DBMS_DIMENSION Enables you to verify dimension relationships and
provides an alternative to the Enterprise Manager
Dimension Wizard for displaying a dimension definition

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-10 PL/SQL Packages and Types Reference

DBMS_DISTRIBUTED_TRUST_
ADMIN

Maintains the Trusted Database List, which is used to
determine if a privileged database link from a particular
server can be accepted.

DBMS_FGA Provides fine-grained security functions.

DMBS_FILE_TRANSFER Lets you copy a binary file within a database or to
transfer a binary file between databases.

DMBS_FLASHBACK Lets you flash back to a version of the database at a
specified wall-clock time or a specified system change
number (SCN).

DBMS_FREQUENT_ITEMSET Enables frequent itemset counting.

DBMS_HS_PASSTHROUGH Lets you use Heterogeneous Services to send
pass-through SQL statements to non-Oracle systems.

DBMS_IOT Creates a table into which references to the chained rows
for an Index Organized Table can be placed using the
ANALYZE command.

DBMS_JAVA Provides a PL/SQL interface for accessing database
functionality from Java

DBMS_JOB Lets you schedule administrative procedures that you
want performed at periodic intervals; it is also the
interface for the job queue.

DBMS_LDAP Provides functions and procedures to access data from
LDAP servers.

DBMS_LDAP_UTL Provides the Oracle Extension utility functions for
LDAP.

DBMS_LIBCACHE Prepares the library cache on an Oracle instance by
extracting SQL and PL/SQL from a remote instance and
compiling this SQL locally without execution.

DBMS_LOB Provides general purpose routines for operations on
Oracle Large Object (LOBs) datatypes - BLOB, CLOB
(read/write), and BFILEs (read-only).

DBMS_LOCK Lets you request, convert and release locks through
Oracle Lock Management services.

DBMS_LOGMNR Provides functions to initialize and run the log reader.

DBMS_LOGMNR_D Queries the dictionary tables of the current database, and
creates a text based file containing their contents.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-11

DBMS_LOGSTDBY Describes procedures for configuring and managing the
logical standby database environment.

DBMS_METADATA Lets callers easily retrieve complete database object
definitions (metadata) from the dictionary.

DBMS_MGWADM Describes the Messaging Gateway administrative
interface; used in Advanced Queuing.

DBMS_MGWMSG Describes object types—used by the canonical message
types to convert message bodies—and helper methods,
constants, and subprograms for working with the
Messaging Gateway message types; used in Advanced
Queuing.

DBMS_MONITOR Let you use PL/SQL for controlling additional tracing
and statistics gathering.

DBMS_MVIEW Lets you refresh snapshots that are not part of the same
refresh group and purge logs. DBMS_SNAPSHOT is a
synonym.

DBMS_OBFUSCATION_TOOLKIT Provides procedures for Data Encryption Standards.

DBMS_ODCI Returns the CPU cost of a user function based on the
elapsed time of the function.

DBMS_OFFLINE_OG Provides public APIs for offline instantiation of master
groups.

DBMS_OLAP Provides procedures for summaries, dimensions, and
query rewrites.

DBMS_OUTLN Provides the interface for procedures and functions
associated with management of stored outlines.
Synonymous with OUTLN_PKG

DBMS_OUTLN_EDIT Lets you edit an invoker's rights package.

DBMS_OUTPUT Accumulates information in a buffer so that it can be
retrieved later.

DBMS_PCLXUTIL Provides intra-partition parallelism for creating
partition-wise local indexes.

DBMS_PIPE Provides a DBMS pipe service which enables messages
to be sent between sessions.

DBMS_PROFILER Provides a Probe Profiler API to profile existing PL/SQL
applications and identify performance bottlenecks.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-12 PL/SQL Packages and Types Reference

DBMS_PROPAGATION_ADM Provides administrative procedures for configuring
propagation from a source queue to a destination queue.

DBMS_RANDOM Provides a built-in random number generator.

DBMS_RECTIFIER_DIFF Provides APIs used to detect and resolve data
inconsistencies between two replicated sites.

DBMS_REDEFINITION Lets you perform an online reorganization of tables.

DBMS_REFRESH Lets you create groups of snapshots that can be refreshed
together to a transactionally consistent point in time.
Requires the Distributed Option.

DBMS_REPAIR Provides data corruption repair procedures.

DBMS_REPCAT Provides routines to administer and update the
replication catalog and environment. Requires the
Replication Option.

DBMS_REPCAT_ADMIN Lets you create users with the privileges needed by the
symmetric replication facility. Requires the Replication
Option.

DBMS_REPCAT_INSTATIATE Instantiates deployment templates. Requires the
Replication Option.

DBMS_REPCAT_RGT Controls the maintenance and definition of refresh group
templates. Requires the Replication Option.

DBMS_REPUTIL Provides routines to generate shadow tables, triggers,
and packages for table replication.

DBMS_RESOURCE_MANAGER Maintains plans, consumer groups, and plan directives;
it also provides semantics so that you may group
together changes to the plan schema.

DBMS_RESOURCE_MANAGER_
PRIVS

Maintains privileges associated with resource consumer
groups.

DBMS_RESUMABLE Lets you suspend large operations that run out of space
or reach space limits after executing for a long time, fix
the problem, and make the statement resume execution.

DBMS_RLS Provides row level security administrative interface.

DBMS_ROWID Provides procedures to create rowids and to interpret
their contents.

DBMS_RULE Describes the EVALUATE procedure used in Streams.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-13

DBMS_RULE_ADM Describes the administrative interface for creating and
managing rules, rule sets, and rule evaluation contexts;
used in Streams.

DBMS_SCHEDULER Provides a collection of scheduling functions that are
callable from any PL/SQL program.

DBMS_SERVER_ALERT Lets you issue alerts when some threshold has been
violated.

DBMS_SERVICE Lets you create, delete, activate and deactivate services
for a single instance.

DBMS_SESSION Provides access to SQL ALTER SESSION statements,
and other session information, from stored procedures.

DBMS_SHARED_POOL Lets you keep objects in shared memory, so that they
will not be aged out with the normal LRU mechanism.

DBMS_SPACE Provides segment space information not available
through standard SQL.

DBMS_SPACE_ADMIN Provides tablespace and segment space administration
not available through the standard SQL.

DBMS_SQL Lets you use dynamic SQL to access the database.

DBMS_SQLTUNE Provides the interface to tune SQL statements.

DBMS_STAT_FUNCS Provides statistical functions.

DBMS_STATS Provides a mechanism for users to view and modify
optimizer statistics gathered for database objects.

DBMS_STORAGE_MAP Communicates with FMON to invoke mapping
operations.

DBMS_STREAMS Describes the interface to convert SYS.AnyData objects
into LCR objects and an interface to annotate redo entries
generated by a session with a binary tag.

DBMS_STREAMS_ADMIN Describes administrative procedures for adding and
removing simple rules, without transformations, for
capture, propagation, and apply at the table, schema,
and database level.

DBMS_STREAMS_AUTH Provides interfaces for granting privileges to Streams
administrators and revoking privileges from Streams
administrators.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-14 PL/SQL Packages and Types Reference

DBMS_STREAMS_MESSAGING Provides interfaces to enqueue messages into and
dequeue messages from a SYS.AnyData queue.

DBMS_STREAMS_TABLESPACE_
ADM

Provides administrative procedures for copying
tablespaces between databases and moving tablespaces
from one database to another.

DBMS_TRACE Provides routines to start and stop PL/SQL tracing.

DBMS_TRANSACTION Provides access to SQL transaction statements from
stored procedures and monitors transaction activities.

DBMS_TRANSFORM Provides an interface to the message format
transformation features of Oracle Advanced Queuing.

DBMS_TTS Checks if the transportable set is self-contained.

DBMS_TYPES Consists of constants, which represent the built-in and
user-defined types.

DBMS_UTILITY Provides various utility routines.

DBMS_WARNING Provides the interface to query, modify and delete
current system or session settings.

DBMS_WORKLOAD_REPOSITORY lets you manage the Workload Repository, performing
operations such as managing snapshots and baselines.

DBMS_WM Describes how to use the programming interface to
Oracle Database Workspace Manager to work with long
transactions.

DBMS_XDB Describes Resource Management and Access Control
APIs for PL/SQL

DBMS_XDB_VERSION Describes versioning APIs

DBMS_XDBT Describes how an administrator can create a ConText
index on the XML DB hierarchy and configure it for
automatic maintenance

DBMS_XDBZ Controls the Oracle XML DB repository security, which
is based on Access Control Lists (ACLs).

DBMS_XMLGEN Converts the results of a SQL query to a canonical XML
format.

DBMS_XMLDOM Explains access to XMLType objects

DBMS_XMLPARSER Explains access to the contents and structure of XML
documents.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-15

DMBS_XMLQUERY Provides database-to-XMLType functionality.

DBMS_XMLSAVE Provides XML-to-database-type functionality.

DBMS_XMLSCHEMA Explains procedures to register and delete XML schemas.

DBMS_XMLSTORE Provides the ability to store XML data in relational
tables.

DBMS_XPLAN Describes how to format the output of the EXPLAIN
PLAN command.

DBMS_XSLPROCESSOR Explains access to the contents and structure of XML
documents.

DEBUG_EXTPROC Lets you debug external procedures on platforms with
debuggers that attach to a running process.

HTF Hypertext functions generate HTML tags.

HTMLDB_APPLICATION Enables users to take advantage of global variables

HTMLDB_CUSTOM_AUTH Enables users to create form elements dynamically based
on a SQL query instead of creating individual items page
by page.

HTMLDB_ITEM Enables users to create form elements dynamically based
on a SQL query instead of creating individual items page
by page.

HTMLDB_UTIL Provides utilities for getting and setting session state,
getting files, checking authorizations for users, resetting
different states for users, and also getting and setting
preferences for users.

HTP Hypertext procedures generate HTML tags.

OWA_CACHE Provides an interface that enables the PL/SQL Gateway
cache to improve the performance of PL/SQL web
applications.

OWA_COOKIE Provides an interface for sending and retrieving
HTTP cookies from the client's browser.

OWA_CUSTOM Provides a Global PLSQL Agent Authorization callback
function

OWA_IMAGE Provides an interface to access the coordinates where a
user clicked on an image.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-16 PL/SQL Packages and Types Reference

OWA_OPT_LOCK Contains subprograms that impose optimistic locking
strategies so as to prevent lost updates.

OWA_PATTERN Provides an interface to locate text patterns within
strings and replace the matched string with another
string.

OWA_SEC Provides an interface for custom authentication.

OWA_TEXT Contains subprograms used by OWA_PATTERN for
manipulating strings. They are externalized so you can
use them directly.

OWA_UTIL Contains utility subprograms for performing operations
such as getting the value of CGI environment variables,
printing the data that is returned to the client, and
printing the results of a query in an HTML table.

SDO_CS Provides functions for coordinate system transformation.

SDO_GCDR Contains the Oracle Spatial geocoding subprograms,
which let you geocode unformatted postal addresses.

SDO_GEOM Provides functions implementing geometric operations
on spatial objects.

SDO_GEOR Contains functions and procedures for the Spatial
GeoRaster feature, which lets you store, index, query,
analyze, and deliver raster image data and its associated
Spatial vector geometry data and metadata.

SDO_GEOR_UTL Contains utility functions and procedures for the Spatial
GeoRaster feature, including those related to using
triggers with GeoRaster data.

SDO_LRS Provides functions for linear referencing system support.

SDO_MIGRATE Provides functions for migrating spatial data from
previous releases.

SDO_NET Provides functions and procedures for working with
data modeled as nodes and links in a network.

SDO_SAM Contains functions and procedures for spatial analysis
and data mining.

SDO_TOPO Provides procedures for creating and managing Spatial
topologies.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-17

SDO_TOPO_MAP Contains subprograms for editing Spatial topologies
using a cache (TopoMap object).

SDO_TUNE Provides functions for selecting parameters that
determine the behavior of the spatial indexing scheme
used in Oracle Spatial.

SDO_UTIL Provides utility functions and procedures for Oracle
Spatial.

UTL_COLL Enables PL/SQL programs to use collection locators to
query and update.

UTL_COMPRESS Provides a set of data compression utilities.

UTL_DBWS Provides database web services.

UTL_ENCODE Provides functions that encode RAW data into a
standard encoded format so that the data can be
transported between hosts.

UTL_FILE Enables your PL/SQL programs to read and write
operating system text files and provides a restricted
version of standard operating system stream file I/O.

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to access
data on the Internet or to call Oracle Web Server
Cartridges.

UTL_I18N Provides a set of services (Oracle Globalization Service)
that help developers build multilingual applications.

UTL_INADDR Provides a procedure to support internet addressing.

UTL_LMS Retrieves and formats error messages in different
languages.

UTL_MAIL A utility for managing email which includes commonly
used email features, such as attachments, CC, BCC, and
return receipt.

UTL_RAW Provides SQL functions for RAW datatypes that concat,
substr to and from RAWS.

UTL_RECOMP Recompiles invalid PL/SQL modules, Java classes,
indextypes and operators in a database, either
sequentially or in parallel.

UTL_REF Enables a PL/SQL program to access an object by
providing a reference to the object.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-18 PL/SQL Packages and Types Reference

UTL_SMTP Provides PL/SQL functionality to send emails.

UTL_TCP Provides PL/SQL functionality to support simple
TCP/IP-based communications between servers and the
outside world.

UTL_URL Provides escape and unescape mechanisms for URL
characters.

WPG_DOCLOAD Provides an interface to download files, BLOBs and
BFILEs.

ANYDATA TYPE A self-describing data instance type containing an
instance of the type plus a description

ANYDATASET TYPE Contains a description of a given type plus a set of data
instances of that type

ANYTYPE TYPE Contains a type description of any persistent SQL type,
named or unnamed, including object types and
collection types; or, it can be used to construct new
transient type descriptions

Oracle Streams AQ Types Describes the types used in Advanced Queuing

Database URI Type Contains URI Support, UriType Super Type,
HttpUriType Subtype, DBUriType Subtype,
XDBUriType Subtype, UriFactory Package

JMS TYPES Describes JMS types so that a PL/SQL application can
use JMS queues of JMS types

LOGICAL CHANGE RECORD
TYPES

Describes LCR types, which are message payloads that
contain information about changes to a database, used in
Streams

interMedia ORDAudio Type Supports the storage and management of audio data.

interMedia ORDDoc Type Supports the storage and management of heterogeneous
media data including image, audio, and video.

interMedia ORDImage Type Supports the storage, management, and manipulation of
image data.

interMedia
ORDImageSignature Type

Supports content-based retrieval of images (image
matching).

interMedia SQL/MM Still
Image Type

Provides support for the SQL/MM Still Image Standard,
which lets you store, retrieve, and modify images in the
database and locate images using visual predicates.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

Introduction 1-19

interMedia ORDVideo Type Supports the storage and management of video data.

RULES TYPES Describes the types used with rules, rule sets, and
evaluation contexts

XMLType Describes the types and functions used for native XML
support in the server.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Summary of Oracle Supplied PL/SQL Packages

1-20 PL/SQL Packages and Types Reference

CTX_ADM 2-1

2
CTX_ADM

This Oracle Text package lets you administer servers and the data dictionary. Note
that you must install this package in order to use it.

■ Documentation of CTX_ADM

Documentation of CTX_ADM

2-2 PL/SQL Packages and Types Reference

Documentation of CTX_ADM

For a complete description of this package within the context of Oracle Text, see
CTX_ADM in the Oracle Text Reference.

CTX_CLS 3-1

3
CTX_CLS

This Oracle Text package enables generation of CTXRULE rules for a set of
documents.

■ Documentation of CTX_CLS

Documentation of CTX_CLS

3-2 PL/SQL Packages and Types Reference

Documentation of CTX_CLS

For a complete description of this package within the context of Oracle Text, see
CTX_CLS in the Oracle Text Reference.

CTX_DDL 4-1

4
CTX_DDL

This Oracle Text package lets you create and manage the preferences, section
groups, and stoplists required for Text indexes. Note that you must install this
package in order to use it.

■ Documentation of CTX_DDL

Documentation of CTX_DDL

4-2 PL/SQL Packages and Types Reference

Documentation of CTX_DDL

For complete description of this package within the context of Oracle Text, see CTX_
DDL in the Oracle Text Reference.

CTX_DOC 5-1

5
CTX_DOC

This Oracle Text package lets you request document services. Note that you must
install this package in order to use it.

■ Documentation of CTX_DOC

Documentation of CTX_DOC

5-2 PL/SQL Packages and Types Reference

Documentation of CTX_DOC

For a complete description of this package within the context of Oracle Text, see
CTX_DOC in the Oracle Text Reference.

CTX_OUTPUT 6-1

6
CTX_OUTPUT

This Oracle Text package lets you manage the index log. Note that you must install
this package in order to use it.

■ Documentation of CTX_OUTPUT

Documentation of CTX_OUTPUT

6-2 PL/SQL Packages and Types Reference

Documentation of CTX_OUTPUT

For a complete description of this package within the context of Oracle Text, see
CTX_OUTPUT in the Oracle Text Reference.

CTX_QUERY 7-1

7
CTX_QUERY

This Oracle Text package lets you generate query feedback, count hits, and create
stored query expressions. Note that you must install this package in order to use it.

■ Documentation of CTX_QUERY

Documentation of CTX_QUERY

7-2 PL/SQL Packages and Types Reference

Documentation of CTX_QUERY

For a complete description of this package within the context of Oracle Text, see
CTX_QUERY in the Oracle Text Reference.

CTX_REPORT 8-1

8
CTX_REPORT

This Oracle Text package lets you create various index reports. Note that you must
install this package in order to use it.

■ Documentation of CTX_REPORT

Documentation of CTX_REPORT

8-2 PL/SQL Packages and Types Reference

Documentation of CTX_REPORT

For a complete description of this package within the context of Oracle Text, see
CTX_REPORT in the Oracle Text Reference.

CTX_THES 9-1

9
CTX_THES

This Oracle Text package lets you to manage and browse thesauri. Note that you
must install this package in order to use it.

■ Documentation of CTX_THES

Documentation of CTX_THES

9-2 PL/SQL Packages and Types Reference

Documentation of CTX_THES

For a complete description of this package within the context of Oracle Text, see
CTX_THES in the Oracle Text Reference.

CTX_ULEXER 10-1

10
CTX_ULEXER

This Oracle Text package is for use with the user-lexer. Note that you must install
this package in order to use it.

■ Documentation of CTX_ULEXER

Documentation of CTX_ULEXER

10-2 PL/SQL Packages and Types Reference

Documentation of CTX_ULEXER

For a complete description of this package within the context of Oracle Text, see
CTX_ULEXER in the Oracle Text Reference.

DBMS_ADVANCED_REWRITE 11-1

11
DBMS_ADVANCED_REWRITE

DBMS_ADVANCED_REWRITE contains interfaces for advanced query rewrite users.
Using this package, you can create, drop, and maintain functional equivalence
declarations for query rewrite.

This chapter contains the following topics:

■ Using DBMS_ADVANCED_REWRITE

■ Security Model

■ Summary of DBMS_ADVANCED_REWRITE Subprograms

See Also: Oracle Data Warehousing Guide for more information
about query rewrite

Using DBMS_ADVANCED_REWRITE

11-2 PL/SQL Packages and Types Reference

Using DBMS_ADVANCED_REWRITE

■ Security Model

Security Model

No privileges to access these procedures are granted to anyone by default. To gain
access to these procedures, you must connect as SYSDBA and explicitly grant
execute access to the desired database administrators.

You can control security on this package by granting the EXECUTE privilege to
selected database administrators or roles. For example, the user er can be given
access to use this package by the following statement, executed as SYSDBA:

GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO er;

You may want to write a separate cover package on top of this package for
restricting the alert names used. Instead of granting the EXECUTE privilege on the
DBMS_ADVANCED_REWRITE package directly, you can then grant it to the cover
package.

Summary of DBMS_ADVANCED_REWRITE Subprograms

DBMS_ADVANCED_REWRITE 11-3

Summary of DBMS_ADVANCED_REWRITE Subprograms

Table 11–1 DBMS_ADVANCED_REWRITE Package Subprograms

Subprogram Description

ALTER_REWRITE_
EQUIVALENCE
Procedure on page 11-4

Changes the mode of the rewrite equivalence declaration to the
mode you specify

DECLARE_REWRITE_
EQUIVALENCE
Procedures on page 11-5

Creates a declaration indicating that source_stmt is
functionally equivalent to destination_stmt for as long as
the equivalence declaration remains enabled, and that
destination_stmt is more favorable in terms of
performance

DROP_REWRITE_
EQUIVALENCE
Procedure on page 11-8

Drops the specified rewrite equivalence declaration

VALIDATE_REWRITE_
EQUIVALENCE
Procedure on page 11-9

Validates the specified rewrite equivalence declaration using
the same validation method as described with the validate
parameter

ALTER_REWRITE_EQUIVALENCE Procedure

11-4 PL/SQL Packages and Types Reference

ALTER_REWRITE_EQUIVALENCE Procedure

This procedure changes the mode of the rewrite equivalence declaration to the
mode you specify.

Syntax
DBMS_ADVANCED_REWRITE.ALTER_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 mode VARCHAR2);

Parameters

Table 11–2 ALTER_REWRITE_EQUIVALENCE Procedure Parameters

Parameter Description

name A name for the equivalence declaration to alter. The name can be of the
form owner.name, where owner complies with the rules for a schema
name, and name compiles with the rules for a table name. Alternatively, a
simple name that complies with the rules for a table name can be
specified. In this case, the rewrite equivalence is altered in the current
schema. The invoker must have the appropriate alter materialized view
privileges to alter an equivalence declaration outside their own schema.

mode The following modes are supported, in increasing order of power:

disabled: Query rewrite does not use the equivalence declaration. Use
this mode to temporarily disable use of the rewrite equivalence
declaration.

text_match: Query rewrite uses the equivalence declaration only in its
text match modes. This mode is useful for simple transformations.

general: Query rewrite uses the equivalence declaration in all of its
transformation modes against the incoming request queries. However,
query rewrite makes no attempt to rewrite the specified destination_
query.

recursive: Query rewrite uses the equivalence declaration in all of its
transformation modes against the incoming request queries. Moreover,
query rewrite further attempts to rewrite the specified destination_
query for further performance enhancements whenever it uses the
equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient to
solve your performance problem.

Summary of DBMS_ADVANCED_REWRITE Subprograms

DBMS_ADVANCED_REWRITE 11-5

DECLARE_REWRITE_EQUIVALENCE Procedures

This procedure creates a declaration indicating that source_stmt is functionally
equivalent to destination_stmt for as long as the equivalence declaration
remains enabled, and that destination_stmt is more favorable in terms of
performance. The scope of the declaration is system wide. The query rewrite engine
uses such declarations to perform rewrite transformations in QUERY_REWRITE_
INTEGRITY=trusted and stale_tolerated modes.

Syntax
DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt VARCHAR2,
 destination_stmt VARCHAR2,
 validate BOOLEAN := TRUE,
 mode VARCHAR2 := 'TEXT_MATCH');

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt CLOB,
 destination_stmt CLOB,
 validate BOOLEAN := TRUE,
 mode VARCHAR2 := 'TEXT_MATCH');

Parameters

Table 11–3 DECLARE_REWRITE_EQUIVALENCE Procedure Parameters

Parameter Description

name A name for the equivalence declaration. The name can be of the form
owner.name, where owner complies with the rules for a schema
name, and name compiles with the rules for a table name.

Alternatively, a simple name that complies with the rules for a table
name can be specified. In this case, the rewrite equivalence is created
in the current schema. The invoker must have the appropriate CREATE
MATERIALIZED VIEW privileges to alter an equivalence declaration.

source_stmt A sub-SELECT expression in either VARCHAR2 or CLOB format. This is
the query statement that is the target of optimization.

destination_
stmt

A sub-SELECT expression in either VARCHAR2 or CLOB format.

DECLARE_REWRITE_EQUIVALENCE Procedures

11-6 PL/SQL Packages and Types Reference

Usage Notes
Query rewrite using equivalence declarations occurs simultaneously and in concert
with query rewrite using materialized views. The same query rewrite engine is used
for both. The query rewrite engine uses the same rewrite rules to rewrite queries
using both equivalence declarations and materialized views. Because the rewrite
equivalence represents a specific rewrite crafted by a sophisticated user, the query
rewrite engine gives priority to rewrite equivalences over materialized views when
it is possible to perform a rewrite with either a materialized view or a rewrite
equivalence. For this same reason, the cost-based optimizer (specifically, cost-based
rewrite) will not choose an unrewritten query plan over a query plan that is
rewritten to use a rewrite equivalence even if the cost of the un-rewritten plan
appears more favorable. Query rewrite matches properties of the incoming request
query against the equivalence declaration's source_stmt or the materialized

validate A Boolean indicating whether to validate that the specified source_
stmt is functionally equivalent to the specified destination_stmt.
If validate is specified as TRUE, DECLARE_REWRITE_
EQUIVALENCE evaluates the two sub-SELECTs and compares their
results. If the results are not the same, DECLARE_REWRITE_
EQUIVALENCE does not create the rewrite equivalence and returns an
error condition. If FALSE, DECLARE_REWRITE_EQUIVALENCE does
not validate the equivalence.

mode The following modes are supported, in increasing order of power:

disabled: Query rewrite does not use the equivalence declaration.
Use this mode to temporarily disable use of the rewrite equivalence
declaration.

text_match: Query rewrite uses the equivalence declaration only in
its text match modes. This mode is useful for simple transformations.

general: Query rewrite uses the equivalence declaration in all of its
transformation modes against the incoming request queries. However,
query rewrite makes no attempt to rewrite the specified
destination_query.

recursive: Query rewrite uses the equivalence declaration in all of
its transformation modes against the incoming request queries.
Moreover, query rewrite further attempts to rewrite the specified
destination_query for further performance enhancements
whenever it uses the equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient
to solve your performance problem.

Table 11–3 DECLARE_REWRITE_EQUIVALENCE Procedure Parameters

Parameter Description

Summary of DBMS_ADVANCED_REWRITE Subprograms

DBMS_ADVANCED_REWRITE 11-7

view's defining statement, respectively, and derives an equivalent relational
expression in terms of the equivalence declaration's destination_stmt or the
materialized view's container table, respectively.

DROP_REWRITE_EQUIVALENCE Procedure

11-8 PL/SQL Packages and Types Reference

DROP_REWRITE_EQUIVALENCE Procedure

This procedure drops the specified rewrite equivalence declaration.

Syntax
DBMS_ADVANCED_REWRITE.DROP_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 11–4 DROP_REWRITE_EQUIVALENCE Procedure Parameters

Parameter Description

name A name for the equivalence declaration to drop. The name can be of
the form owner.name, where owner complies with the rules for a
schema name, and name compiles with the rules for a table name.
Alternatively, a simple name that complies with the rules for a table
name can be specified. In this case, the rewrite equivalence is
dropped in the current schema. The invoker must have the
appropriate drop materialized view privilege to drop an
equivalence declaration outside their own schema.

Summary of DBMS_ADVANCED_REWRITE Subprograms

DBMS_ADVANCED_REWRITE 11-9

VALIDATE_REWRITE_EQUIVALENCE Procedure

This procedure validates the specified rewrite equivalence declaration using the
same validation method as described with the VALIDATE parameter in
"VALIDATE_REWRITE_EQUIVALENCE Procedure" on page 11-9.

Syntax
DBMS_ADVANCED_REWRITE.VALIDATE_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 11–5 VALIDATE_REWRITE_EQUIVALENCE Procedure Parameters

Parameter Description

name A name for the equivalence declaration to validate. The name can
be of the form owner.name, where owner complies with the rules
for a schema name, and name compiles with the rules for a table
name. Alternatively, a simple name that complies with the rules
for a table name can be specified. In this case, the rewrite
equivalence is validated in the current schema. The invoker must
have sufficient privileges to execute both the source_stmt and
destination_stmt of the specified equivalence declaration.

VALIDATE_REWRITE_EQUIVALENCE Procedure

11-10 PL/SQL Packages and Types Reference

DBMS_ADVISOR 12-1

12
DBMS_ADVISOR

DBMS_ADVISOR is part of the Server Manageability suite of Advisors, a set of expert
systems that identifies and helps resolve performance problems relating to the
various database server components.

This chapter contains the following topics:

■ Using DBMS_ADVISOR

■ Security Model

■ Subprograms Used in All Advisors

■ Subprograms Used in SQLAccess Advisor

■ Parameters

■ Summary of DBMS_ADVISOR Subprograms

See Also:

■ Oracle Data Warehousing Guide for information regarding the
SQLAccess Advisor

■ Oracle Database Administrator's Guide for information regarding
the Segment Advisor

■ Oracle Database Performance Tuning Guide for information
regarding the SQLTuning Advisor

■ Oracle 2 Day DBA for information regarding the Undo Advisor

Using DBMS_ADVISOR

12-2 PL/SQL Packages and Types Reference

Using DBMS_ADVISOR

■ Security Model

■ Subprograms Used in All Advisors

■ Subprograms Used in SQLAccess Advisor

■ Parameters

Security Model

Security on this package can be controlled by granting EXECUTE on this package to
selected users or roles. You might want to write a cover package on top of this one
that restricts the alert names used. EXECUTE privilege on this cover package can
then be granted rather than on this package. In addition, there is an ADVISOR
privilege, which is required by DBMS_ADVISOR procedures.

Subprograms Used in All Advisors

Table 12–1 lists DBMS_ADVISOR procedures that are used in all Advisors.

Table 12–1 DBMS_ADVISOR Generic Subprograms

Subprogram Description

CANCEL_TASK Procedure on
page 12-27

Cancels a currently executing task operation

CREATE_FILE Procedure on
page 12-28

Creates an external file from a PL/SQL CLOB variable,
which is useful for creating scripts and reports

CREATE_OBJECT Procedure on
page 12-30

Creates a new task object

CREATE_TASK Procedures on
page 12-34

Creates a new Advisor task in the repository

DELETE_TASK Procedure on
page 12-40

Deletes the specified task from the repository

EXECUTE_TASK Procedure on
page 12-41

Executes the specified task

Using DBMS_ADVISOR

DBMS_ADVISOR 12-3

Subprograms Used in SQLAccess Advisor

Table 12–2 lists DBMS_ADVISOR procedures that are used in the SQLAccess Advisor.

GET_REC_ATTRIBUTES
Procedure on page 12-42

Retrieves specific recommendation attributes from a task

GET_TASK_SCRIPT Procedure
on page 12-45

Creates and returns an executable SQL script of the
Advisor task's recommendations in a buffer

INTERRUPT_TASK Procedure
on page 12-57

Stops a currently executing task, ending its operations as
it would at a normal exit

MARK_RECOMMENDATION
Procedure on page 12-58

Sets the annotation_status for a particular
recommendation

QUICK_TUNE Procedure on
page 12-60

Performs an analysis on a single SQL statement

RESET_TASK Procedure on
page 12-63

Resets a task to its initial state

SET_DEFAULT_TASK_
PARAMETER Procedures on
page 12-66

Modifies a default task parameter

SET_TASK_PARAMETER
Procedures on page 12-69

Sets the specified task parameter value

UPDATE_OBJECT Procedure on
page 12-74

Updates a task object

UPDATE_REC_ATTRIBUTES
Procedure on page 12-76

Updates an existing recommendation for the specified
task

UPDATE_TASK_ATTRIBUTES
Procedure on page 12-82

Updates a task's attributes

Table 12–2 DBMS_ADVISOR SQLAccess Advisor Subprograms

Subprogram Description

ADD_SQLWKLD_REF
Procedure on page 12-23

Adds a workload reference to an Advisor task

ADD_SQLWKLD_STATEMENT
Procedure on page 12-24

Adds a single statement to a workload

Table 12–1 DBMS_ADVISOR Generic Subprograms(Cont.)

Subprogram Description

Subprograms Used in SQLAccess Advisor

12-4 PL/SQL Packages and Types Reference

CREATE_SQLWKLD Procedure
on page 12-32

Creates a new workload object

DELETE_SQLWKLD Procedure
on page 12-36

Deletes an entire workload object

DELETE_SQLWKLD_REF
Procedure on page 12-37

Deletes an entire workload object

DELETE_SQLWKLD_
STATEMENT Procedure on
page 12-38

Deletes one or more statements from a workload

IMPORT_SQLWKLD_SCHEMA
Procedure on page 12-47

Imports data into a workload from the current SQL cache

IMPORT_SQLWKLD_
SQLCACHE Procedure on
page 12-49

Imports data into a workload from the current SQL cache

IMPORT_SQLWKLD_STS
Procedure on page 12-51

Imports data into a workload from a SQL Tuning Set into
a SQL workload data object

IMPORT_SQLWKLD_SUMADV
Procedure on page 12-53

Imports data into a workload from the current SQL cache

IMPORT_SQLWKLD_USER
Procedure on page 12-55

Imports data into a workload from the current SQL cache

SET_DEFAULT_SQLWKLD_
PARAMETER Procedure on
page 12-64

Imports data into a workload from schema evidence

SET_SQLWKLD_PARAMETER
Procedure on page 12-67

Sets the value of a workload parameter

TUNE_MVIEW Procedure on
page 12-71

Shows how to decompose a materialized view into two
or more materialized views or to restate the materialized
view in a way that is more advantageous for fast refresh
and query rewrite

UPDATE_SQLWKLD_
ATTRIBUTES Procedure on
page 12-78

Updates a workload object

UPDATE_SQLWKLD_
STATEMENT Procedure on
page 12-80

Updates one or more SQL statements in a workload

Table 12–2 DBMS_ADVISOR SQLAccess Advisor Subprograms(Cont.)

Subprogram Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-5

Parameters

The Oracle Database includes a number of advisors for different subsystems in the
database to automatically determine how the operation of the corresponding
subcomponents could be further optimized. The SQL Tuning and SQLAccess
Advisor, for example, provide recommendations for running SQL statements faster.
Memory advisors help size the various memory components without resorting to
trial-and-error techniques. The Segment Advisor handles all space-related issues,
such as recommending wasted-space reclamation, predicting the sizes of new tables
and indexes, and analyzing growth trends, and the Undo Advisor lets you size the
undo tablespace. You should see the specific documentation for each Advisor for
details regarding how parameters are used.

This section includes:

■ Generic Advisor Parameters

■ SQLAccess Advisor Task Parameters

■ SQL Workload Object Parameters

■ Segment Advisor Parameters

Generic Advisor Parameters
The generic Advisor parameters are the following:

■ DAYS_TO_EXPIRE

■ END_SNAPSHOT

■ END_TIME

■ INSTANCE

■ JOURNALING

■ MODE

■ START_SNAPSHOT

■ START_TIME

■ TARGET_OBJECTS

■ TIME_LIMIT

See your Advisor-specific documentation for further information.

Parameters

12-6 PL/SQL Packages and Types Reference

SQLAccess Advisor Task Parameters
Table 12–3 lists SQLAccess Advisor task parameters.

Table 12–3 SQLAccess Advisor Task Parameters

Parameter Datatype Description

ACTION_LIST STRINGLIST Contains a fully qualified list of actions that are eligible for processing in a
SQL Workload object. The list elements are comma-delimited, and quoted
names are supported.

An action can be any string. If an action is not quoted, it will be changed to
uppercase lettering and stripped of leading and trailing spaces. An action
string is not scanned for correctness.

During a task execution, if a SQL statement's action does not match a name in
the action list, it will not be processed by the task. An action name is case
sensitive.

Possible values are:

Single action

Comma-delimited action list

ADVISOR_UNUSED (default)

COMMENTED_
FILTER_LIST

NUMBER Comma-delimited list of strings. When set, SQLAccess Advisor will filter out
any SQL statement that contain any of the specified strings in the first 20
characters of its text.

CREATION_
COST

STRING When set to true (default), the SQL Access Advisor will weigh the cost of
creation of the access structure (index or materialized view) against the
frequency of the query and potential improvement in the query execution
time. When set to false, the cost of creation is ignored.

DAYS_TO_
EXPIRE

NUMBER Specifies the expiration time in days for the current SQLAccess Advisor task.
The value is relative to the last modification date. Once the task expires, it will
become a candidate for removal by an automatic purge operation.

Specifies the expiration time in days for the current Access Advisor task. The
value is relative to the last modification date.

Once the task expires, it will become a candidate for removal by an automatic
purge operation.

Possible values are:

An integer in the range of 0 to 2147483647

ADVISOR_UNLIMITED

ADVISOR_UNUSED

The default value is 30.

Using DBMS_ADVISOR

DBMS_ADVISOR 12-7

DEF_INDEX_
OWNER

STRING Specifies the default owner for new index recommendations. When a script is
created, this value will be used to qualify the index name.

Possible values are:

Existing schema name. Quoted identifiers are supported.

ADVISOR_UNUSED (default)

DEF_INDEX_
TABLESPACE

STRING Specifies the default tablespace for new index recommendations. When a
script is created, this value will be used to specify a tablespace clause.

Possible values are:

Existing tablespace name. Quoted identifiers are supported.

ADVISOR_UNUSED. No tablespace clause will be present in the script for
indexes. The default value is ADVISOR_UNUSED.

DEF_MVIEW_
OWNER

STRING Specifies the default owner for new materialized view recommendations.
When a script is created, this value will be used to qualify the materialized
view name.

Possible values are:

Existing schema name. Quoted identifiers are supported.

ADVISOR_UNUSED (default)

DEF_MVIEW_
TABLESPACE

STRING Specifies the default tablespace for new materialized view recommendations.
When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

Existing tablespace name. Quoted identifiers are supported.

ADVISOR_UNUSED. No tablespace clause will be present in the script for
materialized views. The default value is ADVISOR_UNUSED.

DEF_MVLOG_
TABLSPACE

STRING Specifies the default tablespace for new materialized view log
recommendations. When a script is created, this value will be used to specify a
tablespace clause.

Possible values are:

Existing tablespace name. Quoted identifiers are supported.

ADVISOR_UNUSED. No tablespace clause will be present in the script for
materialized view logs. The default value is ADVISOR_UNUSED.

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Parameters

12-8 PL/SQL Packages and Types Reference

DML_
VOLATILITY

STRING When set to TRUE, the SQLAccess advisor will consider the impact of index
maintenance and materialized view refresh in determining the
recommendations. It will limit the access structure recommendations
involving columns or tables that are frequently updated. For example, if there
are too many DMLs on a column, it may favor a Btree index over a bitmap
index on that column. For this process to be effective, the workload must
include DML (insert/update/delete/merge/direct path inserts) statements
that represent the update behavior of the application.

See the related parameter refresh_mode.

END_TIME STRING Specifies an end time for selecting SQL statements. If the statement did not
execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY HH24:MI:SS,
where:

DD is the numeric date
MM is the numeric month
YYYY is the numeric year
HH is the hour in 24 hour format
MI is the minute
SS is the second

EVALUATION_
ONLY

STRING If set to TRUE, causes SQLAccess Advisor to analyze the workload, but only
comment on how well the current configuration is supporting it. No tuning
recommendations will be generated.

Possible values are:

FALSE (default) and TRUE

EXECUTION_
TYPE

STRINGLIST The type of recommendations that is desired. Possible values:

FULL All supported recommendation types will be considered.

INDEX_ONLY The SQLAccess Advisor will only consider index solutions as
recommendations.

MVIEW_ONLY The SQLAccess Advisor will consider materialized view and
materialized view log solutions as recommendations.

MVIEW_LOG_ONLY The SQLAccess Advisor will only consider materialized
view log solutions as recommendations.

The default value is FULL.

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-9

INDEX_NAME_
TEMPLATE

STRING Specifies the method by which new index names are formed.

If the TASK_ID is omitted from the template, names generated by two
concurrently executing SQLAccess Advisor tasks may conflict and cause
undesirable effects. So it is recommended that you include the TASK_ID in the
template. Once formatted, the maximum size of a name is 30 characters.

Valid keywords are:

Any literal value up to 22 characters.

TABLE

Causes the parent table name to be substituted into the index name. If the
name is too long, it will be trimmed to fit.

TASK_ID

Causes the current task identifier number to be inserted in hexadecimal form.

SEQ

Causes a sequence number to be inserted in hexadecimal form. Because this
number is used to guarantee uniqueness, it is a required token.

The default template is:

TABLE_IDX$$_TASK_IDSEQ

JOURNALING NUMBER Controls the logging of messages to the journal (USER_ADVISOR_JOURNAL
view). The higher the setting, the more information is logged to the journal.

Valid settings are:

0: no journal messages

1: informational messages only

2: warning messages

3: explanation of errors

4: explanation of fatal errors (default)

5-9: debug messages

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Parameters

12-10 PL/SQL Packages and Types Reference

MODE STRING Specifies the mode by which Access Advisor will operate during an analysis.

Valid values are:

LIMITED Indicates the Advisor will attempt to a quick job by limiting the
search-space of candidate recommendations, and correspondingly, the results
may be of a low quality.

COMPREHENSIVE Indicates the Advisor will search a large pool of candidates
that may take long to run, but the resulting recommendations will be of the
highest quality.

The default value is COMPREHENSIVE.

MODULE_LIST STRINGLIST Contains a fully qualified list of application modules that are eligible for
processing in a SQL Workload object. The list elements are comma-delimited,
and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to
uppercase lettering and stripped of leading and trailing spaces. A module
string is not scanned for correctness.

During a workload import operation, if a SQL statement's application module
does not match a name in the module list, it will not be stored in the workload
object.

Possible values are:

Single application

Comma-delimited module list

ADVISOR_UNUSED (default)

MVIEW_NAME_
TEMPLATE

STRING Specifies the method by which new materialized view names are formed.

If the TASK_ID is omitted from the template, names generated by two
concurrently executing SQLAccess Advisor tasks may conflict and cause
undesirable effects. So it is recommended that you include the TASK_ID in the
template.

The format is any combination of keyword tokens and literals. However, once
formatted, the maximum size of a name is 30 characters.

Valid tokens are:

Any literal value up to 22 characters.

TASK_ID Causes the current task identifier number to be inserted in
hexadecimal form.

SEQ Causes a sequence number to be inserted in hexadecimal form. Because
this number is used to guarantee uniqueness, it is a required token.

The default template is: MV$$_TASK_IDSEQ

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-11

ORDER_LIST STRINGLIST Contains the primary natural order in which the Access Advisor processes
workload elements during the analysis operation. To determine absolute
natural order, Access Advisor sorts the workload using ORDER_LIST values.
A comma must separate multiple order keys.

Possible values are:

BUFFER_GETS Sets the order using the SQL statement's buffer-get count
value.

CPU_TIME Sets the order using the SQL statement's CPU time value.

DISK_READS Sets the order using the SQL statement's disk-read count value.

ELAPSED_TIME Sets the order using the SQL statement's elapsed time value.

EXECUTIONS Sets the order using the SQL statement's execution frequency
value.

OPTIMIZER_COST Sets the order using the SQL statement's optimizer cost
value.

I/O Sets the order using the SQL statement's I/O count value.

PRIORITY Sets the order using the user-supplied business priority value.

All values are accessed in descending order, where a high value is considered
more interesting than a low value.

The default value is PRIORITY, OPTIMIZER_COST.

REFRESH_MODE STRING Specifies whether materialized views are refreshed ON_DEMAND or ON_
COMMIT. This will be used to weigh the impact of materialized view refresh
when the parameter dml_volatility is set to TRUE.

Possible values are:

ON_DEMAND (default) and ON_COMMIT

REPORT_DATE_
FORMAT

STRING This is the default date and time formatting template. The default format is
DD/MM/YYYYHH24:MI.

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Parameters

12-12 PL/SQL Packages and Types Reference

SQL_LIMIT NUMBER Specifies the number of SQL statements to be analyzed. The SQL_LIMIT filter
is applied after all other filters have been applied. For example, if only
statements referencing the table foo.bar are to be accepted, the SQL_LIMIT
value will be only apply to those statements.

When used in conjunction with the parameter ORDER_LIST, SQLAccess
Advisor will process the most interesting SQL statements by ordering the
statements according to the specified sort keys.

Possible values:

An integer in the range of 1 to 2147483647

ADVISOR_UNLIMITED

ADVISOR_UNUSED (default)

START_TIME STRING Specifies a start time for selecting SQL statements. If the statement did not
execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY HH24:MI:SS,
where:

DD is the numeric date
MM is the numeric month
YYYY is the numeric year
HH is the hour in 24 hour format
MI is the minute
SS is the second

STORAGE_
CHANGE

NUMBER Contains the amount of space adjustment that can be consumed by
SQLAccess Advisor recommendations. Zero or negative values are only
permitted if the workload type is marked as FULL.

When the SQLAccess Advisor produces a set of recommendations, the
resultant physical structures must be able to fit into the budgeted space. A
space budget is computed by adding the STORAGE_CHANGE value to the
space quantity currently used by existing access structures. A negative
STORAGE_CHANGE value may force SQLAccess Advisor to remove existing
structures in order to shrink space demand.

Possible values:

Any valid integer including negative values, zero and positive values. The
default value is ADVISOR_UNLIMITED.

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-13

USERNAME_
LIST

STRINGLIST Contains a fully qualified list of usernames that are eligible for processing in a
workload object. The list elements are comma-delimited, and quoted names
are supported.

During a task execution, if a SQL statement's username does not match a
name in the username list, it will not be processed by the task. A username is
not case sensitive unless it is quoted.

Possible values:

Single username

comma-delimited username list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

VALID_TABLE_
LIST

TABLELIST Contains a fully qualified list of tables that are eligible for tuning. The list
elements are comma-delimited, and quoted identifiers are supported.
Wildcard specifications are supported for tables. The default value is all tables
within the user's scope are eligible for tuning. Supported wildcard character is
%. A % wildcard matches any set of consecutive characters.

When a SQL statement is processed, it will not be accepted unless at least one
referenced table is specified in the valid table list. If the list is unused, then all
table references within a SQL statement are considered valid.

Valid syntax for a table reference is:

schema.table

schema

schema.% (equivalent to schema)

 Possible values:

Single table reference

comma-delimited table reference list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

WORKLOAD_
SCOPE

STRING Describes the level of application coverage the workload represents. Possible
values are FULL and PARTIAL.

FULL Should be used if the workload contains all interesting application SQL
statements for the targeted tables.

PARTIAL (default) Should be used if the workload contains anything less than
a full representation of the interesting application SQL statements for the
targeted tables.

Table 12–3 SQLAccess Advisor Task Parameters(Cont.)

Parameter Datatype Description

Parameters

12-14 PL/SQL Packages and Types Reference

SQL Workload Object Parameters

Table 12–4 lists SQLAccess Advisor object parameters.

Table 12–4 SQL Workload Object Parameters

Name Datatype Description

ACTION_LIST STRINGLIST Contains a fully qualified list of actions that are eligible for saving in a
workload.

An action can be any string. If an action is not quoted, it will be changed to
uppercase lettering and stripped of leading and trailing spaces. An action
string is not scanned for correctness.

During a workload import operation, if a SQL statements action does not
match a name in the action list, it will not be stored in the workload object.
An action name is case sensitive.

Possible values:

Single action

comma-delimited action list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

COMMENTED_
FILTER_LIST

NUMBER Comma-delimited list of strings. When set, SQLAccess Advisor will filter out
any SQL statement that contain any of the specified strings in the first 20
characters of its text.

DAYS_TO_
EXPIRE

NUMBER Specifies the expiration time in days for the current SQL Workload object.
The value is relative to the last modification date.

Once the data expires, it will become a candidate for removal by an
automatic purge operation.

Possible values:

An integer in the range of 0 to 2147483647

ADVISOR_UNLIMITED

ADVISOR_UNUSED

The default value is 30.

Using DBMS_ADVISOR

DBMS_ADVISOR 12-15

END_TIME STRING Specifies an end time for selecting SQL statements. If the statement did not
execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY
HH24:MI:SS, where:

DD is the numeric date
MM is the numeric month
YYYY is the numeric year
HH is the hour in 24 hour format
MI is the minute
SS is the second

INVALID_
TABLE_LIST

TABLELIST Contains a fully qualified list of tables that are not eligible for tuning. The list
elements are comma-delimited, and quoted identifiers are supported.
Wildcard specifications are supported for both schemas and tables. The
default value is all tables within the users scope are eligible for tuning. The
supported wildcard character is %. A % wildcard matches any set of
consecutive characters.

When a SQL statement is processed, it will not be accepted if any referenced
table matches an entry in the invalid table list.

Valid syntax for a table reference is:

schema.table

schema

schema.% (Equivalent to schema)

Possible values:

Single table reference

comma-delimited table reference list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

Note that SQLAccess Advisor maintains an internal list of non-tunable tables
regardless of the contents of the INVALID_TABLE_LIST parameter. No
table that is owned by SYS, SYSTEM or any other pre-defined Oracle schema
can be tuned.

Table 12–4 SQL Workload Object Parameters(Cont.)

Name Datatype Description

Parameters

12-16 PL/SQL Packages and Types Reference

JOURNALING NUMBER Controls the logging of messages to the journal (USER_ADVISOR_JOURNAL
view). The higher the setting, the more information is logged to the journal.

Valid settings are:

0: no journal messages

1: informational messages only

2: warning messages

3: explanation of errors

4: explanation of fatal errors (default)

5-9: debug messages

MODULE_LIST STRINGLIST Contains a fully qualified list of application modules that are eligible for
saving in a SQL Workload object. The list elements are comma-delimited,
and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to
uppercase lettering and stripped of leading and trailing spaces. A module
string is not scanned for correctness.

During a workload import operation, if a SQL statements application
module does not match a name in the module list, it will not be stored in the
workload objecttask.

Possible values:

Single module

comma-delimited module list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

ORDER_LIST STRING Contains the primary natural order in which the SQLAccess Advisor
processes workload elements during the import operation.

Possible values are: BUFFER_GETS, OPTIMIZER_COST, CPU_TIME, DISK_
READS, ELAPSED_TIME, EXECUTIONS, and PRIORITY.

REPORT_DATE_
FORMAT

This parameter is not used.

Table 12–4 SQL Workload Object Parameters(Cont.)

Name Datatype Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-17

SQL_LIMIT NUMBER Specifies the maximum number of SQL statements to be saved during a
workload import operation. The SQL_LIMIT filter is applied after all other
filters have been applied. For example, if only statements referencing the
table foo.bar are to be accepted, the SQL_LIMIT value will be only apply
to those statements.

When used in conjunction with the parameter ORDER_LIST, Access Advisor
will process and save the most interesting SQL statements by ordering the
statements according to the specified sort keys.

Possible values:

An integer in the range of 1 to 2147483647

ADVISOR_UNLIMITED

ADVISOR_UNUSED

The default value is ADVISOR_UNLIMITED.

START_TIME STRING Specifies a start time for selecting SQL statements. If the statement did not
execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY
HH24:MI:SS, where:

DD is the numeric date
MM is the numeric month
YYYY is the numeric year
HH is the hour in 24 hour format
MI is the minute
SS is the second

USERNAME_LIST STRINGLIST Contains a fully qualified list of usernames that are eligible for processing in
a SQL Workload object. The list elements are comma-delimited, and quoted
names are supported.

During a workload import operation, if a SQL statements username does not
match a name in the username list, it will not be stored in the workload
object. A Username is not case sensitive unless it is quoted.

Possible values:

Single username

comma-delimited username list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

Table 12–4 SQL Workload Object Parameters(Cont.)

Name Datatype Description

Parameters

12-18 PL/SQL Packages and Types Reference

Segment Advisor Parameters
Table 12–5 lists the input task parameters that can be set in the Segment Advisor
using the SET_TASK_PARAMETER procedure.

VALID_TABLE_
LIST

TABLELIST Contains a fully qualified list of tables that are eligible for tuning. The list
elements are comma-delimited, and quoted identifiers are supported.
Wildcard specifications are supported for tables. The default value is all
tables within the user's scope are eligible for tuning. The supported wildcard
character is %. A % wildcard matches any set of consecutive characters.

When a SQL statement is processed, it will not be accepted unless at least
one referenced table is specified in the valid table list. If the list is unused,
then all table references within a SQL statement are considered valid.

When using the IMPORT_SQLWKLD_SCHEMA procedure, the valid_table_
list parameter cannot contain wildcards such as SCO% or SCOTT.EMP%.
The only form of wildcards supported is SCOTT.%, which specifies all tables
in a given schema.

Valid syntax for a table reference is:

schema.table

schema

schema.% (Equivalent to schema)

Possible values:

Single table reference

comma-delimited table reference list

ADVISOR_UNUSED

The default value is ADVISOR_UNUSED.

Table 12–5 Segment Advisor Task Parameters

Parameter Default Value Possible Values Description

MODE COMPREHENSIVE LIMITED: Analysis restricted to
statistics available in Automatic
Workload Repository.

COMPREHENSIVE: Comprehensive
analysis based on sampling and
Automatic Workload Repository
statistics.

The data to use for analysis.

Table 12–4 SQL Workload Object Parameters(Cont.)

Name Datatype Description

Using DBMS_ADVISOR

DBMS_ADVISOR 12-19

TIME_LIST UNLIMITED UNLIMITED The time limit for which the
Advisor should run. Specified in
seconds.

RECOMMEND_
ALL

TRUE TRUE: Generate recommendations on
all segments specified by the user.

FALSE: Generate recommendations for
only those objects that are eligible for
shrink.

Whether to generate
recommendations for all
segments.

Table 12–5 Segment Advisor Task Parameters(Cont.)

Parameter Default Value Possible Values Description

Summary of DBMS_ADVISOR Subprograms

12-20 PL/SQL Packages and Types Reference

Summary of DBMS_ADVISOR Subprograms

Table 12–6 DBMS_ADVISOR Package Subprograms

Subprogram Description Used in

ADD_SQLWKLD_REF
Procedure on page 12-23

Adds a workload reference to an Advisor
task

SQLAccess
Advisor only

ADD_SQLWKLD_
STATEMENT Procedure
on page 12-24

Adds a single statement to a workload SQLAccess
Advisor only

CANCEL_TASK
Procedure on page 12-27

Cancels a currently executing task operation All Advisors

CREATE_FILE Procedure
on page 12-28

Creates an external file from a PL/SQL
CLOB variable, which is useful for creating
scripts and reports

All Advisors

CREATE_OBJECT
Procedure on page 12-30

Creates a new task object All Advisors

CREATE_SQLWKLD
Procedure on page 12-32

Creates a new workload object SQLAccess
Advisor only

CREATE_TASK
Procedures on page 12-34

Creates a new Advisor task in the repository All Advisors

DELETE_SQLWKLD
Procedure on page 12-36

Deletes an entire workload object SQLAccess
Advisor only

DELETE_SQLWKLD_
REF Procedure on
page 12-37

Deletes an entire workload object SQLAccess
Advisor only

DELETE_SQLWKLD_
STATEMENT Procedure
on page 12-38

Deletes one or more statements from a
workload

SQLAccess
Advisor only

DELETE_TASK
Procedure on page 12-40

Deletes the specified task from the repository All Advisors

EXECUTE_TASK
Procedure on page 12-41

Executes the specified task All Advisors

GET_REC_ATTRIBUTES
Procedure on page 12-42

Retrieves specific recommendation attributes
from a task

All Advisors

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-21

GET_TASK_SCRIPT
Procedure on page 12-45

Creates and returns an executable SQL script
of the Advisor task's recommendations in a
buffer

All Advisors

IMPORT_SQLWKLD_
SCHEMA Procedure on
page 12-47

Imports data into a workload from the
current SQL cache

SQLAccess
Advisor only

IMPORT_SQLWKLD_
SQLCACHE Procedure
on page 12-49

Imports data into a workload from the
current SQL cache

SQLAccess
Advisor only

IMPORT_SQLWKLD_
STS Procedure on
page 12-51

Imports data into a workload from a SQL
Tuning Set into a SQL workload data object

SQLAccess
Advisor only

IMPORT_SQLWKLD_
SUMADV Procedure on
page 12-53

Imports data into a workload from the
current SQL cache

SQLAccess
Advisor only

IMPORT_SQLWKLD_
USER Procedure on
page 12-55

Imports data into a workload from the
current SQL cache

SQLAccess
Advisor only

INTERRUPT_TASK
Procedure on page 12-57

Stops a currently executing task, ending its
operations as it would at a normal exit

All Advisors

MARK_
RECOMMENDATION
Procedure on page 12-58

Sets the annotation_status for a
particular recommendation

All Advisors

QUICK_TUNE
Procedure on page 12-60

Performs an analysis on a single SQL
statement

All Advisors

RESET_TASK Procedure
on page 12-63

Resets a task to its initial state All Advisors

SET_DEFAULT_
SQLWKLD_
PARAMETER Procedure
on page 12-64

Imports data into a workload from schema
evidence

SQLAccess
Advisor only

SET_DEFAULT_TASK_
PARAMETER
Procedures on page 12-66

Modifies a default task parameter All Advisors

SET_SQLWKLD_
PARAMETER Procedure
on page 12-67

Sets the value of a workload parameter SQLAccess
Advisor only

Table 12–6 DBMS_ADVISOR Package Subprograms

Subprogram Description Used in

Summary of DBMS_ADVISOR Subprograms

12-22 PL/SQL Packages and Types Reference

SET_TASK_
PARAMETER
Procedures on page 12-69

Sets the specified task parameter value All Advisors

TUNE_MVIEW
Procedure on page 12-71

Shows how to decompose a materialized
view into two or more materialized views or
to restate the materialized view in a way that
is more advantageous for fast refresh and
query rewrite

SQLAccess
Advisor only

UPDATE_OBJECT
Procedure on page 12-74

Updates a task object All Advisors

UPDATE_REC_
ATTRIBUTES Procedure
on page 12-76

Updates an existing recommendation for the
specified task

All Advisors

UPDATE_SQLWKLD_
ATTRIBUTES Procedure
on page 12-78

Updates a workload object SQLAccess
Advisor only

UPDATE_SQLWKLD_
STATEMENT Procedure
on page 12-80

Updates one or more SQL statements in a
workload

SQLAccess
Advisor only

UPDATE_TASK_
ATTRIBUTES Procedure
on page 12-82

Updates a task's attributes All Advisors

Table 12–6 DBMS_ADVISOR Package Subprograms

Subprogram Description Used in

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-23

ADD_SQLWKLD_REF Procedure

This procedure establishes a link between the current SQLAccess Advisor task and
a SQL Workload object. The link allows an advisor task to access interesting data
for doing an analysis. The link also provides a stable view of the data. Once a
connection between a SQLAccess Advisor task and a SQL Workload object is made,
the workload is protected from removal or modification.

Syntax
DBMS_ADVISOR.ADD_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN VARCHAR2);

Parameters

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
END;
/

Table 12–7 ADD_SQLWKLD_REF Procedure Parameters

Parameter Description

task_name The SQLAccess task name that uniquely identifies an existing task.

workload_name The name of the workload object to be linked. Once a object has been
linked to a task, it becomes read-only and cannot be deleted. There is no
limit to the number of links to workload objects. To remove the link to
the workload object, use the procedure DELETE_REFERENCE.

ADD_SQLWKLD_STATEMENT Procedure

12-24 PL/SQL Packages and Types Reference

ADD_SQLWKLD_STATEMENT Procedure

This procedure adds a single statement to the specified workload.

Syntax
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 module IN VARCHAR2,
 action IN VARCHAR2,
 cpu_time IN NUMBER := 0,
 elapsed_time IN NUMBER := 0,
 disk_reads IN NUMBER := 0,
 buffer_gets IN NUMBER := 0,
 rows_processed IN NUMBER := 0,
 optimizer_cost IN NUMBER := 0,
 executions IN NUMBER := 1,
 priority IN NUMBER := 2,
 last_execution_date IN DATE := 'SYSDATE',
 stat_period IN NUMBER := 0,
 username IN VARCHAR2,
 sql_text IN CLOB);

Parameters

Table 12–8 ADD_SQLWKLD_STATEMENT Procedure Parameters

Parameter Description

workload_
name

The workload name that uniquely identifies an existing workload.

module An optional business application module that will be associated with the
SQL statement.

action An optional application action that will be associated with the SQL
statement.

cpu_time The total CPU time in seconds that is consumed by SQL statement over the
population time window.

elapsed_
time

The total elapsed time in seconds that is consumed by SQL statement over
the population time window.

disk_reads The total disk-read operations that are consumed by SQL statement over
the population time window.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-25

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 for directions on setting a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',

buffer_gets The total buffer-get operations that are consumed by SQL statement over
the population time window.

rows_
processed

The average number of rows processed by the statement over the
population time window.

optimizer_
cost

The optimizer's calculated cost value.

executions The total execution count by the SQL statement over the population time
window.

priority The relative priority of the SQL statement. The value must be one of the
following: 1-HIGH, 2-MEDIUM, or 3-LOW.

last_
execution_
date

The date and time at which the SQL statement last executed. If the value is
NULL, then the current date and time will be used.

stat_period Time interval in seconds from which statement statistics were calculated.

username The Oracle user name that executed the SQL statement. Because a
username is an Oracle identifier, the username value must be entered
exactly as it is stored in the server. For example, if the user SCOTT is the
executing user, then you must provide the user identifier SCOTT in all
uppercase letters. It will not recognize the user scott as a match for
SCOTT.

sql_text The complete SQL statement. To increase the quality of a recommendation,
the SQL statement should not contain bind variables.

Table 12–8 ADD_SQLWKLD_STATEMENT Procedure Parameters

Parameter Description

ADD_SQLWKLD_STATEMENT Procedure

12-26 PL/SQL Packages and Types Reference

 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-27

CANCEL_TASK Procedure

This procedure causes a currently executing operation to terminate. This call does a
soft interrupt. It will not break into a low-level database access call like a hard
interrupt such as Ctrl-C. The SQLAccess Advisor periodically checks for soft
interrupts and acts appropriately. As a result, this operation may take a few seconds
to respond to a call.

Syntax
DBMS_ADVISOR.CANCEL_TASK (
 task_name IN VARCHAR2);

Parameters

Usage Notes
A cancel command effective restores the task to its condition prior to the start of the
cancelled operation. Therefore, a cancelled task or data object cannot be resumed.

Because all Advisor task procedures are synchronous, to cancel an operation, you
must use a separate database session.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CANCEL_TASK('My Task');
END;
/

Table 12–9 CANCEL_TASK Procedure Parameter

Parameter Description

task_name A valid Advisor task name that uniquely identifies an existing
task.

CREATE_FILE Procedure

12-28 PL/SQL Packages and Types Reference

CREATE_FILE Procedure

This procedure creates an external file from a PL/SQL CLOB variable, which is
used for creating scripts and reports. CREATE_FILE accepts a CLOB input
parameter and writes the character string contents to the specified file.

Syntax
DBMS_ADVISOR.CREATE_FILE (
 buffer IN CLOB,
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Usage Notes
All formatting must be embedded within the CLOB.

The Oracle server restricts file access within Oracle Stored Procedures. This means
that file locations and names must adhere to the known file permissions in the
server.

Examples
CREATE DIRECTORY MY_DIR as '/homedir/user4/gssmith';
GRANT READ,WRITE ON DIRECTORY MY_DIR TO PUBLIC;

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);

Table 12–10 CREATE_FILE Procedure Parameters

Parameter Description

buffer A CLOB buffer containing report or script information.

location Specifies the directory that will contain the new file. You must use the
directory alias as defined by the CREATE DIRECTORY statement. The Advisor
will translate the alias into the actual directory location.

filename Specifies the output file to receive the script commands. The filename can only
contain the name and an optional file type of the form filename.filetype.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-29

BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
DBMS_ADVISOR.EXECUTE_TASK(task_name);
DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(task_name),
 'MY_DIR','script.sql');

END;
/

CREATE_OBJECT Procedure

12-30 PL/SQL Packages and Types Reference

CREATE_OBJECT Procedure

This procedure creates a new task object.

Syntax
DBMS_ADVISOR.CREATE_TASK (
 task_name IN VARCHAR2,
 object_type IN VARCHAR2,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL,
 object_id OUT NUMBER);

Parameters

The attribute parameters have different values depending upon the object type. See
Oracle Database Administrator's Guide for details regarding these parameters and
object types.

Return Values
Returns the new object identifier.

Table 12–11 CREATE_OBJECT Procedure Parameters

Parameter Description

task_name A valid advisor task name that uniquely identifies an existing task.

object_type Specifies the external object type.

attr1 Advisor-specific data.

attr2 Advisor-specific data.

attr3 Advisor-specific data.

attr4 Advisor-specific data.

attr5 Advisor-specific data.

object_id The advisor-assigned object identifier.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-31

Usage Notes
Task objects are typically used as input data for a particular advisor. Segment advice
can be generated at the object, segment, or tablespace level. If for the object level,
advice is generated on all partitions of the object (if the object is partitioned). The
advice is not cascaded to any dependent objects. If for the segment level, advice can
be obtained on a single segment, such as the partition or subpartition of a table,
index, or lob column. If for a tablespace level, target advice for every segment in the
tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the
Segment Advisor.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
END;
/

CREATE_SQLWKLD Procedure

12-32 PL/SQL Packages and Types Reference

CREATE_SQLWKLD Procedure

This procedure creates a new private SQL Workload object for the user. A SQL
Workload object manages a SQL workload on behalf of the SQLAccess Advisor. A
SQL Workload object must exist prior to performing any other SQL Workload
operations, such as importing or updating SQL statements.

Syntax
DBMS_ADVISOR.CREATE_SQLWKLD (
 workload_name IN VARCHAR2,
 description IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE');

Parameters

Return Values
The SQLAccess Advisor returns a unique workload object identifier number that
must be used for subsequent activities within the new SQL Workload object.

Usage Notes
By default, workload objects are created using built-in default settings. To create a
workload using the parameter settings of an existing workload or workload
template, the user may specify an existing workload name.

Table 12–12 CREATE_SQLWKLD Procedure Parameters

Parameter Description

workload_
name

A name that uniquely identifies the created workload. If not specified, the
system will generate a unique name. Names can be up to 30 characters
long.

description Specifies an optional workload description. Descriptions can be up to 256
characters.

template An optional SQL Workload name of an existing workload data object or
data object template.

is_template An optional value that enables you to set the newly created workload as a
template. Valid values are TRUE and FALSE.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-33

Once a SQL Workload object is present, it can then be referenced by one or more
SQLAccess Advisor tasks using the ADD_SQLWKLD_REF procedure.

Examples
DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
END;
/

CREATE_TASK Procedures

12-34 PL/SQL Packages and Types Reference

CREATE_TASK Procedures

This procedure creates a new Advisor task in the repository.

Syntax
DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2 NOT NULL,
 task_name IN VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 task_or_template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE');

DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2 NOT NULL,
 task_id OUT NUMBER,
 task_name IN OUT VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 task_or_template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE');

Parameters

Table 12–13 CREATE_TASK Procedure Parameters

Parameter Description

advisor_
name

Specifies the unique advisor name as defined in the view DBA_ADVISOR_
DEFINITIONS.

task_id A number that uniquely identifies the created task. The number is
generated by the procedure and returned to the user.

task_name Specifies a new task name. Names must be unique among all tasks for the
user.

For version 2 of CREATE_TASK, the system can generate a unique name.

Names can be up to 30 characters long.

task_desc Specifies an optional task description. Descriptions can be up to 256
characters in length.

task_or_
template

An optional task name of an existing task or task template. To specify
built-in SQLAccess Advisor templates, use the template name as described
earlier.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-35

Return Values
Returns a unique task ID number and a unique task name if one is not specified.

Usage Notes
A task must be associated with an advisor, and once the task has been created, it is
permanently associated with the original advisor. By default, tasks are created using
built-in default settings. To create a task using the parameter settings of an existing
task or task template, the user may specify an existing task name.

For the SQLAccess Advisor, use the identifier DBMS_ADVISOR.SQLACCESS_
ADVISOR as the advisor_name.

The SQLAccess Advisor provides three built-in task templates, using the following
constants:

■ DBMS_ADVISOR.SQLACCESS_OLTP

Parameters are preset to favor an OLTP application environment.

■ DBMS_ADVISOR.SQLACCESS_WAREHOUSE

Parameters are preset to favor a data warehouse application environment.

■ DBMS_ADVISOR.SQLACCESS_GENERAL

Parameters are preset to favor a hybrid application environment where both
OLTP and data warehouse operations may occur. For the SQLAccess Advisor,
this is the default template.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
END;
/

is_template An optional value that allows the user to set the newly created task as
template. Valid values are: TRUE and FALSE.

Table 12–13 CREATE_TASK Procedure Parameters

Parameter Description

DELETE_SQLWKLD Procedure

12-36 PL/SQL Packages and Types Reference

DELETE_SQLWKLD Procedure

This procedure deletes an existing SQL Workload object from the repository.

Syntax
DBMS_ADVISOR.DELETE_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See the "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.DELETE_SQLWKLD(workload_name);
END;
/

Table 12–14 DELETE_SQLWKLD Procedure Parameters

Parameter Description

workload_name The workload object name that uniquely identifies an existing
workload. The wildcard % is supported as a WORKLOAD_NAME. The rules
of use are identical to the LIKE operator. For example, to delete all tasks
for the current user, use the wildcard % as the WORKLOAD_NAME. If a
wildcard is provided, the DELETE_SQLWKLD operation will not delete
any workloads marked as READ_ONLY or TEMPLATE.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-37

DELETE_SQLWKLD_REF Procedure

This procedure removes a link between the current SQLAccess task and a SQL
Workload data object.

Syntax
DBMS_ADVISOR.DELETE_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN NUMBER);

Parameters

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
DBMS_ADVISOR.DELETE_SQLWKLD_REF(task_name, workload_name);
END;
/

Table 12–15 DELETE_SQLWKLD_REF Procedure Parameters

Parameter Description

task_name The SQLAccess task name that uniquely identifies an existing task.

workload_name The name of the workload object to be unlinked. The wildcard % is
supported as a workload_name. The rules of use are identical to the
LIKE operator. For example, to remove all links to workload objects, use
the wildcard % as the workload_name.

DELETE_SQLWKLD_STATEMENT Procedure

12-38 PL/SQL Packages and Types Reference

DELETE_SQLWKLD_STATEMENT Procedure

This procedure deletes one or more statements from a workload.

Syntax
DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN VARCHAR2);

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 search IN VARCHAR2,
 deleted OUT NUMBER);

Parameters

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See the "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 deleted NUMBER;
 id NUMBER;

Table 12–16 DELETE_SQLWKLD_STATEMENT Procedure Parameters

Parameter Description

workload_
name

The workload object name that uniquely identifies an existing workload.

sql_id The Advisor-generated identifier number that is assigned to the statement.
To specify all workload statements, use the constant ADVISOR_ALL.

search An optional SQL predicate that allows the user to refine the workload
entries that will be deleted. The WHERE keyword should not be included in
the text.

deleted Returns the number of statements deleted by the searched deleted
operation.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-39

BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'YEARLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT(workload_name,'module =
 ''MONTHLY''',deleted);

 SELECT min(sql_id) INTO id FROM USER_ADVISOR_SQLW_STMTS
 WHERE workload_name = 'My Workload';

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT(workload_name, id);
END;
/

DELETE_TASK Procedure

12-40 PL/SQL Packages and Types Reference

DELETE_TASK Procedure

This procedure deletes an existing task from the repository.

Syntax
DBMS_ADVISOR.DELETE_TASK (
 task_name IN VARCHAR2);

Parameters

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.DELETE_TASK(task_name);
END;
/

Table 12–17 DELETE_TASK Procedure Parameters

Parameter Description

task_name A single Advisor task name that will be deleted from the repository.

The wildcard % is supported as a TASK_NAME. The rules of use are
identical to the LIKE operator. For example, to delete all tasks for the
current user, use the wildcard % as the TASK_NAME.

If a wildcard is provided, the DELETE_TASK operation will not delete
any tasks marked as READ_ONLY or TEMPLATE.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-41

EXECUTE_TASK Procedure

This procedure performs the Advisor analysis or evaluation for the specified task.

Syntax
DBMS_ADVISOR.EXECUTE_TASK (
 task_name IN VARCHAR2);

Parameters

Usage Notes
Task execution is a synchronous operation. Control will not be returned to the caller
until the operation has completed, or a user-interrupt was detected.

Upon return, you can check the DBA_ADVISOR_LOG table for the execution status.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
DBMS_ADVISOR.EXECUTE_TASK(task_name);
END;
/

Table 12–18 EXECUTE_TASK Procedure Parameters

Parameter Description

task_name The task name that uniquely identifies an existing task.

GET_REC_ATTRIBUTES Procedure

12-42 PL/SQL Packages and Types Reference

GET_REC_ATTRIBUTES Procedure

This procedure retrieves a specified attribute of a new object as recommended by
Advisor analysis.

Syntax
DBMS_ADVISOR.GET_REC_ATTRIBUTES (
 workload_name IN VARCHAR2,
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value OUT VARCHAR2);

Parameters

Return Values
The requested attribute value is returned in the VALUE argument.

Usage Notes
This will name and assign ownership to new objects such as indexes and
materialized views during the analysis operation. However, it will not necessarily
choose appropriate names, so you can manually set the owner, name and tablespace
values for new objects.

Table 12–19 GET_REC_ATTRIBUTES Procedure Parameters

Parameter Description

task_name The task name that uniquely identifies an existing task.

rec_id The Advisor-generated identifier number that is assigned to the
recommendation.

action_id The Advisor-generated action identifier that is assigned to the particular
command.

attribute_
name

Specifies the attribute to change.

value The buffer to receive the requested attribute value.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-43

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales WHERE promo_id = 10');
DBMS_ADVISOR.EXECUTE_TASK(task_name);

DBMS_ADVISOR.GET_REC_ATTRIBUTES(task_name, 1, 1, 'NAME', attribute);
END;
/

GET_TASK_REPORT Procedure

12-44 PL/SQL Packages and Types Reference

GET_TASK_REPORT Procedure

This procedure creates and returns an XML report for the specified task.

Syntax
DBMS_ADVISOR.GET_TASK_REPORT (
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'ALL',
 owner_name IN VARCHAR2 := NULL)
RETURN CLOB;

Parameters

Return Values
Returns the buffer receiving the script.

Table 12–20 GET_TASK_REPORT Procedure Parameters

Parameter Description

task_name The name of the task from which the script will be created.

type The possible values are: TEXT, HTML, and XML.

level The possible values are BASIC, TYPICAL, and ALL.

section Advisor-specific report sections.

owner_name Owner of the task. If specified, the system will check to see if the current
user has read privileges to the task data.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-45

GET_TASK_SCRIPT Procedure

This procedure creates a SQL*Plus-compatible SQL script and sends the output to
file. The script will contain all of the accepted recommendations from the specified
task.

Syntax
DBMS_ADVISOR.GET_TASK_SCRIPT (
 task_name IN VARCHAR2
 type IN VARCHAR2 := 'IMPLEMENTATION',
 rec_id IN NUMBER := NULL,
 action_id IN NUMBER := NULL)
RETURN CLOB;

Parameters

Return Values
Returns the script as a CLOB buffer.

Table 12–21 GET_TASK_SCRIPT Procedure Parameters

Parameter Description

task_name The task name that uniquely identifies an existing task.

type Specifies the type of script to generate. The possible values are:
IMPLEMENTATION and UNDO

rec_id An optional recommendation identifier number that can be used to extract a
subset of the implementation script.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all accepted
recommendations would be included. The default is to include all accepted
recommendations for the task.

action_id Optional action identifier number that can be used to extract a single action
as a DDL command.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all actions for
the recommendation would be included. The default is to include all actions
for a recommendation.

GET_TASK_SCRIPT Procedure

12-46 PL/SQL Packages and Types Reference

Usage Notes
 Though the script is ready to execute, Oracle recommends that the user review the
script for acceptable locations for new materialized views and indexes.

For a recommendation to appear in a generated script, it must be marked as
accepted.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 buf CLOB;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales');
DBMS_ADVISOR.EXECUTE_TASK(task_name);
 buf := DBMS_ADVISOR.GET_TASK_SCRIPT(task_name);
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-47

IMPORT_SQLWKLD_SCHEMA Procedure

This procedure constructs and loads a SQL workload based on schema evidence.
The workload is also referred to as a hypothetical workload.

Syntax
DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2,
 priority NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 12–22 IMPORT_SQLWKLD_SCHEMA Procedure Parameters

Parameter Description

workload_
name

The workload object name that uniquely identifies an existing workload.

import_
mode

Specifies the action to be taken when storing the workload. Possible values
are:

APPEND Indicates that the collected workload will be added to any existing
workload in the task.

NEW Indicates that the collected workload will be the exclusive workload for
the task. If an existing workload is found, an exception will be thrown.

REPLACE Indicates the collected workload will be the exclusive workload for
the task. If an existing workload is found, it will be deleted prior to saving
the new workload.

The default value is NEW.

priority Specifies the application priority for each statement that is saved in the
workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM,
or 3-LOW.

total_rows Returns the number of rows processed.

saved_rows Returns the number of rows actually saved in the repository.

IMPORT_SQLWKLD_SCHEMA Procedure

12-48 PL/SQL Packages and Types Reference

Return Values
This call returns the number of rows processed and the number of rows saved and
failed as output parameters.

Usage Notes
To successfully import a hypothetical workload, the target schemas must contain
dimension or primary/foreign key information.

If the VALID_TABLE_LIST parameter is not set, the search space may become very
large and require a significant amount of time to complete. Oracle recommends that
you limit your search space to specific set of tables.

If a task contains valid recommendations from a prior run, adding or modifying
task will mark the task as invalid, preventing the viewing and reporting of
potentially valuable recommendation data.

Examples
DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-49

IMPORT_SQLWKLD_SQLCACHE Procedure

This procedure creates a SQL workload from the current contents of the server's
SQL cache.

Syntax
DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2,
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 12–23 IMPORT_SQLWKLD_SQLCACHE Procedure Parameters

Parameter Description

workload_
name

The workload object name that uniquely identifies an existing workload.

import_mode Specifies the action to be taken when storing the workload. Possible
values are:

APPEND Indicates that the collected workload will be added to any
existing workload in the task.

NEW Indicates that the collected workload will be the exclusive workload
for the task. If an existing workload is found, an exception will be thrown.

REPLACE Indicates the collected workload will be the exclusive workload
for the task. If an existing workload is found, it will be deleted prior to
saving the new workload.

The default value is NEW.

priority Specifies the application priority for each statement that is saved in the
workload object. The value must be one of the following:

1-HIGH, 2-MEDIUM, or 3-LOW.

saved_rows Returns number of rows processed and the number of rows saved as
output parameters.

failed_rows Returns the number of rows that were not saved due to syntax or
validation errors.

IMPORT_SQLWKLD_SQLCACHE Procedure

12-50 PL/SQL Packages and Types Reference

Return Values
This call returns the number of rows processed and the number of rows saved and
failed as output parameters.

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-51

IMPORT_SQLWKLD_STS Procedure

This procedure loads a SQL workload from an existing SQL Tuning Set. A SQL
Tuning Set is typically created from the server workload repository using various
time and data filters.

Syntax
DBMS_ADVISOR.IMPORT_SQLWKLD_STS (
 workload_name IN VARCHAR2,
 sqlset_name IN VARCHAR2,
 import_mode IN VARCHAR2,
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 12–24 IMPORT_SQLWKLD_STS Procedure Parameters

Parameter Description

workload_
name

The workload object name that uniquely identifies an existing workload.

sqlset_
name

The name of an existing SQL Tuning Set workload from which the data will
be imported.

import_
mode

Specifies the action to be taken when storing the workload. Possible values
are:

APPEND Indicates that the collected workload will be added to any existing
workload in the task.

NEW Indicates that the collected workload will be the exclusive workload for
the task. If an existing workload is found, an exception will be thrown.

REPLACE Indicates the collected workload will be the exclusive workload for
the task. If an existing workload is found, it will be deleted prior to saving
the new workload.

The default value is NEW.

priority Specifies the application priority for each statement that is saved in the
workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM,
or 3-LOW. The default value is 2.

saved_rows Returns the number of rows actually saved in the repository.

IMPORT_SQLWKLD_STS Procedure

12-52 PL/SQL Packages and Types Reference

Return Values
This call returns the number of rows processed and the number of rows saved and
failed as output parameters.

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
DBMS_ADVISOR.IMPORT_SQLWKLD_STS(workload_name, 'MY_SQLSET', 'REPLACE', 1,
 saved, failed);
END;
/

failed_
rows

Returns the number of rows that were not saved due to syntax or validation
errors.

Table 12–24 IMPORT_SQLWKLD_STS Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-53

IMPORT_SQLWKLD_SUMADV Procedure

This procedure collects a SQL workload from a Summary Advisor workload. This
procedure is intended to assist 9i Summary Advisor users in the migration to
SQLAccess Advisor.

Syntax
DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2,
 priority IN NUMBER := 2,
 sumadv_id IN NUMBER,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 12–25 IMPORT_SQLWKLD_SUMADV Procedure Parameters

Parameter Description

workload_
name

The workload object name that uniquely identifies an existing workload.

import_mode Specifies the action to be taken when storing the workload. Possible values
are:

APPEND Indicates that the collected workload will be added to any existing
workload in the task.

NEW Indicates that the collected workload will be the exclusive workload
for the task. If an existing workload is found, an exception will be thrown.

REPLACE Indicates the collected workload will be the exclusive workload
for the task. If an existing workload is found, it will be deleted prior to
saving the new workload. The default value is NEW.

priority Specifies the default application priority for each statement that is saved in
the workload object. If a Summary Advisor workload statement contains a
priority of zero, the default priority will be applied. If the workload
statement contains a valid priority, then the Summary Advisor priority will
be converted to a comparable SQLAccess Advisor priority. The value must
be one of the following:

1-HIGH, 2-MEDIUM, or 3-LOW.

sumadv_id Specifies the Summary Advisor workload identifier number.

IMPORT_SQLWKLD_SUMADV Procedure

12-54 PL/SQL Packages and Types Reference

Return Values
This call returns the number of rows processed and the number of rows saved and
failed as output parameters.

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
 sumadv_id NUMBER;
BEGIN
 workload_name := 'My Workload';
 sumadv_id := 394;

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV(workload_name, 'REPLACE', 1, sumadv_id,
 saved, failed);
END;
/

saved_rows Returns the number of rows actually saved in the repository.

failed_rows Returns the number of rows that were not saved due to syntax or
validation errors.

Table 12–25 IMPORT_SQLWKLD_SUMADV Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-55

IMPORT_SQLWKLD_USER Procedure

This procedure collects a SQL workload from a specified user table.

Syntax
DBMS_ADVISOR.IMPORT_SQLWKLD_USER (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2,
 owner IN VARCHAR2,
 table IN VARCHAR2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 12–26 IMPORT_SQLWKLD_USER Procedure Parameters

Parameter Description

workload_name The workload object name that uniquely identifies an existing
workload.

import_mode Specifies the action to be taken when storing the workload. Possible
values are:

APPEND

Indicates that the collected workload will be added to any existing
workload in the task.

NEW

Indicates that the collected workload will be the exclusive workload for
the task. If an existing workload is found, an exception will be thrown.

REPLACE

Indicates the collected workload will be the exclusive workload for the
task. If an existing workload is found, it will be deleted prior to saving
the new workload. The default value is NEW.

owner Specifies the owner name of the table or view from which workload
data will be collected.

table Specifies the name of the table or view from which workload data will
be collected.

saved_rows Returns the number of rows actually saved in the workload object.

IMPORT_SQLWKLD_USER Procedure

12-56 PL/SQL Packages and Types Reference

Return Values
This call returns the number of rows processed and the number of rows saved and
failed as output parameters.

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
DBMS_ADVISOR.IMPORT_SQLWKLD_USER(workload_name, 'REPLACE', 'SH',
 'USER_WORKLOAD',
 saved, failed);
END;
/

failed_rows Returns the number of rows that were not saved due to syntax or
validation errors.

Table 12–26 IMPORT_SQLWKLD_USER Procedure Parameters

Parameter Description

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-57

INTERRUPT_TASK Procedure

This procedure stops a currently executing task. The task will end its operations as
it would at a normal exit. The user will be able to access any recommendations that
exist to this point.

Syntax
DBMS_ADVISOR.INTERRUPT_TASK (
 task_name IN VARCHAR2);

Parameters

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.INTERRUPT_TASK('My Task');
END;
/

Table 12–27 INTERRUPT_TASK Procedure Parameters

Parameter Description

task_name A single Advisor task name that will be interrupted.

MARK_RECOMMENDATION Procedure

12-58 PL/SQL Packages and Types Reference

MARK_RECOMMENDATION Procedure

This procedure marks a recommendation for import or implementation.

Syntax
DBMS_ADVISOR.MARK_RECOMMENDATION (
 task_name IN VARCHAR2
 id IN NUMBER,
 action IN VARCHAR2);

Parameters

Usage Notes
For a recommendation to be implemented, it must be marked as accepted. By
default, all recommendations are considered accepted and will appear in any
generated scripts.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);

Table 12–28 MARK_RECOMMENDATION Procedure Parameters

Parameter Description

task_name Name of the task.

id The recommendation identifier number assigned by the Advisor.

action The recommendation action setting. The possible actions are:

ACCEPT: Marks the recommendation as accepted. With this setting, the
recommendation will appear in implementation and undo scripts.

IGNORE: Marks the recommendation as ignore. With this setting, the
recommendation will not appear in an implementation or undo script.

IMPLEMENTED: Marks the recommendation as implemented. With this
setting, a user can manage which recommendations have been successfully
implemented. The implementation script can also set this value.

REJECT: Marks the recommendation as rejected. With this setting, the
recommendation will not appear in any implementation or undo scripts.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-59

 attribute VARCHAR2(100);
 rec_id NUMBER;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales WHERE promo_id = 10');
DBMS_ADVISOR.EXECUTE_TASK(task_name);

 rec_id := 1;

DBMS_ADVISOR.MARK_RECOMMENDATION(task_name, rec_id, 'REJECT');
END;
/

QUICK_TUNE Procedure

12-60 PL/SQL Packages and Types Reference

QUICK_TUNE Procedure

This procedure performs an analysis and generates recommendations for a single
SQL statement.

This provides a shortcut method of all necessary operations to analyze the specified
SQL statement. The operation creates a task using the specified task name. The task
will be created using a specified Advisor task template. Finally, the task will be
executed and the results will be saved in the repository.

Syntax
DBMS_ADVISOR.QUICK_TUNE (
 advisor_name IN VARCHAR2,
 task_name IN VARCHAR2,
 attr1 IN CLOB,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN NUMBER := NULL,
 task_or_template IN VARCHAR2 := NULL);

Parameters

Usage Notes
If indicated by the user, the final recommendations can be implemented by the
procedure.

The task will be created using either a specified SQLAccess task template or the
built-in default template of SQLACCESS_GENERAL. The workload will only contain
the specified statement, and all task parameters will be defaulted.

Table 12–29 QUICK_TUNE Procedure Parameters

Parameter Description

advisor_name Name of the Advisor that will perform the analysis.

task_name Name of the task.

attr1 Advisor-specific attribute in the form of a CLOB variable.

attr2 Advisor-specific attribute in the form of a VARCHAR2 variable.

attr3 Advisor-specific attribute in the form of a NUMBER.

task_or_template An optional task name of an existing task or task template.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-61

attr1 must be the single SQL statement to tune.

Examples
DECLARE
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_name,
 'SELECT avg(amount_sold) FROM sh.sales WHERE promo_id=10');
END;
/

RESET_SQLWKLD Procedure

12-62 PL/SQL Packages and Types Reference

RESET_SQLWKLD Procedure

This procedure resets a workload to its initial starting point. This has the effect of
removing all journal messages, log messages, and recalculating necessary volatility
and usage statistics.

Syntax
DBMS_ADVISOR.RESET_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Usage Notes
RESET_SQLWKLD should be executed after any workload adjustments such as
adding or removing SQL statements.

Examples
DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales WHERE promo_id = 10');

DBMS_ADVISOR.RESET_SQLWKLD(workload_name);
END;
/

Table 12–30 RESET_SQLWKLD Procedure Parameters

Parameter Description

workload_name The SQL Workload object name that uniquely identifies an
existing workload.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-63

RESET_TASK Procedure

This procedure resets a task to its initial state. All intermediate and
recommendation data will be removed from the task. The task status will be set to
INITIAL.

Syntax
DBMS_ADVISOR.RESET_TASK (
 task_name IN VARCHAR2);

Parameters

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales WHERE promo_id = 10');
DBMS_ADVISOR.EXECUTE_TASK(task_name);

DBMS_ADVISOR.RESET_TASK(task_name);
END;
/

Table 12–31 RESET_TASK Procedure Parameters

Parameter Description

task_name The task name that uniquely identifies an existing task.

SET_DEFAULT_SQLWKLD_PARAMETER Procedure

12-64 PL/SQL Packages and Types Reference

SET_DEFAULT_SQLWKLD_PARAMETER Procedure

This procedure modifies the default value for a user parameter within a SQL
Workload object or SQL Workload object template. A user parameter is a simple
variable that stores various attributes that affect workload collection, tuning
decisions and reporting. When a default value is changed for a parameter, workload
objects will inherit the new value when they are created.

Syntax
DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Usage Notes
A parameter will only affect operations that modify the workload collection.
Therefore, parameters should be set prior to importing or adding new SQL
statements to a workload. If a parameter is set after data has been placed in a
workload object, it will have no effect on the existing data.

Examples
BEGIN
DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER('VALID_TABLE_LIST','SH.%');

Table 12–32 SET_DEFAULT_SQLWKLD_PARAMETER Procedure Parameters

Parameter Description

parameter The name of the data parameter to be modified. Parameter names are not
case sensitive. Parameter names are unique to the workload object type,
but not necessarily unique to all workload object types. Various object
types may use the same parameter name for different purposes.

value The value of the specified parameter. The value can be specified as a string
or a number. If the value is DBMS_ADVISOR.DEFAULT, the value will be
reset to the default value.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-65

END;
/

SET_DEFAULT_TASK_PARAMETER Procedures

12-66 PL/SQL Packages and Types Reference

SET_DEFAULT_TASK_PARAMETER Procedures

This procedure modifies the default value for a user parameter within a task or a
template. A user parameter is a simple variable that stores various attributes that
affect various Advisor operations. When a default value is changed for a parameter,
tasks will inherit the new value when they are created.

Syntax
DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Examples
BEGIN
DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(DBMS_ADVISOR.SQLACCESS_ADVISOR,
 'VALID_TABLE_LIST', 'SH.%');
END;
/

Table 12–33 SET_DEFAULT_TASK_PARAMETER Procedure Parameters

Parameter Description

advisor_name Specifies the unique advisor name as defined in the view DBA_
ADVISOR_DEFINITIONS.

parameter The name of the task parameter to be modified. Parameter names are
not case sensitive. Parameter names are unique to the task type, but not
necessarily unique to all task types. Various task types may use the
same parameter name for different purposes

value The value of the specified task parameter. The value can be specified as
a string or a number.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-67

SET_SQLWKLD_PARAMETER Procedure

This procedure modifies a user parameter within a SQL Workload object or SQL
Workload object template. A user parameter is a simple variable that stores various
attributes that affect workload collection, tuning decisions and reporting.

Syntax
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Usage Notes
A parameter will only affect operations that modify the workload collection.
Therefore, parameters should be set prior to importing or adding new SQL
statements to a workload. If a parameter is set after data has been placed in a
workload object, it will have no effect on the existing data.

Examples
DECLARE
 workload_name VARCHAR2(30);

Table 12–34 SET_SQLWKLD_PARAMETER Procedure Parameters

Parameter Description

workload_name The SQL Workload object name that uniquely identifies an existing
workload.

parameter The name of the data parameter to be modified. Parameter names are
not case sensitive.

value The value of the specified parameter. The value can be specified as a
string or a number. If the value is DBMS_ADVISOR.DEFAULT,the value
will be reset to the default value.

SET_SQLWKLD_PARAMETER Procedure

12-68 PL/SQL Packages and Types Reference

BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name, 'VALID_TABLE_LIST','SH.%');
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-69

SET_TASK_PARAMETER Procedures

This procedure modifies a user parameter within an Advisor task or a template. A
user parameter is a simple variable that stores various attributes that affect
workload collection, tuning decisions and reporting.

Syntax
DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Usage Notes
A task cannot be modified unless it is in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state. See your Advisor-specific
documentation for further information on using this procedure.

Examples
DECLARE
 task_id NUMBER;

Table 12–35 SET_TASK_PARAMETER Procedure Parameters

Parameter Description

task_name The Advisor task name that uniquely identifies an existing task.

parameter The name of the task parameter to be modified. Parameter names are not
case sensitive. Parameter names are unique to the task type, but not
necessarily unique to all task types. Various task types may use the same
parameter name for different purposes.

value The value of the specified task parameter. The value can be specified as a
string or a number. If the value is DEFAULT, the value will be reset to the
default value.

SET_TASK_PARAMETER Procedures

12-70 PL/SQL Packages and Types Reference

 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.SET_TASK_PARAMETER(task_name, 'VALID_TABLELIST',
 'SH.%,SCOTT.EMP');
END;
/

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-71

TUNE_MVIEW Procedure

This procedure shows how to decompose a materialized view into two or more
materialized views and to restate the materialized view in a way that is more
advantageous for fast refresh and query rewrite. It also shows how to fix
materialized view logs and to enable query rewrite.

Syntax
DBMS_ADVISOR.TUNE_MVIEW (
 task_name IN OUT VARCHAR2,
 mv_create_stmt IN [CLOB | VARCHAR2]);

Parameters

Usage Notes
Executing TUNE_MVIEW generates two sets of output results: one is for CREATE
implementation and the other is for undoing the CREATE MATERIALIZED VIEW
implementation. The output results are accessible through USER_TUNE_MVIEW and
DBA_TUNE_MVIEW views. You can also use DBMS_ADVISOR.GET_TASK_SCRIPT
and DBMS_ADVISOR.CREATE_FILE to output the TUNE_MVIEW results into a
script file for later execution.

USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views
These views are to get the result after executing the TUNE_MVIEW procedure.

Table 12–36 TUNE_MVIEW Procedure Parameters

Parameter Description

task_name The task name for looking up the results in a catalog view. If
not specified, the system will generate a name and return.

mv_create_stmt The original materialized view creation statement.

See Also: Oracle Data Warehousing Guide for more information
about using the TUNE_MVIEW procedure

TUNE_MVIEW Procedure

12-72 PL/SQL Packages and Types Reference

Examples
name VARCHAR2(30);
DBMS_ADVISOR.TUNE_MVIEW.(name, 'SELECT AVG(C1) FROM my_fact_table WHERE c10 =
7');

The following is an example to show how to use TUNE_MVIEW to optimize a
CREATE MATERIALIZED VIEW statement:

NAME VARCHAR2(30) := 'my_tune_mview_task';
EXECUTE DBMS_ADVISOR.TUNE_MVIEW (name, 'CREATE MATERIALIZED VIEW MY_MV
REFRESH FAST AS SELECT C2, AVG(C1) FROM MY_FACT_TABLE WHERE C10 = 7
GROUP BY C2');

You can view the CREATE output results by querying USER_TUNE_MVIEW or DBA_
TUNE_MVIEW as the following example:

SELECT * FROM USER_TUNE_MVIEW WHERE TASK_NAME='my_tune_mview_task' AND
SCRIPT_TYPE='CREATE';

Alternatively, you can save the output results in an external script file as in the
following example:

CREATE DIRECTORY TUNE_RESULTS AS ''/myscript_dir'' ;
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('my_tune_mview_
task'), -

Table 12–37 USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views

Column Name Column Description

OWNER The materialized view owner's name

TASK_NAME The task name as a key to access the set of recommendations

SCRIPT_TYPE Recommendation ID used to indicate the row is for
IMPLEMENTATION or UNDO script.

ACTION_ID Action ID used as the command order number

STATEMENT For TUNE_MVIEW output, this column represents the following
statements, and includes statement properties such as
REFRESH and REWRITE options:

CREATE MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG FORCE

[CREATE | DROP] MATERIALIZED VIEW

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-73

'/homes/tune','my_tune_mview_create.sql');

The preceding statement will save the CREATE output results in /myscript_
dir/my_tune_mview_create.sql.

UPDATE_OBJECT Procedure

12-74 PL/SQL Packages and Types Reference

UPDATE_OBJECT Procedure

This procedure updates an existing task object. Task objects are typically used as
input data for a particular advisor. Segment advice can be generated at the object,
segment, or tablespace level.

Syntax
DBMS_ADVISOR.UPDATE_OBJECT (
 task_name IN VARCHAR2
 object_id IN NUMBER,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL);

Parameters

The attribute parameters have different values depending upon the object type. See
Oracle Database Administrator's Guide for details regarding these parameters and
object types.

Table 12–38 UPDATE_OBJECT Procedure Parameters

Parameter Description

task_
name

A valid advisor task name that uniquely identifies an existing task.

object_
id

The advisor-assigned object identifier.

attr1 Advisor-specific data. If set to NULL, there will be no effect on the target
object.

attr2 Advisor-specific data. If set to NULL, there will be no effect on the target
object.

attr3 Advisor-specific data. If set to NULL, there will be no effect on the target
object.

attr4 Advisor-specific data. If set to NULL, there will be no effect on the target
object.

attr5 Advisor-specific data. If set to null, there will be no effect on the target object.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-75

Usage Notes
If for the object level, advice is generated on all partitions of the object (if the object
is partitioned). The advice is not cascaded to any dependent objects. If for the
segment level, advice can be obtained on a single segment, such as the partition or
subpartition of a table, index, or lob column. If for a tablespace level, target advice
for every segment in the tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the
Segment Advisor.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
DBMS_ADVISOR.UPDATE_OBJECT (task_name, obj_id,NULL,NULL,NULL,
 'SELECT count(*) FROM SH.SALES');
END;
/

UPDATE_REC_ATTRIBUTES Procedure

12-76 PL/SQL Packages and Types Reference

UPDATE_REC_ATTRIBUTES Procedure

This procedure updates the owner, name, and tablespace for a recommendation.

Syntax
DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
 task_name IN VARCHAR2
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Usage Notes
Recommendation attributes cannot be modified unless the task has successfully
executed.

Examples
DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);

Table 12–39 UPDATE_REC_ATTRIBUTES Procedure Parameters

Parameter Description

task_name The task name that uniquely identifies an existing task.

rec_id The Advisor-generated identifier number that is assigned to the
recommendation.

action_id The Advisor-generated action identifier that is assigned to the particular
command.

attribute_
name

Name of the attribute to be changed. The valid values are:

owner The new owner of the object.

name The new name of the object.

tablespace The new tablespace for the object.

value Specifies the new value for the recommendation attribute.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-77

 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT avg(amount_sold)
FROM sh.sales WHERE promo_id = 10');
DBMS_ADVISOR.EXECUTE_TASK(task_name);

attribute := 'SH';

DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES(task_name, 1, 3, 'OWNER', attribute);
END;
/

UPDATE_SQLWKLD_ATTRIBUTES Procedure

12-78 PL/SQL Packages and Types Reference

UPDATE_SQLWKLD_ATTRIBUTES Procedure

This procedure changes various attributes of a SQL Workload object or template.

Syntax
DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES (
 workload_name IN VARCHAR2,
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 source IN VARCHAR2 := NULL);

Parameters

Examples
DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');

Table 12–40 UPDATE_SQLWKLD_ATTRIBUTES Procedure Parameters

Parameter Description

workload_name The workload object name that uniquely identifies an existing
workload.

new_name The new workload object name. If the value is NULL or contains the
value ADVISOR_UNUSED, the workload will not be renamed. A task
name can be up to 30 characters long.

description A new workload description. If the value is NULL or contains the value
ADVISOR_UNUSED, the description will not be changed. Names can be
up to 256 characters long.

read_only Set to TRUE so it cannot be changed.

is_template TRUE if workload is to be used as a template.

source Indicates a source application name that initiated the workload
creation. If the value is NULL or contains the value ADVISOR_UNUSED,
the source will not be changed.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-79

DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
FROM sh.sales WHERE promo_id = 10');
DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES(workload_name,'New workload name');
END;
/

UPDATE_SQLWKLD_STATEMENT Procedure

12-80 PL/SQL Packages and Types Reference

UPDATE_SQLWKLD_STATEMENT Procedure

This procedure updates an existing SQL statement in a specified SQL workload.

Syntax
DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 updated OUT NUMBER,
 action IN VARCHAR2,
 priority IN NUMBER,
 username IN VARCHAR2,
 search IN VARCHAR2);

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN NUMBER,
 module IN VARCHAR2,
 action IN VARCHAR2,
 priority IN NUMBER,
 username IN VARCHAR2);

Parameters

Table 12–41 UPDATE_SQLWKLD_STATEMENT Procedure Parameters

Parameter Description

workload_
name

The SQL Workload object name that uniquely identifies an existing
workload.

sql_id The Advisor-generated identifier number that is assigned to the statement.
To specify all workload statements, use the constant DBMS_ADVISOR.
ADVISOR_ALL.

updated Returns the number of statements changed by a searched update.

module Specifies a business application name that will be associated with the SQL
statement. If the value is NULL or contains the value ADVISOR_UNUSED, then
the column will not be updated in the repository.

action Specifies the application action for the statement. If the value is NULL or
contains the value ADVISOR_UNUSED, then the column will not be updated
in the repository.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-81

Usage Notes
A workload cannot be modified or deleted if it is currently referenced by an active
task. A task is considered active if it is not in its initial state. See "RESET_TASK
Procedure" on page 12-63 to set a task to its initial state.

Examples
DECLARE
 workload_name VARCHAR2(30);
 updated NUMBER;
BEGIN
 workload_name := 'My Workload';

DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
FROM sh.sales WHERE promo_id = 10');

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT(workload_name, 'module = ''MONTHLY''',
 updated, 'YEARLY', NULL, NULL,NULL);
END;
/

priority The relative priority of the SQL statement. The value must be one of the
following:

1 - HIGH, 2 - MEDIUM, or 3 - LOW

If the value is NULL or contains the value ADVISOR_UNUSED, then the
column will not be updated in the repository.

username The Oracle user name that executed the SQL statement. If the value is NULL
or contains the value ADVISOR_UNUSED, then the column will not be
updated in the repository.

Because a username is an Oracle identifier, the username value must be
entered exactly like it is stored in the server. For example, if the user SCOTT
is the executing user, then you must provide the user identifier SCOTT in all
uppercase letters. It will not recognize the user scott as a match for SCOTT.

search An optional SQL predicate that allows the user to refine the workload
entries that will be updated. The WHERE keyword should not be included in
the text.

Table 12–41 UPDATE_SQLWKLD_STATEMENT Procedure Parameters(Cont.)

Parameter Description

UPDATE_TASK_ATTRIBUTES Procedure

12-82 PL/SQL Packages and Types Reference

UPDATE_TASK_ATTRIBUTES Procedure

This procedure changes various attributes of a task or a task template.

Syntax
DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES (
 task_name IN VARCHAR2
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 source IN VARCHAR2 := NULL);

Parameters

Examples
DECLARE
 task_id NUMBER;

Table 12–42 UPDATE_TASK_ATTRIBUTES Procedure Parameters

Parameter Description

task_name The Advisor task name that uniquely identifies an existing task.

new_name The new Advisor task name. If the value is NULL or contains the value
ADVISOR_UNUSED, the task will not be renamed. A task name can be up to
30 characters long.

description A new task description. If the value is NULL or contains the value
ADVISOR_UNUSED, the description will not be changed. Names can be up
to 256 characters long.

read_only Sets the task to read-only. Possible values are: TRUE and FALSE

If the value is NULL or contains the value ADVISOR_UNUSED, the setting
will not be changed.

is_template Marks the task as a template. Physically, there is no difference between a
task and a template; however, a template cannot be executed. Possible
values are: TRUE and FALSE. If the value is NULL or contains the value
ADVISOR_UNUSED, the setting will not be changed.

source Indicates a source application name that initiated the task creation. If the
value is NULL or contains the value ADVISOR_UNUSED, the source will not
be changed.

Summary of DBMS_ADVISOR Subprograms

DBMS_ADVISOR 12-83

 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES(task_name,'New Task Name');
DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('New Task Name',NULL,'New description');
END;
/

UPDATE_TASK_ATTRIBUTES Procedure

12-84 PL/SQL Packages and Types Reference

DBMS_ALERT 13-1

13
DBMS_ALERT

DBMS_ALERT supports asynchronous notification of database events (alerts). By
appropriate use of this package and database triggers, an application can notify
itself whenever values of interest in the database are changed.

This chapter contains the following topics:

■ Using DBMS_ALERT

■ Overview

■ Security Model

■ Constants

■ Restrictions

■ Exceptions

■ Restrictions

■ Examples

■ Summary of DBMS_ALERT Subprograms

Using DBMS_ALERT

13-2 PL/SQL Packages and Types Reference

Using DBMS_ALERT

■ Overview

■ Security Model

■ Constants

■ Restrictions

■ Exceptions

■ Restrictions

■ Examples

Overview

Suppose a graphics tool is displaying a graph of some data from a database table.
The graphics tool can, after reading and graphing the data, wait on a database alert
(WAITONE) covering the data just read. The tool automatically wakes up when the
data is changed by any other user. All that is required is that a trigger be placed on
the database table, which performs a signal (SIGNAL) whenever the trigger is fired.

Security Model

Security on this package can be controlled by granting EXECUTE on this package to
selected users or roles. You might want to write a cover package on top of this one
that restricts the alert names used. EXECUTE privilege on this cover package can
then be granted rather than on this package.

Constants

maxwait constant integer := 86400000; -- 1000 days

The maximum time to wait for an alert (this is essentially forever).

Using DBMS_ALERT

DBMS_ALERT 13-3

Restrictions

Because database alerters issue commits, they cannot be used with Oracle Forms.
For more information on restrictions on calling stored procedures while Oracle
Forms is active, refer to your Oracle Forms documentation.

Exceptions

DBMS_ALERT raises the application error -20000 on error conditions. Table 13–1
shows the messages and the procedures that can raise them.

Operational Notes

The following notes relate to general and specific applications:

■ Alerts are transaction-based. This means that the waiting session is not alerted
until the transaction signalling the alert commits. There can be any number of
concurrent signalers of a given alert, and there can be any number of concurrent
waiters on a given alert.

■ A waiting application is blocked in the database and cannot do any other work.

■ An application can register for multiple events and can then wait for any of
them to occur using the WAITANY procedure.

■ An application can also supply an optional timeout parameter to the
WAITONE or WAITANY procedures. A timeout of 0 returns immediately if there
is no pending alert.

■ The signalling session can optionally pass a message that is received by the
waiting session.

■ Alerts can be signalled more often than the corresponding application wait
calls. In such cases, the older alerts are discarded. The application always gets
the latest alert (based on transaction commit times).

■ If the application does not require transaction-based alerts, the DBMS_PIPE
package may provide a useful alternative.

■ If the transaction is rolled back after the call to SIGNAL, no alert occurs.

See Also: Chapter 63, "DBMS_PIPE"

Operational Notes

13-4 PL/SQL Packages and Types Reference

■ It is possible to receive an alert, read the data, and find that no data has
changed. This is because the data changed after the prior alert, but before the
data was read for that prior alert.

■ Usually, Oracle is event-driven; this means that there are no polling loops.
There are two cases where polling loops can occur:

■ Shared mode. If your database is running in shared mode, a polling loop is
required to check for alerts from another instance. The polling loop defaults
to one second and can be set by the SET_DEFAULTS procedure.

■ WAITANY procedure. If you use the WAITANY procedure, and if a signalling
session does a signal but does not commit within one second of the signal, a
polling loop is required so that this uncommitted alert does not camouflage
other alerts. The polling loop begins at a one second interval and
exponentially backs off to 30-second intervals.

Table 13–1 DBMS_ALERT Error Messages

Error Message Procedure

ORU-10001 lock request error, status: N SIGNAL

ORU-10015 error: N waiting for pipe status WAITANY

ORU-10016 error: N sending on pipe 'X' SIGNAL

ORU-10017 error: N receiving on pipe 'X' SIGNAL

ORU-10019 error: N on lock request WAIT

ORU-10020 error: N on lock request WAITANY

ORU-10021 lock request error; status: N REGISTER

ORU-10022 lock request error, status: N SIGNAL

ORU-10023 lock request error; status N WAITONE

ORU-10024 there are no alerts registered WAITANY

ORU-10025 lock request error; status N REGISTER

ORU-10037 attempting to wait on uncommitted
signal from same session

WAITONE

Using DBMS_ALERT

DBMS_ALERT 13-5

Examples

Suppose you want to graph average salaries by department, for all employees. Your
application needs to know whenever EMP is changed. Your application would look
similar to this code:

DBMS_ALERT.REGISTER('emp_table_alert');
 <<readagain>>:
 /* ... read the emp table and graph it */
 DBMS_ALERT.WAITONE('emp_table_alert', :message, :status);
 if status = 0 then goto <<readagain>>; else
 /* ... error condition */

The EMP table would have a trigger similar to this:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
 BEGIN
 DBMS_ALERT.SIGNAL('emp_table_alert', 'message_text');
 END;

When the application is no longer interested in the alert, it makes this request:

DBMS_ALERT.REMOVE('emp_table_alert');

This reduces the amount of work required by the alert signaller. If a session exits (or
dies) while registered alerts exist, the alerts are eventually cleaned up by future
users of this package.

The example guarantees that the application always sees the latest data, although it
may not see every intermediate value.

Summary of DBMS_ALERT Subprograms

13-6 PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms

Table 13–2 DBMS_ALERT Package Subprograms

Subprogram Description

REGISTER Procedure on
page 13-7

Receives messages from an alert

REMOVE Procedure on
page 13-8

Disables notification from an alert

REMOVEALL Procedure
on page 13-9

Removes all alerts for this session from the registration list

SET_DEFAULTS
Procedure on page 13-10

Sets the polling interval

SIGNAL Procedure on
page 13-11

Signals an alert (send message to registered sessions)

WAITANY Procedure on
page 13-12

Waits timeout seconds to receive alert message from an alert
registered for session

WAITONE Procedure on
page 13-13

Waits timeout seconds to receive message from named alert

Summary of DBMS_ALERT Subprograms

DBMS_ALERT 13-7

REGISTER Procedure

This procedure lets a session register interest in an alert.

Syntax
DBMS_ALERT.REGISTER (
 name IN VARCHAR2);

Parameters

Usage Notes
A session can register interest in an unlimited number of alerts. Alerts should be
deregistered when the session no longer has any interest, by calling REMOVE.

Table 13–3 REGISTER Procedure Parameters

Parameter Description

name Name of the alert in which this session is interested.

Caution: Alert names beginning with 'ORA$' are reserved for
use for products provided by Oracle. Names must be 30 bytes or
less. The name is case insensitive.

REMOVE Procedure

13-8 PL/SQL Packages and Types Reference

REMOVE Procedure

This procedure enables a session that is no longer interested in an alert to remove
that alert from its registration list. Removing an alert reduces the amount of work
done by signalers of the alert.

Syntax
DBMS_ALERT.REMOVE (
 name IN VARCHAR2);

Parameters

Usage Notes
Removing alerts is important because it reduces the amount of work done by
signalers of the alert. If a session dies without removing the alert, that alert is
eventually (but not immediately) cleaned up.

Table 13–4 REMOVE Procedure Parameters

Parameter Description

name Name of the alert (case-insensitive) to be removed from
registration list.

Summary of DBMS_ALERT Subprograms

DBMS_ALERT 13-9

REMOVEALL Procedure

This procedure removes all alerts for this session from the registration list. You
should do this when the session is no longer interested in any alerts.

This procedure is called automatically upon first reference to this package during a
session. Therefore, no alerts from prior sessions which may have terminated
abnormally can affect this session.

This procedure always performs a commit.

Syntax
DBMS_ALERT.REMOVEALL;

SET_DEFAULTS Procedure

13-10 PL/SQL Packages and Types Reference

SET_DEFAULTS Procedure

In case a polling loop is required, use the SET_DEFAULTS procedure to set the
polling interval.

Syntax
DBMS_ALERT.SET_DEFAULTS (
 sensitivity IN NUMBER);

Parameters

Table 13–5 SET_DEFAULTS Procedure Parameters

Parameter Description

sensitivity Polling interval, in seconds, to sleep between polls. The default
interval is five seconds.

Summary of DBMS_ALERT Subprograms

DBMS_ALERT 13-11

SIGNAL Procedure

This procedure signals an alert. The effect of the SIGNAL call only occurs when the
transaction in which it is made commits. If the transaction rolls back, SIGNAL has
no effect.

All sessions that have registered interest in this alert are notified. If the interested
sessions are currently waiting, they are awakened. If the interested sessions are not
currently waiting, they are notified the next time they do a wait call.

Multiple sessions can concurrently perform signals on the same alert. Each session,
as it signals the alert, blocks all other concurrent sessions until it commits. This has
the effect of serializing the transactions.

Syntax
DBMS_ALERT.SIGNAL (
 name IN VARCHAR2,
 message IN VARCHAR2);

Parameters

Table 13–6 SIGNAL Procedure Parameters

Parameter Description

name Name of the alert to signal.

message Message, of 1800 bytes or less, to associate with this alert.

This message is passed to the waiting session. The waiting session
might be able to avoid reading the database after the alert occurs by
using the information in the message.

WAITANY Procedure

13-12 PL/SQL Packages and Types Reference

WAITANY Procedure

Call this procedure to wait for an alert to occur for any of the alerts for which the
current session is registered.

Syntax
DBMS_ALERT.WAITANY (
 name OUT VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Usage Notes
An implicit COMMIT is issued before this procedure is executed. The same session
that waits for the alert may also first signal the alert. In this case remember to
commit after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST
(which is called by DBMS_ALERT) returns status 4.

Exceptions
-20000, ORU-10024: there are no alerts registered.

Table 13–7 WAITANY Procedure Parameters

Parameter Description

name Returns the name of the alert that occurred.

message Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals
on this alert occurred before WAITANY, the message corresponds to
the most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

status Values returned:

0 - alert occurred

1 - timeout occurred

timeout Maximum time to wait for an alert.

If no alert occurs before timeout seconds, this returns a status of 1.

Summary of DBMS_ALERT Subprograms

DBMS_ALERT 13-13

WAITONE Procedure

This procedure waits for a specific alert to occur. An implicit COMMIT is issued
before this procedure is executed. A session that is the first to signal an alert can
also wait for the alert in a subsequent transaction. In this case, remember to commit
after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is
called by DBMS_ALERT) returns status 4.

Syntax
DBMS_ALERT.WAITONE (
 name IN VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Table 13–8 WAITONE Procedure Parameters

Parameter Description

name Name of the alert to wait for.

message Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on
this alert occurred before WAITONE, the message corresponds to the
most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

status Values returned:

0 - alert occurred

1 - timeout occurred

timeout Maximum time to wait for an alert.

If the named alert does not occurs before timeout seconds, this returns
a status of 1.

WAITONE Procedure

13-14 PL/SQL Packages and Types Reference

DBMS_APPLICATION_INFO 14-1

14
DBMS_APPLICATION_INFO

Application developers can use the DBMS_APPLICATION_INFO package with
Oracle Trace and the SQL trace facility to record names of executing modules or
transactions in the database for later use when tracking the performance of various
modules and debugging.

This chapter contains the following topics:

■ Using DBMS_APPLICATION_INFO

■ Overview

■ Security Model

■ Operational Notes

■ Summary of DBMS_APPLICATION_INFO Subprograms

Using DBMS_APPLICATION_INFO

14-2 PL/SQL Packages and Types Reference

Using DBMS_APPLICATION_INFO

■ Overview

■ Security Model

■ Operational Notes

Overview

Registering the application allows system administrators and performance tuning
specialists to track performance by module. System administrators can also use this
information to track resource use by module. When an application registers with
the database, its name and actions are recorded in the V$SESSION and V$SQLAREA
views.

Security Model

No further privileges are required. The DBMSAPIN.SQL script is already run by
catproc.

Operational Notes

Your applications should set the name of the module and name of the action
automatically each time a user enters that module. The module name could be the
name of a form in an Oracle Forms application, or the name of the code segment in
an Oracle Precompilers application. The action name should usually be the name or
description of the current transaction within a module.

If you want to gather your own statistics based on module, you can implement a
wrapper around this package by writing a version of this package in another
schema that first gathers statistics and then calls the SYS version of the package.

Note: The public synonym for DBMS_APPLICATION_INFO is not
dropped before creation so that you can redirect the public
synonym to point to your own package.

Using DBMS_APPLICATION_INFO

DBMS_APPLICATION_INFO 14-3

The public synonym for DBMS_APPLICATION_INFO can then be changed to point
to the DBA's version of the package.

Summary of DBMS_APPLICATION_INFO Subprograms

14-4 PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms

Table 14–1 DBMS_APPLICATION_INFO Package Subprograms

Subprogram Description

READ_CLIENT_INFO
Procedure on page 14-5

Reads the value of the client_info field of the current
session

READ_MODULE
Procedure on page 14-6

Reads the values of the module and action fields of the current
session

SET_ACTION Procedure
on page 14-8

Sets the name of the current action within the current module

SET_CLIENT_INFO
Procedure on page 14-10

Sets the client_info field of the session

SET_MODULE Procedure
on page 14-11

Sets the name of the module that is currently running to a new
module

SET_SESSION_LONGOPS
Procedure on page 14-13

Sets a row in the V$SESSION_LONGOPS table

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-5

READ_CLIENT_INFO Procedure

This procedure reads the value of the client_info field of the current session.

Syntax
DBMS_APPLICATION_INFO.READ_CLIENT_INFO (
 client_info OUT VARCHAR2);

Parameters

Table 14–2 READ_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Last client information value supplied to the SET_CLIENT_
INFO procedure.

READ_MODULE Procedure

14-6 PL/SQL Packages and Types Reference

READ_MODULE Procedure

This procedure reads the values of the module and action fields of the current
session.

Syntax
DBMS_APPLICATION_INFO.READ_MODULE (
 module_name OUT VARCHAR2,
 action_name OUT VARCHAR2);

Parameters

Usage Notes
Module and action names for a registered application can be retrieved by querying
V$SQLAREA or by calling the READ_MODULE procedure. Client information can be
retrieved by querying the V$SESSION view, or by calling the READ_CLIENT_INFO
Procedure.

Examples
The following sample query illustrates the use of the MODULE and ACTION column
of the V$SQLAREA.

SELECT sql_text, disk_reads, module, action
FROM v$sqlarea
WHERE module = 'add_employee';

SQL_TEXT DISK_READS MODULE ACTION
------------------- ---------- ------------------ ----------------
INSERT INTO emp 1 add_employee insert into emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES
(name, next.emp_seq, manager, title, SYSDATE, commission, department)

Table 14–3 READ_MODULE Procedure Parameters

Parameter Description

module_name Last value that the module name was set to by calling SET_
MODULE.

action_name Last value that the action name was set to by calling SET_
ACTION or SET_MODULE.

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-7

1 row selected.

SET_ACTION Procedure

14-8 PL/SQL Packages and Types Reference

SET_ACTION Procedure

This procedure sets the name of the current action within the current module.

Syntax
DBMS_APPLICATION_INFO.SET_ACTION (
 action_name IN VARCHAR2);

Parameters

Usage Notes
The action name should be descriptive text about the current action being
performed. You should probably set the action name before the start of every
transaction.

Set the transaction name to NULL after the transaction completes, so that subsequent
transactions are logged correctly. If you do not set the transaction name to NULL,
subsequent transactions may be logged with the previous transaction's name.

Example
The following is an example of a transaction that uses the registration procedure:

CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
BEGIN

-- balance transfer transaction

 DBMS_APPLICATION_INFO.SET_ACTION(
 action_name => 'transfer from chk to sav');
 UPDATE chk SET bal = bal + :amt
 WHERE acct# = :acct;
 UPDATE sav SET bal = bal - :amt
 WHERE acct# = :acct;

Table 14–4 SET_ACTION Procedure Parameters

Parameter Description

action_name The name of the current action within the current module.
When the current action terminates, call this procedure with
the name of the next action if there is one, or NULL if there is
not. Names longer than 32 bytes are truncated.

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-9

 COMMIT;
 DBMS_APPLICATION_INFO.SET_ACTION(null);

END;

SET_CLIENT_INFO Procedure

14-10 PL/SQL Packages and Types Reference

SET_CLIENT_INFO Procedure

This procedure supplies additional information about the client application.

Syntax
DBMS_APPLICATION_INFO.SET_CLIENT_INFO (
 client_info IN VARCHAR2);

Parameters

Table 14–5 SET_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Supplies any additional information about the client
application. This information is stored in the V$SESSION
view. Information exceeding 64 bytes is truncated.

Note: CLIENT_INFO is readable and writable by any user. For
storing secured application attributes, you can use the application
context feature.

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-11

SET_MODULE Procedure

This procedure sets the name of the current application or module.

Syntax
DBMS_APPLICATION_INFO.SET_MODULE (
 module_name IN VARCHAR2,
 action_name IN VARCHAR2);

Parameters

Usage Notes

Example
CREATE or replace PROCEDURE add_employee(
 name VARCHAR2,
 salary NUMBER,
 manager NUMBER,
 title VARCHAR2,
 commission NUMBER,
 department NUMBER) AS
BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 module_name => 'add_employee',
 action_name => 'insert into emp');
 INSERT INTO emp
 (ename, empno, sal, mgr, job, hiredate, comm, deptno)
 VALUES (name, emp_seq.nextval, salary, manager, title, SYSDATE,
 commission, department);

Table 14–6 SET_MODULE Procedure Parameters

Parameter Description

module_name Name of module that is currently running. When the current
module terminates, call this procedure with the name of the
new module if there is one, or NULL if there is not. Names
longer than 48 bytes are truncated.

action_name Name of current action within the current module. If you do
not want to specify an action, this value should be NULL.
Names longer than 32 bytes are truncated.

SET_MODULE Procedure

14-12 PL/SQL Packages and Types Reference

 DBMS_APPLICATION_INFO.SET_MODULE(null,null);
END;

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-13

SET_SESSION_LONGOPS Procedure

This procedure sets a row in the V$SESSION_LONGOPS view. This is a view that is
used to indicate the on-going progress of a long running operation. Some Oracle
functions, such as parallel execution and Server Managed Recovery, use rows in this
view to indicate the status of, for example, a database backup.

Applications may use the SET_SESSION_LONGOPS procedure to advertise
information on the progress of application specific long running tasks so that the
progress can be monitored by way of the V$SESSION_LONGOPS view.

Syntax
DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS (
 rindex IN OUT BINARY_INTEGER,
 slno IN OUT BINARY_INTEGER,
 op_name IN VARCHAR2 DEFAULT NULL,
 target IN BINARY_INTEGER DEFAULT 0,
 context IN BINARY_INTEGER DEFAULT 0,
 sofar IN NUMBER DEFAULT 0,
 totalwork IN NUMBER DEFAULT 0,
 target_desc IN VARCHAR2 DEFAULT 'unknown target',
 units IN VARCHAR2 DEFAULT NULL)

set_session_longops_nohint constant BINARY_INTEGER := -1;

Parameters

Table 14–7 SET_SESSION_LONGOPS Procedure Parameters

Parameter Description

rindex A token which represents the v$session_longops row to
update. Set this to set_session_longops_nohint to start a
new row. Use the returned value from the prior call to reuse a
row.

slno Saves information across calls to set_session_longops: It
is for internal use and should not be modified by the caller.

op_name Specifies the name of the long running task. It appears as the
OPNAME column of v$session_longops. The maximum
length is 64 bytes.

SET_SESSION_LONGOPS Procedure

14-14 PL/SQL Packages and Types Reference

Example
This example performs a task on 10 objects in a loop. As the example completes
each object, Oracle updates V$SESSION_LONGOPS on the procedure's progress.

DECLARE
 rindex BINARY_INTEGER;
 slno BINARY_INTEGER;
 totalwork number;
 sofar number;
 obj BINARY_INTEGER;

 BEGIN
 rindex := dbms_application_info.set_session_longops_nohint;
 sofar := 0;
 totalwork := 10;

 WHILE sofar < 10 LOOP
 -- update obj based on sofar

target Specifies the object that is being worked on during the long
running operation. For example, it could be a table ID that is
being sorted. It appears as the TARGET column of
v$session_longops.

context Any number the client wants to store. It appears in the
CONTEXT column of v$session_longops.

sofar Any number the client wants to store. It appears in the SOFAR
column of v$session_longops. This is typically the amount
of work which has been done so far.

totalwork Any number the client wants to store. It appears in the
TOTALWORK column of v$session_longops. This is
typically an estimate of the total amount of work needed to be
done in this long running operation.

target_desc Specifies the description of the object being manipulated in this
long operation. This provides a caption for the target
parameter. This value appears in the TARGET_DESC field of
v$session_longops. The maximum length is 32 bytes.

units Specifies the units in which sofar and totalwork are being
represented. It appears as the UNITS field of v$session_
longops. The maximum length is 32 bytes.

Table 14–7 SET_SESSION_LONGOPS Procedure Parameters

Parameter Description

Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 14-15

 -- perform task on object target

 sofar := sofar + 1;
 dbms_application_info.set_session_longops(rindex, slno,
 "Operation X", obj, 0, sofar, totalwork, "table", "tables");
 END LOOP;
 END;

SET_SESSION_LONGOPS Procedure

14-16 PL/SQL Packages and Types Reference

DBMS_APPLY_ADM 15-1

15
DBMS_APPLY_ADM

The DBMS_APPLY_ADM package, one of a set of Streams packages, provides
administrative interfaces to start, stop, and configure an apply process. This
package includes subprograms for configuring apply handlers, setting enqueue
destinations for events, and specifying execution directives for events. This package
also provides administrative subprograms that set the instantiation SCN for objects
at a destination database. This package also includes subprograms for managing
apply errors.

This chapter contains the following topic:

■ Summary of DBMS_APPLY_ADM Subprograms

See Also: Oracle Streams Concepts and Administration and Oracle
Streams Replication Administrator's Guide for more information about
this package and apply processes

Summary of DBMS_APPLY_ADM Subprograms

15-2 PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 15–1 DBMS_APPLY_ADM Package Subprograms

Subprogram Description

ALTER_APPLY Procedure on page 15-4 Alters an apply process

COMPARE_OLD_VALUES Procedure on
page 15-12

Specifies whether to compare old value of one
or more columns in a row LCR with the
current value of the corresponding columns at
the destination site during apply

CREATE_APPLY Procedure on page 15-14 Creates an apply process

DELETE_ALL_ERRORS Procedure on
page 15-22

Deletes all the error transactions for the
specified apply process

DELETE_ERROR Procedure on page 15-23 Deletes the specified error transaction

DROP_APPLY Procedure on page 15-24 Drops an apply process

EXECUTE_ALL_ERRORS Procedure on
page 15-26

Reexecutes the error transactions for the
specified apply process.

EXECUTE_ERROR Procedure on
page 15-27

Reexecutes the specified error transaction

GET_ERROR_MESSAGE Functions on
page 15-28

Returns the message payload from the error
queue for the specified message number and
transaction identifier

SET_DML_HANDLER Procedure on
page 15-30

Alters operation options for a specified object
with a specified apply process

SET_ENQUEUE_DESTINATION
Procedure on page 15-36

Sets the queue where an event that satisfies
the specified rule is enqueued automatically
by an apply process

SET_EXECUTE Procedure on page 15-38 Specifies whether an event that satisfies the
specified rule is executed by an apply process

SET_GLOBAL_INSTANTIATION_SCN
Procedure on page 15-40

Records the specified instantiation SCN for
the specified source database and, optionally,
for the schemas at the source database and the
tables owned by these schemas

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-3

SET_KEY_COLUMNS Procedures on
page 15-43

Records the set of columns to be used as the
substitute primary key for local apply
purposes and removes existing substitute
primary key columns for the specified object if
they exist

SET_PARAMETER Procedure on
page 15-45

Sets an apply parameter to the specified value

SET_SCHEMA_INSTANTIATION_SCN
Procedure on page 15-49

Records the specified instantiation SCN for
the specified schema in the specified source
database and, optionally, for the tables owned
by the schema at the source database

SET_TABLE_INSTANTIATION_SCN
Procedure on page 15-52

Records the specified instantiation SCN for
the specified table in the specified source
database

SET_UPDATE_CONFLICT_HANDLER
Procedure on page 15-54

Adds, updates, or drops an update conflict
handler for the specified object

START_APPLY Procedure on page 15-58 Directs the apply process to start applying
events

STOP_APPLY Procedure on page 15-59 Stops the apply process from applying any
events and rolls back any unfinished
transactions being applied

Note: All procedures and functions commit unless specified
otherwise.

Table 15–1 DBMS_APPLY_ADM Package Subprograms

Subprogram Description

ALTER_APPLY Procedure

15-4 PL/SQL Packages and Types Reference

ALTER_APPLY Procedure

This procedure alters an apply process.

Syntax
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT false,
 message_handler IN VARCHAR2 DEFAULT NULL
 remove_message_handler IN BOOLEAN DEFAULT false,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 remove_ddl_handler IN BOOLEAN DEFAULT false,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT NULL,
 remove_apply_tag IN BOOLEAN DEFAULT false,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 remove_precommit_handler IN BOOLEAN DEFAULT false,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT false);

Parameters

Table 15–2 ALTER_APPLY Procedure Parameters

Parameter Description

apply_name The name of the apply process being altered. You must
specify an existing apply process name. Do not specify
an owner.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-5

rule_set_name The name of the positive rule set for the apply process.
The positive rule set contains the rules that instruct the
apply process to apply events.

If you want to use a positive rule set for the apply
process, then you must specify an existing rule set in the
form [schema_name.]rule_set_name. For example,
to specify a positive rule set in the hr schema named
job_apply_rules, enter hr.job_apply_rules. If
the schema is not specified, then the current user is the
default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_rule_set
parameter is set to false, then retains any existing
positive rule set. If you specify NULL and the remove_
rule_set parameter is set to true, then removes any
existing positive rule set.

remove_rule_set If true, then removes the positive rule set for the
specified apply process. If you remove the positive rule
set for an apply process, and the apply process does not
have a negative rule set, then the apply process dequeues
all events in its queue.

If you remove the positive rule set for an apply process,
and a negative rule set exists for the apply process, then
the apply process dequeues all events in its queue that
are not discarded by the negative rule set.

If false, then retains the positive rule set for the
specified apply process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

ALTER_APPLY Procedure

15-6 PL/SQL Packages and Types Reference

message_handler A user-defined procedure that processes non-LCR
messages in the queue for the apply process. You must
specify an existing procedure in one of the following
forms:

■ [schema_name.]procedure_name

■ [schema_name.]package_name.procedure_
name

If the procedure is in a package, then the package_
name must be specified. For example, to specify a
procedure in the apply_pkg package in the hr schema
named process_msgs, enter hr.apply_
pkg.process_msgs. An error is returned if the
specified procedure does not exist.

The user who invokes the ALTER_APPLY procedure
must have EXECUTE privilege on a specified message
handler. Also, if the schema_name is not specified, then
the user who invokes the ALTER_APPLY procedure is the
default.

remove_message_handler If true, then removes the message handler for the
specified apply process.

If false, then retains any message handler for the
specified apply process.

If the message_handler parameter is non-NULL, then
this parameter should be set to false.

ddl_handler A user-defined procedure that processes DDL LCRs in
the queue for the apply process. You must specify an
existing procedure in the form [schema_
name.]procedure_name. For example, to specify a
procedure in the hr schema named process_ddls,
enter hr.process_ddls. An error is returned if the
specified procedure does not exist.

The user who invokes the ALTER_APPLY procedure
must have EXECUTE privilege on a specified DDL
handler. Also, if the schema_name is not specified, then
the user who invokes the ALTER_APPLY procedure is the
default.

All applied DDL LCRs commit automatically. Therefore,
if a DDL handler calls the EXECUTE member procedure
of a DDL LCR, then a commit is performed
automatically.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-7

remove_ddl_handler If true, then removes the DDL handler for the specified
apply process.

If false, then retains any DDL handler for the specified
apply process.

If the ddl_handler parameter is non-NULL, then this
parameter should be set to false.

apply_user The user who applies all DML and DDL changes that
satisfy the apply process rule sets and who runs
user-defined apply handlers. If NULL, then the apply
user is not changed.

To change the apply user, the user who invokes the
ALTER_APPLY procedure must be granted DBA role.
Only the SYS user can set the apply_user to SYS.

If you change the apply user, then this procedure grants
the new apply user dequeue privilege on the queue used
by the apply process and configures the user as a secure
queue user of the queue. In addition, make sure the
apply user has the following privileges:

■ Execute privilege on the rule sets used by the apply
process

■ Execute privilege on all rule-based transformation
functions used in the rule set

■ Execute privilege on all apply handler procedures

■ Execute privilege on all packages, including
Oracle-supplied packages, that are invoked in
subprograms run by the apply process

These privileges must be granted directly to the apply
user. They cannot be granted through roles.

By default, this parameter is set to the user who created
the apply process by running either the CREATE_APPLY
procedure in this package or one of the following
procedures in the DBMS_STREAMS_ADM package with
the streams_type parameter set to apply: ADD_
GLOBAL_RULES, ADD_SCHEMA_RULES, ADD_TABLE_
RULES, and ADD_SUBSET_RULES.

Note: If the specified user is dropped using DROP
USER... CASCADE, then the apply_user for the apply
process is set to NULL automatically. You must specify an
apply user before the apply process can run.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

ALTER_APPLY Procedure

15-8 PL/SQL Packages and Types Reference

apply_tag A binary tag that is added to redo entries generated by
the specified apply process. The tag is a binary value that
can be used to track LCRs.

The tag is relevant only if a capture process at the
database where the apply process is running will capture
changes made by the apply process. If so, then the
captured changes will include the tag specified by this
parameter.

If NULL, the default, then the apply tag for the apply
process is not changed.

The following is an example of a tag with a hexadecimal
value of 17:

HEXTORAW('17')

See Also: Oracle Streams Replication Administrator's Guide
for more information about tags

remove_apply_tag If true, then sets the apply tag for the specified apply
process to NULL, and the apply process generates redo
entries with NULL tags.

If false, then retains any apply tag for the specified
apply process.

If the apply_tag parameter is non-NULL, then this
parameter should be set to false.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-9

precommit_handler A user-defined procedure that can receive internal
commit directives in the queue for the apply process
before they are processed by the apply process.
Typically, precommit handlers are used for auditing
commit information for transactions processed by an
apply process.

An internal commit directive is enqueued into a queue
when a capture process captures the commit directive for
a transaction that contains row LCRs that were captured,
and when a user or application enqueues messages into a
queue and then issues a COMMIT statement. For a
captured row LCR, a commit directive contains the
commit SCN of the transaction from the source database,
but for a user-enqueued event, the commit SCN is
generated by the apply process.

You must specify an existing procedure in the form
[schema_name.]procedure_name. For example, to
specify a procedure in the hr schema named process_
commits, enter hr.process_commits. An error is
returned if the specified procedure does not exist.

The user who invokes the ALTER_APPLY procedure
must have EXECUTE privilege on a specified precommit
handler. Also, if the schema_name is not specified, then
the user who invokes the ALTER_APPLY procedure is the
default.

The precommit handler procedure must conform to the
following restrictions:

■ Any work that commits must be an autonomous
transaction.

■ Any rollback must be to a named savepoint created
in the procedure.

If a precommit handler raises an exception, then the
entire apply transaction is rolled back, and all of the
events in the transaction are moved to the error queue.

remove_precommit_handler If true, then removes the precommit handler for the
specified apply process.

If false, then retains any precommit handler for the
specified apply process.

If the precommit_handler parameter is non-NULL,
then this parameter should be set to false.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

ALTER_APPLY Procedure

15-10 PL/SQL Packages and Types Reference

Usage Notes
An apply process is stopped and restarted automatically when you change the
value of one or more of the following ALTER_APPLY procedure parameters:

negative_rule_set_name The name of the negative rule set for the apply process.
The negative rule set contains the rules that instruct the
apply process to discard events.

If you want to use a negative rule set for the apply
process, then you must specify an existing rule set in the
form [schema_name.]rule_set_name. For example,
to specify a negative rule set in the hr schema named
neg_apply_rules, enter hr.neg_apply_rules. If
the schema is not specified, then the current user is the
default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_negative_rule_
set parameter is set to false, then retains any existing
negative rule set. If you specify NULL and the remove_
negative_rule_set parameter is set to true, then
removes any existing negative rule set.

If you specify both a positive and a negative rule set for
an apply process, then the negative rule set is always
evaluated first.

remove_negative_rule_set If true, then removes the negative rule set for the
specified apply process. If you remove the negative rule
set for an apply process, and the apply process does not
have a positive rule set, then the apply process dequeues
all events in its queue.

If you remove the negative rule set for an apply process,
and a positive rule set exists for the apply process, then
the apply process dequeues all events in its queue that
are not discarded by the positive rule set.

If false, then retains the negative rule set for the
specified apply process.

If the negative_rule_set_name parameter is
non-NULL, then this parameter should be set to false.

Table 15–2 ALTER_APPLY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-11

■ message_handler

■ ddl_handler

■ apply_user

■ apply_tag

■ precommit_handler

COMPARE_OLD_VALUES Procedure

15-12 PL/SQL Packages and Types Reference

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare the old value of one or more columns
in a row LCR with the current value of the corresponding columns at the
destination site during apply. This procedure is relevant only for UPDATE and
DELETE operations because only these operations result in old column values in
row LCRs. The default is to compare old values for all columns.

Syntax
DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 DEFAULT 'UPDATE',
 compare IN BOOLEAN DEFAULT true,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: Oracle Streams Replication Administrator's Guide for more
information about conflict detection and resolution in a Streams
environment

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

Table 15–3 COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

object_name The name of the source table specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.

column_list A comma-delimited list of the columns in the table. There must
be no spaces between entries.

Specify * to include all nonkey columns.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-13

Usage Notes
By default, an apply process uses the old column values in a row LCR to detect
conflicts. You may choose not to compare old column values to avoid conflict
detection for specific tables. For example, if you use a time column for conflict
detection, then an apply process does not need to check old values for nonkey and
non time columns.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_UTILITY.LNAME_ARRAY to contain the column names.
The first column name should be at position 1, the second at
position 2, and so on. The table does not need to be NULL
terminated.

operation The name of the operation, which can be specified as:

■ UPDATE for UPDATE operations

■ DELETE for DELETE operations

■ * for both UPDATE and DELETE operations

compare If compare is true, the old values of the specified columns are
compared during apply. If compare is false, the old values of
the specified columns are not compared during apply.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Note: An apply process always compares old values for key
columns when they are present in a row LCR. This procedure raises
an error if a key column is specified and the compare parameter is
set to false.

Table 15–3 COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

CREATE_APPLY Procedure

15-14 PL/SQL Packages and Types Reference

CREATE_APPLY Procedure

This procedure creates an apply process.

Syntax
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name IN VARCHAR2,
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 message_handler IN VARCHAR2 DEFAULT NULL,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT '00',
 apply_captured IN BOOLEAN DEFAULT false,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL);

Parameters

Table 15–4 CREATE_APPLY Procedure Parameters

Parameter Description

queue_name The name of the queue from which the apply process
dequeues LCRs and user messages. You must specify an
existing queue in the form [schema_name.]queue_name.
For example, to specify a queue in the hr schema named
streams_queue, enter hr.streams_queue. If the
schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the
apply process is created.

apply_name The name of the apply process being created. A NULL
specification is not allowed. Do not specify an owner.

The specified name must not match the name of an existing
apply process or messaging client.

Note: The apply_name setting cannot be altered after the
apply process is created.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-15

rule_set_name The name of the positive rule set for the apply process. The
positive rule set contains the rules that instruct the apply
process to apply events.

If you want to use a positive rule set for the apply process,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a positive rule set in the hr schema named job_
apply_rules, enter hr.job_apply_rules. If the
schema is not specified, then the current user is the default.

If you specify NULL, and no negative rule set is specified,
then the apply process applies either all captured events or
all user-enqueued events in the queue, depending on the
setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

message_handler A user-defined procedure that processes non-LCR messages
in the queue for the apply process. You must specify an
existing procedure in one of the following forms:

■ [schema_name.]procedure_name

■ [schema_name.]package_name.procedure_name

If the procedure is in a package, then the package_name
must be specified. For example, to specify a procedure in
the apply_pkg package in the hr schema named
process_msgs, enter hr.apply_pkg.process_msgs.
An error is returned if the specified procedure does not
exist.

The user who invokes the CREATE_APPLY procedure must
have EXECUTE privilege on a specified message handler.
Also, if the schema_name is not specified, then the user
who invokes the CREATE_APPLY procedure is the default.

See "Usage Notes" on page 15-20 for more information
about a message handler procedure.

Table 15–4 CREATE_APPLY Procedure Parameters (Cont.)

Parameter Description

CREATE_APPLY Procedure

15-16 PL/SQL Packages and Types Reference

ddl_handler A user-defined procedure that processes DDL LCRs in the
queue for the apply process. You must specify an existing
procedure in one of the following forms:

■ [schema_name.]procedure_name

■ [schema_name.]package_name.procedure_name

If the procedure is in a package, then the package_name
must be specified. For example, to specify a procedure in
the apply_pkg package in the hr schema named
process_ddls, enter hr.apply_pkg.process_ddls.
An error is returned if the specified procedure does not
exist.

The user who invokes the CREATE_APPLY procedure must
have EXECUTE privilege on a specified DDL handler. Also,
if the schema_name is not specified, then the user who
invokes the CREATE_APPLY procedure is the default.

All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTE member procedure of a
DDL LCR, then a commit is performed automatically.

See "Usage Notes" on page 15-20 for more information
about a DDL handler procedure.

apply_user The user who applies all DML and DDL changes that satisfy
the apply process rule sets and who runs user-defined
apply handlers. If NULL, then the user who runs the
CREATE_APPLY procedure is used.

Only a user who is granted DBA role can set an apply user.
Only the SYS user can set the apply_user to SYS.

Note: If the specified user is dropped using DROP USER...
CASCADE, then the apply_user setting for the apply
process is set to NULL automatically. You must specify an
apply user before the apply process can run.

apply_database_link The database at which the apply process applies messages.
This parameter is used by an apply process when applying
changes from Oracle to non-Oracle systems, such as Sybase.
Set this parameter to NULL to specify that the apply process
applies messages at the local database.

Note: The apply_database_link setting cannot be
altered after the apply process is created.

Table 15–4 CREATE_APPLY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-17

apply_tag A binary tag that is added to redo entries generated by the
specified apply process. The tag is a binary value that can be
used to track LCRs.

The tag is relevant only if a capture process at the database
where the apply process is running will capture changes
made by the apply process. If so, then the captured changes
will include the tag specified by this parameter.

By default, the tag for an apply process is the hexadecimal
equivalent of '00' (double zero).

The following is an example of a tag with a hexadecimal
value of 17:

HEXTORAW('17')

If NULL, then the apply process generates redo entries with
NULL tags.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

apply_captured Either true or false.

If true, then the apply process applies only the events in a
queue that were captured by a Streams capture process.

If false, then the apply process applies only the
user-enqueued events in a queue. These events are user
messages that were not captured by a Streams capture
process. These messages may or may not contain a
user-created LCR.

To apply both captured and user-enqueued events in a
queue, you must create at least two apply processes.

Note: The apply_captured setting cannot be altered after
the apply process is created.

See Also: Oracle Streams Concepts and Administration for
more information about processing captured or
user-enqueued events with an apply process

Table 15–4 CREATE_APPLY Procedure Parameters (Cont.)

Parameter Description

CREATE_APPLY Procedure

15-18 PL/SQL Packages and Types Reference

precommit_handler A user-defined procedure that can receive internal commit
directives in the queue for the apply process before they are
processed by the apply process. Typically, precommit
handlers are used for auditing commit information for
transactions processed by an apply process.

An internal commit directive is enqueued into a queue
when a capture process captures the commit directive for a
transaction that contains row LCRs that were captured, and
when a user or application enqueues messages into a queue
and then issues a COMMIT statement. For a captured row
LCR, a commit directive contains the commit SCN of the
transaction from the source database, but for a
user-enqueued event, the commit SCN is generated by the
apply process.

You must specify an existing procedure in one of the
following forms:

■ [schema_name.]procedure_name

■ [schema_name.]package_name.procedure_name

If the procedure is in a package, then the package_name
must be specified. For example, to specify a procedure in
the apply_pkg package in the hr schema named
process_commits, enter hr.apply_pkg.process_
commits. An error is returned if the specified procedure
does not exist.

The user who invokes the CREATE_APPLY procedure must
have EXECUTE privilege on a specified precommit handler.
Also, if the schema_name is not specified, then the user
who invokes the CREATE_APPLY procedure is the default.

If a precommit handler raises an exception, then the entire
apply transaction is rolled back, and all of the events in the
transaction are moved to the error queue.

The precommit handler procedure must conform to the
following restrictions:

■ Any work that commits must be an autonomous
transaction.

■ Any rollback must be to a named savepoint created in
the procedure.

See "Usage Notes" on page 15-20 for more information
about a precommit handler procedure.

Table 15–4 CREATE_APPLY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-19

negative_rule_set_name The name of the negative rule set for the apply process. The
negative rule set contains the rules that instruct the apply
process to discard events.

If you want to use a negative rule set for the apply process,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a negative rule set in the hr schema named neg_
apply_rules, enter hr.neg_apply_rules. If the
schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified,
then the apply process applies either all captured events or
all user-enqueued events in the queue, depending on the
setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for an
apply process, then the negative rule set is always evaluated
first.

source_database The global name of the source database of the changes that
will be applied by the apply process. The source database is
the database where the changes originated. If an apply
process applies captured events, then the apply process can
apply events from only one capture process at one source
database.

If NULL, then the source database name of the first LCR
received by the apply process is used for the source
database.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

The rules in the apply process rule sets determine which
events are dequeued by the apply process. If the apply
process dequeues an LCR with a source database that is
different than the source database for the apply process,
then an error is raised. You can determine the source
database for an apply process by querying the DBA_APPLY_
PROGRESS data dictionary view.

Table 15–4 CREATE_APPLY Procedure Parameters (Cont.)

Parameter Description

CREATE_APPLY Procedure

15-20 PL/SQL Packages and Types Reference

Usage Notes
The user who invokes this procedure must be granted DBA role.

The apply_user parameter specifies the user who applies changes that satisfy the
apply process rule sets and who runs user-defined apply handlers. This user must have
the necessary privileges to apply changes. This procedure grants the apply user
dequeue privilege on the queue used by the apply process and configures the user
as a secure queue user of the queue.

In addition, make sure the apply user has the following privileges:

■ The necessary privileges to perform DML and DDL changes on the apply
objects

■ Execute privilege on the rule sets used by the apply process

■ Execute privilege on all rule-based transformation functions used in the rule set

■ Execute privilege on all apply handler procedures

■ Execute privilege on all packages, including Oracle-supplied packages, that are
invoked in subprograms run by the apply process

These privileges must be granted directly to the apply user. They cannot be granted
through roles.

The following sections describe the PL/SQL procedures that are specified as
message handlers, DDL handlers, and precommit handlers.

Message Handler and DDL Handler Procedure
The procedure specified in both the message_handler parameter and the ddl_
handler parameter must have the following signature:

PROCEDURE handler_procedure (
parameter_name IN SYS.AnyData);

Here, handler_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
For the message handler, the parameter passed to the procedure is a SYS.AnyData
encapsulation of a user message. For the DDL handler procedure, the parameter
passed to the procedure is a SYS.AnyData encapsulation of a DDL LCR.

See Also: Chapter 174, "Logical Change Record TYPEs" for
information about DDL LCRs

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-21

Precommit Handler Procedure
The procedure specified in the precommit_handler parameter must have the
following signature:

PROCEDURE handler_procedure (
parameter_name IN NUMBER);

Here, handler_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
The parameter passed to the procedure is the commit SCN of a commit directive.

DELETE_ALL_ERRORS Procedure

15-22 PL/SQL Packages and Types Reference

DELETE_ALL_ERRORS Procedure

This procedure deletes all the error transactions for the specified apply process.

Syntax
DBMS_APPLY_ADM.DELETE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameter

Table 15–5 DELETE_ALL_ERRORS Procedure Parameter

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply processes are
deleted.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-23

DELETE_ERROR Procedure

This procedure deletes the specified error transaction.

Syntax
DBMS_APPLY_ADM.DELETE_ERROR(
 local_transaction_id IN VARCHAR2);

Parameter

Table 15–6 DELETE_ERROR Procedure Parameter

Parameter Description

local_transaction_id The identification number of the error transaction to delete. If
the specified transaction does not exist in the error queue, then
an error is raised.

DROP_APPLY Procedure

15-24 PL/SQL Packages and Types Reference

DROP_APPLY Procedure

This procedure drops an apply process.

Syntax
 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
When you use this procedure to drop an apply process, information about rules
created for the apply process using the DBMS_STREAMS_ADM package is removed
from the data dictionary views for Streams rules. Information about such a rule is
removed even if the rule is not in either rule set for the apply process. The following
are the data dictionary views for Streams rules:

■ ALL_STREAMS_GLOBAL_RULES

■ DBA_STREAMS_GLOBAL_RULES

■ ALL_STREAMS_MESSAGE_RULES

■ DBA_STREAMS_MESSAGE_RULES

Table 15–7 DROP_APPLY Procedure Parameters

Parameter Description

apply_name The name of the apply process being dropped. You must
specify an existing apply process name. Do not specify an
owner.

drop_unused_rule_sets If true, then drops any rule sets, positive and negative, used
by the specified apply process if these rule sets are not used
by any other Streams client, which includes capture
processes, propagations, apply processes, and messaging
clients. If this procedure drops a rule set, then this procedure
also drops any rules in the rule set that are not in another rule
set.

If false, then does not drop the rule sets used by the
specified apply process, and the rule sets retain their rules.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-25

■ ALL_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ ALL_STREAMS_TABLE_RULES

■ DBA_STREAMS_TABLE_RULES

See Also: Oracle Streams Concepts and Administration for more
information about Streams data dictionary views

EXECUTE_ALL_ERRORS Procedure

15-26 PL/SQL Packages and Types Reference

EXECUTE_ALL_ERRORS Procedure

This procedure reexecutes the error transactions for the specified apply process.

The transactions are reexecuted in commit SCN order. Error reexecution stops if an
error is raised.

Syntax
DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL,
 execute_as_user IN BOOLEAN DEFAULT false);

Parameters

Table 15–8 EXECUTE_ALL_ERRORS Procedure Parameters

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply processes are
reexecuted.

execute_as_user If true, then reexecutes the transactions in the security context
of the current user.

If false, then reexecutes each transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERROR data dictionary
view lists the original receiver for each error transaction.

The user who executes the transactions must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-27

EXECUTE_ERROR Procedure

This procedure reexecutes the specified error transaction.

Syntax
DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id IN VARCHAR2,
 execute_as_user IN BOOLEAN DEFAULT false);

Parameters

Table 15–9 EXECUTE_ERROR Procedure Parameters

Parameter Description

local_transaction_id The identification number of the error transaction to execute. If
the specified transaction does not exist in the error queue, then
an error is raised.

execute_as_user If true, then reexecutes the transaction in the security context
of the current user.

If false, then reexecutes the transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERROR data dictionary
view lists the original receiver for each error transaction.

The user who executes the transaction must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.

GET_ERROR_MESSAGE Functions

15-28 PL/SQL Packages and Types Reference

GET_ERROR_MESSAGE Functions

This function returns the message payload from the error queue for the specified
message number and transaction identifier. The message is an event, which may be
a logical change record (LCR) or a non-LCR event.

One version of this function contains two OUT parameters. These OUT parameters
contain the destination queue into which the event should be enqueued, if one
exists, and whether or not the event should be executed. The destination queue is
specified using the SET_ENQUEUE_DESTINATION procedure, and the execution
directive is specified using the SET_EXECUTE procedure.

Syntax
DBMS_APPLY_ADM.GET_ERROR_MESSAGE(
 message_number IN NUMBER,
 local_transaction_id IN VARCHAR2,
 destination_queue_name OUT VARCHAR2,
 execute OUT BOOLEAN)
RETURN SYS.AnyData;

Parameters

See Also:

■ "SET_ENQUEUE_DESTINATION Procedure" on page 15-36

■ "SET_EXECUTE Procedure" on page 15-38

Note: This function is overloaded. One version of this function
contains two OUT parameters, and the other does not.

Table 15–10 GET_ERROR_MESSAGE Function Parameters

Parameter Description

message_number The identification number of the message. This number
identifies the position of the message in the transaction.
Query the DBA_APPLY_ERROR data dictionary view to view
the message number of each apply error.

local_transaction_id Identifier of the error transaction for which to return a
message

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-29

destination_queue_name Contains the name of the queue into which the message
should be enqueued. If the message should not be
enqueued into a queue, then contains NULL.

execute Contains true if the message should be executed

Contains false if the message should not be executed

Table 15–10 GET_ERROR_MESSAGE Function Parameters

Parameter Description

SET_DML_HANDLER Procedure

15-30 PL/SQL Packages and Types Reference

SET_DML_HANDLER Procedure

This procedure sets a user procedure as a DML handler for a specified operation on
a specified object. The user procedure alters the apply behavior for the specified
operation on the specified object.

Syntax
DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 operation_name IN VARCHAR2,
 error_handler IN BOOLEAN DEFAULT false,
 user_procedure IN VARCHAR2,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 15–11 SET_DML_HANDLER Procedure Parameters

Parameter Description

object_name The name of the source object specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.
The specified object does not need to exist in the local
destination database when you run this procedure.

object_type The type of the source object. Currently, TABLE is the only
possible source object type.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-31

operation_name The name of the operation, which can be specified as:

■ INSERT

■ UPDATE

■ DELETE

■ LOB_UPDATE

For example, suppose you run this procedure twice for the
hr.employees table. In one call, you set operation_name
to UPDATE and user_procedure to employees_update. In
another call, you set operation_name to INSERT and user_
procedure to employees_insert. Both times, you set
error_handler to false.

In this case, the employees_update procedure is run for
UPDATE operations on the hr.employees table, and the
employees_insert procedure is run for INSERT operations
on the hr.employees table.

error_handler If true, then the specified user procedure is run when a row
LCR involving the specified operation on the specified object
raises an apply process error. The user procedure may try to
resolve possible error conditions, or it may simply notify
administrators of the error or log the error.

If false, then the handler being set is run for all row LCRs
involving the specified operation on the specified object.

Note: Currently, error handlers are not supported when
applying changes to a non-Oracle database.

user_procedure A user-defined procedure that is invoked during apply for the
specified operation on the specified object. If the procedure is a
DML handler, then it is invoked instead of the default apply
performed by Oracle. If the procedure is an error handler, then
it is invoked when the apply process encounters an error.

Specify NULL to unset a DML handler that is set for the
specified operation on the specified object.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Table 15–11 SET_DML_HANDLER Procedure Parameters (Cont.)

Parameter Description

SET_DML_HANDLER Procedure

15-32 PL/SQL Packages and Types Reference

Usage Notes
Run this procedure at the destination database. The SET_DML_HANDLER procedure
provides a way for users to apply logical change records containing DML changes
(row LCRs) using a customized apply.

If the error_handler parameter is set to true, then it specifies that the user
procedure is an error handler. An error handler is invoked only when a row LCR
raises an apply process error. Such an error may result from a data conflict if no
conflict handler is specified or if the update conflict handler cannot resolve the
conflict. If the error_handler parameter is set to false, then the user procedure
is a DML handler, not an error handler, and a DML handler is always run instead of
performing the specified operation on the specified object.

This procedure either sets a DML handler or an error handler for a particular
operation on an object. It cannot set both a DML handler and an error handler for
the same object and operation.

If the apply_name parameter is non-NULL, then the DML handler or error handler
is set for the specified apply process. In this case, this handler is not invoked for
other apply processes at the local destination database. If the apply_name
parameter is NULL, the default, then the handler is set as a general handler for all
apply processes at the destination database. When a handler is set for a specific
apply process, then this handler takes precedence over any general handlers. For
example, consider the following scenario:

■ A DML handler named handler_hr is specified for an apply process named
apply_hr for UPDATE operations on the hr.employees table.

■ A general DML handler named handler_gen also exists for UPDATE
operations on the hr.employees table.

apply_name The name of the apply process that uses the DML handler or
error handler.

If NULL, then sets the DML handler or error handler as a
general handler for all apply processes in the database.

If the user_procedure parameter is set to NULL to unset a
handler, and the handler being unset is set for a specific apply
process, then use the apply_name parameter to specify the
apply process to unset the handler.

Table 15–11 SET_DML_HANDLER Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-33

In this case, the apply_hr apply process uses the handler_hr DML handler for
UPDATE operations on the hr.employees table.

At the source database, you must specify an unconditional supplemental log group
for the columns needed by a DML or error handler.

The SET_DML_HANDLER procedure can be used to set either a DML handler or an
error handler for row LCRs that perform a specified operation on a specified object.
The following sections describe the signature of a DML handler procedure and the
signature of an error handler procedure.

In either case, you must specify the full procedure name for the user_procedure
parameter in one of the following forms:

■ [schema_name.]package_name.procedure_name

■ [schema_name.]procedure_name

If the procedure is in a package, then the package_name must be specified. The
user who invokes the SET_DML_HANDLER procedure must have EXECUTE privilege
on the specified procedure. Also, if the schema_name is not specified, then the user
who invokes the SET_DML_HANDLER procedure is the default.

For example, suppose the procedure_name has the following properties:

■ hr is the schema_name.

■ apply_pkg is the package_name.

■ employees_default is the procedure_name.

In this case, specify the following:

hr.apply_pkg.employees_default

The following restrictions apply to the user procedure:

Attention: Do not modify LONG, LONG RAW or LOB column data in
an LCR. This includes DML handlers, error handlers, and
rule-based transformation functions.

Note: Currently, setting an error handler for an apply process that
is applying changes to a non-Oracle database is not supported.

SET_DML_HANDLER Procedure

15-34 PL/SQL Packages and Types Reference

■ Do not execute COMMIT or ROLLBACK statements. Doing so may endanger the
consistency of the transaction that contains the LCR.

■ If you are manipulating a row using the EXECUTE member procedure for the
row LCR, then do not attempt to manipulate more than one row in a row
operation. You must construct and execute manually any DML statements that
manipulate more than one row.

■ If the command type is UPDATE or DELETE, then row operations resubmitted
using the EXECUTE member procedure for the LCR must include the entire key
in the list of old values. The key is the primary key or the smallest unique index
that has at least one NOT NULL column, unless a substitute key has been
specified by the SET_KEY_COLUMNS procedure. If there is no specified key,
then the key consists of all non LOB, non LONG, and non LONG RAW columns.

■ If the command type is INSERT, then row operations resubmitted using the
EXECUTE member procedure for the LCR should include the entire key in the
list of new values. Otherwise, duplicate rows are possible. The key is the
primary key or the smallest unique index that has at least one NOT NULL
column, unless a substitute key has been specified by the SET_KEY_COLUMNS
procedure. If there is no specified key, then the key consists of all non LOB, non
LONG, and non LONG RAW columns.

Signature of a DML Handler Procedure
The procedure specified in the user_procedure parameter must have the
following signature:

PROCEDURE user_procedure (
parameter_name IN SYS.AnyData);

Here, user_procedure stands for the name of the procedure and parameter_
name stands for the name of the parameter passed to the procedure. The parameter
passed to the procedure is a SYS.AnyData encapsulation of a row LCR.

Signature of an Error Handler Procedure
The procedure you create for error handling must have the following signature:

See Also: Oracle Streams Replication Administrator's Guide for
information about and restrictions regarding DML handlers and
LOB, LONG, and LONG RAW datatypes

See Also: Chapter 174, "Logical Change Record TYPEs" for more
information about LCRs

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-35

PROCEDURE user_procedure (
 message IN SYS.AnyData,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN emsg_array);

If you want to retry the DML operation within the error handler, then have the error
handler procedure run the EXECUTE member procedure for the LCR. The last error
raised is on top of the error stack. To specify the error message at the top of the error
stack, use error_numbers(1) and error_messages(1).

Running an error handler results in one of the following outcomes:

■ The error handler successfully resolves the error and returns control to the
apply process.

■ The error handler fails to resolve the error, and the error is raised. The raised
error causes the transaction to be rolled back and placed in the error queue.

Note:

■ Each parameter is required and must have the specified
datatype. However, you can change the names of the
parameters.

■ The emsg_array value must be a user-defined array that is a
table of type VARCHAR2 with at least 76 characters.

SET_ENQUEUE_DESTINATION Procedure

15-36 PL/SQL Packages and Types Reference

SET_ENQUEUE_DESTINATION Procedure

This procedure sets the queue where an event that satisfies the specified rule is
enqueued automatically by an apply process.

This procedure modifies the specified rule's action context to specify the queue. A
rule action context is optional information associated with a rule that is interpreted
by the client of the rules engine after the rule evaluates to TRUE for an event. In this
case, the client of the rules engine is a Streams apply process. The information in an
action context is an object of type SYS.RE$NV_LIST, which consists of a list of
name-value pairs.

A queue destination specified by this procedure always consists of the following
name-value pair in an action context:

■ The name is APPLY$_ENQUEUE.

■ The value is a SYS.AnyData instance containing the queue name specified as a
VARCHAR2.

Syntax
DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
 rule_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2);

Parameters

Table 15–12 SET_ENQUEUE_DESTINATION Procedure Parameters

Parameter Description

rule_name The name of the rule, specified as [schema_name.]rule_
name. For example, to specify a rule named hr5 in the hr
schema, enter hr.hr5 for this parameter. If the schema is
not specified, then the current user is the default.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-37

Usage Notes
If an apply handler, such as a DML handler, DDL handler, or message handler,
processes an event that is also enqueued into a destination queue, then the apply
handler processes the event before it is enqueued.

The following are considerations for using this procedure:

■ This procedure does not verify that the specified queue exists. If the queue does
not exist, then an error is raised when an apply process tries to enqueue an
event into it.

■ Streams capture processes, propagations, and messaging clients ignore the
action context created by this procedure.

■ The apply user of the apply processes using the specified rule must have the
necessary privileges to enqueue events into the specified queue. If the queue is
a secure queue, then the apply user must be a secure queue user of the queue.

■ The specified rule must be in the positive rule set for an apply process. If the
rule is in the negative rule set for an apply process, then the apply process does
not enqueue the event into the destination queue.

■ If the commit SCN for an event is less than or equal to the relevant instantiation
SCN for the event, then the event is not enqueued into the destination queue,
even if the event satisfies the apply process rule sets.

destination_queue_name The name of the queue into which the apply process should
enqueue the event. Specify the queue in the form [schema_
name.]queue_name. Only local queues can be specified.

For example, to specify a queue in the hr schema named
streams_queue, enter hr.streams_queue. If the
schema is not specified, then the current user is the default.

If NULL, then an existing name-value pair with the name
APPLY$_ENQUEUE is removed. If no name-value pair exists
with the name APPLY$_ENQUEUE for the rule, then no
action is taken.

If non-NULL and a name-value pair already exists for the
rule with the name APPLY$_ENQUEUE, then it is removed,
and a new name-value pair with the value specified by this
parameter is added.

Table 15–12 SET_ENQUEUE_DESTINATION Procedure Parameters

Parameter Description

SET_EXECUTE Procedure

15-38 PL/SQL Packages and Types Reference

SET_EXECUTE Procedure

This procedure specifies whether an event that satisfies the specified rule is
executed by an apply process.

This procedure modifies the specified rule's action context to specify event
execution. A rule action context is optional information associated with a rule that is
interpreted by the client of the rules engine after the rule evaluates to TRUE for an
event. In this case, the client of the rules engine is a Streams apply process. The
information in an action context is an object of type SYS.RE$NV_LIST, which
consists of a list of name-value pairs.

An event execution directive specified by this procedure always consists of the
following name-value pair in an action context:

■ The name is APPLY$_EXECUTE.

■ The value is a SYS.AnyData instance that contains NO as a VARCHAR2. When
the value is NO, then an apply process does not execute the event and does not
send the event to any apply handler.

Syntax
DBMS_APPLY_ADM.SET_EXECUTE(
 rule_name IN VARCHAR2,
 execute IN BOOLEAN);

Parameters

Table 15–13 SET_EXECUTE Procedure Parameters

Parameter Description

rule_name The name of the rule, specified as [schema_name.]rule_name. For
example, to specify a rule named hr5 in the hr schema, enter hr.hr5 for
this parameter. If the schema is not specified, then the current user is the
default.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-39

Usage Notes
If the event is a logical change record (LCR) and the event is not executed, then the
change encapsulated in the LCR is not made to the relevant local database object.
Also, if the event is not executed, then it is not sent to any apply handler.

execute If true, then removes the name-value pair with the name APPLY$_
EXECUTE for the specified rule. Removing the name-value pair means
that the apply process executes events that satisfy the rule. If no
name-value pair with name APPLY$_EXECUTE exists for the rule, then no
action is taken.

If false, then adds a name-value pair to the rule's action context. The
name is APPLY$_EXECUTE and the value is NO. An apply process does
not execute an event that satisfies the rule and does not send the event to
any apply handler. If a name-value pair already exists for the rule with
the name APPLY$_EXECUTE, then it is removed, and a new one with the
value NO is added.

If NULL, then an error is raised.

Note:

■ Streams capture processes, propagations, and messaging clients
ignore the action context created by this procedure.

■ The specified rule must be in the positive rule set for an apply
process for the apply process to follow the execution directive.
If the rule is in the negative rule set for an apply process, then
the apply process ignores the execution directive for the rule.

Table 15–13 SET_EXECUTE Procedure Parameters

Parameter Description

SET_GLOBAL_INSTANTIATION_SCN Procedure

15-40 PL/SQL Packages and Types Reference

SET_GLOBAL_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified source
database and, optionally, for the schemas at the source database and the tables
owned by these schemas. This procedure overwrites any existing instantiation SCN
for the database, and, if it sets the instantiation SCN for a schema or a table, then it
overwrites any existing instantiation SCN for the schema or table.

This procedure gives you precise control over which DDL LCRs from a source
database are ignored and which DDL LCRs are applied by an apply process.

Syntax
DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT false);

Parameters

Table 15–14 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local domain
is appended to the database name automatically. For example,
if you specify DBS1 and the local domain is .NET, then
DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN. Specify NULL to remove the
instantiation SCN metadata for the source database from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database of
a local apply process is a non-Oracle database.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-41

Usage Notes
If the commit SCN of a DDL LCR for a database object from a source database is
less than or equal to the instantiation SCN for that source database at a destination
database, then the apply process at the destination database disregards the DDL
LCR. Otherwise, the apply process applies the DDL LCR.

The global instantiation SCN specified by this procedure is used for a DDL LCR
only if the DDL LCR does not have object_owner, base_table_owner, and
base_table_name specified. For example, the global instantiation SCN set by this
procedure is used for DDL LCRs with a command_type of CREATE USER.

If the recursive parameter is set to true, then this procedure sets the
instantiation SCN for each schema at a source database and for the tables owned by
these schemas. This procedure uses the SET_SCHEMA_INSTANTIATION_SCN
procedure to set the instantiation SCN for each schema, and it uses the SET_
TABLE_INSTANTIATION_SCN procedure to set the instantiation SCN for each
table. Each schema instantiation SCN is used for DDL LCRs on the schema, and
each table instantiation SCN is used for DDL LCRs and row LCRs on the table.

If the recursive parameter is set to false, then this procedure does not set the
instantiation SCN for any schemas or tables.

recursive If true, then sets the instantiation SCN for the source
database, all schemas in the source database, and all tables
owned by the schemas in the source database. This procedure
selects the schemas and tables from the ALL_USERS and ALL_
TABLES data dictionary views, respectively, at the source
database under the security context of the current user.

If false, then sets the global instantiation SCN for the source
database, but does not set the instantiation SCN for any
schemas or tables

Note: If recursive is set to true, then a database link from
the destination database to the source database is required.
This database link must have the same name as the global
name of the source database and must be accessible to the
current user. Also, a table must be accessible to the current
user in either the ALL_TABLES or DBA_TABLES data
dictionary view at the source database for this procedure to set
the instantiation SCN for the table at the destination database.

Table 15–14 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters (Cont.)

Parameter Description

SET_GLOBAL_INSTANTIATION_SCN Procedure

15-42 PL/SQL Packages and Types Reference

Note:

■ Any instantiation SCN specified by this procedure is used only
for LCRs captured by a capture process. It is not used for
user-created LCRs.

■ The instantiation SCN is not set for the SYS or SYSTEM
schemas.

See Also:

■ "SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 15-49

■ "SET_TABLE_INSTANTIATION_SCN Procedure" on
page 15-52

■ "LCR$_DDL_RECORD Type" on page 174-3 for more
information about DDL LCRs

■ Oracle Streams Replication Administrator's Guide

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-43

SET_KEY_COLUMNS Procedures

This procedure records the set of columns to be used as the substitute primary key
for apply purposes and removes existing substitute primary key columns for the
specified object if they exist. Unlike true primary keys, these columns may contain
NULLs.

Syntax
DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name IN VARCHAR2,
 { column_list IN VARCHAR2, |
 column_table IN DBMS_UTILITY.NAME_ARRAY, }

apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

Table 15–15 SET_KEY_COLUMNS Procedure Parameters

Parameter Description

object_name The name of the table specified as [schema_name.]object_
name. For example, hr.employees. If the schema is not
specified, then the current user is the default. If the apply
process is applying changes to a non-Oracle database in a
heterogeneous environment, then the object name is not
verified.

column_list A comma-delimited list of the columns in the table that you
want to use as the substitute primary key, with no spaces
between the column names.

If the column_list parameter is empty or NULL, then the
current set of key columns is removed.

column_table A PL/SQL index-by table of type DBMS_UTILITY.NAME_
ARRAY of the columns in the table that you want to use as the
substitute primary key. The index for column_table must be
1-based, increasing, dense, and terminated by a NULL.

If the column_table parameter is empty or NULL, then the
current set of key columns is removed.

SET_KEY_COLUMNS Procedures

15-44 PL/SQL Packages and Types Reference

Usage Notes
When not empty, this set of columns takes precedence over any primary key for the
specified object. Do not specify substitute key columns if the object already has
primary key columns and you want to use those primary key columns as the key.

Run this procedure at the destination database. At the source database, you must
specify an unconditional supplemental log group for the substitute key columns.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Note:

■ Oracle recommends that each column you specify as a
substitute key column be a NOT NULL column. You should also
create a single index that includes all of the columns in a
substitute key. Following these guidelines improves
performance for updates, deletes, and piecewise updates to
LOBs because Oracle can locate the relevant row more
efficiently.

■ You should not permit applications to update the primary key
or substitute key columns of a table. This ensures that Oracle
can identify rows and preserve the integrity of the data.

■ If there is neither a primary key, nor a unique index that has at least
one NOT NULL column, nor a substitute key for a table,then the key
consists of all non LOB, non LONG, and non LONG RAW columns.

Table 15–15 SET_KEY_COLUMNS Procedure Parameters

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-45

SET_PARAMETER Procedure

This procedure sets an apply parameter to the specified value.

Syntax
DBMS_APPLY_ADM.SET_PARAMETER (

apply_name IN VARCHAR2,
parameter IN VARCHAR2,
value IN VARCHAR2);

Parameters

Apply Process Parameters
The following table lists the parameters for the apply process.

Table 15–16 SET_PARAMETER Procedure Parameters

Parameter Description

apply_name The apply process name. Do not specify an owner.

parameter The name of the parameter you are setting. See "Apply Process
Parameters" on page 15-45 for a list of these parameters.

value The value to which the parameter is set

SET_PARAMETER Procedure

15-46 PL/SQL Packages and Types Reference

Table 15–17 Apply Process Parameters

Parameter Name
Possible
Values Default Description

commit_serialization full or
none

full The order in which applied transactions are
committed.

If full, then the apply process commits applied
transactions in the order in which they were
committed at the source database.

If none, then the apply process may commit
transactions may commit in any order. Performance is
best if you specify none.

Regardless of the specification, applied transactions
may execute in parallel subject to data dependencies
and constraint dependencies.

Logical standby environments typically specify full.

disable_on_error Y or N Y If Y, then the apply process is disabled on the first
unresolved error, even if the error is not fatal.

If N, then the apply process continues regardless of
unresolved errors.

disable_on_limit Y or N N If Y, then the apply process is disabled if the apply
process terminates because it reached a value
specified by the time_limit parameter or
transaction_limit parameter.

If N, then the apply process is restarted immediately
after stopping because it reached a limit.

maximum_scn A valid SCN
or infinite

infinite The apply process is disabled before applying a
transaction with a commit SCN greater than or equal
to the value specified.

If infinite, then the apply process runs regardless
of the SCN value.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-47

parallelism A positive
integer

1 The number of transactions that may be concurrently
applied

Note:

■ When you change the value of this parameter, the
apply process is stopped and restarted
automatically. This may take some time
depending on the size of the transactions
currently being applied.

■ Setting the parallelism parameter to a number
higher than the number of available parallel
execution servers may disable the apply process.
Make sure the PROCESSES and PARALLEL_MAX_
SERVERS initialization parameters are set
appropriately when you set the parallelism apply
process parameter.

startup_seconds 0, a positive
integer, or
infinite

0 The maximum number of seconds to wait for another
instantiation of the same apply process to finish. If the
other instantiation of the same apply process does not
finish within this time, then the apply process does
not start.

If infinite, then an apply process does not start
until another instantiation of the same apply process
finishes.

time_limit A positive
integer or
infinite

infinite The apply process stops as soon as possible after the
specified number of seconds since it started.

If infinite, then the apply process continues to run
until it is stopped explicitly.

Table 15–17 Apply Process Parameters (Cont.)

Parameter Name
Possible
Values Default Description

SET_PARAMETER Procedure

15-48 PL/SQL Packages and Types Reference

Usage Notes
When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

trace_level 0 or a
positive
integer

0 Set this parameter only under the guidance of Oracle
Support Services.

transaction_limit A positive
integer or
infinite

infinite The apply process stops after applying the specified
number of transactions.

If infinite, then the apply process continues to run
regardless of the number of transactions applied.

write_alert_log Y or N Y If Y, then the apply process writes a message to the
alert log on exit.

If N, then the apply process does not write a message
to the alert log on exit.

The message specifies the reason why the apply
process stopped.

Note:

■ For all parameters that are interpreted as positive integers, the
maximum possible value is 4,294,967,295. Where
applicable, specify infinite for larger values.

■ For parameters that require an SCN setting, any valid SCN
value can be specified.

Table 15–17 Apply Process Parameters (Cont.)

Parameter Name
Possible
Values Default Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-49

SET_SCHEMA_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified schema in
the specified source database and, optionally, for the tables owned by the schema at
the source database. This procedure overwrites any existing instantiation SCN for
the schema, and, if it sets the instantiation SCN for a table, it overwrites any existing
instantiation SCN for the table.

This procedure gives you precise control over which DDL LCRs for a schema are
ignored and which DDL LCRs are applied by an apply process.

Syntax
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
 source_schema_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT false);

Parameters

Table 15–18 SET_SCHEMA_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_schema_name The name of the source schema. For example, hr.

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local is
appended to the database name automatically. For example,
if you specify DBS1 and the local domain is .NET, then
DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN. Specify NULL to remove the
instantiation SCN metadata for the source schema from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.

SET_SCHEMA_INSTANTIATION_SCN Procedure

15-50 PL/SQL Packages and Types Reference

Usage Notes
 If the commit SCN of a DDL LCR for a database object in a schema from a source
database is less than or equal to the instantiation SCN for that database object at a
destination database, then the apply process at the destination database disregards
the DDL LCR. Otherwise, the apply process applies the DDL LCR.

The schema instantiation SCN specified by this procedure is used on the following
types of DDL LCRs:

■ DDL LCRs with a command_type of CREATE TABLE

■ DDL LCRs with a non-NULL object_owner specified and no base_table_
owner nor base_table_name specified.

For example, the schema instantiation SCN set by this procedure is used for a DDL
LCR with a command_type of CREATE TABLE and ALTER USER.

The schema instantiation SCN specified by this procedure is not used for DDL LCRs
with a command_type of CREATE USER. A global instantiation SCN is needed for
such DDL LCRs.

If the recursive parameter is set to TRUE, then this procedure sets the table
instantiation SCN for each table at the source database owned by the schema. This
procedure uses the SET_TABLE_INSTANTIATION_SCN procedure to set the

recursive If true, then sets the instantiation SCN for the specified
schema and all tables owned by the schema in the source
database. This procedure selects the tables owned by the
specified schema from the ALL_TABLES data dictionary view
at the source database under the security context of the
current user.

If false, then sets the instantiation SCN for specified
schema, but does not set the instantiation SCN for any tables

Note: If recursive is set to true, then a database link from
the destination database to the source database is required.
This database link must have the same name as the global
name of the source database and must be accessible to the
current user. Also, a table must be accessible to the current
user in either the ALL_TABLES or DBA_TABLES data
dictionary view at the source database for this procedure to
set the instantiation SCN for the table at the destination
database.

Table 15–18 SET_SCHEMA_INSTANTIATION_SCN Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-51

instantiation SCN for each table. Each table instantiation SCN is used for DDL LCRs
and row LCRs on the table.

If the recursive parameter is set to false, then this procedure does not set the
instantiation SCN for any tables.

Note: Any instantiation SCN specified by this procedure is used
only for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

■ "SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 15-40

■ "SET_TABLE_INSTANTIATION_SCN Procedure" on
page 15-52

■ "LCR$_DDL_RECORD Type" on page 174-3 for more
information about DDL LCRs

■ Oracle Streams Replication Administrator's Guide

SET_TABLE_INSTANTIATION_SCN Procedure

15-52 PL/SQL Packages and Types Reference

SET_TABLE_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified table in the
specified source database. This procedure overwrites any existing instantiation SCN
for the particular table.

This procedure gives you precise control over which LCRs for a table are ignored
and which LCRs are applied by an apply process.

Syntax
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 15–19 SET_TABLE_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_object_name The name of the source object specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local
domain name is appended to the database name
automatically. For example, if you specify DBS1 and the
global domain is .NET, then DBS1.NET is specified
automatically.

instantiation_scn The instantiation SCN. Specify NULL to remove the
instantiation SCN metadata for the source table from the data
dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-53

Usage Notes
If the commit SCN of an LCR for a table from a source database is less than or equal
to the instantiation SCN for that table at some destination database, then the apply
process at the destination database disregards the LCR. Otherwise, the apply
process applies the LCR.

The table instantiation SCN specified by this procedure is used on the following
types of LCRs:

■ Row LCRs for the table

■ DDL LCRs that have a non-NULL base_table_owner and base_table_
name specified, except for DDL LCRs with a command_type of CREATE TABLE

For example, the table instantiation SCN set by this procedure is used for DDL
LCRs with a command_type of ALTER TABLE or CREATE TRIGGER.

Note: The instantiation SCN specified by this procedure is used
only for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

■ "SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 15-40

■ "SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 15-49

■ "LCR$_ROW_RECORD Type" on page 174-14 for more
information about row LCRs

■ "LCR$_DDL_RECORD Type" on page 174-3 for more
information about DDL LCRs

■ Oracle Streams Replication Administrator's Guide

SET_UPDATE_CONFLICT_HANDLER Procedure

15-54 PL/SQL Packages and Types Reference

SET_UPDATE_CONFLICT_HANDLER Procedure

This procedure adds, modifies, or removes an update conflict handler for the
specified object.

Syntax
DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name IN VARCHAR2,
 method_name IN VARCHAR2,
 resolution_column IN VARCHAR2,
 column_list IN DBMS_UTILITY.NAME_ARRAY,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 15–20 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

Parameter Description

object_name The schema and name of the table, specified as [schema_
name.]object_name, for which an update conflict handler is
being added, modified, or removed.

For example, if an update conflict handler is being added for
table employees owned by user hr, then specify
hr.employees. If the schema is not specified, then the current
user is the default.

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-55

method_name Type of update conflict handler to create.

You can specify one of the built-in handlers, which determine
whether the column list from the source database is applied for
the row or whether the values in the row at the destination
database are retained:

■ MAXIMUM: Applies the column list from the source
database if it has the greater value for the resolution
column. Otherwise, retains the values at the destination
database.

■ MINIMUM: Applies the column list from the source
database if it has the lesser value for the resolution
column. Otherwise, retains the values at the destination
database.

■ OVERWRITE: Applies the column list from the source
database, overwriting the column values at the destination
database

■ DISCARD: Retains the column list from the destination
database, discarding the column list from the source
database

If NULL, then removes any existing update conflict handler
with the same object_name, resolution_column, and
column_list. If non-NULL, then replaces any existing update
conflict handler with the same object_name and
resolution_column.

resolution_column Name of the column used to uniquely identify an update
conflict handler. For the MAXIMUM and MINIMUM prebuilt
methods, the resolution column is also used to resolve the
conflict. The resolution column must be one of the columns
listed in the column_list parameter.

NULL is not allowed for this parameter. For the OVERWRITE
and DISCARD prebuilt methods, you can any column in the
column list.

Table 15–20 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters (Cont.)

Parameter Description

SET_UPDATE_CONFLICT_HANDLER Procedure

15-56 PL/SQL Packages and Types Reference

Usage Notes
If you want to modify an existing update conflict handler, then you specify the table
and resolution column of an the existing update conflict handler. You can modify
the prebuilt method or the column list.

If you want to remove an existing update conflict handler, then specify NULL for the
prebuilt method and specify the table, column list, and resolution column of the
existing update conflict handler.

If an update conflict occurs, then Oracle completes the following series of actions:

1. Calls the appropriate update conflict handler to resolve the conflict

2. If no update conflict handler is specified or if the update conflict handler cannot
resolve the conflict, then calls the appropriate error handler for the apply
process, table, and operation to handle the error

3. If no error handler is specified or if the error handler cannot resolve the error,
then raises an error and moves the transaction containing the row LCR that
caused the error to the error queue

column_list List of columns for which the conflict handler is called.

If a conflict occurs for one or more of the columns in the list
when an apply process tries to apply a row LCR, then the
conflict handler is called to resolve the conflict. The conflict
handler is not called if a conflict occurs only for columns that
are not in the list.

Note: Prebuilt update conflict handlers do not support LOB,
LONG, LONG RAW, and user-defined type columns. Therefore,
you should not include these types of columns in the column_
list parameter.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Note: Currently, conflict handlers are not supported when
applying changes to a non-Oracle database.

Note: Currently, setting an update conflict handler for an apply
process that is applying to a non-Oracle database is not supported.

Table 15–20 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-57

Examples
The following is an example for setting an update conflict handler for the
employees table in the hr schema:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'salary';
 cols(2) := 'commission_pct';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'salary',
 column_list => cols);
END;
/

This example sets a conflict handler that is called if a conflict occurs for the salary
or commission_pct column in the hr.employees table. If such a conflict occurs,
then the salary column is evaluated to resolve the conflict. If a conflict occurs only
for a column that is not in the column list, such as the job_id column, then this
conflict handler is not called.

See Also:

■ "Signature of an Error Handler Procedure" on page 15-34 for
information about setting an error handler

■ Oracle Streams Replication Administrator's Guide

START_APPLY Procedure

15-58 PL/SQL Packages and Types Reference

START_APPLY Procedure

This procedure directs the apply process to start applying events.

Syntax
DBMS_APPLY_ADM.START_APPLY(
 apply_name IN VARCHAR2);

Parameter

Usage Notes
The start status is persistently recorded. Hence, if the status is START, then the
apply process is started upon database instance startup. Each apply process is an
Oracle background process and is prefixed by AP.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_
AQADM.STOP_QUEUE have no effect on the start status of an apply process.

You can create the apply process using the following procedures:

■ DBMS_APPLY_ADM.CREATE_APPLY

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SUBSET_RULES

Table 15–21 START_APPLY Procedure Parameter

Parameter Description

apply_name The apply process name. A NULL setting is not allowed. Do not
specify an owner.

See Also: Chapter 96, "DBMS_STREAMS_ADM"

Summary of DBMS_APPLY_ADM Subprograms

DBMS_APPLY_ADM 15-59

STOP_APPLY Procedure

This procedure stops the apply process from applying events and rolls back any
unfinished transactions being applied.

Syntax
DBMS_APPLY_ADM.STOP_APPLY(

apply_name IN VARCHAR2,
force IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
The stop status is persistently recorded. Hence, if the status is STOP, then the apply
process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_
AQADM.STOP_QUEUE have no effect on the STOP status of an apply process.

The following table describes apply process behavior for each setting of the force
parameter in the STOP_APPLY procedure and the commit_serialization apply
process parameter. In all cases, the apply process rolls back any unfinished
transactions when it stops.

Table 15–22 STOP_APPLY Procedure Parameters

Parameter Description

apply_name The apply process name. A NULL setting is not allowed. Do not
specify an owner.

force If true, then stops the apply process as soon as possible.

If false, then stops the apply process after ensuring that there
are no gaps in the set of applied transactions.

The behavior of the apply process depends on the setting
specified for the force parameter and the setting specified for the
commit_serialization apply process parameter. See "Usage
Notes" for more information.

STOP_APPLY Procedure

15-60 PL/SQL Packages and Types Reference

For example, assume that the commit_serialization apply process parameter
is set to none and there are three transactions: transaction 1 has the earliest commit
time, transaction 2 is committed after transaction 1, and transaction 3 has the latest
commit time. Also assume that an apply process has applied transaction 1 and
transaction 3 and is in the process of applying transaction 2 when the STOP_APPLY
procedure is run. Given this scenario, if the force parameter is set to true, then
transaction 2 is not applied, and the apply process stops (transaction 2 is rolled
back). If, however, the force parameter is set to false, then transaction 2 is
applied before the apply process stops.

A different scenario would result if the commit_serialization apply process
parameter is set to full. For example, assume that the commit_serialization
apply process parameter is set to full and there are three transactions:
transaction A has the earliest commit time, transaction B is committed after
transaction A, and transaction C has the latest commit time. In this case, the apply
process has applied transaction A and is in the process of applying transactions B
and C when the STOP_APPLY procedure is run. Given this scenario, if the force
parameter is set to true, then transactions B and C are not applied, and the apply
process stops (transactions B and C are rolled back). If, however, the force
parameter is set to false, then transaction B is applied before the apply process
stops, and transaction C is rolled back.

force commit_serialization Apply Process Behavior

true full The apply process stops immediately and does not
apply any unfinished transactions.

true none When the apply process stops, some transactions that
have been applied locally may have committed at the
source database at a later point in time than some
transactions that have not been applied locally.

false full The apply process stops after applying the next
uncommitted transaction in the commit order, if any
such transaction is in progress.

false none Before stopping, the apply process applies all of the
transactions that have a commit time that is earlier than
the applied transaction with the most recent commit
time.

See Also: "SET_PARAMETER Procedure" on page 15-45 for more
information about the commit_serialization apply process
parameter

DBMS_AQ 16-1

16
DBMS_AQ

The DBMS_AQ package provides an interface to Oracle Streams Advanced Queuing
(AQ).

This chapter contains the following topics:

■ Using DBMS_AQ

■ Constants

■ Data Structures

■ Operational Notes

■ Summary of DBMS_AQ Subprograms

See Also:

■ Oracle Streams Advanced Queuing User's Guide and Reference

■ Oracle Streams AQ TYPEs for information about TYPEs to use
with DBMS_AQ.

Using DBMS_AQ

16-2 PL/SQL Packages and Types Reference

Using DBMS_AQ

■ Constants

■ Data Structures

■ Operational Notes

Constants

When using enumerated constants such as BROWSE, LOCKED, or REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining it. All
types associated with the operational interfaces have to be prepended with DBMS_
AQ. For example: DBMS_AQ.BROWSE. Table 16–1 lists the PL/SQL enumerated
constants that require the prefix, DBMS_AQ.

Data Structures

Table 16–1 Enumerated Constants

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING, READY, PROCESSED, EXPIRED

sequence_deviation BEFORE, TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

Table 16–2 DBMS_AQ Data Structures

Data Structures Description

Object Name on page 16-3 Names database objects

Using DBMS_AQ

DBMS_AQ 16-3

Object Name
The object_name data structure names database objects. It applies to queues,
queue tables, agent names, and object types.

Syntax
object_name := VARCHAR2;
object_name := [schema_name.]name;

Usage Notes
Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, the current schema is assumed. The name must
follow object name guidelines in Oracle Database SQL Reference with regard to
reserved characters. Schema names, agent names, and object type names can be up
to 30 bytes long. Queue names and queue table names can be up to 24 bytes long.

Type Name
The type_name data structure defines queue types.

Syntax
type_name := VARCHAR2;
type_name := object_type | "RAW";

Attributes

Type Name on page 16-3 Defines queue types

Oracle Streams AQ PL/SQL Callback on
page 16-4

Specifies the user-defined PL/SQL procedure,
defined in the database to be invoked on
message notification

Table 16–3 Type Name Attributes

Attribute Description

object_type Maximum number of attributes in the object type is limited to 900.

Table 16–2 (Cont.) DBMS_AQ Data Structures

Data Structures Description

Data Structures

16-4 PL/SQL Packages and Types Reference

Oracle Streams AQ PL/SQL Callback
The plsqlcallback data structure specifies the user-defined PL/SQL procedure,
defined in the database to be invoked on message notification.

Syntax
If a notification message is expected for a RAW payload enqueue, then the PL/SQL
callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN RAW,
 payloadl IN NUMBER);

Attributes

"RAW" To store payload of type RAW, Oracle Streams AQ creates a queue
table with a LOB column as the payload repository. The theoretical
maximum size of the message payload is the maximum amount of
data that can be stored in a LOB column. However, the maximum
size of the payload is determined by which programmatic
environment you use to access Oracle Streams AQ. For PL/SQL, Java
and precompilers the limit is 32K; for the OCI the limit is 4G. Because
the PL/SQL enqueue and dequeue interfaces accept RAW buffers as
the payload parameters you will be limited to 32K bytes. In OCI, the
maximum size of your RAW data will be limited to the maximum
amount of contiguous memory (as an OCIRaw is simply an array of
bytes) that the OCI Object Cache can allocate. Typically, this will be
at least 32K bytes and much larger in many cases.

Because LOB columns are used for storing RAW payload, the Oracle
Streams AQ administrator can choose the LOB tablespace and
configure the LOB storage by constructing a LOB storage string in the
storage_clause parameter during queue table creation time.

Table 16–4 Oracle Streams AQ PL/SQL Callback Attributes

Attribute Description

context Specifies the context for the callback function that was passed by dbms_
aq.register. See AQ$_REG_INFO Type on page 171-10.

Table 16–3 (Cont.) Type Name Attributes

Attribute Description

Using DBMS_AQ

DBMS_AQ 16-5

If the notification message is expected for an ADT payload enqueue, the PL/SQL
callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN VARCHAR2,
 payloadl IN NUMBER);

Operational Notes

■ DBMS_AQ and DBMS_AQADM Java Classes

DBMS_AQ and DBMS_AQADM Java Classes
Java interfaces are available for DBMS_AQ and DBMS_AQADM. The Java interfaces are
provided in the $ORACLE_HOME/rdbms/jlib/aqapi.jar. Users are required to
have EXECUTE privileges on the DBMS_AQIN package to use these interfaces.

reginfo See AQ$_REG_INFO Type on page 171-10

descr See AQ$_DESCRIPTOR Type on page 171-5

payload If a notification message is expected for a raw payload enqueue then this
contains the raw payload that was enqueued into a non persistent queue. In
case of a persistent queue with raw payload this parameter will be null.

payloadl Specifies the length of payload. If payload is null, payload1 = 0.

Table 16–4 (Cont.) Oracle Streams AQ PL/SQL Callback Attributes

Attribute Description

Summary of DBMS_AQ Subprograms

16-6 PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

Table 16–5 DBMS_AQ Package Subprograms

Subprograms Description

BIND_AGENT Procedure on
page 16-7

Creates an entry for an Oracle Streams AQ agent in the
LDAP directory

DEQUEUE Procedure on
page 16-8

Dequeues a message from the specified queue

DEQUEUE_ARRAY Function
on page 16-11

Dequeues an array of messages from the specified queue

ENQUEUE Procedure on
page 16-13

Adds a message to the specified queue

ENQUEUE_ARRAY Function
on page 16-15

Adds an array of messages to the specified queue

LISTEN Procedure on
page 16-16

Listen to one or more queues on behalf of a list of agents

POST Procedure on page 16-18 Posts to a anonymous subscription which allows all clients
who are registered for the subscription to get notifications

REGISTER Procedure on
page 16-19

Registers for message notifications

UNBIND_AGENT Procedure
on page 16-20

Removes an entry for an Oracle Streams AQ agent from the
LDAP directory

UNREGISTER Procedure on
page 16-21

Unregisters a subscription which turns off notification

Note: DBMS_AQ does not have a purity level defined; therefore,
you cannot call any procedure in this package from other
procedures that have RNDS, WNDS, RNPS or WNPS constraints
defined.

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-7

BIND_AGENT Procedure

This procedure creates an entry for an Oracle Streams AQ agent in the LDAP server.

Syntax
DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

Parameters

Usage Notes
In the LDAP server, digital certificates are stored as an attribute
(usercertificate) of the OrganizationalPerson entity. The distinguished
name for this OrganizationalPerson must be specified when binding the agent.

Table 16–6 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be registered in LDAP server.

certificate Location (LDAP distinguished name) of the "organizationalperson" entry
in LDAP whose digital certificate (attribute usercertificate) is to be
used for this agent. Example: "cn=OE, cn=ACME, cn=com" is a
distinguished name for a OrganizationalPerson OE whose certificate will
be used with the specified agent.

DEQUEUE Procedure

16-8 PL/SQL Packages and Types Reference

DEQUEUE Procedure

This procedure dequeues a message from the specified queue.

Syntax
DBMS_AQ.DEQUEUE (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT type_name,
 msgid OUT RAW);

Parameters

Usage Notes
The search criteria for messages to be dequeued is determined by the following
parameters in dequeue_options:

■ consumer_name

■ msgid

Msgid uniquely identifies the message to be dequeued. Only messages in the
READY state are dequeued unless msgid is specified.

■ correlation

Correlation identifiers are application-defined identifiers that are not
interpreted by Oracle Streams AQ.

Table 16–7 DEQUEUE Procedure Parameters

Parameter Description

queue_name Specifies the name of the queue.

dequeue_options See DEQUEUE_OPTIONS_T Type on page 171-14.

message_properties See "MESSAGE_PROPERTIES_T Type" on page 171-18.

payload Not interpreted by Oracle Streams AQ. The payload must be
specified according to the specification in the associated queue
table. For the definition of type_name refer to Type Name on
page 16-3.

msgid System generated identification of the message.

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-9

■ deq_condition

Dequeue condition is an expression based on the message properties, the
message data properties and PL/SQL functions. A deq_condition is
specified as a Boolean expression using syntax similar to the WHERE clause of a
SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions (as specified in the where clause of a SQL query). Message properties
include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue
table that stores the payload.

Example: tab.user_data.orderstatus='EXPRESS''

The dequeue order is determined by the values specified at the time the queue table
is created unless overridden by the msgid and correlation ID in dequeue_
options.

The database-consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning
of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT_MESSAGE. This
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the FIRST_
MESSAGE navigation option when the first message in the queue needs to be
processed by every dequeue command. This usually becomes necessary when a
higher priority message arrives in the queue while messages already-enqueued are
being processed.

DEQUEUE Procedure

16-10 PL/SQL Packages and Types Reference

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping will form a group. If only one message is enqueued in the
transaction, then this will effectively form a group of one message. There is no
upper limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED
or REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group will lock the entire group. This is
useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The application
can then use the NEXT_TRANSACTION to start dequeuing messages from the next
available group. In the event that no groups are available, the dequeue will time out
after the specified WAIT period.

Using Secure Queues
For secure queues, you must specify consumer_name in the dequeue_options
parameter. See DEQUEUE_OPTIONS_T Type on page 171-14 for more information
about consumer_name.

 When you use secure queues, the following are required:

■ You must have created a valid Oracle Streams AQ agent using DBMS_
AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure on
page 17-18.

■ You must map the Oracle Streams AQ agent to a database user with dequeue
privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do
this. See ENABLE_DB_ACCESS Procedure on page 17-35.

Note: It may be more efficient to use the FIRST_MESSAGE
navigation option when messages are concurrently enqueued. If the
FIRST_MESSAGE option is not specified, Oracle Streams AQ
continually generates the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE
option is specified, then Oracle Streams AQ uses a new snapshot
for every dequeue command.

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-11

DEQUEUE_ARRAY Function

This function dequeues an array of messages and returns them in the form of an
array of payloads, an array of message properties and an array of message IDs. This
function returns the number of messages successfully dequeued.

Syntax
DBMS_AQ.DEQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN pls_integer,
 message_properties_array OUT message_properties_array_t,
 payload_array OUT "<COLLECTION_1>",
 msgid_array OUT msgid_array_t)
RETURN pls_integer;

Parameters

Usage Notes
A nonzero wait time, as specified in dequeue_options, is recognized only when
there are no messages in the queue. If the queue contains messages that are eligible

Table 16–8 DEQUEUE_ARRAY Function Parameters

Parameter Description

queue_name The queue name from which messages are dequeued (same as
single-row dequeue).

dequeue_options The set of options which will be applied to all messages in the array
(same as single-row dequeue).

array_size The number of elements to dequeue.

message_
properties_array

A record containing an array corresponding to each message
property. Each payload element has a corresponding set of message
properties. See MESSAGE_PROPERTIES_ARRAY_T Type on
page 171-22.

payload_array An array of dequeued payload data. "<COLLECTION_1>" can be
an associative array, varray or nested table in its PL/SQL
representation.

msgid_array An array of message IDs of the dequeued messages. See MSGID_
ARRAY_T Type on page 171-23.

DEQUEUE_ARRAY Function

16-12 PL/SQL Packages and Types Reference

for dequeue, then the DEQUEUE_ARRAY function will dequeue up to array_size
messages and return immediately.

Dequeue by message_id is not supported. See DEQUEUE Procedure on page 16-8
for more information on the navigation parameter. Existing NAVIGATION modes
are supported. In addition, two new NAVIGATION modes are supported for queues
enabled for message grouping:

■ FIRST_MESSAGE_MULTI_GROUP

■ NEXT_MESSAGE_MULTI_GROUP

For transaction grouped queues and ONE_GROUP navigation, messages are
dequeued from a single transaction group only, subject to the array_size limit. In
MULTI_GROUP navigation, messages are dequeued across multiple transaction
groups, still subject to the array_size limit. ORA-25235 is returned to indicate the
end of a transaction group.

See Also: DEQUEUE_OPTIONS_T Type on page 171-14

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-13

ENQUEUE Procedure

This procedure adds a message to the specified queue.

Syntax
DBMS_AQ.ENQUEUE (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "type_name",
 msgid OUT RAW);

Parameters

Usage Notes
The sequence_deviation parameter in enqueue_options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue_options parameter relative_
msgid. The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which

Table 16–9 ENQUEUE Procedure Parameters

Parameter Description

queue_name Specifies the name of the queue to which this message should be
enqueued. The queue cannot be an exception queue.

enqueue_options See ENQUEUE_OPTIONS_T Type on page 171-17.

message_properties See MESSAGE_PROPERTIES_T Type on page 171-18.

payload Not interpreted by Oracle Streams AQ. The payload must be
specified according to the specification in the associated queue
table. NULL is an acceptable parameter. For the definition of
type_name refer to Type Name on page 16-3.

msgid System generated identification of the message. This is a globally
unique identifier that can be used to identify the message at
dequeue time.

ENQUEUE Procedure

16-14 PL/SQL Packages and Types Reference

this message is to be enqueued. The priority of this message must be greater than or
equal to the priority of the message before which this message is to be enqueued.

If a message is enqueued to a multiconsumer queue with no recipient, and if the
queue has no subscribers (or rule-based subscribers that match this message), then
Oracle error ORA_24033 is raised. This is a warning that the message will be
discarded because there are no recipients or subscribers to whom it can be
delivered.

Using Secure Queues
For secure queues, you must specify the sender_id in the messages_
properties parameter. See MESSAGE_PROPERTIES_T Type on page 171-18 for
more information about sender_id.

 When you use secure queues, the following are required:

■ You must have created a valid Oracle Streams AQ agent using DBMS_
AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure on
page 17-18.

■ You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See
ENABLE_DB_ACCESS Procedure on page 17-35.

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-15

ENQUEUE_ARRAY Function

This function enqueues an array of payloads using a corresponding array of
message properties. The output will be an array of message IDs of the enqueued
messages.

Syntax
DBMS_AQ.ENQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN pls_integer,
 message_properties_array IN message_properties_array_t,
 payload_array IN "<COLLECTION_1>",
 msgid_array OUT msgid_array_t)
RETURN pls_integer;

Parameters

Table 16–10 ENQUEUE_ARRAY Function Parameters

Parameter Description

queue_name The queue name in which messages are enqueued (same as
single-row enqueue).

enqueue_options See ENQUEUE_OPTIONS_T Type on page 171-17.

array_size The number of elements to enqueue.

message_
properties_array

A record containing an array corresponding to each message
property. For each property, the user must allocate array_size
elements. See MESSAGE_PROPERTIES_ARRAY_T Type on
page 171-22.

payload_array An array of payload data. "<COLLECTION_1>" can be an
associative array, VARRAY, or nested table in its PL/SQL
representation.

msgid_array An array of message IDs for the enqueued messages. If an error
occurs for a particular message, then its corresponding message ID
is null. See MSGID_ARRAY_T Type on page 171-23.

LISTEN Procedure

16-16 PL/SQL Packages and Types Reference

LISTEN Procedure

This procedure listens on one or more queues on behalf of a list of agents. The
address field of the agent indicates the queue the agent wants to monitor. Only local
queues are supported as addresses. Protocol is reserved for future use.

Syntax
DBMS_AQ.LISTEN (
 agent_list IN aq$_agent_list_t,
 wait IN BINARY_INTEGER DEFAULT DBMS_AQ.FOREVER,
 agent OUT sys.aq$_agent);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

Parameters

Usage Notes
If agent-address is a multiconsumer queue, then agent-name is mandatory. For
single-consumer queues, agent-name must not be specified.

This procedure takes a list of agents as an argument. You specify the queue to be
monitored in the address field of each agent listed. You also must specify the name
of the agent when monitoring multiconsumer queues. For single-consumer queues,
an agent name must not be specified. Only local queues are supported as addresses.
Protocol is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are messages for more than one agent, only the first
agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

Table 16–11 LISTEN Procedure Parameters

Parameter Description

agent_list List of agents to listen for.

wait Time out for the listen call in seconds. By default, the call will block forever.

agent Agent with a message available for consumption.

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-17

A successful return from the listen call is only an indication that there is a message
for one of the listed agents in one the specified queues. The interested agent must
still dequeue the relevant message.

Note: You cannot call listen on nonpersistent queues.

POST Procedure

16-18 PL/SQL Packages and Types Reference

POST Procedure

This procedure posts to a list of anonymous subscriptions that allows all clients
who are registered for the subscriptions to get notifications.

Syntax
DBMS_AQ.POST (
 post_list IN SYS.AQ$_POST_INFO_LIST,
 count IN NUMBER);

Parameters

Usage Notes
This procedure is used to post to anonymous subscriptions which allows all clients
who are registered for the subscriptions to get notifications. Several subscriptions
can be posted to at one time.

Table 16–12 POST Procedure Parameters

Parameter Description

post_list Specifies the list of anonymous subscriptions to which you want to post. It is
a list of AQ$_POST_INFO Type.

count Specifies the number of entries in the post_list.

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-19

REGISTER Procedure

This procedure registers an e-mail address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

Syntax
DBMS_AQ.REGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count IN NUMBER);

Parameters

Usage Notes
This procedure is used to register for notifications. You can specify an e-mail
address to which message notifications are sent, register a procedure to be invoked
on a notification, or register an HTTP URL to which the notification is posted.
Interest in several subscriptions can be registered at one time.

If you register for e-mail notifications, you should set the host name and port name
for the SMTP server that will be used by the database to send e-mail notifications. If
required, you should set the send-from e-mail address, which is set by the database
as the sent from field. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, you may want to set the host name and port
number for the proxy server and a list of no-proxy domains that will be used by the
database to post HTTP notifications.

Table 16–13 REGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to register for message
notifications. It is a list of AQ$_REG_INFO Type.

count Specifies the number of entries in the reg_list.

See Also: Chapter 18, "DBMS_AQELM" for more information on
e-mail and HTTP notifications

UNBIND_AGENT Procedure

16-20 PL/SQL Packages and Types Reference

UNBIND_AGENT Procedure

This procedure removes the entry for an Oracle Streams AQ agent from the LDAP
server.

Syntax
DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

Parameters

Table 16–14 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be removed from the LDAP server

Summary of DBMS_AQ Subprograms

DBMS_AQ 16-21

UNREGISTER Procedure

This procedure unregisters a subscription which turns off notifications.

Syntax
DBMS_AQ.UNREGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count IN NUMBER);

Parameters

Usage Notes
This procedure is used to unregister a subscription which turns off notifications.
Several subscriptions can be unregistered from at one time.

Table 16–15 UNREGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to register for message
notifications. It is a list of AQ$_REG_INFO Type.

count Specifies the number of entries in the reg_list.

UNREGISTER Procedure

16-22 PL/SQL Packages and Types Reference

DBMS_AQADM 17-1

17
DBMS_AQADM

The DBMS_AQADM package provides procedures to manage Oracle Streams
Advanced Queuing (AQ) configuration and administration information.

This chapter contains the following topics:

■ Using DBMS_AQADM

■ Constants

■ Queue Table Subprograms

■ Privilege Subprograms

■ Queue Subprograms

■ Subscriber Subprograms

■ Notification Subprograms

■ Propagation Subprograms

■ Oracle Streams AQ Agent Subprograms

■ Alias Subprograms

■ Using DBMS_AQADM

See Also:

■ Oracle Streams Advanced Queuing User's Guide and Reference

■ Chapter 171, "Oracle Streams AQ TYPEs" for information about
the TYPEs to use with DBMS_AQADM

Using DBMS_AQADM

17-2 PL/SQL Packages and Types Reference

Using DBMS_AQADM

■ Constants

■ Queue Table Subprograms

■ CREATE_QUEUE Procedure

■ GRANT_SYSTEM_PRIVILEGE Procedure

■ ADD_SUBSCRIBER Procedure

■ SCHEDULE_PROPAGATION Procedure

■ CREATE_AQ_AGENT Procedure

■ Alias Subprograms

Constants

When using enumerated constants, such as INFINITE, TRANSACTIONAL, or
NORMAL_QUEUE, the symbol must be specified with the scope of the packages
defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADM. For example: DBMS_AQADM.NORMAL_QUEUE.

Queue Table Subprograms

■ CREATE_QUEUE_TABLE Procedure

■ ALTER_QUEUE_TABLE Procedure

Table 17–1 Enumerated Types in the Administrative Interface

Parameter Options

retention 0, 1, 2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_QUEUE

See Also: For more information on the Java classes and data
structures used in both DBMS_AQ and DBMS_AQADM, see the DBMS_
AQ package.

Using DBMS_AQADM

DBMS_AQADM 17-3

■ DROP_QUEUE_TABLE Procedure

■ PURGE_QUEUE_TABLE Procedure

■ MIGRATE_QUEUE_TABLE Procedure

■ ENABLE_JMS_TYPES Procedure

Privilege Subprograms

■ GRANT_SYSTEM_PRIVILEGE Procedure

■ REVOKE_SYSTEM_PRIVILEGE Procedure

■ GRANT_QUEUE_PRIVILEGE Procedure

■ REVOKE_QUEUE_PRIVILEGE Procedure

Queue Subprograms

■ CREATE_QUEUE Procedure

■ CREATE_NP_QUEUE Procedure

■ ALTER_QUEUE Procedure

■ DROP_QUEUE Procedure

■ START_QUEUE Procedure

■ STOP_QUEUE Procedure

■ QUEUE_SUBSCRIBERS Function

Subscriber Subprograms

■ ADD_SUBSCRIBER Procedure

■ ALTER_SUBSCRIBER Procedure

■ REMOVE_SUBSCRIBER Procedure

Notification Subprograms

■ GET_WATERMARK Procedure

Propagation Subprograms

17-4 PL/SQL Packages and Types Reference

■ SET_WATERMARK Procedure

Propagation Subprograms

■ SCHEDULE_PROPAGATION Procedure

■ UNSCHEDULE_PROPAGATION Procedure

■ VERIFY_QUEUE_TYPES Procedure

■ ALTER_PROPAGATION_SCHEDULE Procedure

■ ENABLE_PROPAGATION_SCHEDULE Procedure

■ DISABLE_PROPAGATION_SCHEDULE Procedure

Oracle Streams AQ Agent Subprograms

■ CREATE_AQ_AGENT Procedure

■ ALTER_AQ_AGENT Procedure

■ DROP_AQ_AGENT Procedure

■ ENABLE_DB_ACCESS Procedure

■ DISABLE_DB_ACCESS Procedure

Alias Subprograms

■ ADD_ALIAS_TO_LDAP Procedure

■ DEL_ALIAS_FROM_LDAP Procedure

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-5

Summary of DBMS_AQADM Subprograms

Table 17–2 DBMS_AQ ADM Package Subprograms

Subprograms Description

ADD_ALIAS_TO_LDAP
Procedure on page 17-8

Creates an alias for a queue, agent, or a JMS
ConnectionFactory in LDAP

ADD_SUBSCRIBERProcedure
on page 17-9

Adds a default subscriber to a queue

ALTER_AQ_AGENT
Procedure on page 17-11

Alters an agent registered for Oracle Streams AQ Internet
access, and an Oracle Streams AQ agent that accesses
secure queues

ALTER_PROPAGATION_
SCHEDULE Procedure on
page 17-12

Alters parameters for a propagation schedule

ALTER_QUEUE Procedure on
page 17-14

Alters existing properties of a queue

ALTER_QUEUE_TABLE
Procedure on page 17-16

Alters the existing properties of a queue table

ALTER_SUBSCRIBER
Procedure on page 17-17

Alters existing properties of a subscriber to a specified
queue

CREATE_AQ_AGENT
Procedure on page 17-18

Registers an agent for Oracle Streams AQ Internet access
using HTTP/SMTP protocols, and creates an Oracle
Streams AQ agent to access secure queues

CREATE_NP_QUEUE
Procedure on page 17-20

Creates a nonpersistent RAW queue

CREATE_QUEUE Procedure
on page 17-22

Creates a queue in the specified queue table

CREATE_QUEUE_TABLE
Procedure on page 17-25

Creates a queue table for messages of a predefined type

DEL_ALIAS_FROM_LDAP
Procedure on page 17-29

Drops an alias for a queue, agent, or JMS
ConnectionFactory in LDAP

DISABLE_DB_ACCESS
Procedure on page 17-30

Revokes the privileges of a specific database user from an
Oracle Streams AQ Internet agent

Summary of DBMS_AQADM Subprograms

17-6 PL/SQL Packages and Types Reference

DISABLE_PROPAGATION_
SCHEDULE Procedure on
page 17-31

Disables a propagation schedule

DROP_AQ_AGENT
Procedure on page 17-32

Drops an agent that was previously registered for Oracle
Streams AQ Internet access

DROP_QUEUE Procedure on
page 17-33

Drops an existing queue

DROP_QUEUE_TABLE
Procedure on page 17-34

Drops an existing queue table

ENABLE_DB_ACCESS
Procedure on page 17-35

Grants an Oracle Streams AQ Internet agent the privileges
of a specific database user

ENABLE_JMS_TYPES
Procedure on page 17-36

A precondition for the enqueue of JMS types and XML
types

ENABLE_PROPAGATION_
SCHEDULE Procedure on
page 17-37

Enables a previously disabled propagation schedule

GET_WATERMARK
Procedure on page 17-38

Retrieves the value of watermark set by the SET_
WATERMARK Procedure

GRANT_QUEUE_PRIVILEGE
Procedure on page 17-39

Grants privileges on a queue to users and roles

GRANT_SYSTEM_
PRIVILEGE Procedure on
page 17-40

Grants Oracle Streams AQ system privileges to users and
roles

MIGRATE_QUEUE_TABLE
Procedure on page 17-41

Upgrades an 8.0-compatible queue table to an
8.1-compatible or higher queue table, or downgrades an
8.1-compatible or higher queue table to an 8.0-compatible
queue table

PURGE_QUEUE_TABLE
Procedure on page 17-42

Purges messages from queue tables

QUEUE_SUBSCRIBERS
Function on page 17-44

Returns the subscribers to an 8.0-compatible
multiconsumer queue in the PL/SQL index by table
collection type DBMS_AQADM.AQ$_subscriber_list_t

REMOVE_SUBSCRIBER
Procedure on page 17-45

Removes a default subscriber from a queue

Table 17–2 (Cont.) DBMS_AQ ADM Package Subprograms

Subprograms Description

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-7

REVOKE_QUEUE_
PRIVILEGE Procedure on
page 17-46

Revokes privileges on a queue from users and roles

REVOKE_SYSTEM_
PRIVILEGE Procedure on
page 17-47

Revokes Oracle Streams AQ system privileges from users
and roles

SCHEDULE_PROPAGATION
Procedure on page 17-48

Schedules propagation of messages from a queue to a
destination identified by a specific database link

SET_WATERMARKProcedure
on page 17-50

Used for Oracle Streams AQ notification to specify and
limit memory use

START_QUEUE Procedure on
page 17-51

Enables the specified queue for enqueuing or dequeuing

STOP_QUEUE Procedure on
page 17-52

Disables enqueuing or dequeuing on the specified queue

UNSCHEDULE_
PROPAGATION Procedure
on page 17-53

Unschedules previously scheduled propagation of
messages from a queue to a destination identified by a
specific database link

VERIFY_QUEUE_TYPES
Procedure on page 17-54

Verifies that the source and destination queues have
identical types

Table 17–2 (Cont.) DBMS_AQ ADM Package Subprograms

Subprograms Description

ADD_ALIAS_TO_LDAP Procedure

17-8 PL/SQL Packages and Types Reference

ADD_ALIAS_TO_LDAP Procedure

This procedure creates an alias for a queue, agent, or a JMS ConnectionFactory in
LDAP. The alias will be placed directly under the database server's distinguished
name in LDAP hierarchy.

Syntax
DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

Parameters

Usage Notes
This method can be used to create aliases for Queues, Agents, and JMS
ConnectionFactory objects. These object must exist before the alias is created. These
aliases can be used for JNDI lookup in JMS and Oracle Streams AQ Internet access.

Table 17–3 ADD_ALIAS_TO_LDAP Procedure Parameters

Parameter Description

alias Name of the alias. Example: west_shipping.

obj_location The distinguished name of the object (queue, agent or connection factory)
to which alias refers.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-9

ADD_SUBSCRIBER Procedure

This procedure adds a default subscriber to a queue.

Syntax
DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
A program can enqueue messages to a specific list of recipients or to the default list
of subscribers. This operation only succeeds on queues that allow multiple
consumers. This operation takes effect immediately, and the containing transaction

Table 17–4 ADD_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent on whose behalf the subscription is being defined.

rule A conditional expression based on the message properties, the
message data properties and PL/SQL functions. A rule is specified as a
Boolean expression using syntax similar to the WHERE clause of a SQL
query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or
SQL functions (as specified in the where clause of a SQL query).
Currently supported message properties are priority and corrid.

To specify rules on a message payload (object payload), use attributes
of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the
queue table that stores the payload. The rule parameter cannot exceed
4000 characters.

transformation Specifies a transformation that will be applied when this subscriber
dequeues the message. The source type of the transformation must
match the type of the queue. If the subscriber is remote, then the
transformation is applied before propagation to the remote queue.

ADD_SUBSCRIBER Procedure

17-10 PL/SQL Packages and Types Reference

is committed. Enqueue requests that are executed after the completion of this call
will reflect the new behavior.

Any string within the rule must be quoted:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

Note that these are all single quotation marks.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-11

ALTER_AQ_AGENT Procedure

This procedure alters an agent registered for Oracle Streams AQ Internet access. It is
also used to alter an Oracle Streams AQ agent that accesses secure queues.

Syntax
DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Table 17–5 ALTER_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the Oracle Streams AQ Internet
agent.

certification_location Agent's certificate location in LDAP (default is NULL). If the
agent is allowed to access Oracle Streams AQ through
SMTP, then its certificate must be registered in LDAP. For
access through HTTP, the certificate location is not
required.

enable_http TRUE means the agent can access Oracle Streams AQ
through HTTP. FALSE means the agent cannot access
Oracle Streams AQ through HTTP.

enable_smtp TRUE means the agent can access Oracle Streams AQ
through SMTP (e-mail). FALSE means the agent cannot
access Oracle Streams AQ through SMTP.

enable_anyp TRUE means the agent can access Oracle Streams AQ
through any protocol (HTTP or SMTP).

ALTER_PROPAGATION_SCHEDULE Procedure

17-12 PL/SQL Packages and Types Reference

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters parameters for a propagation schedule.

Syntax
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60);

Parameters

Table 17–6 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated, including
the schema name. If the schema name is not specified, then it defaults to
the schema name of the user.

destination Destination database link. Messages in the source queue for recipients at
this destination are propagated. If it is NULL, then the destination is the
local database and messages are propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

duration Duration of the propagation window in seconds. A NULL value means the
propagation window is forever or until the propagation is unscheduled.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-13

next_time Date function to compute the start of the next propagation window from
the end of the current window. If this value is NULL, then propagation is
stopped at the end of the current window. For example, to start the
window at the same time every day, next_time should be specified as
SYSDATE + 1 - duration/86400.

latency Maximum wait, in seconds, in the propagation window for a message to be
propagated after it is enqueued. The default value is 60. Caution: if latency
is not specified for this call, then latency will over-write any existing value
with the default value.

For example, if the latency is 60 seconds and there are no messages to be
propagated during the propagation window, then messages from that
queue for the destination are not propagated for at least 60 more seconds.
It will be at least 60 seconds before the queue will be checked again for
messages to be propagated for the specified destination. If the latency is
600, then the queue will not be checked for 10 minutes and if the latency is
0, then a job queue process will be waiting for messages to be enqueued for
the destination and as soon as a message is enqueued it will be propagated.

Table 17–6 (Cont.) ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

ALTER_QUEUE Procedure

17-14 PL/SQL Packages and Types Reference

ALTER_QUEUE Procedure

This procedure alters existing properties of a queue. The parameters max_retries,
retention_time, and retry_delay are not supported for nonpersistent queues.

Syntax
DBMS_AQADM.ALTER_QUEUE (
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 17–7 ALTER_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be altered

max_retries Limits the number of times a dequeue with REMOVE mode can be
attempted on a message. The maximum value of max_retries is
2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is greater
than MAX_RETRIES. RETRY_COUNT is incremented when the
application issues a rollback after executing the dequeue. If a dequeue
transaction fails because the server process dies (including ALTER
SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then
RETRY_COUNT is not incremented.

Note that max_retries is supported for all single consumer queues
and 8.1-compatible or higher multiconsumer queues but not for
8.0-compatible multiconsumer queues.

retry_delay Delay time in seconds before this message is scheduled for processing
again after an application rollback. The default is NULL, which means
that the value will not be altered.

Note that retry_delay is supported for single consumer queues and
8.1-compatible or higher multiconsumer queues but not for
8.0-compatible multiconsumer queues.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-15

retention_time Retention time in seconds for which a message is retained in the queue
table after being dequeued. The default is NULL, which means that the
value will not be altered.

auto_commit TRUE causes the current transaction, if any, to commit before the
ALTER_QUEUE operation is carried out. The ALTER_QUEUE operation
become persistent when the call returns. This is the default. FALSE
means the operation is part of the current transaction and becomes
persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

comment User-specified description of the queue. This user comment is added to
the queue catalog. The default value is NULL, which means that the
value will not be changed.

Table 17–7 (Cont.) ALTER_QUEUE Procedure Parameters

Parameter Description

ALTER_QUEUE_TABLE Procedure

17-16 PL/SQL Packages and Types Reference

ALTER_QUEUE_TABLE Procedure

This procedure alters the existing properties of a queue table.

Syntax
DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 17–8 ALTER_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be created.

comment Modifies the user-specified description of the queue table. This
user comment is added to the queue catalog. The default value is
NULL which means that the value will not be changed.

primary_instance This is the primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
will be done in this instance. The default value is NULL, which
means that the current value will not be changed.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available. The default value is NULL,
which means that the current value will not be changed.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-17

ALTER_SUBSCRIBER Procedure

This procedure alters existing properties of a subscriber to a specified queue. Only
the rule can be altered.

Syntax
DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2
 transformation IN VARCHAR2);

Parameters

Usage Notes
This procedure alters both the rule and the transformation for the subscriber. If you
want to retain the existing value for either of them, you must specify its old value.
The current values for rule and transformation for a subscriber can be obtained
from the schema.AQ$queue_table_R and schema.AQ$queue_table_S views.

Table 17–9 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent on whose behalf the subscription is being altered. See "AQ$_
AGENT Type" on page 171-3.

rule A conditional expression based on the message properties, the message
data properties and PL/SQL functions. The rule parameter cannot
exceed 4000 characters. To eliminate the rule, set the rule parameter to
NULL.

transformation Specifies a transformation that will be applied when this subscriber
dequeues the message. The source type of the transformation must
match the type of the queue. If the subscriber is remote, then the
transformation is applied before propagation to the remote queue.

CREATE_AQ_AGENT Procedure

17-18 PL/SQL Packages and Types Reference

CREATE_AQ_AGENT Procedure

This procedure registers an agent for Oracle Streams AQ Internet access using
HTTP/SMTP protocols. It is also used to create an Oracle Streams AQ agent to
access secure queues.

Syntax
DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

See Also: Oracle Streams Concepts and Administration for
information about secure queues

Table 17–10 CREATE_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the Oracle Streams AQ Internet
agent.

certification_location Agent's certificate location in LDAP (default is NULL). If the
agent is allowed to access Oracle Streams AQ through
SMTP, then its certificate must be registered in LDAP. For
access through HTTP, the certificate location is not
required.

enable_http TRUE means the agent can access Oracle Streams AQ
through HTTP. FALSE means the agent cannot access
Oracle Streams AQ through HTTP.

enable_smtp TRUE means the agent can access Oracle Streams AQ
through SMTP (e-mail). FALSE means the agent cannot
access Oracle Streams AQ through SMTP.

enable_anyp TRUE means the agent can access Oracle Streams AQ
through any protocol (HTTP or SMTP).

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-19

Usage Notes
The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents.

CREATE_NP_QUEUE Procedure

17-20 PL/SQL Packages and Types Reference

CREATE_NP_QUEUE Procedure

This procedure creates a nonpersistent RAW queue.

Syntax
DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a 8.1-compatible
or higher system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in the same
schema as that specified by the queue name.

If the queue name does not specify a schema name, the queue is created in the login
user's schema. After a queue is created with CREATE_NP_QUEUE, it can be enabled
by calling START_QUEUE. By default, the queue is created with both enqueue and
dequeue disabled.

Table 17–11 CREATE_NP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the nonpersistent queue that is to be created. The name
must be unique within a schema and must follow object name
guidelines in Oracle Database SQL Reference.

multiple_consumers FALSE means queues created in the table can only have one
consumer for each message. This is the default. TRUE means
queues created in the table can have multiple consumers for each
message.

Note that this parameter is distinguished at the queue level,
because a nonpersistent queue does not inherit this characteristic
from any user-created queue table.

comment User-specified description of the queue. This user comment is
added to the queue catalog.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-21

You cannot dequeue from a nonpersistent queue. The only way to retrieve a
message from a nonpersistent queue is by using the OCI notification mechanism.
You cannot invoke the listen call on a nonpersistent queue.

CREATE_QUEUE Procedure

17-22 PL/SQL Packages and Types Reference

CREATE_QUEUE Procedure

This procedure creates a queue in the specified queue table.

Syntax
DBMS_AQADM.CREATE_QUEUE (
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 17–12 CREATE_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be created. The name must be
unique within a schema and must follow object name
guidelines in Oracle Database SQL Reference with regard to
reserved characters.

queue_table Name of the queue table that will contain the queue.

queue_type Specifies whether the queue being created is an exception queue
or a normal queue. NORMAL_QUEUE means the queue is a
normal queue. This is the default. EXCEPTION_QUEUE means it
is an exception queue. Only the dequeue operation is allowed
on the exception queue.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-23

max_retries Limits the number of times a dequeue with the REMOVE mode
can be attempted on a message. The maximum value of max_
retries is 2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is
greater than MAX_RETRIES. RETRY_COUNT is incremented
when the application issues a rollback after executing the
dequeue. If a dequeue transaction fails because the server
process dies (including ALTER SYSTEM KILL SESSION) or
SHUTDOWN ABORT on the instance, then RETRY_COUNT is not
incremented.

Note that max_retries is supported for all single consumer
queues and 8.1-compatible or higher multiconsumer queues but
not for 8.0-compatible multiconsumer queues.

retry_delay Delay time, in seconds, before this message is scheduled for
processing again after an application rollback.

The default is 0, which means the message can be retried as
soon as possible. This parameter has no effect if max_retries
is set to 0. Note that retry_delay is supported for single
consumer queues and 8.1-compatible or higher multiconsumer
queues but not for 8.0-compatible multiconsumer queues.

retention_time Number of seconds for which a message is retained in the
queue table after being dequeued from the queue. INFINITE
means the message is retained forever. NUMBER is the number of
seconds for which to retain the messages. The default is 0, no
retention.

dependency_tracking Reserved for future use. FALSE is the default. TRUE is not
permitted in this release.

comment User-specified description of the queue. This user comment is
added to the queue catalog.

auto_commit TRUE causes the current transaction, if any, to commit before
the CREATE_QUEUE operation is carried out. The CREATE_
QUEUE operation becomes persistent when the call returns. This
is the default. FALSE means the operation is part of the current
transaction and becomes persistent only when the caller enters a
commit.

Caution: This parameter has been deprecated.

Table 17–12 (Cont.) CREATE_QUEUE Procedure Parameters

Parameter Description

CREATE_QUEUE Procedure

17-24 PL/SQL Packages and Types Reference

Usage Notes
All queue names must be unique within a schema. After a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue
is created with both enqueue and dequeue disabled.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-25

CREATE_QUEUE_TABLE Procedure

This procedure creates a queue table for messages of a predefined type.

Syntax
DBMS_AQADM.CREATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,
 [storage_clause IN VARCHAR2 DEFAULT NULL,]
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE);

Parameters

Table 17–13 CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be created

queue_payload_type Type of the user data stored. See Type Name on page 16-3 for
valid values for this parameter.

storage_clause Storage parameter. The storage parameter is included in the
CREATE TABLE statement when the queue table is created. The
storage_clause argument can take any text that can be used
in a standard CREATE TABLE storage_clause argument.The
storage parameter can be made up of any combinations of the
following parameters: PCTFREE, PCTUSED, INITRANS,
MAXTRANS, TABLEPSACE, LOB, and a table storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace. If a
tablespace is specified here, then the queue table and all its
related objects are created in the tablespace specified in the
storage clause. See Oracle Database SQL Reference for the usage of
these parameters.

CREATE_QUEUE_TABLE Procedure

17-26 PL/SQL Packages and Types Reference

sort_list The columns to be used as the sort key in ascending order. This
parameter has the following format:

'sort_column_1,sort_column_2'

The allowed column names are priority and enq_time. If
both columns are specified, then sort_column_1 defines the
most significant order.

After a queue table is created with a specific ordering
mechanism, all queues in the queue table inherit the same
defaults. The order of a queue table cannot be altered after the
queue table has been created.

If no sort list is specified, then all the queues in this queue table
are sorted by the enqueue time in ascending order. This order is
equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to
choose a message to dequeue by specifying its msgid or
correlation. msgid, correlation, and sequence_
deviation take precedence over the default dequeueing order,
if they are specified.

multiple_consumers FALSE means queues created in the table can only have one
consumer for each message. This is the default. TRUE means
queues created in the table can have multiple consumers for
each message.

message_grouping Message grouping behavior for queues created in the table.
NONE means each message is treated individually.
TRANSACTIONAL means messages enqueued as part of one
transaction are considered part of the same group and can be
dequeued as a group of related messages.

comment User-specified description of the queue table. This user comment
is added to the queue catalog.

auto_commit TRUE causes the current transaction, if any, to commit before the
CREATE_QUEUE_TABLE operation is carried out. The CREATE_
QUEUE_TABLE operation becomes persistent when the call
returns. This is the default. FALSE means the operation is part of
the current transaction and becomes persistent only when the
caller enters a commit.

Note: This parameter has been deprecated.

Table 17–13 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-27

Usage Notes
The sort keys for dequeue ordering, if any, must be defined at table creation time.
The following objects are created at this time:

■ aq$_queue_table_name_e, a default exception queue associated with the
queue table

■ aq$queue_table_name, a read-only view, which is used by Oracle Streams
AQ applications for querying queue data

■ aq$_queue_table_name_t, an index (or an index organized table (IOT) in
the case of multiple consumer queues) for the queue monitor operations

■ aq$_queue_table_name_i, an index (or an index organized table in the case
of multiple consumer queues) for dequeue operations

primary_instance The primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
are done in this instance.

The default value for primary instance is 0, which means queue
monitor scheduling and propagation will be done in any
available instance.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available. The default value is 0, which
means that the queue table will fail over to any available
instance.

compatible The lowest database version with which the queue is
compatible. Currently the possible values are either 8.0, 8.1, or
10.0. If the database is in 10.1-compatible mode, the default
value is 10.0. If the database is in 8.1-compatible or
9.2-compatible mode, the default value is 8.1. If the database is
in 8.0 compatible mode, the default value is 8.0.

secure This parameter must be set to TRUE if you want to use the queue
table for secure queues. Secure queues are queues for which AQ
agents must be associated explicitly with one or more database
users who can perform queue operations, such as enqueue and
dequeue. The owner of a secure queue can perform all queue
operations on the queue, but other users cannot perform queue
operations on a secure queue, unless they are configured as
secure queue users.

Table 17–13 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description

CREATE_QUEUE_TABLE Procedure

17-28 PL/SQL Packages and Types Reference

For 8.1-compatible or higher queue tables, the following index-organized tables are
created:

■ aq$_queue_table_name_s, a table for storing information about the
subscribers

■ aq$_queue_table_name_r, a table for storing information about rules on
subscriptions

aq$_queue_table_name_h, an index-organized table for storing the dequeue
history data

CLOB, BLOB, and BFILE are valid attributes for Oracle Streams AQ object type
payloads. However, only CLOB and BLOB can be propagated using Oracle Streams
AQ propagation in Oracle8i release 8.1.5 or later. See the Oracle Streams Advanced
Queuing User's Guide and Reference for more information.

The default value of the compatible parameter depends on the database
compatibility mode in the init.ora. If the database is in 10.1-compatible mode,
the default value is 10.0. If the database is in 8.1-compatible or 9.2-compatible mode,
the default value is 8.1. If the database is in 8.0 compatible mode, the default value
is 8.0

You can specify and modify the primary_instance and secondary_instance
only in 8.1-compatible or higher mode. You cannot specify a secondary instance
unless there is a primary instance.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-29

DEL_ALIAS_FROM_LDAP Procedure

This procedure drops an alias for a queue, agent, or JMS ConnectionFactory in
LDAP.

Syntax
DBMS_AQ.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

Parameters

Table 17–14 DEL_ALIAS_FROM_LDAP Procedure Parameters

Parameter Description

alias The alias to be removed.

DISABLE_DB_ACCESS Procedure

17-30 PL/SQL Packages and Types Reference

DISABLE_DB_ACCESS Procedure

This procedure revokes the privileges of a specific database user from an Oracle
Streams AQ Internet agent.

Syntax
DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Usage Notes
The Oracle Streams AQ Internet agent should have been previously granted those
privileges using the ENABLE_DB_ACCESS Procedure.

Table 17–15 DISABLE_DB_ACCESS Procedure Parameters

Parameter Description

agent_name Specifies the username of the Oracle Streams AQ Internet agent.

db_username Specifies the database user whose privileges are to be revoked from the
Oracle Streams AQ Internet agent.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-31

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL);

Parameters

Table 17–16 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, then it
defaults to the schema name of the user.

destination Destination database link. Messages in the source queue for recipients at
this destination are propagated. If it is NULL, then the destination is the
local database and messages are propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain name is used.

DROP_AQ_AGENT Procedure

17-32 PL/SQL Packages and Types Reference

DROP_AQ_AGENT Procedure

This procedure drops an agent that was previously registered for Oracle Streams
AQ Internet access.

Syntax
DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2)

Parameters

Table 17–17 DROP_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the Oracle Streams AQ
Internet agent

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-33

DROP_QUEUE Procedure

This procedure drops an existing queue.

Syntax
DBMS_AQADM.DROP_QUEUE (
 queue_name IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
DROP_QUEUE is not allowed unless STOP_QUEUE has been called to disable the
queue for both enqueuing and dequeuing. All the queue data is deleted as part of
the drop operation.

Table 17–18 DROP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be dropped.

auto_commit TRUE causes the current transaction, if any, to commit before the DROP_
QUEUE operation is carried out. The DROP_QUEUE operation becomes
persistent when the call returns. This is the default. FALSE means the
operation is part of the current transaction and becomes persistent only
when the caller enters a commit.

Caution: This parameter has been deprecated.

DROP_QUEUE_TABLE Procedure

17-34 PL/SQL Packages and Types Reference

DROP_QUEUE_TABLE Procedure

This procedure drops an existing queue table.

Syntax
DBMS_AQADM.DROP_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
All the queues in a queue table must be stopped and dropped before the queue
table can be dropped. You must do this explicitly unless the force option is used,
in which case this is done automatically.

Table 17–19 DROP_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be dropped.

force FALSE means the operation does not succeed if there are any queues in
the table. This is the default. TRUE means all queues in the table are
stopped and dropped automatically.

auto_commit TRUE causes the current transaction, if any, to commit before the DROP_
QUEUE_TABLE operation is carried out. The DROP_QUEUE_TABLE
operation becomes persistent when the call returns. This is the default.
FALSE means the operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-35

ENABLE_DB_ACCESS Procedure

This procedure grants an Oracle Streams AQ Internet agent the privileges of a
specific database user.

Syntax
DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Usage Notes
The Oracle Streams AQ Internet agent should have been previously created using
the CREATE_AQ_AGENT Procedure.

For secure queues, the sender and receiver agent of the message must be mapped to
the database user performing the enqueue or dequeue operation.

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet
agents and the names of the database users whose privileges are granted to them.

Table 17–20 ENABLE_DB_ACCESS Procedure Parameters

Parameter Description

agent_name Specifies the username of the Oracle Streams AQ Internet agent.

db_username Specified the database user whose privileges are to be granted to the
Oracle Streams AQ Internet agent.

See Also: Oracle Streams Concepts and Administration for
information about secure queues

ENABLE_JMS_TYPES Procedure

17-36 PL/SQL Packages and Types Reference

ENABLE_JMS_TYPES Procedure

Enqueue of JMS types and XML types does not work with Oracle Streams
Sys.Anydata queues unless you call this procedure after DBMS_STREAMS_
ADM.SET_UP_QUEUE. Enabling an Oracle Streams queue for these types may affect
import/export of the queue table.

Syntax
DBMS_AQADM.ENABLE_JMS_TYPES (
 queue_table IN VARCHAR2);

Parameters

Table 17–21 ENABLE_JMS_TYPES Procedure Parameters

Parameter Description

queue_table Specifies name of the queue table to be enabled for JMS and XML
types.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-37

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a previously disabled propagation schedule.

Syntax
DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL);

Parameters

Table 17–22 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, then it
defaults to the schema name of the user.

destination Destination database link. Messages in the source queue for recipients at
this destination are propagated. If it is NULL, then the destination is the
local database and messages are propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain name is used.

GET_WATERMARK Procedure

17-38 PL/SQL Packages and Types Reference

GET_WATERMARK Procedure

This procedure retrieves the value of watermark set by SET_WATERMARK.

Syntax
DBMS_AQADM.GET_WATERMARK (
 wmvalue OUT NUMBER);

Parameters

Table 17–23 GET_WATERMARK Procedure Parameter

Parameter Description

wmvalue Watermark value in megabytes.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-39

GRANT_QUEUE_PRIVILEGE Procedure

This procedure grants privileges on a queue to users and roles. The privileges are
ENQUEUE or DEQUEUE. Initially, only the queue table owner can use this procedure
to grant privileges on the queues.

Syntax
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

Parameters

Table 17–24 GRANT_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The Oracle Streams AQ queue privilege to grant. The options are
ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

queue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

grant_option Specifies if the access privilege is granted with the GRANT option or not. If
the privilege is granted with the GRANT option, then the grantee is
allowed to use this procedure to grant the access privilege to other users
or roles, regardless of the ownership of the queue table. The default is
FALSE.

GRANT_SYSTEM_PRIVILEGE Procedure

17-40 PL/SQL Packages and Types Reference

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grants Oracle Streams AQ system privileges to users and roles. The
privileges are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. Initially, only SYS
and SYSTEM can use this procedure successfully.

Syntax
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

Parameters

Table 17–25 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The Oracle Streams AQ system privilege to grant. The options are
ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. ENQUEUE_ANY means
users granted this privilege are allowed to enqueue messages to any
queues in the database. DEQUEUE_ANY means users granted this privilege
are allowed to dequeue messages from any queues in the database.
MANAGE_ANY means users granted this privilege are allowed to run
DBMS_AQADM calls on any schemas in the database.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

admin_option Specifies if the system privilege is granted with the ADMIN option or not.

If the privilege is granted with the ADMIN option, then the grantee is
allowed to use this procedure to grant the system privilege to other users
or roles. The default is FALSE.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-41

MIGRATE_QUEUE_TABLE Procedure

This procedure upgrades an 8.0-compatible queue table to an 8.1-compatible or
higher queue table, or downgrades an 8.1-compatible or higher queue table to an
8.0-compatible queue table.

Syntax
DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

Parameters

Table 17–26 MIGRATE_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Specifies name of the queue table to be migrated.

compatible Set this to 8.1 to upgrade an 8.0-compatible queue table, or set this to
8.0 to downgrade an 8.1-compatible queue table.

PURGE_QUEUE_TABLE Procedure

17-42 PL/SQL Packages and Types Reference

PURGE_QUEUE_TABLE Procedure

This procedure purges messages from queue tables. You can perform various purge
operations on both single-consumer and multiconsumer queue tables for persistent
queues.

Syntax
DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

where type aq$_purge_options_t is described in Chapter 171, "Oracle Streams
AQ TYPEs".

Parameters

Table 17–27 PURGE_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table (IN VARCHAR2) Specifies the name of the queue table to be purged.

purge_condition (IN
VARCHAR2)

Specifies the purge condition to use when purging the
queue table. The purge condition must be in the
format of a SQL WHERE clause, and it is case-sensitive.
The condition is based on the columns of aq$queue_
table view.

To purge all queues in a queue table, set purge_
condition to either NULL (a bare null word, no
quotes) or'' (two single quotes).

purge_options IN aq$_purge_
options_t

Type aq$_purge_options_t contains a block
parameter. If block is TRUE, then an exclusive lock
on all the queues in the queue table is held while
purging the queue table. This will cause concurrent
enqueuers and dequeuers to block while the queue
table is purged. The purge call always succeeds if
block is TRUE.

The default for block is FALSE. This will not block
enqueuers and dequeuers, but it can cause the purge
to fail with an error during high concurrency times.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-43

Usage Notes
You can purge selected messages from the queue table by specifying additional
parameters in the API call. Table 17–27 describes these parameters. Messages can be
enqueued to and dequeued from the queue table while the queue table is being
purged.

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed
all the messages.

QUEUE_SUBSCRIBERS Function

17-44 PL/SQL Packages and Types Reference

QUEUE_SUBSCRIBERS Function

This function returns the subscribers to an 8.0-compatible multiconsumer queue in
the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_
list_t. Each element of the collection is of type sys.aq$_agent. This
functionality is provided for 8.1-compatible queues by the AQ$queue_table_
name_S view.

Syntax
DBMS_AQADM.QUEUE_SUBSCRIBERS (
 queue_name IN VARCHAR2);
RETURN aq$_subscriber_list_t IS

Parameters

Table 17–28 QUEUE_SUBSCRIBERS Function Parameters

Parameter Description

queue_name Specifies the queue whose subscribers are to be printed.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-45

REMOVE_SUBSCRIBER Procedure

This procedure removes a default subscriber from a queue. This operation takes
effect immediately, and the containing transaction is committed. All references to
the subscriber in existing messages are removed as part of the operation.

Syntax
DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

Parameters

Table 17–29 REMOVE_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent who is being removed. See "AQ$_AGENT Type" on page 171-3.

REVOKE_QUEUE_PRIVILEGE Procedure

17-46 PL/SQL Packages and Types Reference

REVOKE_QUEUE_PRIVILEGE Procedure

This procedure revokes privileges on a queue from users and roles. The privileges
are ENQUEUE or DEQUEUE.

Syntax
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Usage Notes
To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor's
privileges are revoked.

Table 17–30 REVOKE_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The Oracle Streams AQ queue privilege to revoke. The options are
ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

queue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role. If the
privilege has been propagated by the grantee through the GRANT option,
then the propagated privilege is also revoked.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-47

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes Oracle Streams AQ system privileges from users and roles.
The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN
option for a system privilege cannot be selectively revoked.

Syntax
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Table 17–31 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The Oracle Streams AQ system privilege to revoke. The options are
ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. The ADMIN option for a
system privilege cannot be selectively revoked.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

SCHEDULE_PROPAGATION Procedure

17-48 PL/SQL Packages and Types Reference

SCHEDULE_PROPAGATION Procedure

This procedure schedules propagation of messages from a queue to a destination
identified by a specific database link.

Syntax
DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60);

Parameters

Table 17–32 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, then it
defaults to the schema name of the administrative user.

destination Destination database link. Messages in the source queue for recipients at
this destination are propagated. If it is NULL, then the destination is the
local database and messages are propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain name is used.

start_time Initial start time for the propagation window for messages from the
source queue to the destination.

duration Duration of the propagation window in seconds. A NULL value means the
propagation window is forever or until the propagation is unscheduled.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-49

Usage Notes
Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated
to all of them at the same time.

next_time Date function to compute the start of the next propagation window from
the end of the current window. If this value is NULL, then propagation is
stopped at the end of the current window. For example, to start the
window at the same time every day, next_time should be specified as
SYSDATE + 1 - duration/86400.

latency Maximum wait, in seconds, in the propagation window for a message to
be propagated after it is enqueued.

For example, if the latency is 60 seconds and there are no messages to be
propagated during the propagation window, then messages from that
queue for the destination are not propagated for at least 60 more seconds.

It is at least 60 seconds before the queue is checked again for messages to
be propagated for the specified destination. If the latency is 600, then the
queue is not checked for 10 minutes, and if the latency is 0, then a job
queue process will be waiting for messages to be enqueued for the
destination. As soon as a message is enqueued, it is propagated.

Table 17–32 (Cont.) SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

SET_WATERMARK Procedure

17-50 PL/SQL Packages and Types Reference

SET_WATERMARK Procedure

This procedure is used for Oracle Streams AQ notification to specify and limit
memory use.

Syntax
DBMS_AQADM.SET_WATERMARK (
 wmvalue IN NUMBER);

Parameters

Table 17–33 SET_WATERMARK Procedure Parameter

Parameter Description

wmvalue Watermark value in megabytes.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-51

START_QUEUE Procedure

This procedure enables the specified queue for enqueuing or dequeuing.

Syntax
DBMS_AQADM.START_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
After creating a queue, the administrator must use START_QUEUE to enable the
queue. The default is to enable it for both ENQUEUE and DEQUEUE. Only dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

Table 17–34 START_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue to be enabled

enqueue Specifies whether ENQUEUE should be enabled on this queue. TRUE means
enable ENQUEUE. This is the default. FALSE means do not alter the current
setting.

dequeue Specifies whether DEQUEUE should be enabled on this queue. TRUE means
enable DEQUEUE. This is the default. FALSE means do not alter the current
setting.

STOP_QUEUE Procedure

17-52 PL/SQL Packages and Types Reference

STOP_QUEUE Procedure

This procedure disables enqueuing or dequeuing on the specified queue.

Syntax
DBMS_AQADM.STOP_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
By default, this call disables both ENQUEUE and DEQUEUE. A queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

Table 17–35 STOP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue to be disabled

enqueue Specifies whether ENQUEUE should be disabled on this queue. TRUE means
disable ENQUEUE. This is the default. FALSE means do not alter the current
setting.

dequeue Specifies whether DEQUEUE should be disabled on this queue. TRUE means
disable DEQUEUE. This is the default. FALSE means do not alter the current
setting.

wait Specifies whether to wait for the completion of outstanding transactions.
TRUE means wait if there are any outstanding transactions. In this state no
new transactions are allowed to enqueue to or dequeue from this queue.
FALSE means return immediately either with a success or an error.

Summary of DBMS_AQADM Subprograms

DBMS_AQADM 17-53

UNSCHEDULE_PROPAGATION Procedure

This procedure unschedules previously scheduled propagation of messages from a
queue to a destination identified by a specific database link.

Syntax
DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL);

Parameters

Table 17–36 UNSCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, then it
defaults to the schema name of the administrative user.

destination Destination database link. Messages in the source queue for recipients at
this destination are propagated. If it is NULL, then the destination is the
local database and messages are propagated to other queues in the local
database. The length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain name is used.

VERIFY_QUEUE_TYPES Procedure

17-54 PL/SQL Packages and Types Reference

VERIFY_QUEUE_TYPES Procedure

This procedure verifies that the source and destination queues have identical types.
The result of the verification is stored in the table sys.aq$_message_types,
overwriting all previous output of this command.

Syntax
DBMS_AQADM.VERIFY_QUEUE_TYPES (
 src_queue_name IN VARCHAR2,
 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

Parameters

Table 17–37 VERIFY_QUEUE_TYPES Procedure Parameters

Parameter Description

src_queue_name Name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, then
it defaults to the schema name of the user.

dest_queue_name Name of the destination queue where messages are to be
propagated, including the schema name. If the schema name is not
specified, then it defaults to the schema name of the user.

destination Destination database link. Messages in the source queue for
recipients at this destination are propagated. If it is NULL, then the
destination is the local database and messages are propagated to
other queues in the local database. The length of this field is
currently limited to 128 bytes, and if the name is not fully qualified,
then the default domain name is used.

rc Return code for the result of the procedure. If there is no error, and if
the source and destination queue types match, then the result is 1. If
they do not match, then the result is 0. If an Oracle error is
encountered, then it is returned in rc.

DBMS_AQELM 18-1

18
DBMS_AQELM

The DBMS_AQELM package provides procedures to manage the configuration of
Oracle Streams Advanced Queuing (AQ) asynchronous notification by e-mail and
HTTP.

This chapter contains the following topic:

■ Summary of DBMS_AQELM Subprograms

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference for detailed information about DBMS_AQELM

Summary of DBMS_AQELM Subprograms

18-2 PL/SQL Packages and Types Reference

Summary of DBMS_AQELM Subprograms

Table 18–1 DBMS_ALERT Package Subprograms

Subprogram Description

GET_MAILHOST
Procedure on page 18-3

Gets the host name set by DBMS_AQELM.SET_MAILHOST for
the SMTP server

GET_MAILPORT
Procedure on page 18-4

Gets the port number for the SMTP server set by the
DBMS_AQELM. SET_MAILPORT procedure or the default
value, which is 25

GET_PROXY Procedure
on page 18-5

Gets the proxy server name and no_proxy_domains set by
DBMS_AQELM.SET_PROXY for HTTP notifications

GET_SENDFROM
Procedure on page 18-6

Gets the sent-from e-mail address set by DBMS_AQELM.SET_
SENDFROM procedure

SET_MAILHOST
Procedure on page 18-7

Sets the host name for the SMTP server that the database will
uses send out e-mail notifications

SET_MAILPORT
Procedure on page 18-8

Sets the port number for the SMTP server

GET_MAILHOST
Procedure on page 18-3

Gets the host name set by DBMS_AQELM.SET_MAILHOST for
the SMTP server

SET_PROXY Procedure on
page 18-9

Sets the proxy server name to be used for requests of HTTP
protocol, excluding requests for hosts that belong to the
domain specified in no_proxy_domains

SET_SENDFROM
Procedure on page 18-11

Sets the sent-from e-mail address

Summary of DBMS_AQELM Subprograms

DBMS_AQELM 18-3

GET_MAILHOST Procedure

This procedure gets the host name set by DBMS_AQELM.SET_MAILHOST for the
SMTP server.

Syntax
DBMS_AQELM.GET_MAILHOST (
 mailhost OUT VARCHAR2);

Parameters

Table 18–2 GET_MAILHOST Procedure Parameters

Parameter Description

mailhost SMTP server host name.

GET_MAILPORT Procedure

18-4 PL/SQL Packages and Types Reference

GET_MAILPORT Procedure

This procedure gets the port number for the SMTP server set by the DBMS_AQELM.
SET_MAILPORT procedure or the default value, which is 25.

Syntax
DBMS_AQELM.GET_MAILPORT (
 mailport OUT NUMBER);

Parameters

Table 18–3 GET_MAILPORT Procedure Parameters

Parameter Description

mailport SMTP server port number.

Summary of DBMS_AQELM Subprograms

DBMS_AQELM 18-5

GET_PROXY Procedure

This procedure gets the proxy server name and no_proxy_domains set by DBMS_
AQELM.SET_PROXY for HTTP notifications.

Syntax
DBMS_AQELM.GET_PROXY (
 proxy OUT VARCHAR2,
 no_proxy_domains OUT VARCHAR2);

Parameters

Table 18–4 GET_PROXY Procedure Parameters

Parameter Description

proxy Proxy server host and port number.

no_proxy_domains List of no-proxy domains or hosts.

GET_SENDFROM Procedure

18-6 PL/SQL Packages and Types Reference

GET_SENDFROM Procedure

This procedure gets the sent-from e-mail address set by DBMS_AQELM.SET_
SENDFROM procedure.

Syntax
DBMS_AQELM.GET_SENDFROM (
 sendfrom OUT VARCHAR2);

Parameters

Table 18–5 GET_SENDFROM Procedure Parameters

Parameter Description

sendfrom The sent-from e-mail address.

Summary of DBMS_AQELM Subprograms

DBMS_AQELM 18-7

SET_MAILHOST Procedure

This procedure sets the host name for the SMTP server. The database uses this
SMTP server host name to send out e-mail notifications.

Syntax
DBMS_AQELM.SET_MAILHOST (
 mailhost IN VARCHAR2);

Parameters

Usage Notes
As part of the configuration for e-mail notifications, a user with AQ_
ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM
package needs to set the host name before registering for e-mail notifications.

Table 18–6 SET_MAILHOST Procedure Parameters

Parameter Description

mailhost SMTP server host name.

SET_MAILPORT Procedure

18-8 PL/SQL Packages and Types Reference

SET_MAILPORT Procedure

This procedure sets the port number for the SMTP server.

Syntax
DBMS_AQELM.SET_MAILPORT (
 mailport IN NUMBER);

Parameters

Usage Notes
As part of the configuration for e-mail notifications, a user with AQ_
ADMINISTRATOR_ROLE or with EXECUTE permissions on DBMS_AQELM package
needs to set the port number before registering for e-mail notifications. The
database uses this SMTP server port number to send out e-mail notifications. If not
set, the SMTP mailport defaults to 25

Table 18–7 SET_MAILPORT Procedure Parameters

Parameter Description

mailport SMTP server port number.

Summary of DBMS_AQELM Subprograms

DBMS_AQELM 18-9

SET_PROXY Procedure

This procedure sets the proxy server name to be used for requests of HTTP protocol,
excluding requests for hosts that belong to the domain specified in no_proxy_
domains.

Syntax
DBMS_AQELM.SET_PROXY (
 proxy IN VARCHAR2,
 no_proxy_domains IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The proxy server name can include an optional TCP/IP port number at which the
proxy server listens. If the port is not specified for the proxy server, port 80 is
assumed.

no_proxy_domains is a list of domains or hosts for which HTTP requests should
be sent directly to the destination HTTP server instead of going through a proxy
server. Optionally, a port number can be specified for each domain or host. If the
port number is specified, the no-proxy restriction is only applied to the request at
that port of the particular domain or host. When no_proxy_domains is NULL and
the proxy server is set, all requests go through the proxy server. When the proxy
server is not set, http_send sends the requests to the target Web servers directly.

As part of the configuration for HTTP notifications, a user with AQ_
ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM
package can choose to set the proxy server name and a list of no_proxy_domains,

Table 18–8 SET_PROXY Procedure Parameters

Parameter Description

proxy Proxy server host and port number. The syntax is
"[http://]host[:port][/]". For example,
"www-proxy.my-company.com:80".

no_proxy_domains List of no-proxy domains or hosts. The syntax is a list of host or
domains, with optional port numbers separated by a comma, a
semi-colon, or a space. For example, "corp.my-company.com,
eng.my-company.com:80".

SET_PROXY Procedure

18-10 PL/SQL Packages and Types Reference

if required, before registering for HTTP notifications. The database will use this
information to post HTTP notifications.

Summary of DBMS_AQELM Subprograms

DBMS_AQELM 18-11

SET_SENDFROM Procedure

This procedure sets the sent-from e-mail address. This e-mail address is used in the
sent-from field in all the e-mail notifications sent out by the database to the
registered e-mail addresses.

Syntax
DBMS_AQELM.SET_SENDFROM (
 sendfrom IN VARCHAR2);

Parameters

Usage Notes
As part of the configuration for e-mail notifications, a user with AQ_
ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM
package should set the sent-from address before registering for e-mail notifications

Table 18–9 SET_SENDFROM Procedure Parameters

Parameter Description

sendfrom The sent-from e-mail address.

SET_SENDFROM Procedure

18-12 PL/SQL Packages and Types Reference

DBMS_CAPTURE_ADM 19-1

19
DBMS_CAPTURE_ADM

The DBMS_CAPTURE_ADM package, one of a set of Streams packages, provides
administrative interfaces for starting, stopping, and configuring a capture process.
The source of the captured changes is the redo logs, and the repository for the
captured changes is a queue (created using the DBMS_STEAMS_ADM.SET_UP_
QUEUE procedure or the DBMS_AQADM package).

This chapter contains the following topic:

■ Summary of DBMS_CAPTURE_ADM Subprograms

See Also: Oracle Streams Concepts and Administration and Oracle
Streams Replication Administrator's Guide for more information about
this package and capture processes

Summary of DBMS_CAPTURE_ADM Subprograms

19-2 PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

Table 19–1 DBMS_CAPTURE_ADM Package Subprograms

Subprogram Description

ABORT_GLOBAL_INSTANTIATION
Procedure on page 19-4

Reverses the effects of running the PREPARE_
GLOBAL_INSTANTIATION procedure

ABORT_SCHEMA_INSTANTIATION
Procedure on page 19-5

Reverses the effects of running the PREPARE_
SCHEMA_INSTANTIATION procedure

ABORT_TABLE_INSTANTIATION
Procedure on page 19-6

Reverses the effects of running the PREPARE_
TABLE_INSTANTIATION procedure

ALTER_CAPTURE Procedure on
page 19-7

Alters a capture process

BUILD Procedure on page 19-14 Extracts the data dictionary of the current
database to the redo logs and automatically
specifies database supplemental logging for all
primary key and unique key columns

CREATE_CAPTURE Procedure on
page 19-16

Creates a capture process

DROP_CAPTURE Procedure on
page 19-23

Drops a capture process

INCLUDE_EXTRA_ATTRIBUTE
Procedure on page 19-25

Includes or excludes an extra attribute in logical
change records (LCRs) captured by the
specified capture process

PREPARE_GLOBAL_INSTANTIATION
Procedure on page 19-27

Performs the synchronization necessary for
instantiating all the tables in the database at
another database

PREPARE_SCHEMA_INSTANTIATION
Procedure on page 19-28

Performs the synchronization necessary for
instantiating all tables in the schema at another
database

PREPARE_TABLE_INSTANTIATION
Procedure on page 19-29

Performs the synchronization necessary for
instantiating the table at another database

SET_PARAMETER Procedure on
page 19-30

Sets a capture process parameter to the
specified value

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-3

START_CAPTURE Procedure on
page 19-33

Starts the capture process, which mines redo
logs and enqueues the mined redo information
into the associated queue

STOP_CAPTURE Procedure on
page 19-34

Stops the capture process from mining redo
logs

Note: All procedures commit unless specified otherwise.

Table 19–1 (Cont.) DBMS_CAPTURE_ADM Package Subprograms

Subprogram Description

ABORT_GLOBAL_INSTANTIATION Procedure

19-4 PL/SQL Packages and Types Reference

ABORT_GLOBAL_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_GLOBAL_
INSTANTIATION procedure. Specifically, running this procedure removes data
dictionary information related to the database instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_GLOBAL_INSTANTIATION();

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-5

ABORT_SCHEMA_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_SCHEMA_
INSTANTIATION procedure. Specifically, running this procedure removes data
dictionary information related to the schema instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2);

Parameter

Table 19–2 ABORT_SCHEMA_INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema for which to abort the effects of
preparing instantiation.

ABORT_TABLE_INSTANTIATION Procedure

19-6 PL/SQL Packages and Types Reference

ABORT_TABLE_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_TABLE_
INSTANTIATION procedure. Specifically, running this procedure removes data
dictionary information related to the table instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name IN VARCHAR2);

Parameter

Table 19–3 ABORT_TABLE_INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table for which to abort the effects of
preparing instantiation, specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-7

ALTER_CAPTURE Procedure

This procedure alters a capture process.

Syntax
DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT false,
 start_scn IN NUMBER DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT NULL,
 first_scn IN NUMBER DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT false,
 capture_user IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: Oracle Streams Concepts and Administration for more
information about altering a capture process

Table 19–4 ALTER_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process being altered. You must
specify an existing capture process name. Do not specify
an owner.

ALTER_CAPTURE Procedure

19-8 PL/SQL Packages and Types Reference

rule_set_name The name of the positive rule set for the capture process.
The positive rule set contains the rules that instruct the
capture process to capture changes.

If you want to use a positive rule set for the capture
process, then you must specify an existing rule set in the
form [schema_name.]rule_set_name. For example,
to specify a positive rule set in the HR schema named
job_capture_rules, enter hr.job_capture_
rules. If the schema is not specified, then the current
user is the default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_rule_set
parameter is set to false, then retains any existing
positive rule set. If you specify NULL and the remove_
rule_set parameter is set to true, then removes any
existing positive rule set.

See Also: Oracle Streams Concepts and Administration for
more information about the changes that can be captured
by a capture process

remove_rule_set If true, then removes the positive rule set for the
specified capture process. If you remove a positive rule
set for a capture process, and the capture process does
not have a negative rule set, then the capture process
captures all supported changes to all objects in the
database, excluding database objects in the SYS and
SYSTEM schemas.

If you remove a positive rule set for a capture process,
and the capture process has a negative rule set, then the
capture process captures all supported changes that are
not discarded by the negative rule set.

If false, then retains the positive rule set for the
specified capture process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false.

Table 19–4 (Cont.) ALTER_CAPTURE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-9

start_scn A valid SCN for the database from which the capture
process should start capturing changes. The SCN value
specified must be greater than or equal to the first SCN
for the capture process. An error is returned if an invalid
SCN is specified.

use_database_link If true, then specifies that the capture process at a
downstream database uses a database link to the source
database for administrative purposes relating to the
capture process. If you want a capture process that is not
using a database link currently to begin using a database
link, then specify true. In this case, a database link with
the same name as the global name of the source database
must exist at the downstream database.

If false, then specifies either that the capture process is
running on the source database or that the capture
process at a downstream database does not use a
database link to the source database. If you want a
capture process that is using a database link currently to
stop using a database link, then specify false. In this
case, you must prepare source database objects for
instantiation manually when you add or change capture
process rules that pertain to these objects.

If NULL, then the current value of this parameter for the
capture process is not changed.

Table 19–4 (Cont.) ALTER_CAPTURE Procedure Parameters

Parameter Description

ALTER_CAPTURE Procedure

19-10 PL/SQL Packages and Types Reference

first_scn Specifies the lowest SCN in the redo log from which a
capture process can capture changes. If you specify a
new first SCN for the capture process, then the specified
first SCN must meet the following requirements:

■ It must be greater than the current first SCN for the
capture process.

■ It must be less than or equal to the current applied
SCN for the capture process. However, this
requirement does not apply if the current applied
SCN for the capture process is zero.

■ It must be less than or equal to the required
checkpoint SCN for the capture process.

An error is returned if the specified SCN does not meet
the first three requirements. See "Usage Notes" on
page 19-13 for information about determining an SCN
value that meets all of these conditions.

When the first SCN is modified, the capture process
purges information from its LogMiner data dictionary
that is required to restart it at an earlier SCN.

Also, if the specified first SCN is higher than the current
start SCN for the capture process, then the start SCN is
set automatically to the new value of the first SCN.

Table 19–4 (Cont.) ALTER_CAPTURE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-11

negative_rule_set_name The name of the negative rule set for the capture process.
The negative rule set contains the rules that instruct the
capture process to discard changes.

If you want to use a negative rule set for the capture
process, then you must specify an existing rule set in the
form [schema_name.]rule_set_name. For example,
to specify a negative rule set in the hr schema named
neg_capture_rules, enter hr.neg_capture_
rules. If the schema is not specified, then the current
user is the default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_negative_rule_
set parameter is set to false, then retains any existing
negative rule set. If you specify NULL and the remove_
negative_rule_set parameter is set to true, then
removes any existing negative rule set.

If you specify both a positive and a negative rule set for a
capture process, then the negative rule set is always
evaluated first.

remove_negative_rule_set If true, then removes the negative rule set for the
specified capture process. If you remove a negative rule
set for a capture process, and the capture process does
not have a positive rule set, then the capture process
captures all supported changes to all objects in the
database, excluding database objects in the SYS and
SYSTEM schemas.

If you remove a negative rule set for a capture process,
and a positive rule set exists for the capture process, then
the capture process captures all changes that are not
discarded by the positive rule set.

If false, then retains the negative rule set for the
specified capture process.

If the negative_rule_set_name parameter is
non-NULL, then this parameter should be set to false.

Table 19–4 (Cont.) ALTER_CAPTURE Procedure Parameters

Parameter Description

ALTER_CAPTURE Procedure

19-12 PL/SQL Packages and Types Reference

capture_user The user who captures DML and DDL changes that
satisfy the capture process rule sets. If NULL, then the
capture user is not changed.

To change the capture user, the user who invokes the
ALTER_CAPTURE procedure must be granted DBA role.
Only the SYS user can set the capture_user to SYS.

If you change the capture user, then this procedure
grants the new capture user enqueue privilege on the
queue used by the capture process and configures the
user as a secure queue user of the queue. In addition,
make sure the capture user has the following privileges:

■ Execute privilege on the rule sets used by the
capture process

■ Execute privilege on all rule-based transformation
functions used in the rule set

■ Execute privilege on all packages, including
Oracle-supplied packages, that are invoked in
rule-based transformations run by the capture
process

These privileges must be granted directly to the capture
user. They cannot be granted through roles.

By default, this parameter is set to the user who created
the capture process by running either the CREATE_
CAPTURE procedure in this package or one of the
following procedures in the DBMS_STREAMS_ADM
package with the streams_type parameter set to
capture:

■ ADD_GLOBAL_RULES

■ ADD_SCHEMA_RULES

■ ADD_TABLE_RULES

■ ADD_SUBSET_RULES

Note: If the specified user is dropped using DROP
USER... CASCADE, then the capture_user setting for
the capture process is set to NULL automatically. You
must specify a capture user before the capture process
can run.

Table 19–4 (Cont.) ALTER_CAPTURE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-13

Usage Notes
If you want to alter the first SCN for a capture process, then value specified must
meet the conditions in the description for the first_scn parameter. The following
query determines the current first SCN, applied SCN, and required checkpoint SCN
for each capture process in a database:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
 FROM DBA_CAPTURE;

Also, a capture process is stopped and restarted automatically when you change the
value of one or more of the following ALTER_CAPTURE procedure parameters:

■ start_scn

■ capture_user

BUILD Procedure

19-14 PL/SQL Packages and Types Reference

BUILD Procedure

This procedure extracts the data dictionary of the current database to the redo log
and automatically specifies database supplemental logging by running the
following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Syntax
DBMS_CAPTURE_ADM.BUILD(
 first_scn OUT NUMBER);

Parameters

Usage Notes
You can run this procedure multiple times at a source database.

If you plan to capture changes originating at a source database with a capture
process, then this procedure must be executed at the source database at least once.
When the capture process is started, either at a local source database or at a
downstream database, the capture process uses the extracted information in the
redo log to create a LogMiner data dictionary.

After executing this procedure, you can query the FIRST_CHANGE# column of the
V$ARCHIVED_LOG dynamic performance view where the DICTIONARY_BEGIN
column is YES to determine the lowest SCN value for the database that can be
specified as a first SCN for a capture process. The first SCN for a capture process is
the lowest SCN in the redo log from which the capture process can capture
changes.You can specify the first SCN for a capture process when you run the

Note: This procedure is overloaded. One version of this procedure
contains the OUT parameter first_scn, and the other does not.

Table 19–5 BUILD Procedure Parameter

Parameter Description

first_scn Contains the lowest SCN value corresponding to the data dictionary
extracted to the redo log that can be specified as a first SCN for a
capture process

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-15

CREATE_CAPTURE or ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM
package.

CREATE_CAPTURE Procedure

19-16 PL/SQL Packages and Types Reference

CREATE_CAPTURE Procedure

This procedure creates a capture process.

Syntax
DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name IN VARCHAR2,
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 start_scn IN NUMBER DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT false,
 first_scn IN NUMBER DEFAULT NULL,
 logfile_assignment IN VARCHAR2 DEFAULT 'implicit',
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL);

Parameters

See Also:

■ Oracle Streams Concepts and Administration for more information
about creating a capture process

■ Chapter 82, "DBMS_RULE_ADM" for more information about
rules and rule sets

Table 19–6 CREATE_CAPTURE Procedure Parameters

Parameter Description

queue_name The name of the queue into which the capture process
enqueues changes. You must specify an existing queue in
the form [schema_name.]queue_name. For example, to
specify a queue in the hr schema named streams_queue,
enter hr.streams_queue. If the schema is not specified,
then the current user is the default.

Note: The queue_name setting cannot be altered after the
capture process is created.

capture_name The name of the capture process being created. A NULL
specification is not allowed. Do not specify an owner.

Note: The capture_name setting cannot be altered after
the capture process is created.

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-17

rule_set_name The name of the positive rule set for the capture process.
The positive rule set contains the rules that instruct the
capture process to capture changes.

If you want to use a positive rule set for the capture process,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a positive rule set in the hr schema named job_
capture_rules, enter hr.job_capture_rules. If the
schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no negative rule set is specified,
then the capture process captures all supported changes to
all objects in the database, excluding database objects in the
SYS and SYSTEM schemas.

If you specify NULL, and a negative rule set exists for the
capture process, then the capture process captures all
changes that are not discarded by the negative rule set.

See Also: Oracle Streams Concepts and Administration for
more information about the changes that can be captured by
a capture process

start_scn A valid SCN for the database from which the capture
process should start capturing changes. If the specified
value is lower than the current SCN of the source database,
then either the first_scn should be specified, or the SCN
value specified for start_scn must be greater than or
equal to the first SCN of an existing capture process which
has taken at least one checkpoint.

If start_scn is NULL and no value is specified for the
first_scn parameter, then the database's current SCN is
used as start SCN. If start_scn is NULL and a non-NULL
value is specified for the first_scn parameter, then the
first_scn value is used.

If a value is specified for both start_scn and first_scn,
then the start_scn value must be greater than or equal to
the first_scn value.

An error is returned if an invalid SCN is specified.

Table 19–6 (Cont.) CREATE_CAPTURE Procedure Parameters

Parameter Description

CREATE_CAPTURE Procedure

19-18 PL/SQL Packages and Types Reference

source_database The global name of the source database. The source
database is where the changes to be captured originated.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

If NULL, or if the specified name is the same as the global
name of the current database, then local capture is assumed
and only the default values for use_database_link and
first_scn can be specified.

use_database_link If true, then specifies that the capture process at a
downstream database uses a database link to the source
database for administrative purposes relating to the capture
process. The capture process uses the database link to
prepare database objects for instantiation at the source
database and run the DBMS_CAPTURE_ADM.BUILD
procedure at the source database, if necessary.

If false, then specifies either that the capture process is
running on the source database or that the capture process
at a downstream database does not use a database link to
the source database. In this case, you must perform the
following administrative tasks manually:

■ Run the DBMS_CAPTURE_ADM.BUILD procedure at the
source database to extract the data dictionary at the
source database to the redo log when a capture process
is created

■ Obtain the first SCN for the downstream capture
process if the first SCN is not specified during capture
process creation. The first SCN is needed to create and
maintain a capture process.

■ Prepare source database objects for instantiation

Table 19–6 (Cont.) CREATE_CAPTURE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-19

first_scn Specifies the lowest SCN in the redo log from which a
capture process can capture changes. A non-NULL value for
this parameter is valid only if the DBMS_CAPTURE_
ADM.BUILD procedure has been run at least once at the
source database.

You can query the FIRST_CHANGE# column of the
V$ARCHIVED_LOG dynamic performance view where the
DICTIONARY_BEGIN column is YES to determine whether
the DBMS_CAPTURE_ADM.BUILD procedure has been run
on a source database. Any of the values returned by such a
query can be used as a first_scn value if the redo log
containing that SCN value is still available.

logfile_assignment If implicit, the default, then the capture process at a
downstream database scans all redo log files added by log
transport services or manually from the source database to
the downstream database.

If explicit, then a redo log file is scanned by a capture
process at a downstream database only if the capture
process name is specified in the FOR logminer_session_
name clause when the redo log file is added manually to the
downstream database. If explicit, then log transport
services cannot be used to add redo log files to the capture
process being created.

If you specify explicit for this parameter for a local
capture process, then the local capture process cannot use
the online redo log to find changes. In this case, the capture
process must use the archived redo log.

See Also: "Usage Notes" on page 19-20 for information
about adding redo log files manually

Table 19–6 (Cont.) CREATE_CAPTURE Procedure Parameters

Parameter Description

CREATE_CAPTURE Procedure

19-20 PL/SQL Packages and Types Reference

Usage Notes
The user who invokes this procedure must be granted DBA role.

The capture_user parameter specifies the user who captures changes that satisfy
the capture process rule sets. This user must have the necessary privileges to
capture changes. This procedure grants the capture user enqueue privilege on the

negative_rule_set_name The name of the negative rule set for the capture process.
The negative rule set contains the rules that instruct the
capture process to discard changes.

If you want to use a negative rule set for the capture
process, then you must specify an existing rule set in the
form [schema_name.]rule_set_name. For example, to
specify a negative rule set in the hr schema named neg_
capture_rules, enter hr.neg_capture_rules. If the
schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified,
then the capture process captures all supported changes to
all objects in the database, excluding database objects in the
SYS and SYSTEM schemas.

If you specify NULL, and a positive rule set exists for the
capture process, then the capture process captures all
changes that are not discarded by the positive rule set.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for a
capture process, then the negative rule set is always
evaluated first.

capture_user The user who captures DML and DDL changes that satisfy
the capture process rule sets. If NULL, then the user who
runs the CREATE_CAPTURE procedure is used.

Only a user who is granted DBA role can set a capture user.
Only the SYS user can set the capture_user to SYS.

Note: If the specified user is dropped using DROP USER...
CASCADE, then the capture_user setting for the capture
process is set to NULL automatically. You must specify a
capture user before the capture process can run.

Table 19–6 (Cont.) CREATE_CAPTURE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-21

queue used by the capture process and configures the user as a secure queue user of
the queue.

In addition, make sure the capture user has the following privileges:

■ Execute privilege on the rule sets used by the capture process

■ Execute privilege on all rule-based transformation functions used in the rule set

■ Execute privilege on all packages, including Oracle-supplied packages, that are
invoked in rule-based transformations run by the capture process

These privileges must be granted directly to the capture user. They cannot be
granted through roles.

If you specify explicit for the logfile_assignment parameter, then you add a
redo log file manually to a downstream database using the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 file_name FOR capture_process;

Here, file_name is the name of the redo log file being added and capture_
process is the name of the capture process that will use the redo log file at the
downstream database. The capture_process is equivalent to the logminer_
session_name and must be specified. The redo log file must be present at the site
running the downstream database. You must transfer this file manually to the site
running the downstream database using the DBMS_FILE_TRANSFER package, FTP,
or some other transfer method.

Note:

■ A capture user does not require privileges on a database object
to capture changes to the database object. The capture process
may pass these changes to a rule-based transformation
function. Therefore, make sure you consider security
implications when you configure a capture process.

■ Creation of the first capture process in a database may take
some time because the data dictionary is duplicated during this
creation.

CREATE_CAPTURE Procedure

19-22 PL/SQL Packages and Types Reference

See Also: Oracle Database SQL Reference for more information
about the ALTER DATABASE statement and Oracle Data Guard
Concepts and Administration for more information registering redo
log files

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-23

DROP_CAPTURE Procedure

This procedure drops a capture process.

Syntax
DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
When you use this procedure to drop a capture process, information about rules
created for the capture process using the DBMS_STREAMS_ADM package is removed
from the data dictionary views for Streams rules. Information about such a rule is
removed even if the rule is not in either rule set for the capture process.

 The following are the data dictionary views for Streams rules:

■ ALL_STREAMS_GLOBAL_RULES

See Also:

■ "STOP_CAPTURE Procedure" on page 19-34

■ Oracle Streams Concepts and Administration for more information
about Streams data dictionary views

Table 19–7 DROP_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process being dropped. Specify an
existing capture process name. Do not specify an owner.

drop_unused_rule_sets If true, then drops any rule sets, positive and negative, used
by the specified capture process if these rule sets are not used
by any other Streams client, which includes capture
processes, propagations, apply processes, and messaging
clients. If this procedure drops a rule set, then this procedure
also drops any rules in the rule set that are not in another rule
set.

If false, then does not drop the rule sets used by the
specified capture process, and the rule sets retain their rules.

DROP_CAPTURE Procedure

19-24 PL/SQL Packages and Types Reference

■ DBA_STREAMS_GLOBAL_RULES

■ ALL_STREAMS_MESSAGE_RULES

■ DBA_STREAMS_MESSAGE_RULES

■ ALL_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ ALL_STREAMS_TABLE_RULES

■ DBA_STREAMS_TABLE_RULES

Note: A capture process must be stopped before it can be
dropped.

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-25

INCLUDE_EXTRA_ATTRIBUTE Procedure

This procedure includes or excludes an extra attribute in logical change records
(LCRs) captured by the specified capture process.

Syntax
DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 include IN BOOLEAN DEFAULT true);

Parameters

Table 19–8 INCLUDE_EXTRA_ATTRIBUTE Procedure Parameters

Parameter Description

capture_name The name of the capture process. Specify an existing capture
process name. Do not specify an owner.

INCLUDE_EXTRA_ATTRIBUTE Procedure

19-26 PL/SQL Packages and Types Reference

Usage Notes
The redo log contains information about each change made to a database, and some
of this information is not captured by a capture process unless you use this
procedure to instruct a capture process to capture it. This procedure enables you to
specify extra information in the redo log that a capture process should capture. If
you want to exclude an extra attribute that is being captured by a capture process,
then specify the attribute and specify false for the include parameter.

attribute_name The name of the attribute to be included in or excluded from
LCRs captured by the capture process. The following names
are valid settings:

■ row_id

The rowid of the row changed in a row LCR. This attribute
is not included in DDL LCRs, nor in row LCRs for
index-organized tables. The type is VARCHAR2.

■ serial#

The serial number of the session that performed the
change captured in the LCR. The type is NUMBER.

■ session#

The identifier of the session that performed the change
captured in the LCR. The type is NUMBER.

■ thread#

The thread number of the instance in which the change
captured in the LCR was performed. Typically, the thread
number is relevant only in a Real Application Clusters
environment. The type is NUMBER.

■ tx_name

The name of the transaction that includes the LCR. The
type is VARCHAR2.

■ username

The name of the user who performed the change captured
in the LCR. The type is VARCHAR2.

include If true, then the specified attribute is included in LCRs
captured by the capture process

If false, then the specified attribute is excluded from LCRs
captured by the capture process

Table 19–8 INCLUDE_EXTRA_ATTRIBUTE Procedure Parameters

Parameter Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-27

PREPARE_GLOBAL_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all the
tables in the database at another database.

This procedure records the lowest SCN of each object in the database for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the database for instantiation.

Syntax
DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION;

Usage Notes
Run this procedure at the source database.

If you use a capture process to capture all of the changes to a database, then use this
procedure to prepare the tables in the database for instantiation after the capture
process has been configured.

PREPARE_SCHEMA_INSTANTIATION Procedure

19-28 PL/SQL Packages and Types Reference

PREPARE_SCHEMA_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all tables in
the schema at another database.

This procedure records the lowest SCN of each object in the schema for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the schema for instantiation.

Syntax
DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2);

Parameter

Usage Notes
Run this procedure at the source database. If you use a capture process to capture
all of the changes to schema, then use this procedure to prepare the tables in the
schema for instantiation after the capture process has been configured.

Table 19–9 PREPARE_SCHEMA_INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema. For example, hr.

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-29

PREPARE_TABLE_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating the table at
another database.

This procedure records the lowest SCN of the table for instantiation. SCNs
subsequent to the lowest SCN for an object can be used for instantiating the object.

 Syntax
DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name IN VARCHAR2);

Parameters

Usage Notes
Run this procedure at the source database. If you use a capture process to capture
all of the changes to schema, then use this procedure to prepare the tables in the
schema for instantiation after the capture process has been configured.

Table 19–10 PREPARE_TABLE_INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table specified as [schema_name.]object_
name. For example, hr.employees. If the schema is not
specified, then the current user is the default.

SET_PARAMETER Procedure

19-30 PL/SQL Packages and Types Reference

SET_PARAMETER Procedure

This procedure sets a capture process parameter to the specified value.

Syntax
DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Usage Notes
When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

Capture Process Parameters
The following table lists the parameters for the capture process.

Table 19–11 SET_PARAMETER Procedure Parameters

Parameter Description

capture_name The name of the capture process. Do not specify an owner.

The capture process uses LogMiner to capture changes from
the redo logs.

parameter The name of the parameter you are setting. See "Capture
Process Parameters" on page 19-30 for a list of these
parameters.

value The value to which the parameter is set

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-31

Table 19–12 Capture Process Parameters

Parameter Name
Possible
Values Default Description

disable_on_limit Y or N N If Y, then the capture process is disabled if the
capture process terminates because it reached a
value specified by the time_limit parameter or
message_limit parameter.

If N, then the capture process is restarted
immediately after stopping because it reached a
limit.

maximum_scn A valid SCN
or infinite

infinite The capture process is disabled before capturing
a change record with an SCN greater than or
equal to the value specified.

If infinite, then the capture process runs
regardless of the SCN value.

message_limit A positive
integer or
infinite

infinite The capture process stops after capturing the
specified number of messages.

If infinite, then the capture process continues
to run regardless of the number of messages
captured.

parallelism A positive
integer

1 The number of parallel execution servers that
may concurrently mine the redo log

Note:

■ When you change the value of this
parameter, the capture process is stopped
and restarted automatically.

■ Setting the parallelism parameter to a
number higher than the number of available
parallel execution servers may disable the
capture process. Make sure the PROCESSES
and PARALLEL_MAX_SERVERS initialization
parameters are set appropriately when you
set the parallelism capture process
parameter.

SET_PARAMETER Procedure

19-32 PL/SQL Packages and Types Reference

startup_seconds 0, a positive
integer, or
infinite

0 The maximum number of seconds to wait for
another instantiation of the same capture process
to finish. If the other instantiation of the same
capture process does not finish within this time,
then the capture process does not start. This
parameter is useful only if you are starting the
capture process manually.

If infinite, then a capture process does not
start until another instantiation of the same
capture process finishes.

time_limit A positive
integer or
infinite

infinite The capture process stops as soon as possible
after the specified number of seconds since it
started.

If infinite, then the capture process continues
to run until it is stopped explicitly.

trace_level 0 or a
positive
integer

0 Set this parameter only under the guidance of
Oracle Support Services.

write_alert_log Y or N Y If Y, then the capture process writes a message to
the alert log on exit.

If N, then the capture process does not write a
message to the alert log on exit.

The message specifies the reason the capture
process stopped.

Note:

■ For all parameters that are interpreted as positive integers, the
maximum possible value is 4,294,967,295. Where
applicable, specify infinite for larger values.

■ For parameters that require an SCN setting, any valid SCN
value can be specified.

Table 19–12 (Cont.) Capture Process Parameters

Parameter Name
Possible
Values Default Description

Summary of DBMS_CAPTURE_ADM Subprograms

DBMS_CAPTURE_ADM 19-33

START_CAPTURE Procedure

This procedure starts the capture process, which mines redo logs and enqueues the
mined redo information into the associated queue.

The start status is persistently recorded. Hence, if the status is ENABLED, then the
capture process is started upon database instance startup.

The capture process is a background Oracle process and is prefixed by c.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_
AQADM.STOP_QUEUE have no effect on the start status of a capture process.

Syntax
DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name IN VARCHAR2);

Parameters

Usage Notes
You can create the capture process using the following procedures:

■ DBMS_CAPTURE_ADM.CREATE_CAPTURE

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

See Also: Chapter 96, "DBMS_STREAMS_ADM"

Table 19–13 START_CAPTURE Procedure Parameter

Parameter Description

capture_name The name of the capture process. Do not specify an owner.

The capture process uses LogMiner to capture changes in the
redo information. A NULL setting is not allowed.

STOP_CAPTURE Procedure

19-34 PL/SQL Packages and Types Reference

STOP_CAPTURE Procedure

This procedure stops the capture process from mining redo logs.

The stop status is persistently recorded. Hence, if the status is DISABLED, then the
capture process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_
AQADM.STOP_QUEUE have no effect on the stop status of a capture process.

Syntax
DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT false);

Parameters

Table 19–14 STOP_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process. A NULL setting is not
allowed. Do not specify an owner.

force This parameter is reserved for future use. In the current
release, valid BOOLEAN settings are ignored.

DBMS_CDC_PUBLISH 20-1

20
DBMS_CDC_PUBLISH

The DBMS_CDC_PUBLISH package is used by a publisher to set up an Oracle
Change Data Capture system to capture and publish change data from one or more
Oracle relational source tables.

Change Data Capture captures and publishes only committed data. Oracle Change
Data Capture identifies new data that has been added to, updated in, or removed
from relational tables, and publishes the change data in a form that is usable by
subscribers.

Typically, a Change Data Capture system has one publisher who captures and
publishes changes for any number of Oracle relational source tables. The publisher
then provides subscribers (applications or individuals) with access to the published
data.

Note: In previous releases, this package was named DBMS_
LOGMNR_CDC_PUBLISH. Beginning with release 10g, the LOGMNR
string has been removed from the name, resulting in the name
DBMS_CDC_PUBLISH. Although both variants of the name are still
supported, the variant with the LOGMNR string has been deprecated
and may not be supported in a future release

See Also: Oracle Data Warehousing Guide for more information
about Oracle Change Data Capture and DBMS_CDC_SUBSCRIBE
for information on the package used to subscribe to published
change data

20-2 PL/SQL Packages and Types Reference

This chapter contains the following topics:

■ Using DBMS_CDC_PUBLISH

■ Overview

■ Security Model

■ Deprecated Subprograms

■ Summary of DBMS_CDC_PUBLISH Subprograms

Using DBMS_CDC_PUBLISH

DBMS_CDC_PUBLISH 20-3

Using DBMS_CDC_PUBLISH

■ Overview

■ Security Model

■ Deprecated Subprograms

Overview

Through the DBMS_CDC_PUBLISH package, the publisher creates and maintains
change sources, change sets, and change tables, and eventually drops them when
they are no longer useful.

The publisher, typically a database administrator, is concerned primarily with the
source of the data and with creating the schema objects that describe the structure
of the capture system: change sources, change sets, and change tables.

Most Change Data Capture systems have one publisher and many subscribers. The
publisher accomplishes the following main objectives:

1. Determines which source table changes need to be published.

2. Decides whether to capture changes asynchronously or synchronously.

3. Uses the procedures in the DBMS_CDC_PUBLISH package to capture change
data from the source tables and make it available by creating and administering
the change source, change set, and change table objects.

4. Allows controlled access to subscribers by using the SQL GRANT and REVOKE
statements to grant and revoke the SELECT privilege on change tables for users
and roles. (This is necessary to allow the subscribers to subscribe to the change
data using the DBMS_CDC_SUBSCRIBE package.)

Security Model

To use the DBMS_CDC_PUBLISH package, the publisher must have the EXECUTE_
CATALOG_ROLE privilege.

Deprecated Subprograms

20-4 PL/SQL Packages and Types Reference

Deprecated Subprograms

The following subprograms have been deprecated beginning with release 10g:

■ DBMS_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW

Dropping a subscriber view is now performed automatically by Change Data
Capture.

■ DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION with a subscription handle

When dropping a subscription, the publisher should now specify the name of
the subscription to be dropped, not the subscription handle.

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-5

Summary of DBMS_CDC_PUBLISH Subprograms

Table 20–1 describes the subprograms in the DBMS_CDC_PUBLISH supplied
package and the mode or modes with which each can be used. A value of All in
Mode column of Table 20–1 indicates that the subprogram can be used with
synchronous and both modes of asynchronous Change Data Capture.

Table 20–1 DBMS_CDC_PUBLISH Package Subprograms

Subprogram Mode Description

ALTER_AUTOLOG_CHANGE_
SOURCE Procedure on
page 20-7

Asynchronous Changes one or more properties of an existing AutoLog
change source

ALTER_CHANGE_SET
Procedure on page 20-9

All Changes one or more of the properties of an existing
change set

ALTER_CHANGE_TABLE
Procedure on page 20-13

All Adds or drops columns for an existing change table, or
changes the properties of an existing change table

CREATE_AUTOLOG_
CHANGE_SOURCE Procedure
on page 20-16

Asynchronous Creates an AutoLog change source

CREATE_CHANGE_SET
Procedure on page 20-19

All Creates a change set

CREATE_CHANGE_TABLE
Procedure on page 20-22

All Creates a change table in a specified schema

DROP_CHANGE_SET
Procedure on page 20-27

All Drops an existing change set

DROP_CHANGE_SOURCE
Procedure on page 20-28

Asynchronous Drops an existing AutoLog change source

DROP_CHANGE_TABLE
Procedure on page 20-29

All Drops an existing change table

DROP_SUBSCRIPTION
Procedure on page 20-31

All Allows a publisher to drop a subscription that was created
by a subscriber

Summary of DBMS_CDC_PUBLISH Subprograms

20-6 PL/SQL Packages and Types Reference

PURGE Procedure on page 20-33 All Removes unneeded rows from all change tables in the
staging database

PURGE_CHANGE_SET
Procedure on page 20-34

All Removes unneeded rows from all change tables in a
specified change set

PURGE_CHANGE_TABLE
Procedure on page 20-35

All Removes unneeded rows from a specified change table

Table 20–1 (Cont.) DBMS_CDC_PUBLISH Package Subprograms

Subprogram Mode Description

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-7

ALTER_AUTOLOG_CHANGE_SOURCE Procedure

This procedure changes the properties of an existing AutoLog change source.

Syntax
DBMS_CDC_PUBLISH.ALTER_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN VARCHAR2 DEFAULT 'N',
 first_scn IN NUMBER DEFAULT NULL);

Parameters

Exceptions

Table 20–2 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Parameters

Parameter Description

change_
source_name

Name of an existing change source. Change source names
follow Oracle schema object naming rules.

description New description of the change source. The description must be
specified using 255 or fewer characters.

remove_
description

A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to
NULL. If the value is 'N', then the current description is
unchanged.

Do not specify the description parameter with this parameter.

first_scn New first SCN.

Table 20–3 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

Exception Description

ORA-31401 Specified change source is not an existing change source

ORA-31452 Invalid value for parameter, expecting: Y or N

ORA-31497 Invalid value specified for first_scn

ORA-31498 The description and remove_description parameters cannot both
be specified

ALTER_AUTOLOG_CHANGE_SOURCE Procedure

20-8 PL/SQL Packages and Types Reference

Usage Notes
■ Properties supplied to this procedure with a NULL value are unchanged.

■ This procedure can be used to change more than one property at a time.

■ This procedure can be used in determining which redo logs are no longer
needed for an asynchronous AutoLog change set.

ORA-31499 Null value specified for required parameter

ORA-31501 Specified change source is not an AutoLog change source

ORA-31504 Cannot alter or drop predefined change source

ORA-31507 Specified parameter value longer than maximum length

See Also: The section on asynchronous Change Data Capture and
redo log files in Oracle Data Warehousing Guide for information on
how the publisher can use the ALTER_AUTOLOG_CHANGE_SOURCE
procedure in determining which redo log files are no longer needed
for an asynchronous AutoLog change set

Table 20–3 (Cont.) ALTER_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

Exception Description

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-9

ALTER_CHANGE_SET Procedure

This procedure changes the properties of an existing change set that was created
with the CREATE_CHANGE_SET procedure.

Syntax
DBMS_CDC_PUBLISH.ALTER_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 enable_capture IN CHAR DEFAULT NULL,
 recover_after_error IN CHAR DEFAULT NULL,
 remove_ddl IN CHAR DEFAULT NULL,
 stop_on_ddl IN CHAR DEFAULT NULL);

Parameters

Table 20–4 ALTER_CHANGE_SET Procedure Parameters

Parameter Description

change_set_name Name of an existing change set. Change set names follow the
Oracle schema object naming rules.

description New description of the change set. Specify using 255 or fewer
characters.

remove_
description

A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to
NULL. If the value is 'N', then the current description is
unchanged.

Do not specify the description parameter with this parameter.

enable_capture A value of 'Y' or 'N'.

If the value is 'Y', then change data capture is enabled for this
change set.

If the value is 'N', then change data capture is disabled for this
change set.

Synchronous change sets are created with change data capture
enabled and cannot be disabled.

Asynchronous change sets are created with change data capture
disabled.

ALTER_CHANGE_SET Procedure

20-10 PL/SQL Packages and Types Reference

Exceptions

recover_after_
error

A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture will attempt to
recover from earlier capture errors.

If the value is 'N', then Change Data Capture will not attempt to
recover from earlier capture errors.

remove_ddl A value of 'Y' or 'N'.

If the value is 'Y' and the value of the recover_after_error
parameter is 'Y', then any DDL records that may have caused
capture errors will be filtered out during recovery.

If the value is 'N', then DDL records that may have caused capture
errors will not be filtered out during recovery.

This parameter has meaning only when the recover_after_
error parameter is specified with a value of 'Y'.

stop_on_ddl A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL
event is detected.

If the value is 'N', then Change Data Capture continues when a
DDL event is detected.

See the Usage Notes for additional information about this
parameter.

Table 20–5 ALTER_CHANGE_SET Procedure Exceptions

Exception Description

ORA-31410 Specified change set is not an existing change set

ORA-31452 Invalid value for parameter, expecting: Y or N

ORA-31455 Invalid lock handle while acquiring lock

ORA-31469 Cannot enable Change Data Capture for change set

ORA-31498 The description and remove_description parameters cannot both
be specified

ORA-31499 Null value specified for required parameter

ORA-31505 Cannot alter or drop predefined change set

Table 20–4 (Cont.) ALTER_CHANGE_SET Procedure Parameters

Parameter Description

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-11

Usage Notes

■ The publisher can use this procedure for asynchronous and synchronous
Change Data Capture. However, the predefined synchronous change set,
SYNC_SET, cannot be altered, and the following parameters cannot be altered
for publisher-defined synchronous change sets: enable_capture, recover_
after_error, remove_ddl, and stop_on_ddl.

■ Properties supplied to this procedure with a NULL value are unchanged.

■ This procedure can alter more than one parameter at a time.

■ The effect of the stop_on_ddl parameter is as follows:

– When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data
Capture stops if DDL is encountered during change data capture. Some
DDL statements can adversely affect capture, such as a statement that drops
a source table column that is being captured. The publisher has an
opportunity to analyze and adjust to DDL changes that may adversely
affect change tables while capture is stopped, thereby preventing possible
errors during capture.

Because these statements do not affect the column data itself, Change Data
Capture does not stop capturing change data when the stop_on_ddl
parameter is set to 'Y' and any of the following statements is encountered:

* ANALYZE TABLE

* LOCK TABLE

* GRANT privileges to access a table

* REVOKE privileges to access a table

* COMMENT on a table

* COMMENT on a column

These statements can be issued on the source database without concern for
their impact on Change Data Capture processing.

ORA-31507 Specified parameter value longer than maximum length

ORA-31514 Change set disabled due to capture error

Table 20–5 (Cont.) ALTER_CHANGE_SET Procedure Exceptions

Exception Description

ALTER_CHANGE_SET Procedure

20-12 PL/SQL Packages and Types Reference

– When the stop_on_ddl parameter is set to 'N', Change Data Capture does
not stop if DDL is encountered during change data capture. If a change set
does not stop on DDL, but a DDL change occurs that affects change tables,
that change can result in a capture error. (There are also system conditions
that can cause capture errors, such as being out of disk space.)

Whenever a DDL statement causes processing to stop, a message is written to
the alert log indicating for which change set processing has been stopped and
the DDL statement that caused it to be stopped. Similarly, whenever DDL
statements are ignored by Change Data Capture and processing continues, a
message is written to the alert log indicating which DDL statement was
ignored.

■ The publisher can attempt to recover an asynchronous change set after a
capture error by specifying 'Y' for the recover_after_error parameter.
Capture errors can occur when any of the following is true:

– The stop_on_ddl parameter is set to 'Y' and there is a DDL record in the
change data. In this case, to recover from the error, the publisher must also
specify 'Y' for the remove_ddl parameter.

– The stop_on_ddl parameter is set to 'N' and there is a DDL record that
affects capture. For example, if the publisher drops and re-creates a change
table, it causes an error the next time that Change Data Capture attempts to
add change data to the named change table.

– A miscellaneous error occurs, such as running out of disk space, or a redo
log file error (such as ORA-01688: unable to extend table string.string
partition string by string in tablespace string).

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for information on the effects of, and how to
recover from, a capture error

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for more information on how to recover from a
capture error

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-13

ALTER_CHANGE_TABLE Procedure

This procedure adds columns to, or drops columns from, or changes the properties
of, a change table that was created with the CREATE_CHANGE_TABLE procedure.

Syntax
DBMS_CDC_PUBLISH.ALTER_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 operation IN VARCHAR2,
 column_list IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR);

Parameters

Table 20–6 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description

owner The schema that owns the change table.

change_table_name The change table that is being altered. Change table names
follow the Oracle schema object naming rules.

operation Either the value ADD or DROP to indicate whether to add or drop
the user columns specified with the column_list parameter
and any control columns specified by other parameters.

column_list User column names and datatypes for each column of the source
table that should be added to, or dropped from, the change
table. The list is comma-delimited.

ALTER_CHANGE_TABLE Procedure

20-14 PL/SQL Packages and Types Reference

Exceptions

rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

Each listed parameter specifies a particular control column, as
follows:

■ The rs_id parameter specifies the RSID$ control column.

■ The row_id parameter specifies the ROW_ID$ control
column.

■ The user_id parameter specifies the USERNAME$ control
column.

■ The timestamp parameter specifies the TIMESTAMP$
control column.

■ The object_id parameter specifies the SYS_NC_OID$
control column.

■ The source_colmap parameter specifies the SOURCE_
COLMAP$ control column.

■ The target_colmap parameter specifies the TARGET_
COLMAP$ control column.

Each parameter must have a value of either 'Y' or 'N', where:

■ 'Y': Adds the specified control column to, or drops it from
the change table, as indicated by the operation parameter.

■ 'N': Neither adds the specified control column, nor drops it
from the change table.

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for a complete description of control columns

Table 20–7 ALTER_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31403 Specified change table already contains the specified column

ORA-31409 One or more values for input parameters are incorrect

ORA-31415 Specified change set does not exist

ORA-31416 Invalid SOURCE_COLMAP value

ORA-31417 Column list contains control column control-column-name

Table 20–6 (Cont.) ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-15

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ The publisher cannot add and drop user columns in the same call to the
ALTER_CHANGE_TABLE procedure; these schema changes require separate
calls.

■ The publisher must not specify the name of the control columns in the
column_ list parameter.

■ When altering an asynchronous change table, the publisher must accept the
default value or specify 'N' for the source_colmap and object_id
parameters.

ORA-31421 Change table does not exist

ORA-31422 Specified owner schema does not exist

ORA-31423 Specified change table does not contain the specified column

ORA-31454 Invalid value specified for operation parameter, expecting ADD
or DROP

ORA-31455 Nothing to alter

ORA-31456 Error executing a procedure in the DBMS_CDC_UTILITY
package

ORA-31459 System triggers for DBMS_CDC_PUBLISH package are not
installed

ORA-31471 Invalid OBJECT_ID value

See Also: Oracle Data Warehousing Guide for information about
the impact on subscriptions when a publisher adds a column to a
change table

Table 20–7 (Cont.) ALTER_CHANGE_TABLE Procedure Exceptions

Exception Description

CREATE_AUTOLOG_CHANGE_SOURCE Procedure

20-16 PL/SQL Packages and Types Reference

CREATE_AUTOLOG_CHANGE_SOURCE Procedure

This procedure creates an AutoLog change source. An AutoLog change source is
based on of a set of redo log files automatically copied by log transport services to
the system on which the staging database resides.

Syntax
DBMS_CDC_PUBLISH.CREATE_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2,
 first_scn IN NUMBER);

Parameters

Exceptions

Table 20–8 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Parameters

Parameter Description

change_source_
name

Name of the change source. Change source names follow the
Oracle schema object naming rules.

description Description of the change source. Specify using 255 or fewer
characters.

source_database Global name of the change source's source database instance.

first_scn The SCN of the start of a LogMiner dictionary that is in the
change source's archived redo log files.

Table 20–9 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

Exception Description

ORA-31436 Duplicate change source specified

ORA-31497 Invalid value specified for first_scn

ORA-31499 Null value specified for required parameter

ORA-31507 Specified parameter value is longer than the maximum length

ORA-31508 Invalid parameter value for synchronous change set

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-17

Usage Notes
■ The publisher can use this procedure for asynchronous Change Data Capture

only.

■ The publisher must take care when specifying a value for the source_
database parameter. Change Data Capture does not validate this value when
creating the change source. The publisher can query the GLOBAL_NAME column
in the GLOBAL_NAME view at the source database for the source_database
parameter value.

■ The publisher must configure log transport services to automatically copy the
log files to the system on which the staging database resides.

■ An AutoLog change source must begin with an archived redo log file that
contains a LogMiner dictionary. The CREATE_AUTOLOG_CHANGE_SOURCE
first_scn parameter indicates the SCN for this dictionary extraction and is
the point at which the change source can begin capturing changes. The
publisher can determine the value for the first_scn parameter using either of
the following methods:

– Direct DBMS_CAPTURE_ADM.BUILD to return the value when the
dictionary is built:

SET SERVEROUTPUT ON
VARIABLE FSCN NUMBER;
BEGIN
 :FSCN := 0;
 DBMS_CAPTURE_ADM.BUILD(:FSCN);
 DBMS_OUTPUT.PUT_LINE('The first_scn value is ' || :FSCN);
END;
/
The first_scn value is 207722

– Make the following query on the source database. If this query returns
multiple distinct values for first_change#, then the data dictionary has
been extracted more than once and the publisher should choose the
first_change# value that is the most appropriate to the change source.

SELECT DISTINCT FIRST_CHANGE#, NAME

See Also: The section on performing asynchronous AutoLog
publishing in Oracle Data Warehousing Guide for information on
configuring log transport services to automatically copy the log
files to the system on which the staging database resides

CREATE_AUTOLOG_CHANGE_SOURCE Procedure

20-18 PL/SQL Packages and Types Reference

 FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

■ For the asynchronous mode of Change Data Capture, the amount of change
data captured is dependent on the level of supplemental logging enabled at the
source database.

See Also: The section on performing asynchronous AutoLog
publishing in Oracle Data Warehousing Guide for information on
archived redo log files and the LogMiner dictionary

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for information about supplemental logging

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-19

CREATE_CHANGE_SET Procedure

This procedure allows the publisher to create a change set. For asynchronous
Change Data Capture, the publisher can optionally provide beginning and ending
date values at which to begin and end change data capture.

Syntax
DBMS_CDC_PUBLISH.CREATE_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 change_source_name IN VARCHAR2,
 stop_on_ddl IN CHAR DEFAULT 'N',
 begin_date IN DATE DEFAULT NULL,
 end_date IN DATE DEFAULT NULL);

Parameters

Table 20–10 CREATE_CHANGE_SET Procedure Parameters

Parameter Description

change_set_name Name of the change set. Change set names follow the Oracle
schema object naming rules.

description Description of the change set. Specify using 255 or fewer
characters.

change_source_
name

Name of the existing change source to contain this change set.

stop_on_ddl A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL
event is detected.

If the value is 'N', then Change Data Capture continues when a
DDL event is detected.

See the Usage Notes for additional information about this
parameter.

begin_date Date on which the publisher wants the change set to begin
capturing changes. A value for this parameter is valid for the
asynchronous mode of Change Data Capture only.

end_date Date on which the publisher wants the change set to stop
capturing changes. A value for this parameter is valid for the
asynchronous mode of Change Data Capture only.

CREATE_CHANGE_SET Procedure

20-20 PL/SQL Packages and Types Reference

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture. However, the default values for the following
parameters are the only supported values for synchronous change sets: begin_
date, end_date, and stop_on_ddl.

■ The begin_date and end_date parameters are optional. The publisher can
specify neither of them, one of them, or both. The effect of these parameters is
as follows:

– When a begin_date is specified, changes from transactions that begin on
or after that date are captured.

– When a begin_date is not specified, capture starts with the earliest
available change data.

– When an end_date is specified, changes from transactions that are
committed on or before that date are captured.

– When an end_date is not specified, Change Data Capture continues
indefinitely.

■ The effect of the stop_on_ddl parameter is as follows:

– When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data
Capture stops if DDL is encountered during change data capture. Some
DDL statements can adversely affect capture, such as a statement that drops

Table 20–11 CREATE_CHANGE_SET Procedure Exceptions

Exception Description

ORA-31401 Specified change source is not an existing change source

ORA-31407 The end_date must be greater than the begin_date

ORA-31437 Duplicate change set specified

ORA-31452 Invalid value for parameter, expecting: Y or N

ORA-31499 Null value specified for required parameter

ORA-31503 Invalid date supplied for begin_date or end_date

ORA-31507 Specified parameter value longer than maximum length

ORA-31508 Invalid parameter value for synchronous change set

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-21

a source table column that is being captured. The publisher has an
opportunity to analyze and adjust to DDL changes that may adversely
affect change tables while capture is stopped, thereby preventing possible
errors during capture.

Because these statements do not affect the column data itself, Change Data
Capture does not stop capturing change data when the stop_on_ddl
parameter is set to 'Y' and any of the following statements is encountered:

* ANALYZE TABLE

* LOCK TABLE

* GRANT privileges to access a table

* REVOKE privileges to access a table

* COMMENT on a table

* COMMENT on a column

These statements can be issued on the source database without concern for
their impact on Change Data Capture processing.

– When the stop_on_ddl parameter is set to 'N', Change Data Capture does
not stop if DDL is encountered during change data capture. If a change set
does not stop on DDL, but a DDL change occurs that affects capture, that
change can result in a capture error.

Whenever a DDL statement causes processing to stop, a message is written to
the alert log indicating for which change set processing has been terminated
and the DDL statement that caused it to be terminated. Similarly, whenever
DDL statements are ignored by Change Data Capture and processing continues,
a message is written to the alert log indicating which DDL statement was
ignored.

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for information on the effects of, and how to
recover from, a capture error

CREATE_CHANGE_TABLE Procedure

20-22 PL/SQL Packages and Types Reference

CREATE_CHANGE_TABLE Procedure

This procedure creates a change table in a specified schema.

Syntax
DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 change_set_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_type_list IN VARCHAR2,
 capture_values IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR,
 options_string IN VARCHAR2);

Parameters

Note: Oracle recommends that the publisher be certain that the
source table that will be referenced in a CREATE_CHANGE_TABLE
procedure has been created prior to calling this procedure,
particularly if the change set that will be specified in the procedure
has the stop_on_ddl parameter set to 'Y'.

Table 20–12 CREATE_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_name Name of the change table that is being created. Change table
names follow the Oracle schema object naming rules.

change_set_name Name of the change set in which this change table resides.

source_schema The schema where the source table is located.

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-23

source_table The source table from which the change records are captured.

column_type_list The user columns and datatypes that are being tracked. Specify
using a comma-delimited list.

capture_values One of the following capture values for update operations:

■ OLD: Captures the original values from the source table.

■ NEW: Captures the changed values from the source table.

■ BOTH: Captures the original and changed values from the
source table.

rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

Each listed parameter specifies a particular control column as
follows:

■ The rs_id parameter specifies the RSID$ control column.

■ The row_id parameter specifies the ROW_ID$ control
column.

■ The user_id parameter specifies the USERNAME$ control
column.

■ The timestamp parameter specifies the TIMESTAMP$
control column.

■ The object_id parameter specifies the SYS_NC_OID$
control column.

■ The source_colmap parameter specifies the SOURCE_
COLMAP$ control column.

■ The target_colmap parameter specifies the TARGET_
COLMAP$ control column.

Each parameter can have a value of 'Y' or 'N', where:

■ 'Y': Adds the specified control column to the change table.

■ 'N': Does not add the specified control column to the change
table.

options_string The syntactically correct options to be passed to a CREATE
TABLE DDL statement. The options string is appended to the
generated CREATE TABLE DDL statement after the closing
parenthesis that defines the columns of the table. See the Usage
Notes for more information.

See Also: The Change Data Capture chapter in Oracle Data
Warehousing Guide for a complete description of control columns

Table 20–12 (Cont.) CREATE_CHANGE_TABLE Procedure Parameters

Parameter Description

CREATE_CHANGE_TABLE Procedure

20-24 PL/SQL Packages and Types Reference

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ A change table is a database table that contains the change data resulting from
DML statements (INSERT, UPDATE, and DELETE) made to a source table. A
given change table can capture changes from only one source table.

Table 20–13 CREATE_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31402 Unrecognized parameter specified

ORA-31409 One or more values for input parameters are incorrect

ORA-31415 Specified change set does not exist

ORA-31416 Invalid SOURCE_COLMAP value

ORA-31417 Column list contains control column control-column-name

ORA-31418 Specified source schema does not exist

ORA-31419 Specified source table does not exist

ORA-31420 Unable to submit the purge job

ORA-31421 Change table does not exist

ORA-31422 Owner schema does not exist

ORA-31438 Duplicate change table

ORA-31447 Cannot create change tables in the SYS schema

ORA-31450 Invalid value for change_table_name

ORA-31451 Invalid value for capture_values, expecting: OLD, NEW, or
BOTH

ORA-31452 Invalid value for parameter, expecting: Y or N

ORA-31459 System triggers for DBMS_CDC_PUBLISH package are not
installed

ORA-31467 No column found in the source table

ORA-31471 Invalid OBJECT_ID value

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-25

■ A change table is a database table that contains the change data in these two
types of columns:

– User columns, which are copies of actual columns of source tables that
reside in the change table.

– Control columns, which maintain special metadata for each change row in
the change table. Information such as the DML operation performed, the
capture time (time stamp), and changed column vectors are examples of
control columns. The publisher must not specify the name of the control
columns in the user column list.

■ The publisher must not attempt to control a change table's partitioning
properties. Change Data Capture automatically manages the change table
partitioning as part of its change table management.

■ When creating a change table for asynchronous Change Data Capture, the
publisher must accept the default value or specify 'N' for the source_colmap
and object_id parameters.

■ When the publisher specifies the rs_id parameter, the RSID$ column is added
to the change table. The RSID$ column value reflects an operation's capture
order within a transaction, but not across transactions. The publisher cannot use
the RSID$ column value by itself to order committed operations across
transactions; it must be used in conjunction with the CSCN$ column value.

■ The publisher can control a change table's physical properties, tablespace
properties, and so on, by specifying the options_string parameter. With the
options_string parameter, the publisher can set any option that is valid for
the CREATE TABLE DDL statement (except for partitioning properties).

■ Oracle recommends that change tables not be created in system tablespaces.
This can be accomplished if the publisher's default tablespace is not the system

Note: How the publisher defines the options_string
parameter can have an effect on the performance and operations in
a Change Data Capture system. For example, if the publisher places
several constraints in the options column, it can have a noticeable
effect on performance. Also, if the publisher uses NOT NULL
constraints and a particular column is not changed in an incoming
change row, then the constraint can cause the INSERT operation to
fail and the transaction that contains the INSERT operation to be
rolled back.

CREATE_CHANGE_TABLE Procedure

20-26 PL/SQL Packages and Types Reference

tablespace or if the publisher specifies a tablespace in the options_string
parameter. If a tablespace is not specified by the publisher, and the publisher's
default table space is the system tablespace, then Change Data Capture creates
change tables in the system tablespace.

See Also: The Change Data Capture chapter inOracle Data
Warehousing Guide for more information on, and examples of,
creating change tables in tablespaces managed by the publisher

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-27

DROP_CHANGE_SET Procedure

This procedure drops an existing change set that was created with the CREATE_
CHANGE_SET procedure.

Syntax
DBMS_CDC_PUBLISH.DROP_CHANGE_SET(
 change_set_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ The change set to be dropped cannot contain any change tables.

■ The predefined synchronous change set, SYNC_SET, cannot be dropped.

Table 20–14 DROP_CHANGE_SET Procedure Parameters

Parameter Description

change_set_name Name of the change set to be dropped. Change set names follow
the Oracle schema object naming rules.

Table 20–15 DROP_CHANGE_SET Procedure Exceptions

Exception Description

ORA-31410 Specified change set is not an existing change set

ORA-31411 Specified change set is referenced by a change table

ORA-31499 Null value specified for required parameter

ORA-31505 Cannot alter or drop predefined change set

ORA-31507 Specified parameter value is longer than maximum length

DROP_CHANGE_SOURCE Procedure

20-28 PL/SQL Packages and Types Reference

DROP_CHANGE_SOURCE Procedure

This procedure drops an existing AutoLog change source that was created with the
CREATE_AUTOLOG_CHANGE_SOURCE procedure.

Syntax
DBMS_CDC_PUBLISH.DROP_CHANGE_SOURCE(
 change_source_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The change source to be dropped cannot contain any change sets.

■ The predefined change sources, HOTLOG_SOURCE and SYNC_SOURCE, cannot
be dropped.

Table 20–16 DROP_CHANGE_SOURCE Procedure Parameters

Parameter Description

change_source_
name

Name of the change source to be dropped. Change source names
follow the Oracle schema object naming rules.

Table 20–17 DROP_CHANGE_SOURCE Procedure Exceptions

Exception Description

ORA-31401 Specified change source is not an existing change source

ORA-31406 Specified change source is referenced by a change set

ORA-31499 Null value specified for required parameter

ORA-31504 Cannot alter or drop predefined change source

ORA-31507 Specified parameter value longer than maximum length

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-29

DROP_CHANGE_TABLE Procedure

This procedure drops an existing change table that was created with the CREATE_
CHANGE_TABLE procedure.

Syntax
DBMS_CDC_PUBLISH.DROP_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 force_flag IN CHAR);

Parameters

Exceptions

Table 20–18 DROP_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_name Name of the change table to be dropped. Change table names
follow the Oracle schema object naming rules.

force_flag Drops the change table, depending on whether or not there are
subscriptions to it, as follows:

■ Y: Drops the change table even if there are subscriptions to
it.

■ N: Drops the change table only if there are no subscriptions
to it.

Table 20–19 DROP_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31421 Change table does not exist

ORA-31422 Specified owner schema does not exist

ORA-31424 Change table has active subscriptions

ORA-31441 Table is not a change table

DROP_CHANGE_TABLE Procedure

20-30 PL/SQL Packages and Types Reference

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ If the publisher wants to drop a change table while there are active
subscriptions to that table, he or she must call the DROP_CHANGE_TABLE
procedure using the force_flag => 'Y' parameter. This tells Change Data
Capture to override its normal safeguards and allow the change table to be
dropped despite active subscriptions. The subscriptions that include the
dropped table will no longer be valid, and subscribers will lose access to the
change data.

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-31

DROP_SUBSCRIPTION Procedure

This procedure allows a publisher to drop a subscription that was created by a
subscriber with a prior call to the DBMS_CDC_SUBSCRIBE.CREATE_
SUBSCRIPTION procedure.

Syntax
DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION(
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ This procedure works the same way as the DBMS_CDC_SUBSCRIBE.DROP_
SUBSCRIPTION procedure.

■ This procedure provides the publisher with a way to drop subscriptions that
have not been dropped by the subscriber. It is possible that a subscription that is
no longer needed still exists and is holding change data in a change table

Table 20–20 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_name Name of the subscription that was specified by a previous call to
the DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION
procedure. Subscription names follow the Oracle schema object
naming rules.

Table 20–21 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

ORA-31432 Invalid source table

DROP_SUBSCRIPTION Procedure

20-32 PL/SQL Packages and Types Reference

indefinitely. The publisher can use this procedure to remove such a subscription
so that a purge operation can clean up its change data. Oracle recommends that
the publisher attempt to verify that the subscription is not needed prior to
dropping it. If that is not possible, the publisher should inform the subscription
owner that the subscription has been dropped. (Ideally, subscribers drop
subscriptions that are no longer needed using the DBMS_CDC_
SUBSCRIBE.DROP_SUBSCRIPTION procedure and the publisher need not use
the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.)

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-33

PURGE Procedure

This procedure monitors change table usage by all subscriptions, determines which
rows are no longer needed by any subscriptions, and removes the unneeded rows
to prevent change tables from growing indefinitely. When called, this procedure
purges all change tables on the staging database.

Syntax
DBMS_CDC_PUBLISH.PURGE;

Exceptions
Only standard Oracle exceptions (for example, a privilege violation) are returned
during a purge operation.

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ The publisher can run this procedure manually or automatically:

– The publisher can run this procedure manually from the command line to
purge data from change tables.

– The publisher can run this procedure in a script to routinely perform a
purge operation and control the growth of change tables.

■ Note that the DBMS_CDC_PUBLISH.PURGE procedure (used by the publisher
and the Change Data Capture default purge job) is distinct from the DBMS_
CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to
the DBMS_CDC_PUBLISH.PURGE procedure physically removes unneeded
rows from change tables. A call to the DBMS_CDC_SUBSCRIBE.PURGE_
WINDOW procedure, logically removes change rows from a subscription
window, but does not physically remove rows from the underlying change
tables.

PURGE_CHANGE_SET Procedure

20-34 PL/SQL Packages and Types Reference

PURGE_CHANGE_SET Procedure

This procedure removes unneeded rows from all change tables in the named change
set. This procedure allows a finer granularity purge operation than the basic PURGE
procedure.

Syntax
DBMS_CDC_PUBLISH.PURGE_CHANGE_SET(

 change_set_name in VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ The publisher can run this procedure manually from the command line or in a
script to purge unneeded rows from change tables in a specific change set.

■ Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_SET procedure (used by
the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW
procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_
CHANGE_SET procedure physically removes unneeded rows from change tables
in the specified change set. A call to the DBMS_CDC_SUBSCRIBE.PURGE_
WINDOW procedure, logically removes change rows from a subscription
window, but does not physically remove rows from the underlying change
tables.

Table 20–22 PURGE_CHANGE_SET Procedure Parameters

Parameter Description

change_set_name Name of an existing change set. Change set names follow the
Oracle schema object naming rules.

Table 20–23 PURGE_CHANGE_SET Procedure Exceptions

Exception Description

ORA-31410 Change set is not an existing change set

Summary of DBMS_CDC_PUBLISH Subprograms

DBMS_CDC_PUBLISH 20-35

PURGE_CHANGE_TABLE Procedure

This procedure removes unneeded rows from the named change table. This
procedure allows a finer granularity purge operation than the basic PURGE
procedure or the PURGE_CHANGE_SET procedure.

Syntax
DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE(
 owner in VARCHAR2,
 change_table_name in VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The publisher can use this procedure for asynchronous and synchronous

Change Data Capture.

■ The publisher can run this procedure manually from the command line or in a
script to purge unneeded rows from a specified change table.

■ Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE procedure (used
by the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW
procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_
CHANGE_TABLE procedure physically removes unneeded rows from the
specified change table. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW

Table 20–24 PURGE_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Owner of the named change table.

change_table_name Name of an existing change table. Change table names follow
the Oracle schema object naming rules.

Table 20–25 PURGE_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31421 Change table does not exist

PURGE_CHANGE_TABLE Procedure

20-36 PL/SQL Packages and Types Reference

procedure, logically removes change rows from a subscription window, but
does not physically remove rows from the underlying change tables.

DBMS_CDC_SUBSCRIBE 21-1

21
DBMS_CDC_SUBSCRIBE

The DBMS_CDC_SUBSCRIBE package lets subscribers view and query change data
that was captured and published with the DBMS_CDC_PUBLISH package.

A Change Data Capture system usually has one publisher and many subscribers.
The subscribers (applications or individuals), use the Oracle supplied package,
DBMS_CDC_SUBSCRIBE, to access published data.

Be aware that Change Data Capture grants EXECUTE privileges to PUBLIC on the
DBMS_CDC_SUBSCRIBE procedure.

This chapter contains the following topics:

■ Using DBMS_CDC_SUBSCRIBE

■ Overview

■ Deprecated Subprograms

■ Summary of DBMS_CDC_SUBSCRIBE Subprograms

Note: In previous releases, this package was named DBMS_
LOGMNR_CDC_SUBSCRIBE. Beginning with release 10g, the
LOGMNR string has been removed from the name, resulting in the
name DBMS_CDC_SUBSCRIBE. Although both variants of the name
are still supported, the variant with the LOGMNR string has been
deprecated and may not be supported in a future release.

See Also: Oracle Data Warehousing Guide for more information
about Oracle Change Data Capture and DBMS_CDC_PUBLISH for
information on the package for publishing change data.

Using DBMS_CDC_SUBSCRIBE

21-2 PL/SQL Packages and Types Reference

Using DBMS_CDC_SUBSCRIBE

■ Overview

■ Deprecated Subprograms

Overview

The primary role of the subscriber is to use the change data. Through the DBMS_
CDC_SUBSCRIBE package, each subscriber registers interest in a set of source tables
by subscribing to them.

Once the publisher sets up the system to capture data into change tables (which are
viewed as publications by subscribers) and grants subscribers access to the change
tables, subscribers can access and query the published change data for any of the
source tables of interest. Using the procedures in the DBMS_CDC_SUBSCRIBE
package, the subscriber accomplishes the following main objectives:

1. Indicates the change data of interest by creating a subscription and associated
subscriber views on published source tables and source columns

2. Activates the subscription to indicate that the subscriber is ready to receive
change data

3. Extends the subscription window to receive a new set of change data

4. Uses SQL SELECT statements to retrieve change data from the subscriber views

5. Purges the subscription window when finished processing a block of changes

6. Drops the subscription when finished with the subscription

Figure 21–1 provides a graphical flowchart of the information provided in
Table 21–1. The flowchart shows the order in which subscribers most typically use
the procedures in the DBMS_CDC_SUBSCRIBE package. A subscriber would
typically create a subscription, subscribe to one or more source tables and columns,
activate the subscription, extend the subscription window, query the subscriber
views, purge the subscription window, and then either extend the subscription
window again or drop the subscription.

Using DBMS_CDC_SUBSCRIBE

DBMS_CDC_SUBSCRIBE 21-3

Figure 21–1 Subscription Flow

Deprecated Subprograms

The following DBMS_CDC_SUBSCRIBE procedures have been deprecated beginning
with release 10g:

■ GET_SUBSCRIPTION_HANDLE

Note: If a subscriber uses the PURGE_WINDOW procedure
immediately after using an EXTEND_WINDOW procedure, then
change data may be lost without ever being processed.

CREATE_SUBSCRIPTION

ACTIVATE_SUBSCRIPTION

EXTEND_WINDOW

Query subscriber views

DROP_SUBSCRIPTION

PURGE_WINDOW

SUBSCRIBE

Deprecated Subprograms

21-4 PL/SQL Packages and Types Reference

Subscribers no longer explicitly specify subscription handles. Subscribers
should use the CREATE_SUBSCRIPTION procedure instead to specify a
subscription name.

■ PREPARE_SUBSCRIBER_VIEW

Subscribers no longer need to prepare subscriber views. This work is now done
automatically by Change Data Capture.

■ DROP_SUBSCRIBER_VIEW

Subscribers no longer need to drop subscriber views. This work is now done
automatically by Change Data Capture.

If an existing application uses these deprecated DBMS_CDC_SUBSCRIBE procedures
with release 10g, note the following changes in behavior:

■ Subscriber views are persistent for the life of the subscription.

■ Some error conditions, particularly with regard to subscriber view
management, no longer occur.

■ If a publisher alters a publication such that it contains different control columns,
the subscriber must call DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW to see the
new column structure.

In addition, the use of the subscription_handle parameter with the following
DBMS_CDC_SUBSCRIBE procedures has been deprecated beginning with release
10g:

■ SUBSCRIBE

■ ACTIVATE_SUBSCRIPTION

■ EXTEND_WINDOW

■ PURGE_WINDOW

■ DROP_SUBSCRIPTION

Note: Oracle recommends that you do not use deprecated
procedures in new applications. Support for deprecated features is
for backward compatibility only.

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-5

Summary of DBMS_CDC_SUBSCRIBE Subprograms

Table 21–1 DBMS_CDC_SUBSCRIBE Package Procedures

Procedures Description

ACTIVATE_SUBSCRIPTION
Procedure on page 21-6

Indicates that a subscription is ready to start accessing
change data

CREATE_SUBSCRIPTION
Procedure on page 21-8

Creates a subscription and associates it with one change
set

DROP_SUBSCRIPTION
Procedure on page 21-10

Drops a subscription that was created with a prior call to
the CREATE_SUBSCRIPTION procedure

EXTEND_WINDOW Procedure
on page 21-11

Sets a subscription window high boundary so that new
change data can be seen

PURGE_WINDOW Procedure
on page 21-13

Sets the low boundary for a subscription window to notify
Change Data Capture that the subscriber is finished
processing a set of change data

SUBSCRIBE Procedure on
page 21-15

Specifies a source table and the source columns for which
the subscriber wants to access change data and specifies
the subscriber view through which the subscriber sees
change data for the source table

ACTIVATE_SUBSCRIPTION Procedure

21-6 PL/SQL Packages and Types Reference

ACTIVATE_SUBSCRIPTION Procedure

This procedure indicates that a subscription is ready to start accessing change data.

Syntax
DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION(
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ The ACTIVATE_SUBSCRIPTION procedure indicates that the subscriber is

finished subscribing to tables, and the subscription is ready to start accessing
change data.

■ Once the subscriber activates the subscription:

– No additional source tables can be added to the subscription.

– Change Data Capture holds the available data for the source tables and sets
the subscription window to empty.

Table 21–2 ACTIVATE_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_name The name of the subscription that was specified for a previous
call to the CREATE_SUBSCRIPTION procedure. Subscription
names follow the Oracle schema object naming rules.

Table 21–3 ACTIVATE_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

ORA-31426 Cannot modify active subscriptions

ORA-31469 Cannot enable Change Data Capture for change set

ORA-31514 Change set disabled due to capture error

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-7

– The subscriber must use the EXTEND_WINDOW procedure to see the initial
set of change data.

– The subscription cannot be activated again.

■ A subscription cannot be activated if the underlying change set has reached its
end_date parameter value.

CREATE_SUBSCRIPTION Procedure

21-8 PL/SQL Packages and Types Reference

CREATE_SUBSCRIPTION Procedure

This procedure creates a subscription that is associated with one change set. This
procedure replaces the deprecated GET_SUBSCRIPTION_HANDLE procedure.

Syntax
DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2,
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Table 21–4 CREATE_SUBSCRIPTION Procedure Parameters

Parameter Description

change_set_name The name of an existing change set to which the subscriber
subscribes.

description A description of the subscription (which might include, for
example, the purpose for which it is used). The description must
be specified using 255 or fewer characters.

subscription_name A unique name for a subscription that must consist of 30
characters or fewer and cannot have a prefix of CDC$.
Subscription names follow the Oracle schema object naming
rules.

Table 21–5 CREATE_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31415 Specified change set does not exist

ORA-31449 Invalid value for change_set_name

ORA-31457 Maximum length of description field exceeded

ORA-31469 Cannot enable Change Data Capture for change set

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-9

Usage Notes
■ The CREATE_SUBSCRIPTION procedure allows a subscriber to register interest

in a change set associated with source tables of interest.

■ A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the
published source tables for which the subscriber has privileges and the change
sets in which the source table columns are published.

■ Subscriptions are not shared among subscribers; rather, each subscription name
is validated against a given subscriber's login ID.

■ Subscriptions cannot be created if the underlying change set has reached its
end_date parameter value.

ORA-31506 Duplicate subscription name specified

ORA-31510 Name uses reserved prefix CDC$

ORA-31511 Name exceeds maximum length of 30 characters

Table 21–5 (Cont.) CREATE_SUBSCRIPTION Procedure Exceptions

Exception Description

DROP_SUBSCRIPTION Procedure

21-10 PL/SQL Packages and Types Reference

DROP_SUBSCRIPTION Procedure

This procedure drops a subscription.

Syntax
DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION(
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
Subscribers should be diligent about dropping subscriptions that are no longer
needed so that change data will not be held in the change tables unnecessarily.

Table 21–6 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_name The name of the subscription that was specified for a previous
call to the CREATE_SUBSCRIPTION procedure. Subscription
names follow the Oracle schema object naming rules.

Table 21–7 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-11

EXTEND_WINDOW Procedure

This procedure sets the subscription window high boundary so that new change
data can be seen.

Syntax
DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW(
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ Until the subscriber calls the EXTEND_WINDOW procedure to begin receiving

change data, the subscription window remains empty.

Table 21–8 EXTEND_WINDOW Procedure Parameters

Parameter Description

subscription_name The unique name of the subscription that was specified by a
previous call to the CREATE_SUBSCRIPTION procedure.
Subscription names follow the Oracle schema object naming
rules.

Table 21–9 EXTEND_WINDOW Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

ORA-31429 Subscription has not been activated

ORA-31432 Invalid source table

ORA-31469 Cannot enable Change Data Capture for change set

ORA-31509 Publication does not exist

ORA-31514 Change set disabled due to capture error

EXTEND_WINDOW Procedure

21-12 PL/SQL Packages and Types Reference

– The first time that the subscriber calls the EXTEND_WINDOW procedure, it
establishes the initial boundaries for the subscription window.

– Subsequent calls to the EXTEND_WINDOW procedure extend the high
boundary of the subscription window so that new change data can be seen.

■ Oracle recommends that subscribers not view change tables directly. Instead,
subscribers should use the DBMS_CDC_SUBSCRIBE package and access data
through subscriber views only. Control column values are guaranteed to be
consistent only when viewed through subscriber views that have been updated
with a call to the EXTEND_WINDOW procedure.

■ When the underlying change set for a subscription has reached its end_date
parameter value, subsequent calls to the EXTEND_WINDOW procedure will not
raise the high boundary.

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-13

PURGE_WINDOW Procedure

This procedure sets the low boundary of the subscription window so that the
subscription no longer sees any change data, effectively making the subscription
window empty. The subscriber calls this procedure to notify Change Data Capture
that the subscriber is finished processing a block of change data.

Syntax
DBMS_CDC_SUBSCRIBE.PURGE_WINDOW(
 subscription_name IN VARCHAR2);

Parameters

Exceptions

Usage Notes
■ When finished with a set of changes, the subscriber purges the subscription

window with the PURGE_WINDOW procedure. By this action, the subscriber
performs the following functions:

Table 21–10 PURGE_WINDOW Procedure Parameters

Parameter Description

subscription_name The name of the subscription that was specified for a previous
call to the CREATE_SUBSCRIPTION procedure. Subscription
names follow the Oracle schema object naming rules.

Table 21–11 PURGE_WINDOW Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

ORA-31429 Subscription has not been activated

ORA-31432 Invalid source table

ORA-31469 Cannot enable Change Data Capture for change set

ORA-31514 Change set disabled due to capture error

PURGE_WINDOW Procedure

21-14 PL/SQL Packages and Types Reference

– Informs Change Data Capture that the subscriber is finished with the
current set of change data.

– Enables Change Data Capture to remove change data that is no longer
needed by any subscribers.

Change Data Capture manages the change data to ensure that it is available as
long as there are subscribers who need it.

■ When the underlying change set for a subscription has reached its end_date
parameter value, subsequent calls to the PURGE_WINDOW procedure will not
move the low boundary.

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-15

SUBSCRIBE Procedure

This procedure specifies a source table and the source columns for which the
subscriber wants to access change data. In addition, it specifies the subscriber view
through which the subscriber sees change data for the source table.

Syntax
There are two versions of syntax for the SUBSCRIBE procedure, as follow:

■ Using source schema and source table

When this syntax is used, Change Data Capture will attempt to find a single
publication ID that contains the specified source_table and column_list.
If such a publication cannot be found, then Change Data Capture returns an
error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE(
 subscription_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

■ Using publication IDs

When this syntax is used, Change Data Capture will use the publication ID to
identify the change table. If the columns specified in the column_list
parameter are not in the identified change table, then Change Data Capture
returns an error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE(
 subscription_name IN VARCHAR2,
 publication_id IN NUMBER,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

SUBSCRIBE Procedure

21-16 PL/SQL Packages and Types Reference

Parameters

Exceptions

Table 21–12 SUBSCRIBE Procedure Parameters

Parameter Description

subscription_name The name of a subscription that was specified for, or returned
by, a previous call to the CREATE_SUBSCRIPTION procedure.
Subscription names follow the Oracle schema object naming
rules.

source_schema The name of the schema where the source table resides.

source_table The name of a published source table.

column_list A comma-delimited list of columns from the published source
table or publication.

subscriber_view Unique name for the subscriber view for this source table or
publication that must consist of 30 or fewer characters and must
not have a prefix of CDC$. Subscriber view names follow the
Oracle schema object naming rules.

publication_id A valid publication_id, which the subscriber can obtain
from the ALL_PUBLISHED_COLUMNS view.

Table 21–13 SUBSCRIBE Procedure Exceptions

Exception Description

ORA-31409 One or more values for input parameters are incorrect

ORA-31425 Subscription does not exist

ORA-31426 Cannot modify active subscriptions

ORA-31427 Specified source table already subscribed

ORA-31428 No publication contains all the specified columns

ORA-31432 Invalid source table

ORA-31466 No publications found

ORA-31469 Cannot enable Change Data Capture for change set

ORA-31510 Name uses reserved prefix CDC$

ORA-31511 Name exceeds maximum length of 30 characters

Summary of DBMS_CDC_SUBSCRIBE Subprograms

DBMS_CDC_SUBSCRIBE 21-17

Usage Notes
■ The SUBSCRIBE procedure allows a subscriber to subscribe to one or more

published source tables and to specific columns in each source table. Each call
to the SUBSCRIBE procedure can specify only a single source table or
publication ID. The subscriber can make multiple calls to the SUBSCRIBE
procedure to include multiple source tables or publications IDs in a
subscription.

■ If the columns of interest are all in a single publication, the subscriber can call
the SUBSCRIBE procedure using the source_schema and source_table
parameters or using the publication_id parameter. However, if there are
multiple publications on a single source table and these publications share some
columns, and if any of the shared columns will be used by a single subscription,
then the subscriber should call the SUBSCRIBE procedure using the
publication_id parameter.

■ The subscriber can subscribe to any valid publication ID on which the
subscriber has privileges to access. The subscriber can find valid publication
IDs on which the subscriber has access by querying the ALL_PUBLISHED_
COLUMNS view.

■ A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the
published source table columns accessible to the subscriber.

■ Subscriptions must be created before a subscriber calls the SUBSCRIBE
procedure. Change Data Capture does not guarantee that there will be any
change data available at the moment the subscription is created.

■ Subscribers can subscribe only to published columns from the source table. All
of the columns specified in a single call to the SUBSCRIBE procedure must
come from the same publication. Any control columns associated with the
underlying change table are added to the subscription automatically.

■ All specified source tables or publications must be in the change set that is
associated with the named subscription.

■ A single source table can have more than one publication defined on it. A
subscriber can subscribe to one or more of these publications. However a
subscriber can subscribe to a particular publication only once.

■ Each publication in a subscription has its own subscriber view. Subscriber
views are used to query the change data encompassed by the subscription's
current window. Subscriber views are created in the schema of the subscriber.

SUBSCRIBE Procedure

21-18 PL/SQL Packages and Types Reference

■ A subscriber cannot subscribe to a publication within a change set that has
reached its end_date parameter value.

DBMS_CRYPTO 22-1

22
DBMS_CRYPTO

DBMS_CRYPTO provides an interface to encrypt and decrypt stored data, and can be
used in conjunction with PL/SQL programs running network communications. It
provides support for several industry-standard encryption and hashing algorithms,
including the Advanced Encryption Standard (AES) encryption algorithm. AES has
been approved by the National Institute of Standards and Technology (NIST) to
replace the Data Encryption Standard (DES).

This chapter contains the following topics:

■ Using the DBMS_CRYPTO Subprograms

■ Overview

■ Security Model

■ Types

■ Algorithms

■ Restrictions

■ Exceptions

■ Operational Notes

■ Summary of DBMS_CRYPTO Subprograms

See Also: Oracle Database Security Guide for further information
about using this package and about encrypting data in general.

Using the DBMS_CRYPTO Subprograms

22-2 PL/SQL Packages and Types Reference

Using the DBMS_CRYPTO Subprograms

■ Overview

■ Security Model

■ Types

■ Algorithms

■ Restrictions

■ Exceptions

■ Operational Notes

Overview

DBMS_CRYPTO contains basic cryptographic functions and procedures. To use this
package correctly and securely, a general level of security expertise is assumed.

The DBMS_CRYPTO package enables encryption and decryption for common Oracle
datatypes, including RAW and large objects (LOBs), such as images and sound.
Specifically, it supports BLOBs and CLOBs. In addition, it provides Globalization
Support for encrypting data across different database character sets.

The following cryptographic algorithms are supported:

■ Data Encryption Standard (DES), Triple DES (3DES, 2-key and 3-key)

■ Advanced Encryption Standard (AES)

■ MD5, MD4, and SHA-1 cryptographic hashes

■ MD5 and SHA-1 Message Authentication Code (MAC)

Block cipher modifiers are also provided with DBMS_CRYPTO. You can choose from
several padding options, including PKCS (Public Key Cryptographic Standard) #5,
and from four block cipher chaining modes, including Cipher Block Chaining
(CBC).

Table 22–1 lists the DBMS_CRYPTO package features in comparison to the other
PL/SQL encryption package, the DBMS_OBFUSCATION_TOOLKIT.

Using the DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-3

DBMS_CRYPTO is intended to replace the DBMS_OBFUSCATION_TOOLKIT,
providing greater ease of use and support for a range of algorithms to
accommodate new and existing systems. Specifically, 3DES_2KEY and MD4 are
provided for backward compatibility. It is not recommended that you use these
algorithms because they do not provide the same level of security as provided by
3DES, AES, MD5, or SHA-1.

Security Model

 Oracle Database installs this package in the SYS schema. You can then grant
package access to existing users and roles as needed.

Types

Parameters for the DBMS_CRYPTO subprograms use these datatypes:

Table 22–1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison

Package Feature DBMS_CRYPTO DBMS_OBFUSCATION_TOOLKIT

Cryptographic algorithms DES, 3DES, AES, RC4, 3DES_2KEY DES, 3DES

Padding forms PKCS5, zeroes none supported

Block cipher chaining modes CBC, CFB, ECB, OFB CBC

Cryptographic hash algorithms MD5, SHA-1, MD4 MD5

Keyed hash (MAC) algorithms HMAC_MD5, HMAC_SH1 none supported

Cryptographic pseudo-random number
generator

RAW, NUMBER, BINARY_INTEGER RAW, VARCHAR2

Database types RAW, CLOB, BLOB RAW, VARCHAR2

Table 22–2 DBMS_CRYPTO Datatypes

Type Description

BLOB A source or destination binary LOB

CLOB A source or destination character LOB (excluding NCLOB)

PLS_INTEGER Specifies a cryptographic algorithm type (used with BLOB,
CLOB, and RAW datatypes)

RAW A source or destination RAW buffer

Algorithms

22-4 PL/SQL Packages and Types Reference

Algorithms

The following cryptographic algorithms, modifiers, and cipher suites are predefined
in this package.

Table 22–3 DBMS_CRYPTO Cryptographic Hash Functions

Name Description

HASH_MD4 Produces a 128-bit hash, or message digest of the input message

HASH_MD5 Also produces a 128-bit hash, but is more complex than MD4

HASH_SH1 Secure Hash Algorithm (SHA). Produces a 160-bit hash.

Table 22–4 DBMS_CRYPTO MAC (Message Authentication Code) Functions

Name Description

HMAC_MD51

1 Complies with IETF RFC 2104 standard

Same as MD5 hash function, except it requires a secret key to verify the
hash value.

HMAC_SH11 Same as SHA hash function, except it requires a secret key to verify the
hash value.

Table 22–5 DBMS_CRYPTO Encryption Algorithms

Name Description

ENCRYPT_DES Data Encryption Standard. Block cipher. Uses key length of 56
bits.

ENCRYPT_3DES_2KEY Data Encryption Standard. Block cipher. Operates on a block 3
times with 2 keys. Effective key length of 112 bits.

ENCRYPT_3DES Data Encryption Standard. Block cipher. Operates on a block 3
times.

ENCRYPT_AES128 Advanced Encryption Standard. Block cipher. Uses 128-bit key
size.

ENCRYPT_AES192 Advanced Encryption Standard. Block cipher. Uses 192-bit key
size.

ENCRYPT_AES256 Advanced Encryption Standard. Block cipher. Uses 256-bit key
size.

ENCRYPT_RC4 Stream cipher. Uses a secret, randomly generated key unique
to each session.

Using the DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-5

Restrictions

The VARCHAR2 datatype is not directly supported by DBMS_CRYPTO. Before you
can perform cryptographic operations on data of the type VARCHAR2, you must
convert it to the uniform database character set AL32UTF8, and then convert it to

Table 22–6 DBMS_CRYPTO Block Cipher Suites

Name Description

DES_CBC_PKCS5 ENCRYPT_DES1 + CHAIN_CBC2+ PAD_PKCS53

1 See Table 22–5, " DBMS_CRYPTO Encryption Algorithms"
2 See Table 22–7, " DBMS_CRYPTO Block Cipher Chaining Modifiers"
3 See Table 22–8, " DBMS_CRYPTO Block Cipher Padding Modifiers"

DES3_CBC_PKCS5 ENCRYPT_3DES1 + CHAIN_CBC2 + PAD_PKCS53

Table 22–7 DBMS_CRYPTO Block Cipher Chaining Modifiers

Name Description

CHAIN_ECB Electronic Codebook. Encrypts each plaintext block independently.

CHAIN_CBC Cipher Block Chaining. Plaintext is XORed with the previous ciphertext
block before it is encrypted.

CHAIN_CFB Cipher-Feedback. Enables encrypting units of data smaller than the block
size.

CHAIN_OFB Output-Feedback. Enables running a block cipher as a synchronous stream
cipher. Similar to CFB, except that n bits of the previous output block are
moved into the right-most positions of the data queue waiting to be
encrypted.

Table 22–8 DBMS_CRYPTO Block Cipher Padding Modifiers

Name Description

PAD_PKCS5 Provides padding which complies with the PKCS #5: Password-Based
Cryptography Standard

PAD_NONE Provides option to specify no padding. Caller must ensure that blocksize
is correct, else the package returns an error.

PAD_ZERO Provides padding consisting of zeroes.

Exceptions

22-6 PL/SQL Packages and Types Reference

the RAW datatype. After performing these conversions, you can then encrypt it with
the DBMS_CRYPTO package.

Exceptions

Table 22–9 lists exceptions that have been defined for DBMS_CRYPTO.

Operational Notes

■ When to Use Encrypt and Decrypt Procedures or Functions

■ When to Use Hash or Message Authentication Code (MAC) Functions

■ About Generating and Storing Encryption Keys

■ Conversion Rules

When to Use Encrypt and Decrypt Procedures or Functions
This package includes both ENCRYPT and DECRYPT procedures and functions. The
procedures are used to encrypt or decrypt LOB datatypes (overloaded for CLOB and
BLOB datatypes). In contrast, the ENCRYPT and DECRYPT functions are used to

See Also: "Conversion Rules" on page 22-8 for information about
converting datatypes.

Table 22–9 DBMS_CRYPTO Exceptions

Exception Code Description

CipherSuiteInva
lid

28827 The specified cipher suite is not defined.

CipherSuiteNull 28829 No value has been specified for the cipher suite to be
used.

KeyNull 28239 The encryption key has not been specified or contains a
NULL value.

KeyBadSize 28234 ■ DES keys: Specified key size is too short. DES keys
must be at least 8 bytes (64 bits).

■ AES keys: Specified key size is not supported. AES
keys must be 128, 192, or 256 bits in length.

DoubleEncryptio
n

28233 Source data was previously encrypted.

Using the DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-7

encrypt and decrypt RAW datatypes. Data of type VARCHAR2 must be converted to
RAW before you can use DBMS_CRYPTO functions to encrypt it.

When to Use Hash or Message Authentication Code (MAC) Functions
This package includes two different types of one-way hash functions: the HASH
function and the MAC function. Hash functions operate on an arbitrary-length input
message, and return a fixed-length hash value. One-way hash functions work in one
direction only. It is easy to compute a hash value from an input message, but it is
extremely difficult to generate an input message that hashes to a particular value.
Note that hash values should be at least 128 bits in length to be considered secure.

You can use hash values to verify whether data has been altered. For example,
before storing data, Laurel runs DBMS_CRYPTO.HASH against the stored data to
create a hash value. When she retrieves the stored data at a later date, she can again
run the hash function against it, using the same algorithm. If the second hash value
is identical to the first one, then the data has not been altered. Hash values are
similar to "file fingerprints" and are used to ensure data integrity.

The HASH function included with DBMS_CRYPTO, is a one-way hash function that
you can use to generate a hash value from either RAW or LOB data. The MAC function
is also a one-way hash function, but with the addition of a secret key. It works the
same way as the DBMS_CRYPTO.HASH function, except only someone with the key
can verify the hash value.

MACs can be used to authenticate files between users. They can also be used by a
single user to determine if her files have been altered, perhaps by a virus. A user
could compute the MAC of his files and store that value in a table. If the user did
not use a MAC function, then the virus could compute the new hash value after
infection and replace the table entry. A virus cannot do that with a MAC because
the virus does not know the key.

About Generating and Storing Encryption Keys
The DBMS_CRYPTO package can generate random material for encryption keys, but
it does not provide a mechanism for maintaining them. Application developers
must take care to ensure that the encryption keys used with this package are
securely generated and stored. Also note that the encryption and decryption
operations performed by DBMS_CRYPTO occur on the server, not on the client.
Consequently, if the key is sent over the connection between the client and the
server, the connection must be protected by using network encryption. Otherwise,
the key is vulnerable to capture over the wire.

Operational Notes

22-8 PL/SQL Packages and Types Reference

Although DBMS_CRYPTO cannot generate keys on its own, it does provide tools you
can use to aid in key generation. For example, you can use the RANDOMBYTES
function to generate random material for keys. (Calls to the RANDOMBYTES function
behave like calls to the DESGETKEY and DES3GETKEY functions of the DBMS_
OBFUSCATION_TOOLKIT package.)

When generating encryption keys for DES, it is important to remember that some
numbers are considered weak and semiweak keys. Keys are considered weak or
semiweak when the pattern of the algorithm combines with the pattern of the initial
key value to produce ciphertext that is more susceptible to cryptanalysis. To avoid
this, filter out the known weak DES keys. Lists of the known weak and semiweak
DES keys are available on several public Internet sites.

Conversion Rules
■ To convert VARCHAR2 to RAW, use the UTL_I18N.STRING_TO_RAW function to

perform the following steps:

1. Convert VARCHAR2 in the current database character set to VARCHAR2 in
the AL32UTF8 database character.

2. Convert VARCHAR2 in the AL32UTF8 database character set to RAW.

Syntax example:

UTL_I18N.STRING_TO_RAW (string, 'AL32UTF8');

■ To convert RAW to VARCHAR2, use the UTL_I18N.RAW_TO_CHAR function to
perform the following steps:

1. Convert RAW to VARCHAR2 in the AL32UTF8 database character set.

2. Convert VARCHAR2 in the AL32UTF8 database character set to VARCHAR2
in the database character set you wish to use.

Syntax example:

UTL_I18N.RAW_TO_CHAR (data, 'AL32UTF8');

See Also:

■ Oracle Advanced Security Administrator's Guide for information
about configuring network encryption and SSL.

■ "Key Management" on page 55-3 for a full discussion about
securely storing encryption keys

■ "RANDOMBYTES Function" on page 22-21

Using the DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-9

■ If you want to store encrypted data of the RAW datatype in a VARCHAR2
database column, then use RAWTOHEX or UTL_ENCODE.BASE64_ENCODE to
make it suitable for VARCHAR2 storage. These functions expand data size by 2
and 4/3, respectively.

See Also: Chapter 157, "UTL_I18N" for information about using
the UTL_I18N PL/SQL package.

Summary of DBMS_CRYPTO Subprograms

22-10 PL/SQL Packages and Types Reference

Summary of DBMS_CRYPTO Subprograms

Table 22–10 DBMS_CRYPTO Package Subprograms

Subprogram Description

DECRYPT Function on
page 22-11

Decrypts RAW data using a stream or block cipher with a user
supplied key and optional IV (initialization vector)

DECRYPT Procedures
on page 22-13

Decrypts LOB data using a stream or block cipher with a user
supplied key and optional IV

ENCRYPT Function on
page 22-14

Encrypts RAW data using a stream or block cipher with a user
supplied key and optional IV

ENCRYPT Procedures
on page 22-16

Encrypts LOB data using a stream or block cipher with a user
supplied key and optional IV

HASH Function on
page 22-17

Applies one of the supported cryptographic hash algorithms
(MD4, MD5, or SHA-1) to data

MAC Function on
page 22-19

Applies Message Authentication Code algorithms (MD5 or
SHA-1) to data to provide keyed message protection

RANDOMBYTES
Function on page 22-21

Returns a RAW value containing a cryptographically secure
pseudo-random sequence of bytes, and can be used to generate
random material for encryption keys

RANDOMINTEGER
Function on page 22-22

Returns a random BINARY_INTEGER

RANDOMNUMBER
Function on page 22-23

Returns a random 128-bit integer of the NUMBER datatype

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-11

DECRYPT Function

This function decrypts RAW data using a stream or block cipher with a user supplied
key and optional IV (initialization vector).

Syntax
DBMS_CRYPTO.DECRYPT(
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(decrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Usage Notes
■ To retrieve original plaintext data, DECRYPT must be called with the same

cipher, modifiers, key, and IV that was used to encrypt the data originally.

■ If VARCHAR2 data is converted to RAW before encryption, then it must be
converted back to the appropriate database character set by using the UTL_
I18N package.

Table 22–11 DECRYPT Function Parameters

Parameter Name Description

src RAW data to be decrypted.

typ Stream or block cipher type and modifiers to be used.

key Key to be used for decryption.

iv Optional initialization vector for block ciphers. Default is NULL.

See Also: "Usage Notes" for the ENCRYPT function on page 22-14
for additional information about the ciphers and modifiers
available with this package.

DECRYPT Function

22-12 PL/SQL Packages and Types Reference

See Also: "Conversion Rules" on page 22-8 for a discussion of the
VARCHAR2 to RAW conversion process.

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-13

DECRYPT Procedures

These procedures decrypt LOB data using a stream or block cipher with a user
supplied key and optional IV (initialization vector).

Syntax
DBMS_CRYPTO.DECRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

DBMS_CRYPT.DECRYPT(
 dst IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

Pragmas
pragma restrict_references(decrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 22–12 DECRYPT Procedure Parameters

Parameter Name Description

dst LOB locator of output data. The value in the output LOB <dst> will
be overwritten.

src LOB locator of input data.

typ Stream or block cipher type and modifiers to be used.

key Key to be used for decryption.

iv Optional initialization vector for block ciphers. Default is all zeroes.

ENCRYPT Function

22-14 PL/SQL Packages and Types Reference

ENCRYPT Function

This function encrypts RAW data using a stream or block cipher with a user supplied
key and optional IV (initialization vector).

Syntax
DBMS_CRYPTO.ENCRYPT(
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(encrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Usage Notes
■ Block ciphers may be modified with chaining and padding type modifiers. The

chaining and padding type modifiers are added to the block cipher to produce a
cipher suite. Cipher Block Chaining (CBC) is the most commonly used chaining
type, and PKCS #5 is the recommended padding type. See Table 22–7 and
Table 22–8 on page 22-5 for block cipher chaining and padding modifier
constants that have been defined for this package.

■ To improve readability, you can define your own package-level constants to
represent the cipher suites you use for encryption and decryption. For example,
the following example defines a cipher suite that uses DES, cipher block
chaining mode, and no padding:

Table 22–13 ENCRYPT Function Parameters

Parameter Name Description

src RAW data to be encrypted.

typ Stream or block cipher type and modifiers to be used.

key Encryption key to be used for encrypting data.

iv Optional initialization vector for block ciphers. Default is NULL.

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-15

DES_CBC_NONE CONSTANT PLS_INTEGER := DBMS_CRYPTO.ENCRYPT_DES
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_NONE;

See Table 22–6 on page 22-5 for the block cipher suites already defined as
constants for this package.

■ To encrypt VARCHAR2 data, it should first be converted to the AL32UTF8
character set.

■ Stream ciphers, such as RC4, are not recommended for stored data encryption.

See Also: "Conversion Rules" on page 22-8 for a discussion of the
conversion process.

ENCRYPT Procedures

22-16 PL/SQL Packages and Types Reference

ENCRYPT Procedures

These procedures encrypt LOB data using a stream or block cipher with a user
supplied key and optional IV (initialization vector).

Syntax
DBMS_CRYPTO.ENCRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN BLOB,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

DBMS_CRYPTO.ENCRYPT(
 dst IN OUT NOCOPY BLOB,
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER,
 key IN RAW,
 iv IN RAW DEFAULT NULL);

Pragmas
pragma restrict_references(encrypt,WNDS,RNDS,WNPS,RNPS);

Parameters

Usage Notes
See "Conversion Rules" on page 22-8 for usage notes about using the ENCRYPT
procedure.

Table 22–14 ENCRYPT Procedure Parameters

Parameter Name Description

dst LOB locator of output data. The value in the output LOB <dst> will be
overwritten.

src LOB locator of input data.

typ Stream or block cipher type and modifiers to be used.

key Encryption key to be used for encrypting data.

iv Optional initialization vector for block ciphers. Default is NULL.

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-17

HASH Function

A one-way hash function takes a variable-length input string, the data, and converts
it to a fixed-length (generally smaller) output string called a hash value. The hash
value serves as a unique identifier (like a fingerprint) of the input data. You can use
the hash value to verify whether data has been changed or not.

Note that a one-way hash function is a hash function that works in one direction. It
is easy to compute a hash value from the input data, but it is hard to generate data
that hashes to a particular value. Consequently, one-way hash functions work well
to ensure data integrity. Refer to "When to Use Hash or Message Authentication
Code (MAC) Functions" on page 22-7 for more information about using one-way
hash functions.

This function applies to data one of the supported cryptographic hash algorithms
listed in Table 22–3 on page 22-4.

Syntax
DBMS_CRYPTO.Hash (
 src IN RAW,
 typ IN PLS_INTEGER)
 RETURN RAW;

DBMS_CRYPTO.Hash (
 src IN BLOB,
 typ IN PLS_INTEGER)
 RETURN RAW;

DBMS_CRYPTO.Hash (
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER)
 RETURN RAW;

Pragmas
pragma restrict_references(hash,WNDS,RNDS,WNPS,RNPS);

HASH Function

22-18 PL/SQL Packages and Types Reference

Parameters

Usage Note
Oracle recommends that you use the SHA-1 (Secure Hash Algorithm), specified
with the constant, HASH_SH1, because it is more resistant to brute-force attacks than
MD4 or MD5. If you must use a Message Digest algorithm, then MD5 provides
greater security than MD4.

Table 22–15 HASH Function Parameters

Parameter Name Description

src The source data to be hashed.

typ The hash algorithm to be used.

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-19

MAC Function

A Message Authentication Code, or MAC, is a key-dependent one-way hash
function. MACs have the same properties as the one-way hash function described
in "HASH Function" on page 22-17, but they also include a key. Only someone with
the identical key can verify the hash. Also refer to "When to Use Hash or Message
Authentication Code (MAC) Functions" on page 22-7 for more information about
using MACs.

This function applies MAC algorithms to data to provide keyed message protection.
See Table 22–4 on page 22-4 for a list of MAC algorithms that have been defined for
this package.

Syntax
DBMS_CRYPTO.MAC (
 src IN RAW,
 typ IN PLS_INTEGER,
 key IN RAW)
 RETURN RAW;

DBMS_CRYPTO.MAC (
 src IN BLOB,
 typ IN PLS_INTEGER
 key IN RAW)
 RETURN RAW;

DBMS_CRYPTO.MAC (
 src IN CLOB CHARACTER SET ANY_CS,
 typ IN PLS_INTEGER
 key IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(mac,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 22–16 MAC Function Parameters

Parameter Name Description

src Source data to which MAC algorithms are to be applied.

MAC Function

22-20 PL/SQL Packages and Types Reference

typ MAC algorithm to be used.

key Key to be used for MAC algorithm.

Table 22–16 MAC Function Parameters

Parameter Name Description

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-21

RANDOMBYTES Function

This function returns a RAW value containing a cryptographically secure
pseudo-random sequence of bytes, which can be used to generate random material
for encryption keys. The RANDOMBYTES function is based on the RSA X9.31 PRNG
(Pseudo-Random Number Generator), and it draws its entropy (seed) from the
sqlnet.ora file parameter SQLNET.CRYPTO_SEED.

Syntax
DBMS_CRYPTO.RANDOMBYTES (
 number_bytes IN POSITIVE)
 RETURN RAW;

Pragmas
pragma restrict_references(randombytes,WNDS,RNDS,WNPS,RNPS);

Parameters

Usage Note
■ The number_bytes value should not exceed the maximum length of a RAW

variable.

■ The SQLNET.CRYPTO_SEED parameter can be set by entering 10 to 70 random
characters with the following syntax in the sqlnet.ora file:

SQLNET.CRYPTO_SEED = <10 to 70 random characters>

Table 22–17 RANDOMBYTES Function Parameter

Parameter Name Description

number_bytes The number of pseudo-random bytes to be generated.

See Also: Oracle Advanced Security Administrator's Guide for more
information about the SQLNET.CRYPTO_SEED parameter and its
use.

RANDOMINTEGER Function

22-22 PL/SQL Packages and Types Reference

RANDOMINTEGER Function

This function returns an integer in the complete range available for the Oracle
BINARY_INTEGER datatype.

Syntax
DBMS_CRYPTO.RANDOMINTEGER
 RETURN BINARY_INTEGER;

Pragmas
pragma restrict_references(randominteger,WNDS,RNDS,WNPS,RNPS);

Summary of DBMS_CRYPTO Subprograms

DBMS_CRYPTO 22-23

RANDOMNUMBER Function

This function returns an integer in the Oracle NUMBER datatype in the range of
[0..2**128-1].

Syntax
DBMS_CRYPTO.RandomNumber
 RETURN NUMBER;

Pragmas
pragma restrict_references(randomnumber,WNDS,RNDS,WNPS,RNPS);

RANDOMNUMBER Function

22-24 PL/SQL Packages and Types Reference

DBMS_DATA_MINING 23-1

23
DBMS_DATA_MINING

Oracle Data Mining (ODM) is designed for programmers, systems analysts, project
managers, and others interested in developing database applications that use data
mining to discover hidden patterns and use that knowledge to make predictions.

This chapter contains the following topics:

■ Using DBMS_DATA_MINING

■ Overview

■ Constants

■ Data Types

■ Exceptions

■ User Views

■ Constants

■ Summary of DBMS_DATA_MINING Subprograms

Using DBMS_DATA_MINING

23-2 PL/SQL Packages and Types Reference

Using DBMS_DATA_MINING

■ Overview

■ Constants

■ Data Types

■ Exceptions

■ User Views

■ Constants

Overview

Oracle Data Mining (ODM) embeds data mining in the Oracle database. The data
never leaves the database — the data, its preparation, model building, and model
scoring activities all remain in the database. This enables Oracle to provide an
infrastructure for data analysts and application developers to integrate data mining
seamlessly with database applications.

ODM provides two interfaces that support in-database data mining: a Java interface
and a PL/SQL interface. The Java interface is described in Oracle Data Mining
Application Developer's Guide.

You can use the package to build a mining model, test the model, and apply this
model to your data to obtain predictive and descriptive information. For detailed
examples of how to perform these tasks, see the sample programs in Oracle Data
Mining Application Developer's Guide. The sample code is in the demo directory.

General information about both the Java and the PL/SQL interface is contained in
Oracle Data Mining Application Developer's Guide. See Oracle Data Mining Concepts for
a discussion of data mining concepts.

This chapter contains an overview of the development methodology, followed by
information on data types, settings, and constants, as well as detailed descriptions
of the PL/SQL subprograms. The DBMS_DATA_MINING_TRANSFORM package
supports data pre-processing for data mining.

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-3

Constants

Table 23–1 through Table 23–8 list the constants to be used for various settings in the
settings table.

Table 23–1 DBMS_DATA_MINING Constants Summary: Mining Function

Constant Purpose

association Parameter value for mining function in CREATE_
MODEL, representing association mining function.

attribute_importance Parameter value for mining function in CREATE_
MODEL, representing attribute importance mining
function.

classification Parameter value for mining_function in CREATE_
MODEL, representing classification mining function.

regression Parameter value for mining_function in CREATE_
MODEL, representing regression mining function.

clustering Parameter value for mining_function in CREATE_
MODEL, representing clustering mining function.

feature_extraction Parameter value for mining_function in CREATE_
MODEL, representing feature extraction mining function.

Table 23–2 DBMS_DATA_MINING Constants Summary: Function Settings

Constant Purpose

clas_priors_table_name Setting name representing prior probability table name for
classification function.

clus_num_clusters Setting name representing number of clusters for clustering
function.

feat_num_features Setting name representing number of features for feature
selection function.

asso_max_rule_length Setting name representing maximum rule length.

asso_min_confidence Setting name representing minimum confidence.

asso_min_support Setting name representing minimum support.

Constants

23-4 PL/SQL Packages and Types Reference

Table 23–3 DBMS_DATA_MINING Constants Summary: Algorithm Settings

Constant Purpose

algo_name Setting name representing the mining algorithm.

algo_apriori_association_rules Setting value for Apriori algorithm for
association rules.

algo_naive_bayes Setting value for Naive Bayes (NB) algorithm for
classification.

algo_support_vector_machines Setting value for Support Vector Machines (SVM)
algorithm for classification or regression.

algo_nonnegative_matrix_factor Setting value for Non-Negative Matrix
Factorization (NMF) for feature selection.

algo_kmeans Setting value for k-Means (KM) for clustering.

algo_ai_mdl Setting value for Minimum Description Length
based algorithm for Attribute Importance.

Table 23–4 DBMS_DATA_MINING Constants Summary: Adaptive Bayes Network

Constant Purpose

abns_model_type Setting name representing ABN model type.

abns_single_feature Setting value representing single feature ABN model.

abns_multi_feature Setting value representing multi feature ABN model.

abns_naive_bayes Setting value representing Naive Bayes ABN model.

abns_max_build_minutes Setting name representing maximum time threshold to
complete an ABN model build.

abns_max_nb_predictors Setting name representing the maximum number of Naive
Bayes predictors to be considered for building an ABN
model of type abns_naive_bayes.

Table 23–5 DBMS_DATA_MINING Constants Summary: Naive Bayes

Constant Purpose

nabs_singleton_threshold Setting value for singleton threshold for Naive Bayes.

nabs_pairwise_threshold Setting value for pair-wise threshold for Naive Bayes.

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-5

Table 23–6 DBMS_DATA_MINING Constants Summary: Support Vector Machines

Constant Purpose

svms_kernel_function Setting name representing the kernel function for SVM.

svms_linear Setting value for Linear Kernel for SVM.

svms_guassian Setting value for Gaussian Kernel for SVM.

svms_kernel_cache_size Setting name representing for Kernel Cache Size for SVM.

svms_conv_tolerance Setting name representing tolerance for SVM.

svms_std_dev Setting name representing standard deviation for SVM.

svms_complexity_factor Setting name representing complexity factor for SVM.

svms_epsilon Setting name representing epsilon for SVM Regression.

Table 23–7 DBMS_DATA_MINING Constants Summary: Non-Negative Matrix
Factorization

Constant Purpose

nmfs_num_iterations Setting name representing number of iterations.

nmfs_conv_tolerance Setting name representing convergence tolerance.

nmfs_random_seed Setting name representing random seed for NMF.

Table 23–8 DBMS_DATA_MINING Constants Summary: k-Means

Constant Purpose

kmns_distance Setting name representing distance function.

kmns_euclidean Setting value representing Euclidean distance
function.

kmns_cosine Setting value representing cosine distance function.

kmns_fast_cosine Setting value representing fast cosine distance
function.

kmns_iterations Setting name representing number of iterations.

kmns_conv_tolerance Setting name representing convergence tolerance.

kmns_split_criterion Setting name representing split criterion.

kmns_variance Setting value representing variance as the split
criterion.

Data Types

23-6 PL/SQL Packages and Types Reference

Data Types

The DBMS_DATA_MINING and the DBMS_DATA_MINING_TRANSFORM packages use
the data types shown in Table 23–9.

kmns_size Setting value representing size as the split criterion.

kmns_block_growth Setting name representing growth factor for memory
allocated to hold cluster data.

kmns_num_bins Setting value for number of histogram bins.

kmns_min_pct_attr_support Setting value for minimum percentage report
required for attributes in rules.

Table 23–9 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

DM_ABN_Detail This type represents each row of the model detail output
generated by GET_MODEL_DETAILS_ABN.

DM_ABN_Details This type represents the ABN model details generated by GET_
MODEL_DETAILS_ABN.

DM_Centroid This type represents the centroid of a cluster. It is used when
retrieving cluster details using GET_MODEL_DETAILS_KM.

DM_Child This type represents each child node of a cluster.

DM_Children This type represents a set of children nodes for a given cluster
identifier.

DM_Cluster This type represents a cluster retrieved using GET_MODEL_
DETAILS_KM.

DM_Clusters This type represents a set of clusters.

DM_Conditional This type represents each conditional probability from a set of
conditional probabilities associated with each mining attribute
used in a Naive Bayes or Adaptive Bayes Network model.

DM_Conditionals This type represents conditional probabilities associated with a
given mining attribute used in a Naive Bayes or Adaptive
Bayes Network model. It is used when retrieving model details
using GET_MODEL_DETAILS_NB or GET_MODEL_DETAILS_
ABN respectively.

Table 23–8 (Cont.) DBMS_DATA_MINING Constants Summary: k-Means

Constant Purpose

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-7

DM_Histogram_Bin This type represents a histogram associated with a cluster
identifier. It is used when retrieving cluster details using GET_
MODEL_DETAILS_KM.

DM_Histograms This type represents a set of histograms.

DM_Item This type represents an item in a set of items.

DM_Items This type represents the set of items in an ItemSet.

DM_ItemSet This type represents an ItemSet.

DM_ItemSets This type represents frequent itemsets in Association models.

DM_Model_Settings This type represents the algorithm settings retrieved using the
GET_MODEL_SETTINGS function.

DM_Model_Signature This type represents a list of model signature attributes
generated by GET_MODEL_SIGNATURE.

DM_Modelname_List This type represents a list of model names provided as input
for the parameter model_names in EXPORT_MODEL and
IMPORT_MODEL procedures.

DM_NB_Detail his type represents the each row of the model detail output
generated by GET_MODEL_DETAILS_NB.

DM_NB_Details This type represents the NB model details generated by GET_
MODEL_DETAILS_NB.

DM_Nested_
Categoricals

This type represents a nested table of categorical attributes,
used for representing wide data.

DM_Nested_Numericals This type represents a nested table of numerical attributes,
used for representing wide data.

DM_NMF_Attribute This type represents each attribute in an attribute set for NMF
model details.

DM_NMF_Attribute_Set This type represents a set of attributes that correspond to a
feature identifier, returned by GET_MODEL_DETAILS_NMF.

DM_NMF_Feature This type represents a feature in a NMF model.

DM_NMF_Feature_Set This type represents a set of features returned by GET_MODEL_
DETAILS_NMF.

DM_Predicate This type represents each predicate in the set of predicates in a
rule.

Table 23–9 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

Data Types

23-8 PL/SQL Packages and Types Reference

DM_Predicates This type represents a set of predicates that constitute either
the antecedent or the consequent of a rule.

DM_Ranked_Attribute This type represents an entry in the set of ranked attribute
returned by GET_MODEL_DETAILS_AI, ranked by the
attribute's importance.

DM_Ranked_Attributes This type represents a list of ranked attributes returned by
GET_MODEL_DETAILS_AI.

DM_Rule This type represents each rule in a list of rules generated by
either GET_ASSOCIATION_RULES or GET_MODEL_DETAILS_
KM.

DM_Rules This type represents rules retrieved for Association Rules or
k-means models using GET_ASSOCIATION_RULES and GET_
MODEL_DETAILS_KM respectively.

DM_SVM_Attribute This type represents each attribute in an attribute set for SVM
model details.

DM_SVM_Attribute_Set This type represents a set of attributes returned by GET_
MODEL_DETAILS_SVM for a linear model.

DM_SVM_Linear_Coeff This type represents an entry in the set of linear coefficients
returned by GET_MODEL_DETAILS_SVM.

DM_SVM_Linear_Coeff_
Set

This type represents the set of linear coefficients returned by
GET_MODEL_DETAILS_SVM for an SVM model built using the
linear kernel.

Table 23–9 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-9

Exceptions

Table 23–10 lists the errors generated by DBMS_DATA_MINING.

Table 23–10 DBMS DATA_MINING Errors Summary

Oracle Error Description

ORA-40201 Invalid input parameter %s.

ORA-40202 Column %s does not exist in the input table %s.

ORA-40203 Model %s does not exist.

ORA-40204 Model %s already exists.

ORA-40205 Invalid setting name %s.

ORA-40206 Invalid setting value for setting name %s.

ORA-40207 Duplicate or multiple function settings.

ORA-40208 Duplicate or multiple algorithm settings for function %s.

ORA-40209 Invalid setting: %s for function %s.

ORA-40211 Algorithm name: %s is invalid.

ORA-40212 Invalid target data type in input data for function: %.

ORA-40213 Contradictory values for settings: %s, %s.

ORA-40214 Duplicate setting: %s.

ORA-40215 Model %s is incompatible with current operation.

ORA-40216 Feature not supported.

ORA-40219 Apply result table %s is incompatible with current operation.

ORA-40220 Maximum number of attributes exceeded.

ORA-40221 Maximum target cardinality exceeded.

ORA-40222 Data mining model export failed, job name=%s, error=%s.

ORA-40223 Data mining model import failed, job name=%s, error=%s.

ORA-40225 Model is currently in use by another process.

ORA-40251 No support vectors were found.

ORA-40252 No target values were found.

ORA-40253 No target counter examples were found.

ORA-40261 Input data for model build contains negative values.

User Views

23-10 PL/SQL Packages and Types Reference

User Views

Table 23–11 lists the user views provided by Oracle to obtain information about the
models generated using DBMS_DATA_MINING
.

Operational Notes

The development methodology for data mining using the DBMS_DATA_MINING
interface is divided into two phases.

The first phase includes your application data analysis and design, where you
perform the following two steps:

1. Analyze your problem, and choose the mining function and algorithm.

2. Analyze the data to be used for building mining models (build data), testing
predictive models (test data), and the new data on which the model will be
applied (scoring data).

The second phase involves developing a mining application using DBMS_DATA_
MINING and DBMS_DATA_MINING_TRANSFORM packages.

3. Prepare the build, test, and scoring data using the DBMS_DATA_MINING_
TRANSFORM package or other third-party tool or direct SQL or PL/SQL utility
scripts in a manner suitable for the chosen mining function and algorithm. An
important caveat is that the three datasets referred to earlier have to be
prepared in an identical manner for mining results to be meaningful. This is an
optional step, required only if your data is not prepared for mining.

ORA-40262 NMF: number of features not between [1, %s].

ORA-40271 No statistically significant features were found.

ORA-40272 Apply rules prohibited for this model mode.

ORA-40273 Invalid model type %s for Adaptive Bayes Network algorithm.

Table 23–11 DBMS_DATA_MINING Summary of User Views

User View Purpose

DM_USER_MODELS Lists all models in a given user's schema.

Table 23–10 (Cont.) DBMS DATA_MINING Errors Summary

Oracle Error Description

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-11

4. Prepare a settings table that overrides the default mining algorithm for a given
mining function, and the default algorithm settings. This is also an optional
step.

5. Build a mining model for the given training dataset.

6. For predictive models (classification and regression), test the model for its
accuracy and measures of performance. This amounts to applying the model on
the test data (that is, scoring the test data), and computing various metrics on
the apply results.

7. Retrieve the model signature to determine the mining attributes that will be
used by a given model for scoring. This information will help ascertain that the
scoring data is suitable for a given model. This is an optional step.

8. Apply a classification, regression, clustering, or feature extraction model to new
data to generate predictions and/or descriptive summaries and patterns about
the data.

9. Retrieve the model details to understand why a model scored the data in a
particular manner. This is an optional step.

10. Repeat steps 3 through 9 until you obtain satisfactory results.

See Oracle Data Mining Application Developer's Guide for more general discussion of
the PL/SQL interface to Oracle Data Mining.

Settings Table
The settings table is a simple relational table with a fixed schema. You can choose
the name of the settings table, but the column names and their types must be
defined as specified:

(setting_name VARCHAR2(30),
 setting_value VARCHAR2(128))

The values provided in the settings table override the default values assumed by
the system. The values inserted into the setting_name column are one or more of
several constants defined in the DBMS_DATA_MINING package. Depending on what
the setting name denotes, the value for the setting_value column can be a
predefined constant or the actual numerical or string value corresponding to the
setting itself. The setting_value column is defined to be VARCHAR2, so you must
cast numerical inputs to string using the TO_CHAR function before input into the
settings table.

Operational Notes

23-12 PL/SQL Packages and Types Reference

Table 23–12 through Table 23–17 list the various setting names and the valid setting
values, with a brief explanation of each setting
.

Table 23–12 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

algo_name Classification: One of:

algo_naive_bayes
algo_support_vector_machines
algo_adaptive_bayes_network

Regression:

algo_support_vector_machines

Association Rules:

algo_apriori_association_rules

Clustering:

algo_kmeans

Feature Extraction:

algo_non_negative_matrix_factor

Attribute Importance:

algo_ai_mdl

clas_priors_table_name VARCHAR2 string denoting the name of a relational table of
fixed schema containing prior probabilities. The schema of
this table is provided in on page 23-17.

This input is applicable only for classification algorithms.
The prior probabilities table must be present in the current
user's schema.

clus_num_clusters TO_CHAR(numeric_expr >= 1)

Number of clusters generated by a clustering algorithm.

Default value is 10.

feat_num_features TO_CHAR(numeric_expr >= 1)

Number of features to be extracted.

Default value estimated from the data by the algorithm.

asso_max_rule_length TO_CHAR(2 <= numeric_expr <= 20)

Maximum rule length for AR algorithm.

Default value is 4.

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-13

asso_min_confidence TO_CHAR(0 <= numeric_expr <= 1)

Minimum confidence value for AR algorithm.

Default value is 0.1.

asso_min_support TO_CHAR(0 <= numeric_expr <= 1)

Minimum support value for AR algorithm.

Default value is 0.1.

Table 23–13 Algorithm Settings for Adaptive Bayes Network

Setting Name Setting Value (with Permissible Value Ranges)

abns_model_type Model type for Adaptive Bayes Network:

■ abns_single_feature

■ abns_multi_feature

■ abns_naive_bayes

Default value is abns_multi_feature.

abns_max_build_minutes TO_CHAR(numeric_expr >= 0)

The maximum time threshold for completion of model
build. Default value is 0, which implies no time limit.

abns_max_nb_predictors TO_CHAR(numeric_expr > 0)

Maximum number of Naive Bayes predictors to be
considered for model build, when the model type is chosen
to be abns_naive_bayes. Default value is 10.

abns_max_predictors TO_CHAR(numeric_expr > 0)

Default is 25.

Table 23–14 Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

nabs_singleton_threshold TO_CHAR (0 <= numeric_expr <=1)

Value of singleton threshold for NB algorithm.

Default value is 0.01.

Table 23–12 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

Operational Notes

23-14 PL/SQL Packages and Types Reference

nabs_pairwise_threshold TO_CHAR (0 <= numeric_expr <=1)

Value of pairwise threshold for NB algorithm.

Default value is 0.01.

Table 23–15 Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

svms_kernel_function Kernel for Support Vector Machines:

■ svms_linear (for Linear Kernel)

■ svms_gaussian (for Gaussian Kernel)

Default value is svms_linear.

svms_kernel_cache_size TO_CHAR(numeric_expr > 0)

Value of kernel cache size for SVM algorithm. Applies to
Gaussian kernel only.

Default value is 50000000 bytes.

svms_conv_tolerance TO_CHAR(numeric_expr > 0)

Convergence tolerance for SVM algorithm.

Default value is 0.001.

svms_std_dev TO_CHAR(numeric_expr > 0)

Value of standard deviation for SVM algorithm.

This is applicable only for Gaussian kernel.

Default value estimated from the data by the algorithm.

svms_complexity_factor TO_CHAR(numeric_expr > 0)

Value of complexity factor for SVM algorithm.

Default value estimated from the data by the algorithm.

svms_epsilon TO_CHAR(numeric_expr > 0)

Value of epsilon factor for SVM Regression.

Default value estimated from the data by the algorithm.

Table 23–14 (Cont.) Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-15

Table 23–16 Algorithm Settings for Non-Negative Matrix Factorization

Setting Name Setting Value (with Permissible Value Ranges)

nmfs_random_seed TO_CHAR(numeric_expr)

Seed for random generator.

Default value is –1.

nmfs_num_iterations TO_CHAR(1 <= numeric_expr <= 500)

Maximum number of iterations for NMF algorithm.

Default value is 50.

nmfs_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for NMF algorithm.

Default value is 0.05.

Table 23–17 Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

kmns_distance Distance Function for k-Means Clustering:

■ kmns_euclidean

■ kmns_cosine

■ kmns_fast_cosine

Default value is kmns_euclidean.

kmns_iterations TO_CHAR(0 < numeric_expr <= 20)

Number of iterations for k-Means algorithm.

Default value is 3.

kmns_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for k-Means algorithm.

Default value is 0.01.

kmns_split_criterion Split criterion for k-Means Clustering:

■ kmns_variance

■ kmns_size

Default value is kmns_variance.

Operational Notes

23-16 PL/SQL Packages and Types Reference

You can create a settings table as shown in the example that follows for an SVM
classification model, and edit the individual values using SQL DML.

CREATE TABLE drugstore_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(128))

BEGIN
-- override the default for convergence tolerance for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_conv_tolerance, TO_CHAR(0.081));
COMMIT;
END;

kmns_num_bins Number of histogram bins. Specifies the number of
bins in the attribute histogram produced by k-Means.
The bin boundaries for each attribute are computed
globally on the entire training data set. The binning
method is equi-width. All attributes have the same
number of bins with the exception of attributes with a
single value that have only one bin.

Range > 0.

Default value is 10.

kmns_block_growth TO_CHAR(1 < numeric_expr <= 5)

Growth factor for memory allocated to hold cluster
data.

Default value is 2.

kmns_min_pct_attr_support Minimum percentage support required for attributes
in rules. Specifies the minimum percentage of values
for an attribute in a given cluster required to include
this attribute in the rule description of the cluster.
That is, if the required support level is not met, the
attribute would be omitted from the rule. This would
allow retaining in the rule only the well-represented
attributes. Setting the parameter value too high in
data with missing values can result in very short or
even empty rules.

Range >= 0 and <= 1.

Default is 0.1.

Table 23–17 (Cont.) Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

Using DBMS_DATA_MINING

 DBMS_DATA_MINING 23-17

The table function GET_DEFAULT_SETTINGS provides you all the default settings
for mining functions and algorithms. If you intend to override all the default
settings, you can create a seed settings table and edit them using SQL DML.

BEGIN
CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
 FROM TABLE (DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 WHERE setting_name LIKE 'SVMS_%';
-- update the values using appropriate DML
END;

You can also create a settings table based on another model's settings using GET_
MODEL_SETTINGS, as shown in the following example:

BEGIN
CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_SETTINGS('my_other_

model'));
END;

Prior Probabilities Table
Consult Oracle Data Mining Concepts for an explanation of the prior probabilities
table. You can specify a prior probabilities table as an optional function setting
when building classification models.

You must create the prior probabilities table using the fixed schema shown in the
following code samples. For numerical targets, use the following schema:

target_value NUMBER
prior_probability NUMBER

For categorical targets, use the following schema:

target_value VARCHAR2
prior_probability NUMBER

Next, provide the name of the prior probabilities table as input to the setting_
value column in the settings table, with the corresponding value for the setting_
name column to be DBMS_DATA_MINING.clas_priors_table_name, as shown:

BEGIN
INSERT INTO drugstore_settings (setting_name, setting_value)
VALUES (DBMS_DATA_MINING.class_priors_table_name, 'census_priors');

Operational Notes

23-18 PL/SQL Packages and Types Reference

COMMIT;
END;

Cost Matrix Table
Consult Oracle Data Mining Concepts for an explanation of the cost matrix. You must
create a cost matrix table with the fixed schema shown in the following code
samples. For numerical targets, use the following schema:

actual_target_value NUMBER
predicted_target_value NUMBER
cost NUMBER

For categorical targets, use the following schema:

actual_target_value VARCHAR2
predicted_target_value VARCHAR2
cost NUMBER

The DBMS_DATA_MINING package enables you to evaluate the cost of predictions
from classification models in an iterative manner during the experimental phase of
mining, and to eventually apply the optimal cost matrix to predictions on the actual
scoring data in a production environment.

The data input to each COMPUTE procedure in the package is the result generated
from applying the model on test data. In addition, if you also provide a cost matrix
as an input, the COMPUTE procedure generates test results taking the cost matrix
into account. This enables you to experiment with various costs for a given
prediction against the same APPLY results, without rebuilding the model and
applying it against the same test data for every iteration.

Once you arrive at an optimal cost matrix, you can then input this cost matrix to the
RANK_APPLY procedure along with the results of APPLY on your scoring data.
RANK_APPLY will provide your new data ranked by cost.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-19

Summary of DBMS_DATA_MINING Subprograms

.

Table 23–18 DBMS_DATA_MINING Package Subprograms

Data Type Purpose

APPLY Procedure on
page 23-21

Applies a model to scoring data

CREATE_MODEL Procedure
on page 23-24

Creates (builds) a mining model

COMPUTE_CONFUSION_
MATRIX Procedure on
page 23-27

Computes the confusion matrix from the APPLY results on
test data for a classification model; also provides the
accuracy of the model

COMPUTE_LIFT Procedure on
page 23-31

Computes lift for a given positive target value from the
APPLY results on test data for a classification model

COMPUTE_ROC Procedure on
page 23-35

Computes Receiver Operating Characteristic for target
attributes with binary class from the APPLY results on test
data for a classification model

DROP_MODEL Procedure on
page 23-40

Drops a model

EXPORT_MODEL Procedure
on page 23-41

Exports one or more models from a schema

GET_ASSOCIATION_RULES
Function on page 23-45

This table function returns the rules from an Association
model

GET_DEFAULT_SETTINGS
Function on page 23-48

This table function returns all the default settings for all
mining functions and algorithms

GET_FREQUENT_ITEMSETS
Function on page 23-50

Returns a set of rows that represent the frequent itemsets
from an Association model

GET_MODEL_DETAILS_ABN
Function on page 23-52

Provides the details of an Adaptive Bayes Network model

GET_MODEL_DETAILS_KM
Function on page 23-54

Provides the details of a k-Means model

GET_MODEL_DETAILS_NB
Function on page 23-58

Provides the details of a Naive Bayes model

GET_MODEL_DETAILS_NMF
Function on page 23-60

Provides the details of an NMF model

Summary of DBMS_DATA_MINING Subprograms

23-20 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_SVM
Function on page 23-62

Provides the details of a SVM model with a linear kernel

GET_MODEL_SETTINGS
Function on page 23-64

Provides the settings used to build a model

GET_MODEL_SIGNATURE
Function on page 23-66

Provides the signature of a model

IMPORT_MODEL Procedure
on page 23-68

Imports one or more models into the current schema

RANK_APPLY Procedure on
page 23-72

Ranks the predictions from the APPLY results for a
classification model

RENAME_MODEL Procedure
on page 23-75

Renames a model

Table 23–18 (Cont.) DBMS_DATA_MINING Package Subprograms

Data Type Purpose

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-21

APPLY Procedure

This procedure applies a mining model to the data to be scored, and generates the
APPLY results in a table. This operation is applicable for predictive models
(classification, regression) and also for descriptive models (clustering, feature
extraction).

Syntax
DBMS_DATA_MINING.APPLY (
 model_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The data provided for APPLY should match the data provided to CREATE_MODEL in
terms of the schema definition and relevant content. The GET_MODEL_SIGNATURE
function provides this information. If the data provided as input to CREATE_MODEL
has been pre-processed, then the data input to APPLY must also be pre-processed
using the statistics from the CREATE_MODEL data pre-processing. The case identifier
is not considered to be a mining attribute during APPLY.

You must provide the name of the table in which the results of the apply operation
are to be stored. APPLY creates a table with an algorithm-specific fixed schema in
the user schema that owns the model.

Table 23–19 APPLY Procedure Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

data_table_name Name of table or view representing data to be scored.

case_id_column_name Name of the case identifier column.

result_table_name Name of the table to store apply results.

data_schema_name Name of the schema containing the data to be scored.

APPLY Procedure

23-22 PL/SQL Packages and Types Reference

The behavior of an APPLY operation is analogous to a SQL query operation, even
though it is packaged as a procedure. It does not update the model contents and
does not have any contention with CREATE_MODEL, DROP_MODEL, or RENAME_
MODEL operations. The corollary is that if you potentially drop or rename a model
while a model is being applied to scoring data, the APPLY operation may
discontinue with partial or unpredictable results.

The schema for the apply results from each of the supported algorithms is listed in
subsequent sections. The case_id column will match the case identifier column
name provided by you. The type of incoming case-id column is preserved in
Apply output.

Classification Algorithms
The table containing the APPLY results for all classification models has the same
schema. For numerical targets, the results table will have the schema as shown:

case_id VARCHAR2/NUMBER
prediction NUMBER
probability NUMBER

For categorical targets, the results table will have the following schema:

case_id VARCHAR2/NUMBER
prediction VARCHAR2
probability NUMBER

Regression using Support Vector Machines
The results table will have the following schema:

case_id VARCHAR2/NUMBER
prediction NUMBER

Clustering using k-Means
Clustering is an unsupervised mining function, and hence there are no targets. The
results of an APPLY operation will contain simply the cluster identifier
corresponding to a case, and the associated probability. The results table will have
the schema as shown:

case_id VARCHAR2/NUMBER
cluster_id NUMBER
probability NUMBER

Feature Extraction using NMF
Feature extraction is also an unsupervised mining function, and hence there are no
targets. The results of an APPLY operation will contain simply the feature identifier

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-23

corresponding to a case, and the associated match quality. The results table will
have the schema as shown:

case_id VARCHAR2/NUMBER
feature_id NUMBER
match_quality NUMBER

Examples
BEGIN
/* build a model with name census_model.
 * (See example under CREATE_MODEL)
 */

/* if build data was pre-processed in any manner,
 * perform the same pre-processing steps on the
 * scoring data also.
 * (See examples in the section on DBMS_DATA_MINING_TRANSFORM)
 */

/* apply the model to data to be scored */
dbms_data_mining.apply(
 model_name => 'census_model',
 data_table_name => 'census_2d_apply',
 case_id_column_name => 'person_id',
 result_table_name => 'census_apply_result');
END;
/

-- View Apply Results
SELECT case_id, prediction, probability
 FROM census_apply_result;

CREATE_MODEL Procedure

23-24 PL/SQL Packages and Types Reference

CREATE_MODEL Procedure

This procedure creates a mining model for a given mining function using a
specified mining algorithm.

Syntax
DBMS_DATA_MINING.CREATE_MODEL (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The data provided to all subsequent operations such as APPLY must match the data
provided to CREATE_MODEL in schema and relevant content. If the data provided as
input to CREATE_MODEL has been pre-processed, then the data input to subsequent
operations such as APPLY must also be pre-processed using the statistics from the
CREATE_MODEL data pre-processing. The case identifier column is not considered
to be a mining attribute during CREATE_MODEL.

Table 23–20 CREATE_MODEL Procedure Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

mining_function Constant representing the mining function.

data_table_name Name of the table or view containing the training data.

case_id_column_name Name of the case identifier column.

target_column_name Name of the target column — NULL for descriptive models.

settings_table_name Name of the table or view containing algorithm settings.

data_schema_name Name of the schema hosting the training data.

settings_schema_name Name of the schema hosting the settings table/view.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-25

You can view the default settings for each algorithm through GET_DEFAULT_
SETTINGS. You can override the defaults by providing a settings table specifying
your choice of mining algorithm and relevant overriding algorithm settings.

Once a model has been built, information about the attributes used for model build
can be obtained from GET_MODEL_SIGNATURE. To inspect or review model
contents, you can use any of the algorithm-specific GET_MODEL_DETAILS
functions.

The behavior of the CREATE_MODEL is analogous to a SQL DDL CREATE operation.
It contends with RENAME_MODEL and DROP_MODEL operations.

Note: The CREATE_MODEL operation creates a set of system tables in the owner's
schema to store the patterns and information that constitutes a mining model for a
particular algorithm.The names of these tables have the prefix DM$. The number,
schema, and content of these tables is Oracle proprietary and may change from
release to release. You must not direct any queries or updates against these system
tables.

Examples
Assume that you need to build a classification model using Support Vector
Machines algorithm.

/* prepare a settings table to override default
 * settings (Naïve Bayes is the default classifier)
 */
CREATE TABLE census_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(128));

BEGIN
/* indicate that SVM is the chosen classifier */
INSERT INTO census_settings VALUES (
dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);

/* override the default value for complexity factor */
INSERT INTO census_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_complexity_factor, TO_CHAR(0.081));
COMMIT;

/* build a model with name census_model */
dbms_data_mining.create_model(
 model_name => 'census_model',
 mining_function => DBMS_DATA_MINING.CLASSIFICATION,
 data_table_name => 'census_2d_build',

CREATE_MODEL Procedure

23-26 PL/SQL Packages and Types Reference

 case_id_column_name => 'person_id',
 target_column_name => 'class',
 settings_table_name => 'census_settings');
END;
/

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-27

COMPUTE_CONFUSION_MATRIX Procedure

This procedure computes the confusion matrix for a classification model and also
provides the accuracy of the model. See Oracle Data Mining Concepts for a
description of confusion matrix.

The inputs are a table containing the results of applying the model on the test data,
and a table that contains only the target and case identifier columns from the test
data.

Syntax
DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23–21 COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

accuracy Accuracy of the model.

apply_result_table_
name

Name of the table or view containing the results of an APPLY
operation on the test dataset (see Usage Notes).

target_table_name Name of the table or view containing only the case identifier
column and target column values (see Usage Notes for
required schema specification).

case_id_column_name Name of the case identifier column in the test data set. This
must be common across the targets table and the apply results
table.

target_column_name Name of the target column.

COMPUTE_CONFUSION_MATRIX Procedure

23-28 PL/SQL Packages and Types Reference

Usage Notes
You can also provide a cost matrix as an optional input in order to have the cost of
predictions reflected in the results.

It is important to note that the data inputs to COMPUTE_CONFUSION_MATRIX do
not always have to be generated using APPLY. As long as the schema of the two
input tables matches the ones discussed in this section, with appropriate content,
the procedure can provide the confusion matrix and accuracy as outputs. The
quality of the results is dependent on the quality of the data.

The data provided for testing your classification model must match the data
provided to CREATE_MODEL in schema and relevant content. If the data provided as
input to CREATE_MODEL has been pre-processed, then the data input to APPLY
must also be pre-processed using the statistics from the CREATE_MODEL data
pre-processing.

Before you use the COMPUTE_CONFUSION_MATRIX procedure, you must prepare
two data input streams from your test data.

confusion_matrix_
table_name

Name of the table into which the confusion matrix is to be
generated.

score_column_name Name of the column representing the score from the apply
results table. In the fixed schema table generated by APPLY,
this column has the name PREDICTION, which is the default.

score_criterion_
column_name

Name of the column representing the ranking factor for the
score from the apply results table. In the fixed schema table
generated by APPLY for classification models, this column has
the name PROBABILITY, which is the default. Values in this
column must be represented numerically.

cost_matrix_table_
name

Name of the fixed-schema cost matrix table.

apply_result_schema_
name

Name of the schema hosting the APPLY results table.

target_schema_name Name of the schema hosting the targets table.

cost_matrix_schema_
name

Name of the schema hosting the cost matrix table.

Table 23–21 (Cont.) COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-29

First, you must APPLY the model on your test data. The parameter apply_
result_table_name in the COMPUTE_CONFUSION_MATRIX procedure represents
the table that will be generated in your schema as a result of the APPLY operation.

Next, you must create a table or view containing only the case identifier column
and the target column in its schema. The parameter target_table_name reflects
this input. The schema for this view or table name for a numerical target attribute is:

(case_identifier_column_name VARCHAR2/NUMBER,
target_column_name NUMBER)

The schema for this view or table name for a categorical target attribute is:

(case_identifier_column_name VARCHAR2/NUMBER,
target_column_name NUMBER)

You must provide the name of the table in which the confusion matrix is to be
generated. The resulting fixed schema table will always be created in the schema
owning the model.

For numerical target attributes, the confusion matrix table will have the schema:

(actual_target_value NUMBER,
predicted_target_value NUMBER,
value NUMBER)

For categorical target attributes, the confusion matrix table will have the schema:

actual_target_value VARCHAR2,
predicted_target_value VARCHAR2,
value NUMBER

Examples
Assume that you have built a classification model census_model using the Naive
Bayes algorithm, and you have been provided the test data in a table called
census_2d_test, with case identifier column name person_id, and the target
column name class.

DECLARE
 v_sql_stmt VARCHAR2(4000);
 v_accuracy NUMBER;
BEGIN

/* apply the model census_model on test data */
dbms_data_mining.apply(
 model_name => 'census_model',

COMPUTE_CONFUSION_MATRIX Procedure

23-30 PL/SQL Packages and Types Reference

 data_table_name => 'census_2d_test',
 case_id_column_name => 'person_id',
 result_table_name => 'census_test_result');
CREATE VIEW census_2d_test_view as select person_id, class from census_2d_test;

/* now compute the confusion matrix from the two
 * data streams, also providing a cost matrix as input.
 */
dbms_data_mining.compute_confusion_matrix (
 accuracy => v_accuracy,
 apply_result_table_name => 'census_test_result',
 target_table_name => 'census_2d_test_view',
 case_id_column_name => 'person_id',
 target_column_name => 'class',
 confusion_matrix_table_name => 'census_confusion_matrix',
 cost_matrix_table_name => 'census_cost_matrix');
dbms_output.put_line('Accuracy of the model: ' || v_accuracy);
END;
/

-- View the confusion matrix using Oracle SQL
SELECT actual_target_value, predicted_target_value, value
 FROM census_confusion_matrix;

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-31

COMPUTE_LIFT Procedure

This procedure computes a lift table for a given positive target for a classification
model. See Oracle Data Mining Concepts for a description of lift.

The inputs are a table containing the results of applying the model on the test data,
and a table that contains only the target and case identifier columns from the test
data.

Syntax
DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23–22 COMPUTE_LIFT Procedure Parameters

Parameter Description

apply_result_table_name Name of the table or view containing the results of an
APPLY operation on the test dataset (see Usage Notes).

target_table_name Name of the table or view containing only the case
identifier column and target column values (see Usage
Notes for required schema specification).

case_id_column_name Name of the case identifier column in the test data set.
This must be common across the targets table and the
apply results table.

target_column_name Name of the target column.

COMPUTE_LIFT Procedure

23-32 PL/SQL Packages and Types Reference

Usage Notes
You can also provide a cost matrix as an optional input to have the cost of
predictions reflected in the results.

It is important to note that the data inputs to COMPUTE_LIFT do not always have to
be generated using APPLY. As long as the schema of the two input tables matches
the ones discussed in this section, with appropriate content, the procedure can
provide the lift table as output. The quality of the results depends on the quality of
the data.

The data provided for testing your classification model must match the data
provided to CREATE_MODEL in schema and relevant content. If the data provided as
input to CREATE_MODEL has been pre-processed, then the data input to APPLY
must also be pre-processed using the statistics from the CREATE_MODEL data
pre-processing.

lift_table_name Name of the table into which the lift table is to be
generated.

positive_target_value Value of the positive target. If the target column is of
NUMBER type, use TO_CHAR() operator to provide the
value as a string.

score_column_name Name of the column representing the score in the apply
results table. In the fixed schema table generated by
APPLY, this column has the name PREDICTION, which is
the default.

score_criterion_column_
name

Name of the column representing the ranking factor for
the score in the apply results table. In the fixed schema
table generated by APPLY for classification models, this
column has the name PROBABILITY, which is the default.
Values in this column must be represented numerically.

num_quantiles Number of quantiles required in the lift table.

cost_matrix_table_name Name of the cost matrix table.

apply_result_schema_
name

Name of the schema hosting the APPLY results table.

target_schema_name Name of the schema hosting the targets table.

cost_matrix_schema_name Name of the schema hosting the cost matrix table.

Table 23–22 (Cont.) COMPUTE_LIFT Procedure Parameters

Parameter Description

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-33

Before you use the COMPUTE_LIFT procedure, you must prepare two data input
streams from your test data.

First, you must APPLY the model on your test data. The parameter apply_
result_table_name in the COMPUTE_LIFT procedure represents the table that
will be generated in your schema as a result of the APPLY operation.

Next, you must create a table or view containing only the case identifier column
and the target column in its schema. The parameter target_table_name reflects
this input. The schema for this view or table name for a numerical target attribute is:

(case_identifier_column_name VARCHAR2/NUMBER,
target_column_name NUMBER)

The schema for this view or table name for a categorical target attribute is:

(case_identifier_column_name VARCHAR2/NUMBER,
target_column_name NUMBER)

You must provide the name of the table in which the lift table is to be generated.
The resulting fixed schema table is always created in the schema that owns the
model.

The resulting lift table will have the following schema:

(quantile_number NUMBER,
 quantile_total_count NUMBER,
 quantile_target_count NUMBER,
 percent_records_cumulative NUMBER,
 lift_cumulative NUMBER,
 target_density_cumulative NUMBER,
 targets_cumulative NUMBER,
 non_targets_cumulative NUMBER,
 lift_quantile NUMBER,
 target_density NUMBER)

The output columns are explained in Oracle Data Mining Concepts.

Examples
Assume that you have built a classification model census_model using the Naive
Bayes algorithm, and you have been provided the test data in a table called
census_2d_test, with case identifier column name person_id, and the target
column name class.

DECLARE
 v_sql_stmt VARCHAR2(4000);

COMPUTE_LIFT Procedure

23-34 PL/SQL Packages and Types Reference

BEGIN

/* apply the model census_model on test data */
dbms_data_mining.apply(
 model_name => 'census_model',
 data_table_name => 'census_2d_test,
 case_id_column_name => 'person_id',
 result_table_name => 'census_test_result');

/* next create a view from test data that projects
 * only the case identifier and target column
 */

/* now compute lift with the default 10 quantiles
 * from the two data streams
 */
dbms_data_mining.compute_lift (
 apply_result_table_name => 'census_test_result',
 target_table_name => 'census_2d_test_view',
 case_id_column_name => 'person_id',
 target_column_name => 'class',
 lift_table_name => 'census_lift',
 positive_target_value => '1',
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View the lift table contents using SQL
SELECT *
 FROM census_lift;

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-35

COMPUTE_ROC Procedure

This procedure computes the receiver operating characteristic (ROC) for a binary
classification model. See Oracle Data Mining Concepts for a description of receiver
operating characteristic.

The inputs are a table containing the results of applying the model on the test data,
and a table that contains only the target and case identifier columns from the test
data.

Syntax
DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23–23 COMPUTE_ROC Procedure Parameters

Parameter Description

roc_area_under_the_curve A measure of model accuracy, specifically, the
probability that the model will correctly rank a
randomly chosen pair of rows of opposite classes.

apply_result_table_name Name of the table or view containing the results of
an APPLY operation on the test dataset (see Usage
Notes).

target_table_name Name of the table or view containing only the case
identifier column and target column values (see
Usage Notes for required schema specification).

case_id_column_name Name of the case identifier column in the test data
set.

COMPUTE_ROC Procedure

23-36 PL/SQL Packages and Types Reference

Usage Notes
It is important to note that the data inputs to COMPUTE_ROC do not always have to
be generated using APPLY. As long as the schema of the two input tables matches
the ones discussed in this section, with appropriate content, the procedure can
provide the ROC table as output. The quality of the results depends on the quality of
the data.

The data provided for testing your classification model must match the data
provided to CREATE_MODEL in schema and relevant content. If the data provided as
input to CREATE_MODEL has been pre-processed, then the data input to APPLY
must also be pre-processed using the statistics from the CREATE_MODEL data
pre-processing.

Before you use the COMPUTE_ROC procedure, you must prepare two data input
streams from your test data.

First, you must APPLY the model on your test data. The parameter apply_
result_table_name in the COMPUTE_ROC procedure represents the table that
will be generated in your schema as a result of the APPLY operation.

Next, you must create a table or view containing only the case identifier column
and the target column in its schema. The parameter target_table_name reflects
this input. The schema for this view or table name for a numerical target attribute is:

case_identifier_column_name VARCHAR2/NUMBER,

roc_table_name Name of the table into which ROC results are to be
generated.

score_column_name Name of the column representing the score in the
apply results table. In the fixed schema table
generated by APPLY, this column has the name
PREDICTION, which is the default.

score_criterion_column_name Name of the column representing the ranking factor
for the score in the apply results table. In the fixed
schema table generated by APPLY for classification
models, this column has the name PROBABILITY,
which is the default. Values in this column must be
represented numerically.

apply_result_schema_name Name of the schema hosting the APPLY results table.

target_schema_name Name of the schema hosting the targets table.

Table 23–23 (Cont.) COMPUTE_ROC Procedure Parameters

Parameter Description

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-37

target_column_name NUMBER

The schema for this view or table name for a categorical target attribute is:

case_identifier_column_name VARCHAR2/NUMBER,
target_column_name VARCHAR2

You must provide the name of the table in which the ROC table is to be generated.
The resulting fixed schema table will always be created in the schema that owns the
model. The resulting ROC table will have the following schema:

(probability NUMBER,
 true_positives NUMBER,
 false_negatives NUMBER,
 false_positives NUMBER,
 true_negatives NUMBER,
 true_positive_fraction NUMBER,
 false_positive_fraction NUMBER)

The output columns are explained in Table 23–24.

Table 23–24 COMPUTE_ROC Output

Output Column Description

probability Minimum predicted positive class probability resulting in a
positive class prediction. Thus, different threshold values
result in different hit rates and false_alarm_rates.

true_negatives Negative cases in the test data with predicted probabilities
below the probability_threshold (correctly predicted).

true_positives Positive cases in the test data with predicted probabilities
above the probability_threshold (correctly predicted).

false_negatives Positive cases in the test data with predicted probabilities
below the probability_threshold (incorrectly
predicted).

false_positives Negative cases in the test data with predicted probabilities
above the probability_threshold (incorrectly
predicted).

true_positive_
fraction

true_positives/(true_positives + false_
negatives)

false_positive_
fraction

false_positives/(false_positives + true_negatives)

COMPUTE_ROC Procedure

23-38 PL/SQL Packages and Types Reference

The typical use scenario is to examine the true_positive_fraction and
false_positive_fraction to determine the most desirable probability_
threshold. This threshold is then used to predict class values in subsequent apply
operations. For example, to identify positively predicted cases in probability rank
order from an apply result table, given a probability_threshold:

select case_id_column_name from apply_result_table_name where probability >
probability_threshold order by probability DESC;

There are two procedures one might use to identify the most desirable
probability_threshold. One procedure applies when the relative cost of
positive class versus negative class prediction errors are known to the user. The
other applies when such costs are not well known to the user. In the first instance,
one can apply the relative costs to the ROC table to compute the minimum cost
probability_threshold. Suppose the relative cost ratio, Positive Class Error
Cost / Negative Class Error Cost = 20. Then execute a query like:

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false positives cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost

WHERE cost = minCost;

If relative costs are not well known, the user simply scans the values in the table (in
sorted order) and makes a determination about which of the displayed trade-offs
(misclassified positives versus misclassified negatives) is most desirable:

select * from ROC_table order by probability_threshold

Examples
Assume that you have built a classification model census_model using the SVM
algorithm, and you have been provided the test data in a table called census_2d_
test, with case identifier column name person_id, and the target column name
class.

DECLARE
 v_sql_stmt VARCHAR2(4000);
 v_accuracy NUMBER;
BEGIN

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-39

/* apply the model census_model on test data */
DBMS_DATA_MINING.apply(
 model_name => 'census_model',
 data_table_name => 'census_2d_test',
 case_id_column_name => 'person_id',
 result_table_name => 'census_test_result');

/* next create a view from test data that projects
 * only the case identifier and target column
 */
v_sql_stmt :=
'CREATE VIEW census_2d_test_view AS ' ||
'SELECT person_id, class FROM census_2d_test';
EXECUTE IMMEDIATE v_sql_stmt;

/* now compute the receiver operating characterestics from
 * the two data streams, also providing a cost matrix
 * as input.
 */
DBMS_DATA_MINING.compute_roc (
 accuracy => v_accuracy,
 apply_result_table_name => 'census_test_result',
 target_table_name => 'census_2d_test_view',
 case_id_column_name => 'person_id',
 target_column_name => 'class',
 roc_table_name => 'census_roc',
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View the ROC results using Oracle SQL
SELECT *
 FROM census_roc;

DROP_MODEL Procedure

23-40 PL/SQL Packages and Types Reference

DROP_MODEL Procedure

This procedure drops an existing mining model from the user's schema.

Syntax
DBMS_DATA_MINING.DROP_MODEL (model_name IN VARCHAR2);

Parameters

Usage Notes
You can use DROP_MODEL to drop an existing mining model.

The behavior of the DROP_MODEL is similar to a SQL DDL DROP operation. It
blocks RENAME_MODEL and CREATE_MODEL operations. It does not block or block
on APPLY, which is a SQL query-like operation that does not update any model
data.

If an APPLY operation is using a model, and you attempt to drop the model during
that time, the DROP will succeed and APPLY will return indeterminate results. This
is in line with the conventional behavior in the RDBMS, where DDL operations do
not block on Query operations.

Examples
Assume the existence of a model census_model. The following example shows
how to drop this model.

BEGIN
 DBMS_DATA_MINING.drop_model(model_name => 'census_model');
END;
/

Table 23–25 DROP_MODEL Procedure Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-41

EXPORT_MODEL Procedure

This procedure exports specified data mining models into a dump file set.

Syntax
DBMS_DATA_MINING.EXPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 filesize IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,
 jobname IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23–26 EXPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set must be unique in the directory. A
dump file set may contain one or more files. The number of
files in a file set is determined by the size of the exporting data
and the specified file size (see filesize). If only one file is
created, it is named filename>01.dmp. If multiple files are
created, they are named sequentially as filename01.dmp,
filename02.dmp, and so forth.

directory Name of the directory object where the dump file set is to be
located. The directory object must be created before export.
You must have WRITE privileges on the directory object and
the corresponding file system directory.

model_filter Filter that specifies models to be exported. See Usage Notes for
details.

filesize Size of the dump file; may be specified in bytes, kilobytes (K),
megabytes (M), or gigabytes (G). Defaults to 50 MB.

operation Use one of the literals 'EXPORT'/'ESTIMATE'; defaults to
'EXPORT';.

remote_link A valid DB link or NULL. When a DB link is provided,
exporting DM models from a remote database is allowed.
Defaults to NULL for local operations, namely, exporting
models in the current database.

EXPORT_MODEL Procedure

23-42 PL/SQL Packages and Types Reference

Usage Notes
Use EXPORT_MODEL to export all or specific data mining models from the source.
This procedure creates a dump file set that includes one or more files. The location
of the dump files is specified by parameter directory, which is the name of a
directory object created before this procedure is called. The user must have WRITE
privileges on this directory object. The dump file name must be unique. When the
export operation completes successfully, the dump file name is automatically
expanded to filename01.dmp even if there is only one file in the dump set.

A log file is created for every successful export operation in the directory mapped
by directory. If jobname is specified, the log is named jobname.log. If
jobname is set to NULL (the default), the log is named as USERNAME_exp_
nnnn.log, where nnnn is a number. If jobname is provided, it must be unique.
Parameter model_filter is used to specify models to be exported; its use is
indicated in the following table:

jobname Name of the export job, limited to 30 characters. Must be
unique to that schema, that is, there is no active job using the
same name. If not supplied, a default name is provided in the
form of usernam_exp_datapump_job_id><dm_seq>, for
example, SCOTT_exp_13410. A log file is created in the dump
file with name jobname.log.

Table 23–27 Table MODEL_FILTER for Export

Value Meaning Notes

NULL Default. Export all
models from the user
schema.

none

ALL Export all models
from the user schema.

Same as NULL;
useful to improve
code readability.

A valid WHERE clause, such as: Specify which models
are to be exported.

Any string that can
be appended to
'select name
from dm_user_
models where'
and make it a valid
SQL query.

Table 23–26 (Cont.) EXPORT_MODEL Procedure Parameters

Parameter Description

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-43

EXPORT_MODEL is not mutually exclusive with the DDL-like operations such as
CREATE_MODEL, DROP_MODEL, and RENAME_MODEL. In other words, if an export
operation is currently underway and the model is dropped at that time, then the
results in the exported dump file are unpredictable.

Examples
The following example shows exporting one model from the current user schema
into a dump file. The dump file will be located in operating system directory
/home/models, which is mapped to a directory object DM_DUMP. The directory
object DM_DUMP must be created before executing the sample, and the user must be
granted WRITE privileges on it.

DECLARE
 job_name VARCHAR2(32) := 'model_exp_001';
 filename VARCHAR2(32);
BEGIN
 filename := job_name;
 DBMS_DATA_MINING.export_model(

filename =>filename,
directory =>'DM_DUMP',
metadata_filter => 'name=''NB_MODEL_01''',
remote_link => NULL,
filesize => '30M',
operation => 'EXPORT',
job_name => job_name);

 dbms_output.put_line(
'Export_model '||job_name||' completed sucessfully!');

'name= "super_model"' Export the named
model.

none

'name IN
("model1","model2","model3")'

Export 3 named
models.

none

'ALGORITHM_NAME= "NAIVE_BAYES"' Export all NB models. none

'FUNCTION_NAME="CLASSIFICATION"' Export all
classification models.

none

'name LIKE "NB_MODEL%"ESCAPE"\"' Export all models
whose names start
with "NB_MODEL".

none

Table 23–27 (Cont.) Table MODEL_FILTER for Export

Value Meaning Notes

EXPORT_MODEL Procedure

23-44 PL/SQL Packages and Types Reference

END;
/

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-45

GET_ASSOCIATION_RULES Function

This table function returns the rules from an Association model. The rows are an
enumeration of the rules generated during the creation of the model.

Syntax
DBMS_DATA_MINING.GET_ASSOCIATION_RULES (
 model_name IN VARCHAR2)
 RETURN DM_Rules pipelined;

Parameters

Return Values

Table 23–28 GET_ASSOCIATION_RULES Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–29 GET_ASSOCIATION RULES Function Return Values

Return Value Description

DM_Rules Represents a set of rows with schema:

(rule_id INTEGER,
antecedent DM_Predicates,
consequent DM_Predicates,
rule_support NUMBER,
rule_confidence NUMBER)

DM_Predicates Is a nested table with schema:

(attribute_name VARCHAR2(30),
conditional_operatoar CHAR(2),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
attribute_support NUMBER,
attribute_confidence NUMBER)

GET_ASSOCIATION_RULES Function

23-46 PL/SQL Packages and Types Reference

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
The table function pipes out rows with the schema:

rule_id INTEGER,
antecedent DM_Predicates,
consequent DM_Predicates,
rule_support NUMBER,
rule_confidence NUMBER

DM_Predicates is a collection of DM_Predicate objects. When un-nested, each
object maps to a row of the form:

attribute_name INTEGER,
conditional_operator CHAR(2),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2,
attribute_support NUMBER,
attribute_confidence NUMBER

The significance of piped output is that each row is materialized by the table
function as soon as it is read from model storage, without any latency or wait for
the generation of the complete DM_Rules object. All GET operations use pipelining.
For more information on pipelined, parallel table functions, consult the PL/SQL
User's Guide and Reference.

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

Examples
The following example demonstrates an Association model build followed by an
invocation of GET_ASSOCIATION_RULES table function from Oracle SQL.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE census_settings

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-47

 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

/* build an AR model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'census_settings');
END;
/

-- View the (unformatted) rules from SQL/Plus
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM GET_ASSOCIATION_RULES('market_model'));

-- see ardemo.sql for retrieving formatted rules
/

GET_DEFAULT_SETTINGS Function

23-48 PL/SQL Packages and Types Reference

GET_DEFAULT_SETTINGS Function

This table function returns all the default settings for all mining functions and
algorithms supported in the DBMS_DATA_MINING package.

Syntax
DBMS_DATA_MINING.GET_DEFAULT_SETTINGS;

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
The table function pipes out rows with the schema:

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

This function is particularly useful if you do not know what settings are associated
with a particular function or algorithm, and you want to override some or all of
them.

Examples
For example, if you want to override some or all of k-Means clustering settings, you
can create a settings table as shown, and update individual settings as required.

BEGIN
CREATE TABLE mysettings AS
SELECT *

 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)

Table 23–30 GET_ASSOCIATION RULES Function Return Values

Return Value Description

DM_Model_Settings Represents a set of rows with schema:

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-49

WHERE setting_name LIKE 'KMNS%';
-- now update individual settings as required
UPDATE mysettings

SET setting_value = 0.02
WHERE setting_name = dbms_data_mining.kmns_min_pct_attr_support;

END;
/

GET_FREQUENT_ITEMSETS Function

23-50 PL/SQL Packages and Types Reference

GET_FREQUENT_ITEMSETS Function

This table function returns a set of rows that represent the frequent itemsets from an
Association model. The rows are an enumeration of the frequent itemsets generated
during the creation of the model. For a detailed description of frequent itemsets,
consult Oracle Data Mining Concepts.

Syntax
DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS (
 model_name IN VARCHAR2)
 RETURN DM_ItemSets pipelined;

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
The table function pipes out rows with the schema:

(itemsets_id NUMBER,
items DM_items,

Table 23–31 GET_MODEL_DETAILS_ABN Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–32 GET_FREQUENT_ITEMSETS Function Return Values

Return Value Description

DM_ItemSets Represents a set of rows with schema:

(itemsets_id NUMBER,
items DM_items,
support NUMBER,
number_of_items NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-51

support NUMBER,
number_of_items NUMBER)

DM_Items is a nested table of VARCHAR2 strings representing individual item
names.

The examples shown in this section describe how to un-nest the values from each of
the columns discussed in the preceding sections.

Examples
The following example demonstrates an Association model build followed by an
invocation of GET_FREQUENT_ITEMSETS table function from Oracle SQL.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS

 SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE census_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

/* build a AR model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'census_settings');
END;
/

-- View the (unformatted) Itemsets from SQL/Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model'));

GET_MODEL_DETAILS_ABN Function

23-52 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_ABN Function

This table function returns a set of rows that provide the details of an Adaptive
Bayes Network model.

Syntax
DBMS_DATA_MINING.GET_MODEL_DETAILS_ABN (
 model_name IN VARCHAR2)
 RETURN DM_ABN_Details

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS.

Table 23–33 GET_MODEL_DETAILS_ABN Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–34 GET_MODEL_DETAILS_ABN Function Return Values

Return Value Description

DM_ABN_Details Represents a set of rows with schema:

(attribute_name VARCHAR2(30),
attribute_num_value NUMBER
attribute_str_val VARCHAR2(4000),
probability NUMBER,
conditionals DM_Conditionals)

DM_Conditionals Represents a set of rows DM_Conditional with schema:

(attribute_name VARCHAR2(30),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
conditional_probability NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-53

Usage Notes
The table function pipes out rows with the schema:

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

This function returns details only for 'single feature' ABN model.

Examples
The following example demonstrates an ABN model build followed by an
invocation of GET_MODEL_DETAILS_ABN table function from Oracle SQL.

BEGIN
 -- prepare a settings table to override default algorithm
 CREATE TABLE abn_settings (setting_name VARCHAR2(30),
 setting_value
VARCHAR2(128));
 INSERT INTO abn_settings VALUES (dbms_data_mining.algo_name,
 dbms_data_mining.algo_adaptive_bayes_network);

 -- create a model
 DBMS_DATA_MINING.CREATE_MODEL (
 model_name => 'abn_model',
 function => DBMS_DATA_MINING.CLASSIFICATION,
 data_table_name => 'abn_build',
 case_id_column_name => 'id',
 target_column_name => NULL,
 settings_table_name => 'abn_settings');
END;
/
-- View the (unformatted) results from SQL/Plus
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_ABN('abn_model');

GET_MODEL_DETAILS_KM Function

23-54 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_KM Function

This table function returns a set of rows that provide the details of a k-Means
clustering model. The rows are an enumeration of the clustering patterns generated
during the creation of the model.

Syntax
DBMS_DATA_MINING.GET_MODEL_DETAILS_KM (
 model_name IN VARCHAR2)
RETURN DM_Clusters pipelined;

Parameters

Return Values

Table 23–35 GET_MODEL_DETAILS_KM Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–36 GET_MODEL_DETAILS_KM Function Return Values

Return Value Description

DM_Clusters Represents a set of rows of DM_Cluster with schema:

(id INTEGER,
record_count NUMBER,
parent NUMBER,
tree_level NUMBER,
dispersion NUMBER,
child DM_Children)
centroid DM_Centroids,
histogram DM_Histogram,
rule DM_Rule)

DM_Children Is a nested table of DM_Child with schema:

(id NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-55

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
The table function pipes out rows with the schema:

(id INTEGER,
record_count NUMBER,
parent NUMBER,
tree_level NUMBER,
dispersion NUMBER,

DM_Centroids Is a nested table of DM_Centroid with schema:

(attribute_name VARCHAR2(30)
mean NUMBER,
mode_value VARCHAR2(30),
variance NUMBER);

DM_Histograms Is a nested table of DM_Histogram_bin with schema:

(attribute_name VARCHAR2(30),
bin_id NUMBER,
lower_bound NUMBER,
upper_bound NUMBER,
label VARCHAR2(4000),
count NUMBER)

DM_Rule Is an object with schema:

(rule_id INTEGER,
antecedent DM_Predicates,
consequent DM_Predicates,
rule_support NUMBER,
rule_confidence NUMBER)

DM_Predicates Is a nested table of DM_Predicate with schema:

(attribute_name VARCHAR2(30),
conditional_operator CHAR(2),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
attribute_support NUMBER,
attribute_confidence NUMBER)

Table 23–36 (Cont.) GET_MODEL_DETAILS_KM Function Return Values

Return Value Description

GET_MODEL_DETAILS_KM Function

23-56 PL/SQL Packages and Types Reference

child DM_Children,
centroid DM_Centroids,
histogram DM_Histograms,
rule DM_Rule)

Each DM_Children value is a nested table of id's.

Each DM_Centroid value is itself as nested table that, when un-nested, can return
rows of the form:

(attribute_name VARCHAR2(30)
mean NUMBER,
mode_value VARCHAR2(30),
variance NUMBER);

Each DM_Histogram value is itself a nested table that, when un-nested, can return
rows of the form:

(attribute_name VARCHAR2(30),
bin_id NUMBER,
lower_bound NUMBER,
upper_bound NUMBER,
label VARCHAR2(4000),
count NUMBER)

Each DM_Rule value is an object with two nested DM_Predicate columns:

(rule_id INTEGER,
antecedent DM_Predicates,
consequent DM_Predicates,
rule_support NUMBER,
rule_confidence NUMBER)

DM_Predicates is a collection of DM_Predicate objects. When un-nested, each
object maps to a row of the form:

(attribute_name VARCHAR2(30),
conditional_operator CHAR(2) ,
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
attribute_support NUMBER,
attribute_confidence NUMBER)

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-57

Examples
The following example demonstrates a k-Means clustering model build followed by
an invocation of GET_MODEL_DETAILS_KM table function from Oracle SQL.

BEGIN
-- create a settings table
UPDATE cluster_settings
 SET setting_value = 3
 WHERE setting_name = DBMS_DATA_MINING.kmeans_block_growth;

/* build a k-Means clustering model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'eight_clouds',
 function => DBMS_DATA_MINING.CLUSTERING,
 data_table_name => 'eight_clouds_build',
 case_id_column_name => 'id',
 target_column_name => NULL,
 settings_table_name => 'cluster_settings');
END;
/

-- View the (unformatted) rules from SQL/Plus
SELECT id, record_count, parent, tree_level, dispersion,
 child, centroid, histogram, rule
 FROM TABLE(DBMS_DATA_MINING_GET_MODEL_DETAILS_KM('eight_clouds'));

GET_MODEL_DETAILS_NB Function

23-58 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_NB Function

This table function returns a set of rows that provide the details of a Naive Bayes
model. The rows are an enumeration of the patterns generated during the creation
of the model.

Syntax
DBMS_DATA_MINING.GET_MODEL_DETAILS_NB (
 model_name IN VARCHAR2)
 RETURN DM_NB_Details pipelined;

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Table 23–37 GET_MODEL_DETAILS_NB Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–38 GET_MODEL_DETAILS_NB Function Return Values

Return Value Description

DM_NB_Details Represents a set of rows DM_NB_Detail with schema:

(target_attr_name VARCHAR2(30),
target_attr_num_value NUMBER,
target_attr_str_value VARCHAR2(4000),
prior_probability NUMBER,
conditionals

DM_Conditionals Represents a set of rows DM_Conditional with schema:

(attribute_name VARCHAR2(30),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
conditional_probability NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-59

Usage Notes
The table function pipes out rows with the schema:

(target_attr_name VARCHAR2(30),
target_attr_num_value NUMBER,
target_attr_str_value VARCHAR2(4000),
prior_probability NUMBER,
conditionals DM_Conditionals)

Each DM_Conditionals value is itself as nested table that, when un-nested, can
return rows of type DM_Conditional, of the form:

(attribute_name VARCHAR2(30),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000),
conditional_probability NUMBER)

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

Examples
Assume that you have built a classification model census_model using the Naive
Bayes algorithm. You can retrieve the model details as shown in this example.

-- You can view the Naive Bayes model details in many ways
-- Consult the Oracle Application Developer's Guide -
-- Object-Relational Features for different ways of
-- accessing Oracle Objects.

-- View the (unformatted) details from SQL/Plus
SELECT attribute_name, attribute_num_value, attribute_str_value,
 prior_probability, conditionals,
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NB('census_model');

See nbdemo.sql for generation of formatted rules.

GET_MODEL_DETAILS_NMF Function

23-60 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_NMF Function

This table function returns a set of rows that provide the details of a Non-Negative
Matrix Factorization model.

Syntax
DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF (
 model_name IN VARCHAR2)
 RETURN DM_NMF_Details pipelined;

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Table 23–39 GET_MODEL_DETAILS_NMF Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–40 GET_MODEL_DETAILS_NMF Function Return Values

Return Value Description

DM_NMF_Feature_set Represents a set of rows of DM_NMF_Feature with schema:

(feature_id INTEGER,
attribute_set DM_NMF_Attribute_Set)

DM_NMF_Attribute_Set Is a nested table of DM_NMF_Attribute with schema:

(attribute_name VARCHAR2,
attribute_value VARCHAR2(4000),
coefficient NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-61

Usage Notes
The table function pipes out rows with the schema:

(feature_id INTEGER,
attribute_set DM_NMF_Attribute_Set)

Each DM_NMF_Feature_Set value is itself as nested table that, when un-nested,
can return rows of the form:

(attribute_name) VARCHAR2,
attribute_value VARCHAR2(4000),
coefficient NUMBER)

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

Examples
Assume you have built an NMF model called my_nmf_model. You can retrieve
model details as shown:

--View (unformatted) details from SQL/Plus
SELECT feature_id, attribute_set
FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF(
 'my_nmf_model'));

GET_MODEL_DETAILS_SVM Function

23-62 PL/SQL Packages and Types Reference

GET_MODEL_DETAILS_SVM Function

This table function returns a set of rows that provide the details of a Support Vector
Machines model. This is applicable only for classification or regression models built
using a linear kernel. For any other kernel, the table function returns ORA-40215.

Syntax
DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM (
 model_name IN VARCHAR2)
 RETURN DM_SVM_Linear_Coeff pipelined;

Parameters

Return Values

 Usage Notes
The table function pipes out rows with the schema:

(class VARCHAR2(4000),
attribute_set DM_SVM_Attribute_Set)

Table 23–41 GET_MODEL_DETAILS_SVM Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–42 GET_MODEL_DETAILS_SVM Function Return Values

Return Value Description

DM_SVM_Linear_Coeff_Set Represents a set of rows of DM_SVM_Linear_Coeff with
schema:

(class VARCHAR2(4000),
 attribute_set DM_SVM_Attribute_Set)

DM_SVM_Attribute_Set Is a nested table of DM_SVM_Attribute with schema:

(attribute_name VARCHAR2(30),
attribute_value VARCHAR2(4000),
coefficient NUMBER)

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-63

class represents classification target values. For regression targets, class is NULL.
For each classification target value for classification models or once only for
regression models, the DM_SVM_Attribute_Set value is itself a nested table that,
when un-nested, can return rows of the form:

(attribute_name VARCHAR2(30),
attribute_value VARCHAR2(4000),
coefficient NUMBER)

The examples shown in this section describe how to un-nest the values from each of
the columns discussed earlier.

Examples
The following example demonstrates an SVM model build followed by an
invocation of GET_MODEL_DETAILS_SVM table function from Oracle SQL:

 -- Create SVM model
BEGIN
 dbms_data_mining.create_model(
 model_name => 'SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'svmc_sample_build_prepared',
 case_id_column_name => 'id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svmc_sample_settings');
END;
/
-- Display model details
SELECT *
 FROM TABLE(dbms_data_mining.get_model_details_svm('SVM_Clas_sample'))
ORDER BY class;

GET_MODEL_SETTINGS Function

23-64 PL/SQL Packages and Types Reference

GET_MODEL_SETTINGS Function

This table function returns the list of settings that were used to build the model.

Syntax
DBMS_DATA_MINING.GET_MODEL_SETTINGS(
 model_name IN VARCHAR2)
 RETURN DM_Model_Settings pipelined;

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
You can use this table function to determine the settings that were used to build the
model. This is purely for informational purposes only — you cannot alter the model
to adopt new settings.

Table 23–43 GET_MODEL_SETTINGS Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–44 GET_MODEL_SETTINGS Function Return Values

Return Value Description

DM_Model_Settings Represents a set of rows with schema:

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-65

Examples
Assume that you have built a classification model census_model using the Naive
Bayes algorithm. You can retrieve the model settings using Oracle SQL as follows:

SELECT setting_name, setting_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SETTINGS('census_model'));

GET_MODEL_SIGNATURE Function

23-66 PL/SQL Packages and Types Reference

GET_MODEL_SIGNATURE Function

This table function returns the model signature, which is a set of rows that provide
the name and type of each attribute required as input to the APPLY operation.

The case identifier is not considered a mining attribute. For classification and
regression models, the target attribute is also not considered part of the model
signature.

Syntax
DBMS_DATA_MINING.GET_MODEL_SIGNATURE(
 model_name IN VARCHAR2)
RETURN DM_Model_Signature pipelined;

Parameters

Return Values

Pragmas
RNDS, WNDS, RNPS, WNPS

Usage Notes
You can use this table function to get the list of attributes used for building the
model. This is particularly helpful to describe a model when an APPLY operation on
test or scoring data is done a significant time period after the model is built, or after
it is imported into another schema.

Table 23–45 GET_MODEL_SIGNATURE Function Parameters

Parameter Description

model_name Name of the model (see Rules and Limitations).

Table 23–46 GET_MODEL_SIGNATURE Function Return Values

Return Value Description

DM_Model_Signature Represents a set of rows with schema:

(attribute_name VARCHAR2(30),
attribute_type VARCHAR2(106))

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-67

Examples
Assume that you have built a classification model census_model using the Naive
Bayes algorithm. You can retrieve the model details using Oracle SQL as follows:

SELECT attribute_name, attribute_type
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SIGNATURE('census_model');

IMPORT_MODEL Procedure

23-68 PL/SQL Packages and Types Reference

 IMPORT_MODEL Procedure

This procedure imports specified data mining models from a dump file set or from
a remote database.

Syntax
DBMS_DATA_MINING.IMPORT_MODEL (

filename IN VARCHAR2,
directory IN VARCHAR2,
model_names IN VARCHAR2 DEFAULT NULL,
operation IN VARCHAR2 DEFAULT NULL,
remote_link IN VARCHAR2 DEFAULT NULL,
jobname IN VARCHAR2 DEFAULT NULL,
schema_remap IN VARCHAR2 DEFAULT NULL);

Parameters
s+

Table 23–47 IMPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set. If there are multiple files in the set,
you may use "%U" to specify the file set. See Usage Notes for
details.

directory Name of the directory object where the dump file is located.
The directory object must be created before the import
operation and you must be granted both READ and WRITE
privileges.

model_names Specify the names of models to be imported. See Usage Notes
for details.

operation Use one of the literals 'IMPORT'/'SQL_FILE'; defaults to
'IMPORT'. When set to 'SQL_FILE', DDLs that create those
database objects in the dump file set are generated in a text file
in the dump directory. The DDL file is named job_name.sql.

remote_link A valid DB link or NULL. When a DB link is provided, this
allows moving DM models from the remote database to the
local database. Default value is NULL for importing into the
current database from a dump file set.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-69

Usage Notes
Use IMPORT_MODEL to import all or specific data mining models from a dump or
from a remote database by means of a DB link.

The dump file set must be created by expdp or EXPORT_MODEL procedure. The
dump files must be located in the directory mapped by the directory object. The
user must have READ and WRITE privileges on the directory object. In order to
import models from a dump created by another user, you must have IMP_FULL_
DATABASE privilege or have SYS role.

When import operation completes successfully, a log is created in the directory
mapped by directory object. If jobname is provided, the log is named
jobname.log. If jobname is NULL (the default) the log is named username_imp_
nnnn.log, where nnnn is a number. If the dump file set contains multiple files, you
can use "%U" in the filename. For example, if your dump file set contains 3 files,
archive01.dmp, archive02.dmp, and archive03.dmp, you may specify
filename=>'archive%U'.

Use the parameter model_names to specify which models to import. The use of
model_names is dependent on the operation, whether the source is a dump file set
or a remote database. When importing from dump files, model names are the sole
useful reference. In this case, you can either assign model_names with
comma-delimited model names or a WHERE clause with names explicitly specified.
When importing from a remote database, model_names can be specified in the
same fashion as in the EXPORT_MODEL procedure. Details are listed in Table 23–48.

job_name Name of the import job, limited to 30 characters. It must be
unique to that schema, that is, there is no active import job
using the same name. If not supplied, a default name is
provided in the form of username_imp_nnnn. For example,
"SCOTT_imp_76102".

schema_remap Specify schema remapping. Must be specified when importing
from a dump file set created by a different user. It must be
specified in the form of 'FROM_NAME:TO_NAME'. For example,
to remap schema from SCOTT to MARY, set schema_
remap=>'SCOTT:MARY'. You need IMP_FULL_DATABASE
privileges to do schema remapping if you do not have a SYS
role.

Table 23–47 (Cont.) IMPORT_MODEL Procedure Parameters

Parameter Description

IMPORT_MODEL Procedure

23-70 PL/SQL Packages and Types Reference

IMPORT_MODEL is not mutually exclusive with the DDL-like operations such as
CREATE_MODEL, DROP_MODEL, and RENAME_MODEL. In other words, if an import
operation is underway, models with the same name are dropped at that time, and
the results in the schema are unpredictable.

Table 23–48 Table MODEL_FILTER for Import

Value Source* Meaning Notes

NULL dump/remote Default. Import all
models from the
user schema.

'ALL' dump/remote Import all models
from the user
schema.

Same as NULL;
useful to improve
code readability.

Comma-separated model names dump/remote Import named
models.

Examples:
'mymodel' or
'model1,
model2,
model3

A valid WHERE clause, such as: ---- Specify which
models are to be
imported.

Any string that
can be appended
to 'select
name from dm_
user_models
where' and
make it a valid
SQL query.

'name=''super_model''' dump/remote Import super_
model.

'name IN
("model1","model2",
"model3")'

dump/remote Import model
model1,model2,
and model3.

 'ALGORITHM_
NAME="NAIVE_BAYES"'

remote Import all NB
models.

'FUNCTION_
NAME="CLASSIFICATION"'

remote Import all
classification
models.

'name LIKE "NB_
MODEL%"ESCAPE"\" '

remote Import all models
whose name start
with 'NB_MODEL'.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-71

Examples
The following example shows user MARY imports all models from a dump file,
model_exp_001.dmp, created by user SCOTT. The dump file is located in the file
system directory mapped to a directory object called DM_DUMP. Note that if user
MARY does not have IMP_FULL_DATABASE privileges, IMPORT_MODEL will raise an
error.

-- import all models
declare
 file_name VARCHAR2(40);
BEGIN
 file_name := 'model_exp_001.dmp';
 DBMS_DATA_MINING.import_model(

filename=>file_name,
directory=>'DM_DUMP',

schema_remap=>'SCOTT:MARY');
 dbms_output.put_line(
'DBMS_DATA_MINING.import_model of all models from SCOTT done!');
END;
/

RANK_APPLY Procedure

23-72 PL/SQL Packages and Types Reference

RANK_APPLY Procedure

This procedure ranks the results of an APPLY operation based on a top-N
specification for predictive and descriptive model results. For classification models,
you can provide a cost matrix as input, and obtain the ranked results with costs
applied to the predictions.

Syntax
DBMS_DATA_MINING.RANK_APPLY (
 apply_result_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 ranked_apply_result_tab_name IN VARCHAR2,
 top_N IN INTEGER DEFAULT 1,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 23–49 RANK_APPLY Procedure Parameters

Parameter Description

apply_result_table_
name

Name of the table or view containing the results of an APPLY
operation on the test dataset (see Usage Notes).

case_id_column_name Name of the case identifier column. This must be the same as
the one used for generating APPLY results.

ranked_apply_result_
tab_name

Name of the table containing the ranked apply results.

top_N Top N predictions to be considered from the APPLY results for
precision recall computation.

cost_matrix_table_
name

Name of the cost matrix table.

apply_result_schema_
name

Name of the schema hosting the APPLY results table.

cost_matrix_schema_
name

Name of the schema hosting the cost matrix table.

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-73

Usage Notes
You can use RANK_APPLY to generate ranked apply results, based on a top-N filter
and also with application of cost for predictions, if a cost matrix is provided.

The behavior of RANK_APPLY is similar to that of APPLY with respect to other
DDL-like operations such as CREATE_MODEL, DROP_MODEL, and RENAME_MODEL.
The procedure does not depend on the model; the only input of relevance is the
apply results generated in a fixed schema table from APPLY.

The main intended use of RANK_APPLY is for the generation of the final APPLY
results against the scoring data in a production setting. You can apply the model
against test data using APPLY, compute various test metrics against various cost
matrix tables, and use the candidate cost matrix for RANK_APPLY.

The schema for the apply results from each of the supported algorithms is listed in
subsequent sections. The case_id column will be the same case identifier column
as that of the apply results.

Classification Models — NB, ABN, SVM
For numerical targets, the ranked results table will have the schema as shown:

(case_id VARCHAR2/NUMBER,
prediction NUMBER,
probability NUMBER,
cost NUMBER,
rank INTEGER)

For categorical targets, the ranked results table will have the following schema:

(case_id VARCHAR2/NUMBER,
prediction VARCHAR2,
probability NUMBER,
cost NUMBER,
rank INTEGER)

Clustering using k-Means
Clustering is an unsupervised mining function, and hence there are no targets. The
results of an APPLY operation contains simply the cluster identifier corresponding
to a case, and the associated probability. Cost matrix is not considered here. The
ranked results table will have the schema as shown, and contains the cluster ids
ranked by top-N.

(case_id VARCHAR2/NUMBER,
cluster_id NUMBER,
probability NUMBER,

RANK_APPLY Procedure

23-74 PL/SQL Packages and Types Reference

rank INTEGER)

Feature Extraction using NMF
Feature extraction is also an unsupervised mining function, and hence there are no
targets. The results of an APPLY operation contains simply the feature identifier
corresponding to a case, and the associated match quality. Cost matrix is not
considered here. The ranked results table will have the schema as shown, and
contains the feature ids ranked by top-N.

(case_id VARCHAR2/NUMBER,
feature_id NUMBER,
match_quality NUMBER,
rank INTEGER)

Examples
BEGIN
/* build a model with name census_model.
 * (See example under CREATE_MODEL)
 */

/* if build data was pre-processed in any manner,
 * perform the same pre-processing steps on apply
 * data also.
 * (See examples in the section on DBMS_DATA_MINING_TRANSFORM)
 */

/* apply the model to data to be scored */
DBMS_DATA_MINING.rank_apply(
 apply_result_table_name => 'census_apply',
 case_id_column_name => 'person_id',
 ranked_apply_result_tab_name => 'census_ranked_apply',
 top_N => 3,
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View Apply Results
SELECT *
 FROM census_ranked_apply;

Summary of DBMS_DATA_MINING Subprograms

 DBMS_DATA_MINING 23-75

RENAME_MODEL Procedure

This procedure renames a mining model to a specified new name.

Syntax
DBMS_DATA_MINING.RENAME_MODEL (
 model_name IN VARCHAR2,
 new_model_name IN VARCHAR2);

Parameters

Usage Notes
You can use RENAME_MODEL to rename an existing mining model.

The behavior of the RENAME_MODEL is similar to a SQL DDL RENAME operation. It
blocks DROP_MODEL and CREATE_MODEL operations. It does not block APPLY,
which is a SQL query-like operation that does not update any model data.

If an APPLY operation is using a model, and you attempt to rename the model
during that time, the RENAME will succeed and APPLY will return indeterminate
results. This is in line with the conventional behavior in the RDBMS, where DDL
operations do not block on query operations.

Examples
Assume the existence of a model census_model. The following example shows
how to rename this model.

BEGIN
 DBMS_DATA_MINING.rename_model(
 model_name => 'census_model',
 new_model_name => 'census_new_model');
END;
/

Table 23–50 RENAME_MODEL Procedure Parameters

Parameter Description

model_name Old name of the model (see Rules and Limitations).

new_model_name New name of the model (see Rules and Limitations).

RENAME_MODEL Procedure

23-76 PL/SQL Packages and Types Reference

 DBMS_DATA_MINING_TRANSFORM 24-1

24
DBMS_DATA_MINING_TRANSFORM

The DBMS_DATA_MINING_TRANSFORM package is a set of data transformation
utilities available for use with the DBMS_DATA_MINING package for preparing
mining data.

This chapter contains the following topics:

■ Using DBMS_DATA_MINING_TRANSFORM

■ Overview

■ Types

■ Supported Transformation Methods

■ Transformation Operations

■ Transformation Methodology

■ Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

Using DBMS_DATA_MINING_TRANSFORM

24-2 PL/SQL Packages and Types Reference

Using DBMS_DATA_MINING_TRANSFORM

Overview

The DBMS_DATA_MINING_TRANSFORM package has two motivations:

■ It is a basic utility package for preprocessing mining data before providing it as
input to routines in the DBMS_DATA_MINING package.

■ It is a learning tool that shows how to use SQL to perform common mining
transforms. The inputs and outputs for this package are simple views and tables
that are not Oracle proprietary. You can study these objects to help you create
data transforms that are specific to your application data. The source code for
this package is in dbmsdmxf.sql (for UNIX, the path is $ORACLE_
HOME/dm/admin/dbmsdmxf.sql) and is available for inspection.

The main principle behind the design of this package is the fact that SQL has
enough power to perform most of the common mining transforms efficiently. For
example, binning can be done using CASE expression or DECODE function, and
linear normalization is a simple algebraic expression of the form
(x - shift)/scale where x is the data value that is being transformed.

However, the queries that perform the transforms can be rather lengthy. So it is
desirable to have some convenience routines that will help in generating queries.
Thus, the goal of this package is to provide query generation services for the most
common mining transforms, as well as to provide a framework that can be easily
extended for implementing other transforms.

Note: Use of this package for preprocessing data input to DBMS_DATA_MINING
operations is not mandatory. You can use any third-party tool or any home-grown
utilities that are customized for your application.

Types

Table 24–1 Summary of Data Types

Data Type Purpose

Column_List List of column names representing mining attributes,
defined to be

VARRAY(1000) OF VARCHAR2(32);

Using DBMS_DATA_MINING_TRANSFORM

 DBMS_DATA_MINING_TRANSFORM 24-3

Supported Transformation Methods

The DBMS_DATA_MINING_TRANSFORM package supports the following
transformations for numerical and categorical attributes, which map to the NUMBER
and VARCHAR2/CHAR Oracle data types respectively.

Binning
Binning involves mapping both continuous and discrete values to discrete values of
reduced cardinality. For example, the age of persons can be binned into discrete
numeric bins: 1-20 to 1, 21-40 to 2, and so on. Popular car manufacturers such as
Ford, Chrysler, BMW, Volkswagen can be binned into discrete categorical bins:
{Ford, Chrysler} to US_Car_Makers, and {BMW, Volkswagen} to European_Car_
Makers. The package supports binning for both categorical and numerical
attributes.

Top-N Frequency Categorical Binning
The bin definition for each attribute is computed based on the occurrence frequency
of values that are computed from the data. The user specifies a particular number of
bins, say N. Each of the bins bin1, ..., binN corresponds to the values with top
frequencies. The bin binN+1 corresponds to all remaining values.

Equi-Width Numerical Binning
The bin definition for each attribute is computed based on the min and max values
that are computed from the data. The user specifies a particular number of bins, say
N. Each of the bins bin1,..., binN span ranges of equal width of size inc = (max
– min)/N, and bin0 spans range (–inf, min) and binN+1 range (max, + inf).

Quantile Numerical Binning
The definition for each relevant column is computed based on the min values for
each quantile, where quantiles are computed from the data using NTILE function.
Bins bin1, ..., binN – 1 span ranges [minI, minI+1) and binN range [minN, maxN].
Bins with equal left and right boundaries are collapsed.

Note: This chapter uses standard interval notation for number
sets: [a,b] is the set of all real numbers greater than or equal to a
and less than or equal to b; [a,b) is the set of all real numbers
greater than or equal to a and less than b. (b is in the set [a,b]; b is
not in the set [a,b).)

Transformation Operations

24-4 PL/SQL Packages and Types Reference

Normalization
Normalization involves scaling continuous values down to specific range — as in
–1.0 to 1.0 or 0.0 to 1.0 such that xnew = (xold – shift)/scale. It applies only to
numerical attributes.

Min-Max Normalization
The normalization definition for each attribute is computed based on the min and
max values that are computed from the data. The values for shift and scale are
computed to be shift = min, and scale = (max – min) respectively.

Z-Score Normalization
The normalization definition for each attribute is computed based on the values for
mean and standard deviation that are computed from the data. The values for
shift and scale are computed to be shift = mean, and scale = standard
deviation respectively.

Winsorizing and Trimming (Clipping)
Some computations on attribute values can be significantly affected by extreme
values. One approach to achieving a more robust computation is to winsorize or
trim the data as a preprocessing step. Winsorizing involves setting the tail values of
a particular attribute to some specified quantile of the data, while trimming
removes the tails. In other words, trimmed values are ignored in further
computations. This is achieved by setting the tails to NULL. For example, for a 90%
winsorization, the bottom 5% are set equal to the minimum value in the 6th
percentile, while the upper 5% are set equal to the value corresponding to the
maximum value in the 95th percentile.

Transformation Operations

The package provides three classes of convenience routines. The first two classes of
routines define the transformation, and the last class of routines generate the
queries that provide the transformed data.

■ Create the transform definition table using CREATE routines. The generated
table is a transform-specific and has a pre-defined fixed schema. Each routine is
equivalent to the SQL statement CREATE TABLE table (...)

■ Define the transform — that is, populate the transform definition table — using
INSERT routines. Each routine is equivalent to the SQL statement INSERT
INTO table SELECT...

Using DBMS_DATA_MINING_TRANSFORM

 DBMS_DATA_MINING_TRANSFORM 24-5

■ Generate the query for transformation using XFORM routines. Each routine is
equivalent to the SQL statement CREATE VIEW view AS SELECT ...

Creating a Transform Definition Table
You must use CREATE_BIN_NUM or CREATE_BIN_CAT routines to create the bin
definition tables. You must use CREATE_NORM_LIN to create the normalization
definition table. You must use CREATE_CLIP to create the clipping definition table.

Usually, the consistency and integrity of transform definition tables is guaranteed
by the creation process. Alternatively, it can be achieved by leveraging an integrity
constraints mechanism. This can be done either by altering the tables created with
CREATE routines, or by creating the tables manually with the necessary integrity
constraints.

Defining the Transform
The most common way of defining the transform (populating the transform
definition tables) for each attribute is based on data inspection using some
predefined methods (also known as automatic transform definition). Some of the
most popular methods have been captured by the INSERT routines in the package.
For example, the z-score normalization method estimates mean and standard
deviation from the data to be used as a shift and scale parameters of the linear
normalization transform.

You can bin numerical attributes using INSERT_BIN_NUM_EQWIDTH or INSERT_
BIN_NUM_QTILE and categorical attributes using INSERT_BIN_CAT_FREQ. You
can normalize numerical attributes using INSERT_NORM_LIN_ZSCORE or
INSERT_NORM_LIN_MINMAX. You can either winsorize numerical attributes using
INSERT_CLIP_WINZOR_TAIL or trim them using INSERT_CLIP_TRIM_TAIL.
You can invoke these routines several times to transform all relevant attributes from
various data sources till the definition table fully represents all mining attributes for
a given problem.

After performing automatic transform definition, some or all of the definitions can
be adjusted by issuing SQL DML statements against the transform definition tables,
thus providing virtually infinite flexibility in defining custom transforms.

The INSERT routines enable flexible transform definitions in several ways:

■ The data provided to the INSERT routines do not necessarily have to be the
data used for a particular model creation. It can be any data that contains
adequate representation of the mining attributes.

Transformation Methodology

24-6 PL/SQL Packages and Types Reference

■ The INSERT routines can be called any number of times against the same or
different dataset until all the attributes have their transformations defined. You
can selectively exclude one or more attributes for a particular iteration of the
INSERT. In the most extreme case, each individual attribute can potentially
have a unique transformation definition.

■ You do not have to separately feed in numerical and categorical attributes, since
categorical binning automatically skips over NUMBER columns in your table,
and numerical binning and the normalization and clipping routines skip over
VARCHAR2/CHAR columns in your input data.

Generating the Query for the Transform
Query generation is driven by the simple transform-specific definition tables with a
predefined schema. Query generation routines should be viewed as macros, and
transform definition tables as parameters used in macro expansions. Similar to
using #define macros in the C language, the invoker is responsible for ensuring
the correctness of the expanded macro, that is, that the result is a valid SQL query.

You can generate the views representing the transformation queries for binning
using XFORM_BIN_CAT and XFORM_BIN_NUM, and for normalization using
XFORM_NORM_LIN, and for clipping using XFORM_CLIP.

If your data contains a combination of numerical and categorical attributes, you
must essentially feed the results of one transformation step to the next step. For
example, the results of XFORM_BIN_CAT can be fed to XFORM_BIN_NUM or vice
versa. The order is irrelevant since numerical and categorical transforms work on
disjoint sets of attributes.

Transformation Methodology

Given a dataset for a particular mining problem, any preprocessing and
transformations on the mining data must be uniform across all mining operations.
In other words, if the build data is preprocessed according to a particular transform
definition, then it follows that the test data and the scoring data must be
preprocessed using the same definition.

The general usage of routines in this package can be explained using this example.
Assume that your input table for model build contains both numerical and
categorical data that require to be binned. A possible sequence of operations will be:

■ Invoke CREATE_BIN_NUM to generate a numerical bin definition table.

Using DBMS_DATA_MINING_TRANSFORM

 DBMS_DATA_MINING_TRANSFORM 24-7

■ Invoke INSERT_BIN_NUM_EQWIDTH to define the transforms for all numerical
attributes in the build data input (For the sake of simplicity, let us assume that
all numericals are to be binned into 10 bins.)

■ Next invoke XFORM_BIN_NUM with the numerical bin table and the build data
table as inputs. The resulting object is a view that represents a SQL query
against the build data table that performs numerical binning. Assume that you
have named this result object build_bin_num_view.

■ Since you still have the categorical attributes to be binned, invoke CREATE_
BIN_CAT to create a categorical bin definition table.

■ Next, invoke INSERT_BIN_CAT_FREQ to define the transforms for all
categorical attributes. (For the sake of simplicity, let us assume that all
categorical attributes are to be binned into 10 bins.)

■ As the final step, invoke XFORM_BIN_CAT with the categorical bin table and the
view name provided by XFORM_BIN_NUM, namely build_bin_num_view, as
the inputs. This essentially amounts to combining the transformations from
both stages.

■ The object resulting from this operation is a view that represents a SQL query
against your build data table, influenced by the contents of the categorical bin
boundary table also. Provide this view name as the data input to the CREATE_
MODEL procedure in the DBMS_DATA_MINING package.

If this happens to be a classification model, and you want to APPLY this model to
scoring data, you must prepare the scoring data similar to the build data. You can
achieve this in two simple steps:

■ First, call XFORM_BIN_NUM with the scoring data table and the numerical bin
boundary table as inputs. The resulting object is a view that represents an SQL
query against your scoring data table, influenced by the contents of the
numerical bin boundary table. Assume that you have named this result object
apply_bin_num_view.

■ As the next and final step, invoke XFORM_BIN_CAT with the categorical bin
table and the view name provided by XFORM_BIN_NUM, namely apply_bin_
num_view, as the inputs.

■ The object resulting from this operation is now a view that represents an SQL
query against your scoring data table, influenced by the contents of the
categorical bin boundary table also. Provide this view name as the data input to
the APPLY procedure in the DBMS_DATA_MINING package.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

24-8 PL/SQL Packages and Types Reference

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

Table 24–2 DBMS_DATA_MINING_TRANSFORM Package Subprograms

Subprogram Purpose

CREATE_BIN_CAT Procedure on
page 24-10

Creates a categorical bin definition table

CREATE_BIN_NUM Procedure on
page 24-11

Creates a numerical bin definition table

CREATE_CLIP Procedure on
page 24-12

Creates a clipping definition table

CREATE_NORM_LIN Procedure on
page 24-13

Creates a normalization definition table

INSERT_BIN_CAT_FREQ Procedure
on page 24-14

Populates the categorical bin definition table,
applying frequency-based binning on the categorical
input data

INSERT_BIN_NUM_EQWIDTH
Procedure on page 24-16

Populates the numerical bin definition table,
applying equi-width binning on the numerical input
data

INSERT_BIN_NUM_QTILE
Procedure on page 24-18

Populates the numerical bin definition table,
applying quantile binning on the numerical input
data

INSERT_CLIP_TRIM_TAIL
Procedure on page 24-20

Populates the clipping definition table, applying
trimming based on tail fraction on the numerical
input data

INSERT_CLIP_WINSOR_TAIL
Procedure on page 24-22

Populates the clipping definition table, applying
winsorizing based on tail fraction on the numerical
input data

INSERT_NORM_LIN_ZSCORE
Procedure on page 24-24

Populates the normalization definition table
applying z-score normalization on the numerical
input data

INSERT_NORM_LIN_MINMAX
Procedure on page 24-26

Populates the normalization definition table,
applying min-max normalization on the numerical
input data

XFORM_BIN_CAT Procedure on
page 24-28

Creates the view representing the transformed
output with binned categorical data

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-9

XFORM_BIN_NUM Procedure on
page 24-31

Creates the view representing the transformed
output with binned numerical data

XFORM_CLIP Procedure on
page 24-34

Creates the view representing the transformed
output with clipped numerical data

XFORM_NORM_LIN Procedure on
page 24-36

Creates the view representing the transformed
output with normalized numerical data

Table 24–2 (Cont.) DBMS_DATA_MINING_TRANSFORM Package Subprograms

Subprogram Purpose

CREATE_BIN_CAT Procedure

24-10 PL/SQL Packages and Types Reference

CREATE_BIN_CAT Procedure

This procedure creates a categorical binning definition table. This table is used as
input to INSERT_BIN_CAT_FREQ and XFORM_BIN_CAT procedures.

Syntax
DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The generated bin definition table will have the predefined schema:

col VARCHAR2(30)
val VARCHAR2(4000)
bin VARCHAR2(4000)

Examples
BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT('build_bin_cat_table');
END;

Table 24–3 CREATE_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the bin definition table.

bin_schema_name Name of the schema hosting the bin definition table.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-11

CREATE_BIN_NUM Procedure

This procedure creates a numerical binning definition table. This table is used as
input to INSERT_BIN_NUM_EQWIDTH, INSERT_BIN_NUM_QTILE, and XFORM_
BIN_NUM procedures.

Syntax
DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The generated bin definition table will have the predefined schema:

col VARCHAR2(30)
val NUMBER
bin VARCHAR2(4000)

Examples
BEGIN

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM('build_bin_num_table');
END;

Table 24–4 CREATE_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the bin definition table.

bin_schema_name Name of the schema hosting the bin definition table.

CREATE_CLIP Procedure

24-12 PL/SQL Packages and Types Reference

CREATE_CLIP Procedure

This procedure creates a clipping definition table. This table is used as input to
INSERT_CLIP_WINSOR_TAIL, INSERT_CLIP_TRIM_TAIL, and XFORM_CLIP
procedures.

Syntax
DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP (
 clip_table_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The generated clipping definition table will have the predefined schema:

col VARCHAR2(30)
lcut NUMBER
lval NUMBER
rcut NUMBER
rval NUMBER

Examples
BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP('build_clip_table');
END;

Table 24–5 CREATE_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the clipping definition table.

clip_schema_name Name of the schema hosting the clipping definition table.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-13

CREATE_NORM_LIN Procedure

This procedure creates a linear normalization definition table. This table is used as
input to INSERT_NORM_LIN_MINMAX, INSERT_NORM_LIN_ZSCORE, XFORM_
NORM_LIN procedures.

Syntax
DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN (
 norm_table_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The generated normalization table will have the predefined schema:

col VARCHAR2(30)
shift NUMBER
scale NUMBER

Examples
BEGIN

DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN('build_norm_table');
END;

Table 24–6 CREATE_NORMALIZE_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the normalization definition table.

norm_schema_name Name of the schema hosting the normalization definition table.

INSERT_BIN_CAT_FREQ Procedure

24-14 PL/SQL Packages and Types Reference

INSERT_BIN_CAT_FREQ Procedure

This procedure finds the categorical binning definition for every VARCHAR2, CHAR
column in the data table that is not specified in the exclusion list and inserts the
definition into the categorical binning definition table created using CREATE_BIN_
CAT.

Definition for each relevant column is computed based on the occurrence frequency
of column values that are computed from the data table. Each of the bin_num(N)
bins bin1, ..., binN corresponds to the values with top frequencies when N > 0
or bottom frequencies when N < 0, and binN+1 to all remaining values, where
binI = I. Ordering ties among identical frequencies are broken by ordering on
column values (ASC for N > 0 or DESC for N < 0). When the number of distinct
values C < N only C+1 bins will be created.

The parameter default_num (D) is used for pruning based on the number of
values that fall into the default bin. When D > 0 only columns that have at least D
defaults are kept while others are ignored. When D < 0 only columns that have at
most D values are kept. No pruning is done when D is NULL or D = 0. Parameter
bin_support (SUP) is used for restricting bins to frequent (SUP > 0) values frq >=
SUP*tot, or infrequent (SUP < 0) ones frq <= –SUP*tot, where frq is a given
value count and tot is a sum of all counts as computed from the data. No support
filtering is done when SUP is NULL or when SUP = 0.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 9,
 exclude_list IN Column_List DEFAULT NULL,
 default_num IN PLS_INTEGER DEFAULT 2,
 bin_support NUMBER DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-15

Parameters

Usage Notes
For a given input table, you can iteratively call this routine several times with
different specifications for number of bins for a given input table. For each iteration,
you can selectively exclude attributes (that is, column names) using the exclude_
list parameter for a particular binning specification.

Columns with all NULLs are ignored. No bin definitions are populated when bin_
num = 0, or bin_num, is NULL.

Examples
The simplest invocation of this routine populates bin definitions in the cat_bin_
table for all the categorical attributes found in build_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM(
'cat_bin_table', 'build_table');

END;
/

Table 24–7 INSERT_BIN_CAT_FREQ Procedure Parameters

Parameter Description

bin_table_name Name of the categorical bin table generated using CREATE_
BIN_CAT procedure.

data_table_name Name of the table containing the data.

bin_num Number of bins.

exclude_list List of columns (attributes) to be excluded from this iteration of
the binning proces.s

default_num Number of default values.

bin_support Bin support as a fraction.

bin_schema_name Name of the schema hosting the bin definition table.

data_schema_name Name of the schema hosting the table with data.

INSERT_BIN_NUM_EQWIDTH Procedure

24-16 PL/SQL Packages and Types Reference

INSERT_BIN_NUM_EQWIDTH Procedure

This procedure finds the numerical binning definition for every NUMBER column in
the data table that is not specified in the exclusion list and inserts the definition into
the numerical binning definition table that was created using CREATE_BIN_NUM.

Definition for each relevant column is computed based on the min and max values
that are computed from the data table. Each of the bin_num(N) bins bin1,...,
binN span ranges of equal width inc = (max – min) / N where binI = I when
N > 0 or binI = N+1–I when N < 0, and bin0 = binN+1 = NULL. The values of val
column are rounded to round_num significant digits prior to scoring them in the
definition table.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN Column_List DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 24–8 INSERT_BIN_EQWIDTH Procedure Parameters

Parameter Description

bin_table_name Name of the categorical bin table generated using CREATE_
BIN_NUM procedure.

data_table_name Name of the table containing the data.

bin_num Number of bins.

exclude_list List of columns (attributes) to be excluded from this iteration of
the binning process.

round_num Number of significant digits.

bin_schema_name Name of the schema hosting the bin definition table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-17

Usage Notes
For a given input table, you can iteratively call this routine several times with
different specifications for number of bins for a given input table. For each iteration,
you can selectively exclude attributes (that is, column names) using the exclude_
list parameter for a particular binning specification.

Columns with all NULLs or only one unique value are ignored. No bin definitions
are populated when bin_num = 0, or bin_num is NULL.

For example, when N=2, col='mycol', min=10, and max = 21, the following
three rows are inserted into the definition table (inc = 5.5):

 COL VAL BIN
 ----- ----- -----
 mycol 10 NULL
 mycol 15.5 1
 mycol 21 2

Examples
The simplest invocation of this routine populates bin definitions in the num_bin_
table for all the numerical attributes found in build_table.
BEGIN

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM(
'num_bin_table', 'build_table');

END;
/

INSERT_BIN_NUM_QTILE Procedure

24-18 PL/SQL Packages and Types Reference

INSERT_BIN_NUM_QTILE Procedure

This procedure finds a numerical binning definition for every NUMBER column in
the data table that is not specified in the exclusion list and inserts the definition into
the binning definition table that was created using CREATE_BIN_NUM.

The definition for each relevant column is computed based on the min values for
each quantile, where quantiles are computed from the data using NTILE function.
Bins bin1, ..., binN – 1 span ranges [minI, minI+1) and binN range [minN, maxN]
with binI = I when N > 0 or binI = N+1–I when N < 0, and bin0 = binN+1 = NULL.
Bins with equal left and right boundaries are collapsed.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN Column_List DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 24–9 INSERT_BIN_NUM_QTILE Procedure Parameters

Parameter Description

bin_table_name Name of the numerical binning definition table generated
using the CREATE_BIN_NUM procedure.

data_table_name Name of the table containing the data.

bin_num Number of bins.

exclude_list List of columns (attributes) to be excluded from this iteration of
the binning process.

bin_schema_name Name of the schema hosting the numerical binning definition
table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-19

Usage Notes
For a given input table, you can iteratively call this routine several times with
different specifications for bin_num for a given input table. For each iteration, you
can selectively exclude attributes (that is, column names) using the exclude_list
parameter for a particular specification. Columns with all NULLs are ignored.

Example 1. When N = 4, col='mycol', and data is {1,2,2,2,2,3,4}, the
following three rows are inserted into the definition table:

COL VAL BIN
----- ----- -----
mycol 1 NULL
mycol 2 1
mycol 4 2

Here quantities are {1,2}, {2,2}, {2,3}, {4} and min(1) = 1, min(2) = 2,
min(3) = 2, min(4) = 4, max(4) = 4, and ranges are [1,2), [2,2), [2,4),
[4,4]. After collapsing [1,2), [2,4].

Examples
The simplest invocation of this routine populates numerical binning definitions in
the num_bin_table for all the numerical attributes found in build_table.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE(
 'num_bin_table', 'build_table');
END;

INSERT_CLIP_TRIM_TAIL Procedure

24-20 PL/SQL Packages and Types Reference

INSERT_CLIP_TRIM_TAIL Procedure

This procedure finds the trimming definition for every NUMBER column in the data
table that is not specified in the exclusion list and inserts the definition into the
clipping definition table that was created using CREATE_CLIP.

The definition for each relevant column is computed based on the non-NULL values
sorted in ascending order such that val(1) < val(2) < ... < val(N), where N is
a total number of non-NULL values in a column:

lcut = val(1+floor(N*q))
lval = NULL
rcut = val(N–floor(*N*q))
rval = NULL

where q = ABS(NVL(tail_frac,0)). Nothing is done when q >= 0.5.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_TRIM_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN Column_List DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 24–10 INSERT_CLIP_TRIM_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the clipping definition table generated using the
CREATE_CLIP procedure.

data_table_name Name of the table containing the data.

tail_frac Tail fraction.

exclude_list List of columns (attributes) to be excluded from this iteration of
the clipping process.

clip_schema_name Name of the schema hosting the clipping definition table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-21

Usage Notes
For a given input table, you can iteratively call this routine several times with
different specifications for tail_frac for a given input table. For each iteration,
you can selectively exclude attributes (that is, column names) using the exclude_
list parameter for a particular specification.

Example 1. When q = 0.2, col='mycol', and data is {1,2,2,2,3,4,4}, the
following row is inserted into the definition table:

COL LCUT LVAL RCUT RVAL
----- ----- ----- ----- -----
mycol 2 NULL 4 NULL

Here 1 + floor(N*q) = 1 + floor(7*0.2) = 2, lcut = val(2) = 2.

N – floor(N*q) = 7 – floor(7*0.2) = 6, rcut = val(6) = 4.

Examples
The simplest invocation of this routine populates clipping definitions in the clip_
table for all the numerical attributes found in build_table.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_TRIM_TAIL(
 'clip_table', 'build_table');
END;

INSERT_CLIP_WINSOR_TAIL Procedure

24-22 PL/SQL Packages and Types Reference

INSERT_CLIP_WINSOR_TAIL Procedure

This procedure finds winsorizing definition for every NUMBER column in the data
table that is not specified in the exclusion list and inserts the definition into the
clipping definition table that was created using CREATE_CLIP.

Definition for each relevant column is computed based on the non-NULL values
sorted in ascending order such that val(1) < val(2) < ... < val(N), where N is
a total number of non-NULL values in a column:

lcut = val(1+floor(N*q))
lval = lcut
rcut = val(N–floor(N*q))
rval = rcut

where q = ABS(NVL(tail_fraq,0)). Nothing is done when q >= 0.5.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_WINSOR_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN Column_List DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 24–11 INSERT_CLIP_WINSOR_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the clipping definition table generated using
CREATE_CLIP procedure.

data_table_name Name of the table containing the data.

tail_frac Tail fraction.

exclude_list List of columns (attributes) to be excluded from this iteration of
the clipping process.

clip_schema_name Name of the schema hosting the clipping definition table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-23

Usage Notes
For a given input table, you can iteratively call this routine several times with
different specifications for tail_frac for a given input table. For each iteration,
you can selectively exclude attribute (that is, column names using the exclude_list
parameter for a particular specification. Columns with all NULLs are ignored.

Example 1. When q = 0.2, col='mycol', and data is {1,2,2,2,3,4,4}, the
following row is inserted into the definition table:

COL LCUT LVAL RCUT RVAL
----- ----- ----- ----- -----
mycol 2 2 4 4

Here 1 + floor(N*q) = 1 + floor(7*0.2) = 2, lcut = val(2) = 2.

N – floor(N*q) = 7 – floor(7*0.2) = 6, rcut = val(6) = 4.

Examples
The simplest invocation of this routine populates clipping definitions in the clip_
table for all the numerical attributes found in build_table.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_WINSOR_TAIL(
 'clip_table', 'build_table');
END;

INSERT_NORM_LIN_ZSCORE Procedure

24-24 PL/SQL Packages and Types Reference

INSERT_NORM_LIN_ZSCORE Procedure

This procedure finds the normalization definition for every NUMBER column in the
data table that is not specified in the exclusion list and inserts the definition based
on z-score normalization into the table that was created using CREATE_NORM_LIN.

Definition for each relevant column is computed based on the min and max values
that are computed from the data table, such that shift = min and scale =
max – min. The values of shift and scale are rounded to round_num significant
digits prior to storing them in the definition table.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_ZSCORE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN Column_List DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
For a given input table, you can iteratively call this routine several times with
selective exclusion of attributes (that is, column names) using the exclude_list
parameter for a particular binning specification.

Table 24–12 INSERT_BIN_NORM_LIN_ZSCORE Procedure Parameters

Parameter Description

norm_table_name Name of the normalization table generated using CREATE_
NORM_LIN procedure.

data_table_name Name of the table containing the data.

exclude_list List of columns (attributes) to be excluded from this iteration of
the normalization process.

round_num Number of significant digits.

norm_schema_name Name of the schema hosting the normalization definition table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-25

Columns with all NULLs or only one unique value are ignored.

Examples
The simplest invocation of this routine populates normalization definitions in the
norm_zscore_table for all the numerical attributes found in build_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_ZSCORE(
'norm_zscore_table', 'build_table');

END;
/

INSERT_NORM_LIN_MINMAX Procedure

24-26 PL/SQL Packages and Types Reference

INSERT_NORM_LIN_MINMAX Procedure

This procedure finds the normalization definition for every NUMBER column in the
data table that is not specified in the exclusion list and inserts the definition based
on min-max normalization into the table that was created using CREATE_NORM_
LIN.

Definition for each relevant column is computed based on the mean and standard
deviation that are computed from the data table, such that shift = mean and
scale = stddev. The values of shift and scale are rounded to round_num
significant digits prior to storing them in the definition table.

Syntax
DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_MINMAX (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN Column_List DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 24–13 INSERT_NORM_LIN_MINMAX Procedure Parameters

Parameter Description

norm_table_name Name of the normalization table generated using CREATE_
NORM_LIN procedure.

data_table_name Name of the table containing the data.

exclude_list List of columns (attributes) to be excluded from this iteration of
the normalization process.

round_num Number of significant digits.

norm_schema_name Name of the schema hosting the normalization definition table.

data_schema_name Name of the schema hosting the table with data.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-27

Usage Notes
For a given input table, you can iteratively call this routine several times with
selective exclusion of attributes (that is, column names) using the exclude_list
parameter for a particular normalization specification.

Columns with all NULLs or only one unique value are ignored.

Examples
The simplest invocation of this routine populates normalization definitions in the
norm_minmax_table for all the numerical attributes found in build_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_MINMAX(
'norm_minmax_table', 'build_table');

END;

XFORM_BIN_CAT Procedure

24-28 PL/SQL Packages and Types Reference

XFORM_BIN_CAT Procedure

This procedure creates the view that performs categorical binning. Only the
columns that are specified in the definition table are transformed; the remaining
columns do not change.

Syntax
DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The bin table created by CREATE_BIN_CAT and populated with bin definitions by
INSERT_BIN_CAT_FREQ is used to guide the query generation process to construct
categorical binning expressions of the following form:

DECODE("col", val1, bin1,
 ...

Table 24–14 XFORM_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the categorized binning definition table generated
using CREATE_BIN_CAT procedure.

data_table_name Name of the table containing the data.

xform_view_name View representing the transformed output.

literal_flag Literal flag.

bin_schema_name Name of the schema hosting the bin definition table.

data_schema_name Name of the schema hosting the data table.

xform_schema_name Name of the schema hosting the view representing the
transformed output.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-29

valN, binN,
 NULL, NULL,

binN+1) "col"

This expression maps values val1,..., valN into N bins bin1,..., binN, and other
values into binN+1, while NULL values remain unchanged. binN+1 is optional. If not
specified, it defaults to NULL. To specify binN+1 provide a row with val set to
NULL.

The literal_flag parameter indicates whether the values in bin are valid SQL
literals. When the flag is set to TRUE, the value of bin is used as is in query
generation; otherwise it is converted into a valid text literal (surrounded by quotes
and each single quote is replaced by two single quotes). By default, the flag is set to
FALSE. One example of when it can be set to TRUE is in cases when all bin are
numbers. In that case the transformed column will be numeric as opposed to textual
(default behavior).

Note that col is case-sensitive since it generates quoted identifiers. In cases when
there are multiple entries with the same col,val combination with different bin,
the behavior is undefined — any one of the bin values might be used.

Examples
Example 1. bin_cat contains four rows with col = 'mycol':

{col = 'mycol', val = 'Waltham', bin = 'MA'}
{col = 'mycol', val = 'Burlington', bin = 'MA'}
{col = 'mycol', val = 'Redwood Shores', bin = 'CA'}
{col = 'mycol', val = NULL, bin = 'OTHER'}

the following expression is generated:

 DECODE("mycol", 'Waltham', 'MA',
 'Burlington', 'MA',
 'Redwood Shores', 'CA',
 NULL, NULL,
 'OTHER') "mycol"

Example 2. bin_cat contains three rows with col = 'mycol':

{col = 'mycol', val = 'Waltham', bin = 'MA'}
{col = 'mycol', val = 'Burlington', bin = 'MA'}
{col = 'mycol', val = 'Redwood Shores', bin = 'CA'}

the following expression is generated:

DECODE("mycol", 'Waltham', 'MA',

XFORM_BIN_CAT Procedure

24-30 PL/SQL Packages and Types Reference

 'Burlington', 'MA',
 'Redwood Shores', 'CA') "mycol"

Example 3. For the definition:

COL VAL BIN
----- ---------- ---
mycol Waltham 1
mycol Burlington 1
mycol Redwood Shores 2

the following expression is generated when the literal flag is set to FALSE:

DECODE ("mycol", 'Waltham', '1',
 'Burlington' '1',
 'Redwood Shores', '2') "mycol"

and when the flag is set to TRUE:

DECODE("mycol", 'Waltham', 1,
 'Burlington', 1,
 'Redwood Shores', 2) "mycol"

The simplest invocation of this routine generates a view build_view that
represents the transformation query on build_table based on bin definitions in
the cat_bin_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT(
'cat_bin_table', 'build_table', 'build_view');

END;
/

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-31

XFORM_BIN_NUM Procedure

This procedure creates the view that performs numerical binning. Only the columns
that are specified in the definition table are transformed; the remaining columns do
not change.

Syntax
DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The bin table created by CREATE_BIN_NUM and populated with bin definitions by
INSERT_BIN_NUM_EQWIDTH or INSERT_BIN_NUM_QTILE is used to guide the
query generation process to construct numerical binning expressions of the
following form:

CASE WHEN "col" < val0 THEN 'bin0'

Table 24–15 XFORM_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the numerical binning definition table generated
using CREATE_BIN_NUM procedure.

data_table_name Name of the table containing the data.

xform_view_name View representing the transformed output.

literal_flag Literal flag.

bin_schema_name Name of the schema hosting the bin definition table.

data_schema_name Name of the schema hosting the data table.

xform_schema_name Name of the schema hosting the view representing the
transformed output.

XFORM_BIN_NUM Procedure

24-32 PL/SQL Packages and Types Reference

 WHEN "col" <= val1 THEN 'bin1'
 ...
 WHEN "col" <= valN THEN 'binN'
 WHEN "col" IS NOT NULL THEN 'binN+1'
END "col"

This expression maps values in the range [val0;valN] into N bins bin1, ..., binN,
values outside of this range into bin0 or binN+1, such that

(-inf; val0) -> bin0
[val0; val1) -> bin1
...
(valN-1; valN] -> binN
(valN; +inf) -> binN+1

NULL values remain unchanged. binN+1 is optional. If it is not specified, the values
("col" > valN) are mapped to NULL. To specify binN+1, provide a row with val set
to NULL. The order of the WHEN ... THEN pairs is based on the ascending order of
val for a given col.

The literal_flag parameter indicates whether the values in bin are valid SQL
literals. When the flag is set to TRUE, the value of bin is used as is in query
generation; otherwise it is converted into a valid text literal (surrounded by quotes
and each single quote is replaced by two single quotes). By default, the flag is set to
FALSE. One example of when it can be set to TRUE is in cases when all bin are
numbers. In that case the transformed column will be numeric as opposed to textual
(default behavior).

Note that col is case-sensitive since it generates quoted identifiers. In cases where
there are multiple entries with the same col,val combination with different bin,
the behavior is undefined — any one of the bin values might be used.

Examples
Example 1. bin_num contains four rows with col = 'mycol':

{col = 'mycol', val = 15.5, bin = 'small'}
{col = 'mycol', val = 10, bin = 'tiny'}
{col = 'mycol', val = 20, bin = 'large'}
{col = 'mycol', val = NULL, bin = 'huge'}

 the following expression is generated:

CASE WHEN "mycol" < 10 THEN 'tiny'
 WHEN "mycol" <= 15.5 THEN 'small'
 WHEN "mycol" <= 20 THEN 'large'

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-33

 WHEN "mycol" IS NOT NULL THEN 'huge'
 END "mycol"

Example 2. bin_num contains three rows with col = 'mycol':

{col = 'mycol', val = 15.5, bin = NULL}
{col = 'mycol', val = 10, bin = 'tiny'}
{col = 'mycol', val = 20, bin = 'large'}

the following expression is generated:

CASE WHEN "mycol" < 10 THEN NULL
 WHEN "mycol" <= 15.5 THEN 'small'
 WHEN "mycol" <= 20 THEN 'large'
END "mycol"

Example 3. For the definition:

COL VAL BIN
----- ---- ---
mycol 10 NULL
mycol 15.5 1
mycol 21 2

the following expression is generated when the literal flag is set to FALSE:

CASE WHEN "mycol" < 10 THEN NULL
 WHEN "mycol" <= 15.5 THEN '1'
 WHEN "mycol" <= 20 THEN '2'
 END "mycol"

and when the flag is set to TRUE:

CASE WHEN "mycol" < 10 THEN NULL
 WHEN "mycol" <= 15.5 THEN 1
 WHEN "mycol" <= 20 THEN 2
 END "mycol"

The simplest invocation of this routine generates a view build_view that
represents the transformation query on build_table based on transform
definitions in bin definitions in the num_bin_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM(
'num_bin_table', 'build_table', 'build_view');

END;
/

XFORM_CLIP Procedure

24-34 PL/SQL Packages and Types Reference

XFORM_CLIP Procedure

This procedure creates the view that performs clipping. Only the columns that are
specified in the transform definition are clipped; the remaining columns do not
change.

Syntax
DBMS_DATA_MINING_TRANSFORM.XFORM_CLIP (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2,DEFAULT NULL,
 xform_schema_name IN VARCHAR2,DEFAULT NULL;

Parameters

Usage Notes
The clipping definition table created by CREATE_CLIP and populated with clipping
definitions by INSERT_CLIP_WINSOR_TAIL or INSERT_CLIP_TRIM_TAIL is
used to guide query generation process to construct clipping expressions of the
following form:

CASE WHEN "col" < lcut THEN lval
 WHEN "col" > rcut THEN rval
 ELSE "col"

Table 24–16 XFORM_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the clipping definition table generated using
CREATE_CLIP.

data_table_name Name of the table containing the data.

xform_view_name View representing the transformed output.

clip_schema_name Name of the schema hosting the clipping definition table.

data_schema_name Name of the schema hosting the data table.

xform_schema_name Name of the schema hosting the view representing the
transformed output.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-35

END "col"

Note that col is case-sensitive since it generates quoted identifiers. When there are
multiple entries in the transform definition table for the same col, the behavior is
undefined. Any one of the definitions may be used in query generation. NULL
values remain unchanged.

Example 1 (Winsorizing). When col = 'my_col', lcut = –1.5, lval = –1.5, and
rcut = 4.5 and rval = 4.5, the following expression is generated:

CASE WHEN "my_col" < –1.5 THEN NULL
 WHEN "my_col" > 4.5 THEN NULL
 ELSE "my_col"
END "my_col"

Examples
The simplest invocation of this routine generates a view object build_view that
represents the transformation query on build_table based on transform
definitions in clipping definitions in the clip_table.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_CLIP(
 'clip_table', 'build_table', 'build_view');
END;

XFORM_NORM_LIN Procedure

24-36 PL/SQL Packages and Types Reference

XFORM_NORM_LIN Procedure

This procedure creates the view that performs linear normalization. Only the
columns that are specified in the definition table are transformed; the remaining
columns do not change.

Syntax
DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The normalization table created by CREATE_NORM_LIN and populated with
definitions by either INSERT_NORM_LIN_ZSCORE or INSERT_NORM_LIN_MINMAX is
used to guide the query generation process to construct normalization expressions
of the following form:

("col" - shift)/scale "col"

Table 24–17 XFORM_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the normalization definition table generated using
CREATE_NORM_LIN procedure.

data_table_name Name of the table containing the data.

xform_view_name View representing the transformed output.

norm_schema_name Name of the schema hosting the normalization definition table.

data_schema_name Name of the schema hosting the data table.

xform_schema_name Name of the schema hosting the view representing the
transformed output.

Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

 DBMS_DATA_MINING_TRANSFORM 24-37

Note that col is case-sensitive since it generates quoted identifiers. When there are
multiple entries in the transform definition table for the same col, the behavior is
undefined. Any one of the definitions may be used in query generation. NULL
values remain unchanged.

For example, when col = 'my_col', shift = -1.5, and scale = 20. The
following expression is generated:

("my_col" - (-1.5))/20 "my_col"

Examples
The simplest invocation of this routine generates a view build_view that
represents the transformation query on build_table based on normalization
definitions in the norm_minmax_table.

BEGIN
DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN(
'norm_minmax_table', 'build_table', 'build_view');

END;

XFORM_NORM_LIN Procedure

24-38 PL/SQL Packages and Types Reference

DBMS_DATAPUMP 25-1

25
DBMS_DATAPUMP

The DBMS_DATAPUMP package is used to move all, or part of, a database between
databases, including both data and metadata.

This chapter contains the following topics:

■ Using DBMS_DATAPUMP

■ Overview

■ Security Model

■ Constants

■ Types

■ Summary of DBMS_DATAPUMP Subprograms

See Also: Oracle Database Utilities for more information on the
concepts behind the DBMS_DATAPUMP API, how it works, and how
it is implemented in the Data Pump Export and Import utilities

Using DBMS_DATAPUMP

25-2 PL/SQL Packages and Types Reference

Using DBMS_DATAPUMP

■ Overview

■ Security Model

■ Constants

■ Types

Overview

The support and functionality provided by DBMS_DATAPUMP is as follows:

■ The source and target databases can have different hardware, operating
systems, character sets, and time zones.

■ All object types and datatypes existing in Oracle Database 10g are supported.

■ Data and metadata can be transferred between databases without using any
intermediary files.

■ A subset of a database can be moved based upon object type and names of
objects.

■ Schema names, datafile names, and tablespace names can be transformed at
import time.

■ Previously aborted export and import jobs can be restarted without duplicating
or omitting any data or metadata from the original job.

■ The resources applied to an export or import job can be modified.

■ Data in an Oracle proprietary format can be unloaded and loaded.

Security Model

Security for the DBMS_DATAPUMP package is implemented through roles.

Roles
The existing EXP_FULL_DATABASE and IMP_FULL_DATABASE roles will be used
to allow privileged users to take full advantage of the API. The Data Pump API will

Using DBMS_DATAPUMP

DBMS_DATAPUMP 25-3

use these roles to determine whether privileged application roles should be
assigned to the processes comprising the job.

EXP_FULL_DATABASE
The EXP_FULL_DATABASE role affects only Export operations. It allows users
running these operations to do the following:

■ Perform the operation outside of the scope of their schema

■ Monitor jobs that were initiated by another user

■ Export objects (for example, TABLESPACE definitions) that unprivileged users
cannot reference

Although the SYS schema does not have the EXP_FULL_DATABASE role assigned to
it, all security checks performed by Data Pump that require the EXP_FULL_
DATABASE role will also grant access to the SYS schema.

IMP_FULL_DATABASE
The IMP_FULL_DATABASE role affects only Import and SQL_FILE operations. It
allows users running these operations to do the following:

■ Perform the operation outside of the scope of their schema

■ Monitor jobs that were initiated by another user

■ Import objects (for example, DIRECTORY definitions) that unprivileged users
cannot create

Although the SYS schema does not have the IMP_FULL_DATABASE role assigned to
it, all security checks performed by Data Pump that require the IMP_FULL_
DATABASE role will also grant access to the SYS schema.

Constants

There are several public constants defined for use with the DBMS_DATAPUMP.GET_
STATUS procedure. All such constants are defined as part of the DBMS_DATAPUMP
package. Any references to these constants must be prefixed by DBMS_DATAPUMP.
and followed by the symbols in the following lists:

Mask Bit Definitions
The following mask bit definitions are used for controlling the return of data
through the DBMS_DATAPUMP.GET_STATUS procedure.

■ KU$_STATUS_WIP CONSTANT BINARY_INTEGER := 1;

Types

25-4 PL/SQL Packages and Types Reference

■ KU$_STATUS_JOB_DESC CONSTANT BINARY_INTEGER := 2;

■ KU$_STATUS_JOB_STATUS CONSTANT BINARY_INTEGER := 4;

■ KU$_STATUS_JOB_ERROR CONSTANT BINARY_INTEGER := 8;

Dump File Type Definitions
The following definitions are used for identifying types of dump files returned
through the DBMS_DATAPUMP.GET_STATUS procedure.

■ KU$_DUMPFILE_TYPE_DISK CONSTANT BINARY_INTEGER := 0;

■ KU$_DUMPFILE_TYPE_TEMPLATE CONSTANT BINARY_INTEGER := 3;

Types

The types described in this section are defined in the SYS schema for use by the
GET_STATUS function. The way in which these types are defined and used may be
different than what you are accustomed to. Be sure to read this section carefully.

The collection of types defined for use with the GET_STATUS procedure are
version-specific and include version information in the names of the types. Once
introduced, these types will always be provided and supported in future versions of
Oracle Database and will not change. However, in future releases of Oracle
Database, new versions of these types might be created that provide new or
different information. The new versions of these types will have different version
information embedded in the type names.

For example, in Oracle Database 10g, release 1 (10.1), there is a sys.ku$_
Status1010 type, and in the next Oracle Database release, there could be a
sys.ku$_Status1110 type defined. Both types could be used with the GET_
STATUS procedure.

Public synonyms have been defined for each of the types used with the GET_
STATUS procedure. This makes it easier to use the types and means that you do not
have to be concerned with changes to the actual type names or schemas where they
reside. Oracle recommends that you use these synonyms whenever possible.

For each of the types, there is a version-specific synonym and a generic synonym.
For example, the version-specific synonym ku$_Status1010 is defined for the
sys.ku$_Status1010 type.

The generic synonym always describes the latest version of that type. For example,
in Oracle Database 10g, release 1, the generic synonym ku$_Status is defined as

Using DBMS_DATAPUMP

DBMS_DATAPUMP 25-5

ku$_Status1010. In a future release, there might be a ku$_Status1110
synonym for sys.ku$Status1110. Because the ku$_Status generic synonym
always points to the latest definition, it would now point to ku$_Status1110
rather than to ku$_Status1010.

The choice of whether to use version-specific synonyms or generic synonyms makes
a significant difference in how you work. Using version-specific names protects
your code from changes in future releases of Oracle Database because those types
will continue to exist and be supported. However, access to new information will
require code changes to use new synonym names for each of the types. Using the
generic names implies that you always want the latest definition of the types and
are prepared to deal with changes in different releases of Oracle Database.

When the version of Oracle Database that you are using changes, any C code that
accesses types through generic synonym names will need to be recompiled.

Worker Status Types
The worker status types describe what each worker process in a job is doing. The
schema, object name, and object type of an object being processed will be provided.
For workers processing user data, the partition name for a partitioned table (if any),
the number of bytes processed in the partition, and the number of rows processed
in the partition are also returned. Workers processing metadata provide status on
the last object that was processed. No status for idle threads is returned.

The percent_done refers to the amount completed for the current data item being
processed. It is not updated for metadata objects.

The worker status types are defined as follows:

CREATE TYPE sys.ku$_WorkerStatus1010 AS OBJECT (
worker_number NUMBER,
process_name VARCHAR2(30),
state VARCHAR2(30),
schema VARCHAR2(30),
name VARCHAR2(4000),

Note: Languages other than PL/SQL must ensure that their type
definitions are properly aligned with the version-specific
definitions.

See Also: GET_STATUS Procedure on page 25-20 for additional
information about how types are used

Types

25-6 PL/SQL Packages and Types Reference

object_type VARCHAR2(200),
partition VARCHAR2(30),
completed_objects NUMBER,
total_objects NUMBER,
completed_rows NUMBER,
completed_bytes NUMBER,
percent_done NUMBER)
/
CREATE PUBLIC SYNONYM ku$_WorkerStatus1010 FOR sys.ku$_WorkerStatus1010;
CREATE TYPE sys.ku$_WorkerStatusList1010 AS TABLE OF sys.ku$_WorkerStatus1010
/
CREATE PUBLIC SYNONYM ku$_WorkerStatusList1010 FOR sys.ku$_WorkerStatusList1010;

Log Entry and Error Types
These types provide informational and error text to attached clients and the log
stream. The ku$LogLine.errorNumber type is set to NULL for informational
messages but is specified for error messages. Each log entry may contain several
lines of text messages.

The log entry and error types are defined as follows:

CREATE TYPE sys.ku$_LogLine1010 AS OBJECT (
logLineNumber NUMBER,
errorNumber NUMBER,
LogText VARCHAR2(2000))
/
CREATE PUBLIC SYNONYM ku$_LogLine1010 FOR sys.ku$_LogLine1010;
CREATE TYPE sys.ku$_LogEntry1010 AS TABLE OF sys.ku$_LogLine1010
/
CREATE PUBLIC SYNONYM ku$_LogEntry1010 FOR sys.ku$_LogEntry1010;

Job Status Types
The job status type returns status about a job. Usually, the status concerns a running
job but it could also be about a stopped job when a client attaches. It is typically
requested at attach time, when the client explicitly requests status from interactive
mode and every N seconds when the client has requested status periodically.

The job status types are defined as follows (percent_done applies to data only):

CREATE TYPE sys.ku$_DumpFile1010 AS OBJECT (
file_name VARCHAR2(4000),
file_type NUMBER,
file_size NUMBER,
file_bytes_written NUMBER)

Using DBMS_DATAPUMP

DBMS_DATAPUMP 25-7

CREATE TYPE sys.ku$_DumpFileSet1010 AS TABLE OF sys.ku$_DumpFile1010;

CREATE TYPE sys.ku$_JobStatus1010 AS OBJECT (
job_name VARCHAR2(30),
operation VARCHAR2(30),
job_mode VARCHAR2(30),
bytes_processed NUMBER,
total_bytes NUMBER,
percent_done NUMBER,
degree NUMBER,
error_count NUMBER,
state VARCHAR2(30),
phase NUMBER,
restart_count NUMBER,
worker_status_list ku$_WorkerStatusList1010,
files ku$_DumpFileSet1010)

CREATE PUBLIC SYNONYM ku$_JobStatus1010
FOR sys.ku$_JobStatus1010;

Job Description Types
The job description type holds all the environmental information about the job such
as parameter settings and dump file set members. There are a couple of subordinate
types required as well.

The job description types are defined as follows:

CREATE TYPE sys.ku$_ParamValue1010 AS OBJECT (
param_name VARCHAR2(30),
param_op VARCHAR2(30),
param_type VARCHAR2(30),
param_length NUMBER,
param_value_n NUMBER,
param_value_t VARCHAR2(2000));

CREATE TYPE sys.ku$_ParamValues1010 AS TABLE OF sys.ku$_ParamValue1010;

CREATE TYPE sys.ku$_JobDesc1010 AS OBJECT (
job_name VARCHAR2(30),
guid RAW(16),
operation VARCHAR2(30),
job_mode VARCHAR2(30),
remote_link VARCHAR2(4000),
owner VARCHAR2(30),

Types

25-8 PL/SQL Packages and Types Reference

instance VARCHAR2(16),
db_version VARCHAR2(30),
creator_privs VARCHAR2(30),
start_time DATE,
max_degree NUMBER,
log_file VARCHAR2(4000),
sql_file VARCHAR2(4000),
params ku$_ParamValues1010)

Status Types
The status type is an aggregate of some the previous types defined and is the return
value for the GET_STATUS call. The mask attribute indicates which types of
information are being returned to the caller. It is created by a client's shadow
process from information it retrieves off the status queue or directly from the master
table.

For errors, the ku$_LogEntry that is returned has already had its log lines ordered
for proper output. That is, the original ku$_LogEntry objects have been ordered
from outermost context to innermost.

The status types are defined as follows:

CREATE TYPE sys.ku$_Status1010 AS OBJECT
(
mask NUMBER, /* Indicates which status types are present*/
wip ku$_LogEntry1010, /* Work-In-Progress: std. exp/imp msgs */
job_description ku$_JobDesc1010, /* Complete job description */
job_status ku$_JobStatus1010, /* Detailed job status + per-worker sts */
error ku$_LogEntry1010 /* Multi-level contextual errors */
)

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-9

Summary of DBMS_DATAPUMP Subprograms

Table 25–1 DBMS_DATAPUMP Package Subprograms

Subprogram Description

ADD_FILE Procedure on
page 25-10

Adds dump files to the dump file set for an Export,
Import, or SQL_FILE operation. In addition to dump files,
other types of files can also be added by using the
FILETYPE parameter provided with this procedure

ATTACH Function on
page 25-14

Used to gain access to a Data Pump job that is in the
Defining, Executing, Idling, or Stopped state

DATA_FILTER Procedures on
page 25-16

Specifies restrictions on the rows that are to be retrieved

DETACH Procedure on
page 25-19

Specifies that the user has no further interest in using the
handle

GET_STATUS Procedure on
page 25-20

Monitors the status of a job or waits for the completion of
a job or for more details on API errors

LOG_ENTRY Procedure on
page 25-23

Inserts a message into the log file

METADATA_FILTER
Procedure on page 25-25

Provides filters that allow you to restrict the items that are
included in a job

METADATA_TRANSFORM
Procedure on page 25-31

Specifies transformations to be applied to objects as they
are processed in the specified job

METADATA_REMAP
Procedure on page 25-28

Specifies a remapping to be applied to objects as they are
processed in the specified job

OPEN Function on page 25-34 Declares a new job using the Data Pump API, the handle
returned being used as a parameter for calls to all other
procedures except ATTACH

SET_PARALLEL Procedure on
page 25-38

Adjusts the degree of parallelism within a job

SET_PARAMETER Procedures
on page 25-40

Specifies job-processing options

START_JOB Procedure on
page 25-45

Begins or resumes execution of a job

STOP_JOB Procedure on
page 25-47

Terminates a job, but optionally, preserves the state of the
job

ADD_FILE Procedure

25-10 PL/SQL Packages and Types Reference

ADD_FILE Procedure

This procedure adds files to the dump file set for an Export, Import, or SQL_FILE
operation or specifies the log file or the output file for a SQL_FILE operation.

Syntax
DBMS_DATAPUMP.ADD_FILE (
 handle IN NUMBER,
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 filesize IN VARCHAR2 DEFAULT NULL,
 filetype IN NUMBER DEFAULT DBMS_DATAPUMP.KU$_FILE_TYPE_DUMP_FILE);

Parameters

Table 25–2 ADD_FILE Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously attached
to the handle through an OPEN or ATTACH call.

filename The name of the file being added. filename must be a simple filename
without any directory path information. For dump files, the filename
can include a substitution variable, %U, which indicates that multiple
files may be generated with the specified filename as a template. The
%U is expanded in the resulting file names into a two-character,
fixed-width, incrementing integer starting at 01. For example, the dump
filename of export%U would cause export01, export02, export03,
... to be created depending on how many files are needed to perform the
export. For filenames containing the % character, the % must be
represented as %% to avoid ambiguity. Any % in a filename must be
followed by either a % or a U.

directory The name of a directory object within the database that is used to locate
filename. A directory must be specified. See the Data Pump
Export chapter in Oracle Database Utilities for information about the
DIRECTORY command-line parameter.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-11

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. An invalid value was supplied for an input parameter.

■ INVALID_STATE. The job is completing, or the job is past the defining state for
an import or SQL_FILE job or is past the defining state for LOG and SQL files.

■ FILE_ERROR. Oracle does not have the requested operating system access to
the specified file or the file has already been specified for the current operation.

■ INVALID_OPERATION. A dump file was specified for a Network Import or
ESTIMATE_ONLY export operation.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ Adds files to a Data Pump job. Three types of files may be added to jobs: Dump

files to contain the data that is being moved, log files to record the messages
associated with an operation, and SQL files to record the output of a SQL_FILE

filesize The size of the dump file that is being added. It may be specified as the
number of bytes, number of kilobytes (if followed by K), number of
megabytes (if followed by M) or number of gigabytes (if followed by G).
An Export operation will write no more than the specified number of
bytes to the file. Once the file is full, it will be closed. If there is
insufficient space on the device to write the specified number of bytes,
the Export operation will fail, but it can be restarted. If not specified,
filesize will default to an unlimited size. For Import and SQL_FILE
operations, filesize is ignored. The minimum value for filesize is
ten times the default Data Pump block size, which is 4 kilobytes.
filesize may only be specified for dump files.

filetype The type of the file to be added. The legal values are as follows and
must be preceded by DBMS_DATAPUMP.:

■ KU$_FILE_TYPE_DUMP_FILE (dump file for a job)

■ KU$_FILE_TYPE_LOG_FILE (log file for a job)

■ KU$_FILE_TYPE_SQL_FILE (output for SQL_FILE job)

Table 25–2 (Cont.) ADD_FILE Procedure Parameters

Parameter Description

ADD_FILE Procedure

25-12 PL/SQL Packages and Types Reference

operation. Log and SQL files will overwrite previously existing files. Dump files
will never overwrite previously existing files. Instead, an error will be
generated.

■ Import and SQL_FILE operations require that all dump files be specified during
the definition phase of the job. For Export operations, dump files can be added
at any time. For example, if the user ascertains that the file space is running low
during an Export, additional dump files may be added through this API. If the
specified dump file already exists for an Export operation, an error will be
returned.

■ For Export operations, the parallelism setting should be less than or equal to the
number of dump files in the dump file set. If there are not enough dump files,
the job will not be able to maximize parallelism to the degree specified by the
SET_PARALLEL procedure.

■ For Import operations, the parallelism setting should also be less than or equal
to the number of dump files in the dump file set. If there are not enough dump
files, the performance will not be optimal as multiple threads of execution try to
access the same dump file.

■ If the substitution variable (%U) is included in a filename, multiple dump files
may be specified through a single call to ADD_FILE. For Export operations, the
new dump files will be created as they are needed. Enough dump files will be
created to allow all of the processes specified by the current SET_PARALLEL
value to be active. If one of the dump files fills, it will be closed and a new
dump file (with a new generated name) will be created to take its place. If
multiple ADD_FILEs with substitution variables have been specified for dump
files in a job, they will be used to generate dump files in a round robin fashion.
For example, if expa%U, expb%U and expc%U were all specified for a job
having a parallelism of 6, the initial dump files created would look like:
expa01, expb01, expc01, expa02, expb02, and expc02.

■ If presented with dump file specifications, expa%U, expb%U and expc%U, an
Import or SQL_FILE operation will begin by attempting to open the dump files,
expa01, expb01, and expc01.If the dump file containing the master table is
not found in this set, the operation will expand its search for dump files by
incrementing the substitution variable and looking up the new filenames (for
example, expa02, expb02, and expc02). The DataPump API will keep
expanding the search until it locates the dump file containing the master table.
If the DataPump API determines that the dump file does not exist or is not part
of the current dump set at any iteration, the DataPump API will stop
incrementing the substitution variable for the dump file specification that was

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-13

in error. Once the master table is found, the master table will be used to
ascertain when all of dump files in the dump file set have been located.

ATTACH Function

25-14 PL/SQL Packages and Types Reference

ATTACH Function

This function gains access to a previously-created job.

Syntax
DBMS_DATAPUMP.ATTACH(
 job_name IN VARCHAR2 DEFAULT NULL,
 job_owner IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

Return Values
An opaque handle for the job. This handle is used as input to the following
procedures: ADD_FILE, DATA_FILTER, DETACH, STOP_JOB, GET_STATUS, LOG_
ENTRY, METADATA_FILTER, METADATA_REMAP, METADATA_TRANSFORM, SET_
PARALLEL, and START_JOB.

Exceptions
■ INVALID_ARGVAL. An invalid value was supplied for an input parameter.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

■ INVALID_OPERATION. The specified operation is not valid in this context.

Table 25–3 ATTACH Function Parameters

Parameter Description

job_name The name of the job. The default is the job name owned by the user who
is specified in the job_owner parameter (assuming that user has only
one job in the Defining, Executing, or Idling states).

job_owner The user who originally started the job. If NULL, the value defaults to
the owner of the current session. To specify a job owner other than
yourself, you must have either the EXP_FULL_DATABASE role (for
export operations) or the IMP_FULL_DATABASE role (for import and
SQL_FILE operations). Being a privileged user allows you to monitor
another user's job, but you cannot restart another user's job.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-15

Usage Notes
■ If the job was in the Stopped state, the job is placed into the Idling state. Once

the ATTACH succeeds, you can monitor the progress of the job or control the job.
The stream of KU$_STATUS_WIP and KU$_STATUS_JOB_ERROR messages
returned through the GET_STATUS procedure will be returned to the newly
attached job starting at the approximate time of the client's attachment. There
will be no repeating of status and error messages that were processed before the
client attached to a job.

■ If you want to perform a second attach to a job, you must do so from a different
session.

■ If the ATTACH fails, use a null handle in a subsequent call to GET_STATUS for
more information about the failure.

DATA_FILTER Procedures

25-16 PL/SQL Packages and Types Reference

DATA_FILTER Procedures

This procedure specifies restrictions on the rows that are to be retrieved.

Syntax
DBMS_DATAPUMP.DATA_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 table_name IN VARCHAR2 DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

DBMS_DATAPUMP.DATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 table_name IN VARCHAR2 DEFAULT NULL,
 schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. There can be several reasons for this message:

– A bad filter name is specified

Table 25–4 DATA_FILTER Procedure Parameters

Parameter Description

handle The handle that is returned from the OPEN procedure.

name The name of the filter.

value The value of the filter.

table_name The name of the table on which the data filter is applied. If no
table name is supplied, the filter applies to all tables in the job.

schema_name The name of the schema that owns the table on which the filter
is applied. If no schema name is specified, the filter applies to
all schemas in the job. If you supply a schema name you must
also supply a table name.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-17

– The mode is TRANSPORTABLE, which does not support data filters

– The specified table does not exist

– The filter has already been set for the specified values of schema_name and
table_name

■ INVALID_STATE. The user called DATA_FILTER when the job was not in the
Defining state.

■ INCONSISTENT_ARGS. The value parameter is missing or its datatype does
not match the filter name. Or a schema name was supplied, but not a table
name.

■ PRIVILEGE_ERROR. A schema name was supplied, but the user did not have
the EXP_FULL_DATABASE or IMP_FULL_DATABASE role.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ Each data filter can only appear once in each table (for example, you cannot

supply multiple SUBQUERY filters to a table) or once in each job. If different
filters using the same name are applied to both a particular table and to the
whole job, the filter parameter supplied for the specific table will take
precedence.

With the exception of the INCLUDE_ROWS filter, data filters are not supported
on tables having nested tables or domain indexes defined upon them. Data
filters are not supported in jobs performed in Transportable Tablespace mode.

The available data filters are described in Table 25–5.

Table 25–5 Data Filters

Name Datatype

Operations
that Support
Filter Description

INCLUDE_
ROWS

number EXPORT,
IMPORT

If nonzero, this filter specifies that user data
for the specified table should be included in
the job. The default is 1.

DATA_FILTER Procedures

25-18 PL/SQL Packages and Types Reference

PARTITION_
EXPR

text EXPORT,
IMPORT

For Export jobs, this filter specifies which
partitions are unloaded from the database.
For Import jobs, it specifies which table
partitions are loaded into the database.
Partition names are included in the job if
their names satisfy the specified expression.
Double quotation marks around partition
names are required only if the partition
names contain special characters.

PARTITION_EXPR is not supported on jobs
across a network link.

Default=All partitions are processed.

SUBQUERY text EXPORT,
IMPORT

Specifies a subquery that is added to the end
of the SELECT statement for the table. If you
specify a WHERE clause in the subquery, you
can restrict the rows that are selected.
Specifying an ORDER BY clause orders the
rows dumped in the export which improves
performance when migrating from
heap-organized tables to index-organized
tables.

Table 25–5 (Cont.) Data Filters

Name Datatype

Operations
that Support
Filter Description

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-19

DETACH Procedure

This procedure specifies that the user has no further interest in using the handle.

Syntax
DBMS_DATAPUMP.DETACH(
 handle IN NUMBER);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ Through this call, you specify that you have no further interest in using the

handle. Resources associated with a completed job cannot be reclaimed until all
users are detached from the job. An implicit detach from a handle is performed
when the user's session is exited or aborted. An implicit detach from a handle is
also performed upon the expiration of the timeout associated with a STOP_JOB
that was applied to the job referenced by the handle. All previously allocated
DBMS_DATAPUMP handles are released when an instance is restarted.

Table 25–6 DETACH Procedure Parameters

Parameter Description

handle The handle of the job. The current session must have
previously attached to the handle through an OPEN or ATTACH
call.

GET_STATUS Procedure

25-20 PL/SQL Packages and Types Reference

GET_STATUS Procedure

This procedure monitors the status of a job or wait for the completion of a job.

Syntax
DBMS_DATAPUMP.GET_STATUS(
 handle IN NUMBER,
 mask IN BINARY_INTEGER,
 timeout IN NUMBER DEFAULT NULL,
 job_state OUT VARCHAR2,
 status OUT ku$_Status1010);

Parameters

Table 25–7 GET_STATUS Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously attached
to the handle through an OPEN or ATTACH call. A null handle can be
used to retrieve error information after OPEN and ATTACH failures.

mask A bit mask that indicates which of four types of information to return:

■ KU$_STATUS_WIP

■ KU$_STATUS_JOB_DESC

■ KU$_STATUS_JOB_STATUS

■ KU$_STATUS_JOB_ERROR

Each status has a numerical value. You can request multiple types of
information by adding together different combinations of values. See
Types on page 25-4.

timeout Maximum number of seconds to wait before returning to the user. A
value of 0 requests an immediate return. A value of -1 requests an
infinite wait. If KU$_STATUS_WIP or KU$_STATUS_JOB_ERROR
information is requested and becomes available during the timeout
period, then the procedure returns before the timeout period is over.

job_state Current state of the job. If only job state is needed, it is much more
efficient to use this parameter than to retrieve the full ku$_Status1010
structure.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-21

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_VALUE. The mask or timeout contains an illegal value.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
The GET_STATUS procedure is used to monitor the progress of an ongoing job and
to receive error notification. You can request various type of information using the
mask parameter. The KU$_STATUS_JOB_DESC and KU$_STATUS_JOB_STATUS
values are classified as synchronous information because the information resides in
the master table. The KU$_STATUS_WIP and KU$_STATUS_JOB_ERROR values
are classified as asynchronous because the messages that embody these types of
information can be generated at any time by various layers in the Data Pump
architecture.

■ If synchronous information only is requested, the timeout is ignored.

■ If asynchronous information is requested, the interface will wait a maximum of
timeout seconds before returning to the client. If a message of the requested
asynchronous information type is received, the call will complete prior to
timeout seconds. If synchronous information was also requested, it will be
returned whenever the procedure returns.

■ The job state is always returned, as long as it can be determined.

Error Handling
There are two types of error scenarios that need to be handled using the GET_
STATUS procedure:

status A ku$_Status is returned. The ku$_Status mask indicates what kind of
information is included. This could be none if only KU$_STATUS_WIP
or KU$_STATUS_JOB_ERROR information is requested and the timeout
period expires.

Table 25–7 (Cont.) GET_STATUS Procedure Parameters

Parameter Description

GET_STATUS Procedure

25-22 PL/SQL Packages and Types Reference

■ Errors resulting from other procedure calls: For example, the SET_PARAMETER
procedure may produce an INCONSISTENT_ARGS exception. The client should
immediately call GET_STATUS with mask=8 (errors) and timeout=0. The
returned ku$_Status.error will contain a ku$_LogEntry that describes the
inconsistency in more detail.

■ Errors resulting from events asynchronous to the client(s): An example might be
Table already exists when trying to create a table. The ku$_
Status.error will contain a ku$_LogEntry with all error lines (from all
processing layers that added context about the error) properly ordered.

After a job has begun, a client's main processing loop will typically consist of a call
to GET_STATUS with an infinite timeout (-1) "listening" for KU$_STATUS_WIP and
KU$_STATUS_JOB_ERROR messages. If status was requested, then JOB_STATUS
information will also be in the request.

When the ku$_Status is interpreted, the following guidelines should be used:

■ ku$_Status.ku$_JobStatus.percent_done refers only to the amount of
data that has been processed in a job. Metadata is not considered in the
calculation. It is determined using the following formulas:

– EXPORT or network IMPORT--(bytes_processed/estimated_
bytes) * 100

– IMPORT--(bytes_processed/total_expected_bytes) * 100

– SQL_FILE or estimate-only EXPORT--0.00 if not done or 100.00 if done

The effects of the QUERY and PARTITION_EXPR data filters are not considered
in computing percent_done.

It is expected that the status returned will be transformed by the caller into
more user-friendly status. For example, when percent done is not zero, an
estimate of completion time could be produced using the following formula:

((SYSDATE - start time) / ku$_Status.ku$_JobStatus.percent_done) * 100

■ The caller should not use ku$_Status.ku$_JobStatus.percent_done for
determining whether the job has completed. Instead, the caller should only rely
on the state of the job as found in job_state.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-23

LOG_ENTRY Procedure

This procedure inserts a message into the log file.

Syntax
DBMS_DATAPUMP.LOG_ENTRY(
 handle IN NUMBER,
 message IN VARCHAR2
 log_file_only IN NUMBER DEFAULT 0);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
The message is added to the log file. If log_file_only is zero (the default), the
message is also broadcast as a KU$_STATUS_WIP message through the GET_
STATUS procedure to all users attached to the job.

The LOG_ENTRY procedure allows applications to tailor the log stream to match the
abstractions provided by the application. For example, the command-line interface
supports INCLUDE and EXCLUDE parameters defined by the user. Identifying these
values as calls to the underlying METADATA_FILTER procedure would be

Table 25–8 LOG_ENTRY Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously
attached to the handle through an OPEN or ATTACH call.

message A text line to be added to the log file.

log_file_only Specified text should be written only to the log file. It should not
be returned in GET_STATUS work-in-progress (KU$_STATUS_
WIP) messages.

LOG_ENTRY Procedure

25-24 PL/SQL Packages and Types Reference

confusing to users. Instead, the command-line interface can enter text into the log
describing the settings for the INCLUDE and EXCLUDE parameters.

Lines entered in the log stream from LOG_ENTRY are prefixed by the string, ";;; "

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-25

METADATA_FILTER Procedure

This procedure provides filters that allow you to restrict the items that are included
in a job.

Syntax
DBMS_DATAPUMP.METADATA_FILTER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 25–10 describes the name, object type, datatype, operations that support the
filter, and the meaning of the filters available with the METADATA_FILTER
procedure. The datatype for all the filters is a text expression. All operations
support all filters.

Table 25–9 METADATA_FILTER Procedure Parameters

Parameter Description

handle The handle returned from the OPEN procedure.

name The name of the filter. See Table 25–10 for descriptions of the available
filters.

value The value of the filter.

object_path The object path to which the filter applies. If the default is used, the
filter applies to all applicable objects. Lists of the object paths supported
for each mode are contained in the catalog views for DATABASE_
EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, and TABLE_EXPORT_
OBJECTS. (Note that the TABLE_EXPORT_OBJECTS view is applicable
to both Table and Tablespace mode because their object paths are the
same.)

For an import operation, object paths reference the mode used to create
the dump file rather than the mode being used for the import.

METADATA_FILTER Procedure

25-26 PL/SQL Packages and Types Reference

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. This exception can indicate any of the following conditions:

– An object_path was specified for an INCLUDE_PATH_EXPR or
EXCLUDE_PATH_EXPR filter.

Table 25–10 Filters Provided by METADATA_FILTER Procedure

Name Object Type Meaning

INCLUDE_
NAME_EXPR

and

EXCLUDE_
NAME_EXPR

Named objects Defines which object names are included in (INCLUDE_
NAME_EXPR), or excluded from (EXCLUDE_NAME_EXPR),
the job. You use the object_type parameter to limit
the filter to a particular object type.

For Table mode, identifies which tables are to be
processed.

SCHEMA_EXPR Schema objects Restricts the job to objects whose owning schema name is
satisfied by the expression.

For Table mode, only a single SCHEMA_EXPR filter is
supported. If specified, it must only specify a single
schema (for example, 'IN (''SCOTT'')').

For Schema mode, identifies which users are to be
processed.

TABLESPACE_
EXPR

TABLE,
CLUSTER,
INDEX,
ROLLBACK_
SEGMENT

Restricts the job to objects stored in a tablespace whose
name is satisfied by the expression.

For Tablespace mode, identifies which tablespaces are to
be processed. If a partition of an object is stored in the
tablespace, the entire object is added to the job.

For Transportable mode, identifies which tablespaces are
to be processed. If a table has a single partition in the
tablespace set, all partitions must be in the tablespace set.
An index is not included within the tablespace set unless
all of its partitions are in the tablespace set. A domain
index is not included in the tablespace set unless all of its
secondary objects are included in the tablespace set.

INCLUDE_
PATH_EXPR
and
EXCLUDE_
PATH_EXPR

All Defines which object paths are included in, or excluded
from, the job. You use these filters to select only certain
object types from the database or dump file set. Objects
of paths satisfying the condition are included
(INCLUDE_PATH_EXPR) or excluded (EXCLUDE_PATH_
EXPR) from the operation. The object_path parameter
is not supported for these filters.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-27

– The specified object_path is not supported for the current mode.

– The SCHEMA_EXPR filter specified multiple schemas for a Table mode job.

■ INVALID_STATE. The user called the METADATA_FILTER procedure after the
job left the defining state.

■ INCONSISTENT_ARGS. The filter value is of the wrong datatype or is missing.

■ SUCCESS_WITH_INFO. The procedure succeeded but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ Metadata filters identify a set of objects to be included or excluded from a Data

Pump operation. Except for EXCLUDE_PATH_EXPR and INCLUDE_PATH_EXPR,
dependent objects of an identified object will be processed along with the
identified object. For example, if an index is identified for inclusion by a filter,
grants upon that index will also be included by the filter. Likewise, if a table is
excluded by a filter, then indexes, constraints, grants and triggers upon the table
will also be excluded by the filter.

■ Filters allow a user to restrict the items that are included in a job. For example, a
user could request a full export, but without Package Specifications or Package
Bodies.

■ If multiple filters are specified for a object type, they are implicitly 'ANDed'
together (that is, objects participating in the job must pass all of the filters
applied to their object types).

■ The same filter name can be specified multiple times within a job. For example,
specifying NAME_EXPR as '!=''EMP''' and NAME_EXPR as
'!=''DEPT''' on a TABLE-mode export would produce a file set containing
all of the tables except for EMP and DEPT.

METADATA_REMAP Procedure

25-28 PL/SQL Packages and Types Reference

METADATA_REMAP Procedure

This procedure specifies a remapping to be applied to objects as they are processed
in the specified job.

Syntax
DBMS_DATAPUMP.METADATA_REMAP (
 handle IN NUMBER,
 name IN VARCHAR2,
 old_value IN VARCHAR2,
 value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 25–12 describes the remaps provided by the METADATA_REMAP procedure.

Table 25–11 METADATA_REMAP Procedure Parameters

Parameter Description

handle The handle for the current job. The current session must have
previously attached to the handle through a call to the OPEN procedure.

name The name of the remap. See Table 25–12 for descriptions of the available
remaps.

old_value Specifies which value in the dump file set should be reset to value.

value The value of the parameter for the remap. This signifies the new value
that old_value should be translated into.

object_type Designates the object type to which the remap applies. The list of object
types supported for each mode are contained in the DATABASE_
EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, TABLE_EXPORT_
OBJECTS, and TABLESPACE_EXPORT_OBJECTS catalog views.

By default, the remap applies to all applicable objects within the job.
The object_type parameter allows a caller to specify different
parameters for different object types within a job. Remaps that explicitly
specify an object type override remaps that apply to all object types.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-29

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. This message can indicate any of the following:

– The job's mode does not include the specified object_type.

– The remap has already been specified for the specified old_value and
object_type.

■ INVALID_OPERATION. Remaps are only supported for SQL_FILE and Import
operations. The job's operation was Export, which does not support the use of
metadata remaps.

■ INVALID_STATE. The user called METADATA_REMAP after the job had started
(that is, the job was not in the defining state).

■ INCONSISTENT_ARGS. There was no value supplied or it was of the wrong
datatype for the remap.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Table 25–12 Remaps Provided by the METADATA_REMAP Procedure

Name Datatype Object Type Meaning

REMAP_
SCHEMA

Text Schema objects Any schema object in the job that matches
the object_type parameter and was
located in the old_value schema will be
moved to the value schema.

REMAP_
TABLESPACE

Text TABLE, INDEX,
ROLLBACK_
SEGMENT,
MATERIALIZED_
VIEW,
MATERIALIZED_
VIEW_
LOG,TABLE_
SPACE

Any storage segment in the job that
matches the object_type parameter
and was located in the old_value
tablespace will be relocated to the value
tablespace.

REMAP_
DATAFILE

Text LIBRARY,
TABLESPACE,
DIRECTORY

Any datafile reference in the job that
matches the object_type parameter
and referenced the old_value datafile
will be redefined to use the value
datafile.

METADATA_REMAP Procedure

25-30 PL/SQL Packages and Types Reference

Usage Notes
■ The METADATA_REMAP procedure is only supported for Import and SQL_FILE

operations. It enables you to apply commonly desired, predefined remappings
to the definition of objects as part of the transfer. If you need remaps that are
not supported within this procedure, you should do a preliminary SQL_FILE
operation to produce a SQL script corresponding to the dump file set. By
editing the DDL directly and then executing it, you can produce any
remappings that you need.

■ Transforms for the DataPump API are a subset of the remaps implemented by
the DBMS_METADATA.SET_TRANSFORM_PARAMETER API. Multiple remaps can
be defined for a single job. However, each remap defined must be unique
according its parameters. That is, two remaps cannot specify conflicting or
redundant remaps.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-31

METADATA_TRANSFORM Procedure

This procedure specifies transformations to be applied to objects as they are
processed in the specified job.

Syntax
DBMS_DATAPUMP.METADATA_TRANSFORM (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 25–14 describes the transforms provided by the METADATA_TRANSFORM
procedure.

Table 25–13 METADATA_TRANSFORM Procedure Parameters

Parameter Description

handle The handle for the current job. The current session must have
previously attached to the handle through a call to the OPEN procedure.

name The name of the transformation. See Table 25–14 for descriptions of the
available transforms.

value The value of the parameter for the transform.

object_type Designates the object type to which the transform applies. The list of
object types supported for each mode are contained in the DATABASE_
EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, TABLE_EXPORT_
OBJECTS, and TABLESPACE_EXPORT_OBJECTS catalog views.

By default, the transform applies to all applicable objects within the job.
The object_type parameter allows a caller to specify different
transform parameters for different object types within a job. Transforms
that explicitly specify an object type override transforms that apply to
all object types.

Table 25–14 Transforms Provided by the METADATA_TRANFORM Procedure

Name Datatype Object Type Meaning

SEGMENT_
ATTRIBUTES

NUMBER TABLE, INDEX If nonzero (TRUE), emit storage segment
parameters. Defaults to 1.

METADATA_TRANSFORM Procedure

25-32 PL/SQL Packages and Types Reference

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. This message can indicate any of the following:

– The mode is transportable, which doesn't support transforms.

– The job's mode does not include the specified object_type.

– The transform has already been specified for the specified value and
object_type.

■ INVALID_OPERATION. Transforms are only supported for SQL_FILE and
Import operations. The job's operation was Export which does not support the
use of metadata transforms.

■ INVALID_STATE. The user called METADATA_TRANSFORM after the job had
started (that is, the job was not in the defining state).

■ INCONSISTENT_ARGS. There was no value supplied or it was of the wrong
datatype for the transform.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ The METADATA_TRANSFORM procedure is only supported for Import and SQL_

FILE operations. It enables you to apply commonly desired, predefined
transformations to the definition of objects as part of the transfer. If you need
transforms that are not supported within this procedure, you should do a
preliminary SQL_FILE operation to produce a SQL script corresponding to the
dump file set. By editing the DDL directly and then executing it, you can
produce any transformations that you need.

■ Transforms for the DataPump API are a subset of the transforms implemented
by the DBMS_METADATA.SET_TRANSFORM_PARAMETER API. Multiple

STORAGE NUMBER TABLE If nonzero (TRUE), emit storage clause.
(Ignored if SEGMENT_ATTRIBUTES is
zero.) Defaults to nonzero (TRUE).

Table 25–14 (Cont.) Transforms Provided by the METADATA_TRANFORM Procedure

Name Datatype Object Type Meaning

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-33

transforms can be defined for a single job. However, each transform defined
must be unique according its parameters. That is, two transforms cannot specify
conflicting or redundant transformations.

OPEN Function

25-34 PL/SQL Packages and Types Reference

OPEN Function

This function is used to declare a new job using the Data Pump API. The handle
that is returned is used as a parameter for calls to all other procedures except
ATTACH.

Syntax
DBMS_DATAPUMP.OPEN (
 operation IN VARCHAR2,
 mode IN VARCHAR2,
 remote_link IN VARCHAR2 DEFAULT NULL,
 job_name IN VARCHAR2 DEFAULT NULL,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE')
 RETURN NUMBER;

Parameters

Table 25–15 OPEN Function Parameters

Parameter Meaning

operation The type of operation to be performed. Table 25–16 contains
descriptions of valid operation types.

mode The scope of the operation to be performed. Table 25–17 contains
descriptions of valid modes. Specifying NULL generates an error.

remote_link If the value of this parameter is non-null, it provides the name of a
database link to the remote database that will be the source of data and
metadata for the current job.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-35

Table 25–16 describes the valid operation types for the OPEN procedure.

job_name The name of the job. The name is limited to 30 characters; it will be
truncated if more than 30 characters are used. It may consist of printable
characters and spaces. It is implicitly qualified by the schema of the user
executing the OPEN procedure and must be unique to that schema (that
is, there cannot be other Data Pump jobs using the same name).

The name is used to identify the job both within the API and with other
database components such as identifying the job in the DBA_
RESUMABLE view if the job becomes suspended through lack of
resources. If no name is supplied, a system generated name will be
provided for the job in the following format:
"SYS_<OPERATION>_<MODE>_%N".

The default job name is formed where %N expands to a two-digit
incrementing integer starting at '01' (for example, "SYS_IMPORT_
FULL_03"). The name supplied for the job will also be used to name the
master table and other resources associated with the job.

version The version of database objects to be extracted. This option is only valid
for Export, network Import, and SQL_FILE operations. Database objects
or attributes that are incompatible with the version will not be extracted.
Legal values for this parameter are as follows:

■ COMPATIBLE - (default) the version of the metadata corresponds
to the database compatibility level and the compatibility release
level for feature (as given in the V$COMPATIBILITY view).
Database compatibility must be set to 9.2 or higher.

■ LATEST - the version of the metadata corresponds to the database
version.

■ A specific database version, for example, '10.0.0'. In Oracle
Database10g, this value cannot be lower than 10.0.0.

Table 25–16 Valid Operation Types for the OPEN Procedure

Operation Description

EXPORT Saves data and metadata to a dump file set or obtains an
estimate of the size of the data for an operation.

IMPORT Restores data and metadata from a dump file set or across a
database link.

Table 25–15 (Cont.) OPEN Function Parameters

Parameter Meaning

OPEN Function

25-36 PL/SQL Packages and Types Reference

Table 25–17 describes the valid modes for the OPEN procedure.

Return Values
■ An opaque handle for the job. This handle is used as input to the following

procedures: SET_PARALLEL, ADD_FILE, DETACH, STOP_JOB, GET_STATUS,
LOG_ENTRY, METADATA_FILTER, DATA_FILTER, METADATA_TRANSFORM,
METADATA_REMAP, SET_PARAMETER, and START_JOB.

Exceptions
■ INVALID_ARGVAL. An invalid operation or mode was specified. A NULL or

invalid value was supplied for an input parameter. The error message text
identifies the parameter.

SQL_FILE Displays the metadata within a dump file set, or from across a
network link, as a SQL script. The location of the SQL script is
specified through the ADD_FILE procedure.

Table 25–17 Valid Modes for the OPEN Procedure

Mode Description

FULL Operates on the full database or full dump file set except for
the SYS, XDB,ORDSYS, MDSYS, CTXSYS, ORDPLUGINS, and
LBACSYS schemas.

SCHEMA Operates on a set of selected schemas. Defaults to the schema
of the current user. All objects in the selected schemas are
processed. Users cannot specify SYS, XDB, ORDSYS, MDSYS,
CTXSYS, ORDPLUGINS, or LBACSYS schemas for this mode.

TABLE Operates on a set of selected tables. Defaults to all of the tables
in the current user's schema. Only tables and their dependent
objects are processed.

TABLESPACE Operates on a set of selected tablespaces. No defaulting is
performed. Tables that have storage in the specified
tablespaces are processed in the same manner as in Table
mode.

TRANSPORTABLE Operates on metadata for tables (and their dependent objects)
within a set of selected tablespaces to perform a transportable
tablespace export/import.

Table 25–16 (Cont.) Valid Operation Types for the OPEN Procedure

Operation Description

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-37

■ JOB_EXISTS. A table already exists with the specified job name.

■ PRIVILEGE_ERROR. The user does not have the necessary privileges or roles to
use the specified mode.

■ INTERNAL_ERROR. The job was created under the wrong schema or the master
table was of the wrong format.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ When the job is created, a master table is created for the job under the caller's

schema within the caller's default tablespace. A handle referencing the job is
returned that attaches the current session to the job. Once attached, the handle
remains valid until either an explicit or implicit detach occurs. The handle is
only valid in the caller's session. Other handles can be attached to the same job
from a different session by using the ATTACH procedure.

■ If the OPEN fails, call GET_STATUS with a null handle to retrieve additional
information about the failure.

SET_PARALLEL Procedure

25-38 PL/SQL Packages and Types Reference

SET_PARALLEL Procedure

This procedure adjusts the degree of parallelism within a job.

Syntax
DBMS_DATAPUMP.SET_PARALLEL(
 handle IN NUMBER,
 degree IN NUMBER);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_OPERATION. The SET_PARALLEL procedure is only valid for export
and import operations.

■ INVALID_ARGVAL. An invalid value was supplied for an input parameter.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ The SET_PARALLEL procedure is only available in the Enterprise Edition of the

Oracle database.

■ The SET_PARALLEL procedure can be executed by any session attached to a
job. The job must be in one of the following states: Defining, Idling, or
Executing.

Table 25–18 SET_PARALLEL Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously attached
to the handle through an OPEN or ATTACH call.

degree The maximum number of worker processes that can be used for the job.
You use this parameter to adjust the amount of resources used for a job.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-39

■ The effect of decreasing the degree of parallelism may be delayed because
ongoing work needs to find an orderly completion point before SET_PARALLEL
can take effect.

■ Decreasing the parallelism will not result in fewer worker processes associated
with the job. It will only decrease the number of worker processes that will be
executing at any given time.

■ Increasing the parallelism will take effect immediately if there is work that can
be performed in parallel.

■ The degree of parallelism requested by a user may be decreased based upon
settings in the resource manager or through limitations introduced by the
PROCESSES or SESSIONS initialization parameters in the init.ora file.

■ To parallelize an Export job to a degree of n, the user should supply n files in
the dump file set or specify a substitution variable in a file specification.
Otherwise, some of the worker processes will be idle while waiting for files.

■ SQL_FILE operations always operate with a degree of 1. Jobs running in the
Transportable mode always operate with a degree of 1.

SET_PARAMETER Procedures

25-40 PL/SQL Packages and Types Reference

SET_PARAMETER Procedures

This procedure is used to specify job-processing options.

Syntax
DBMS_DATAPUMP.SET_PARAMETER(
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2);

DBMS_DATAPUMP.SET_PARAMETER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 25–20 describes the valid options for the name parameter of the SET_
PARAMETER procedure.

Table 25–19 SET_PARAMETER Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously
attached to the handle through an OPEN call.

name The name of the parameter. Table 25–20 describes the valid
parameter names.

value The value for the specified parameter.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-41

Table 25–20 Valid Options for the name Parameter in the SET_PARAMETER Procedure

Parameter Name Datatype
Supported
Operations Meaning

CLIENT_
COMMAND

Text All An opaque string used to describe the current operation
from the client's perspective. The command-line
procedures will use this string to store the original
command used to invoke the job.

ESTIMATE Text Export and
Import

Specifies that the estimate method for the size of the tables
should be performed before starting the job.

If BLOCKS, a size estimate for the user tables is calculated
using the count of blocks allocated to the user tables.

If STATISTICS, a size estimate for the user tables is
calculated using the statistics associated with each table. If
no statistics are available for a table, the size of the table is
estimated using BLOCKS.

The ESTIMATE parameter cannot be used in Transportable
Tablespace mode.

Default=BLOCKS.

ESTIMATE_ONLY Number Export Specifies that only the estimation portion of an export job
should be performed. This option is useful for estimating
the size of dump files when the size of the export is
unknown.

FLASHBACK_SCN NUMBER Export and
network
Import

System change number (SCN) to serve as transactionally
consistent point for reading user data. If neither
FLASHBACK_SCN nor FLASHBACK_TIME is specified,
there will be no transactional consistency between
partitions, except for logical standby databases and
Streams targets. FLASHBACK_SCN is not supported in
Transportable mode.

FLASHBACK_
TIME

Text Export and
network
Import

Either the date and time used to determine a consistent
point for reading user data or a string of the form TO_
TIMESTAMP(...).

If neither FLASHBACK_SCN nor FLASHBACK_TIME is
specified, there will be no transactional consistency
between partitions.

FLASHBACK_SCN and FLASHBACK_TIME cannot both be
specified for the same job. FLASHBACK_TIME is not
supported in Transportable mode.

SET_PARAMETER Procedures

25-42 PL/SQL Packages and Types Reference

INCLUDE_
METADATA

NUMBER Export and
Import

If nonzero, metadata for objects will be moved in addition
to user table data.

If zero, metadata for objects will not moved. This
parameter converts an Export operation into an unload of
user data and an Import operation into a load of user data.

INCLUDE_METADATA is not supported in Transportable
mode.

 Default=1.

REUSE_
DATAFILES

NUMBER Import If nonzero, tablespace data files can be created using
preexisting data files for tablespace creations. REUSE_
DATAFILES is only supported in Full mode.

Default=0

SKIP_
UNUSABLE_
INDEXES

NUMBER Import If nonzero, rows will be inserted into tables having
unusable indexes. SKIP_UNUSABLE_INDEXES is not
supported in Transportable mode.

Default=1

TABLE_EXISTS_
ACTION

Text Import Specifies the action to be performed when data is loaded
into a preexisting table. The possible actions are:
TRUNCATE, REPLACE, APPEND, and SKIP.

If INCLUDE_METADATA=0, only TRUNCATE and APPEND
are supported.

If TRUNCATE, rows are removed from a preexisting table
before inserting rows from the Import.

Note that if TRUNCATE is specified on tables referenced by
foreign key constraints, the TRUNCATE will be modified
into a REPLACE.

If REPLACE, preexisting tables are replaced with new
definitions. Before creating the new table, the old table is
dropped.

If APPEND, new rows are added to the existing rows in the
table.

If SKIP, the preexisting table is left unchanged.

TABLE_EXISTS_ACTION is not supported in
Transportable mode.

The default is SKIP if metadata is included in the import.
The default is APPEND if INCLUDE_METADATA is set to 0.

Table 25–20 (Cont.) Valid Options for the name Parameter in the SET_PARAMETER Procedure

Parameter Name Datatype
Supported
Operations Meaning

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-43

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_ARGVAL. This exception could be due to any of the following causes:

– An invalid name was supplied for an input parameter

– The wrong datatype was used for value

– A value was not supplied

– The supplied value was not allowed for the specified parameter name

– A flashback parameter had been established after a different flashback
parameter had already been established

– A parameter was specified that did not support duplicate definitions

■ INVALID_OPERATION. The operation specified is invalid in this context.

TABLESPACE_
DATAFILE

Text Import Specifies the full file specification for a datafile in the
transportable tablespace set. TABLESPACE_DATAFILE is
only valid for transportable mode imports.

TABLESPACE_DATAFILE can be specified multiple times,
but the value specified for each occurrence must be
different.

TTS_FULL_
CHECK

NUMBER Export If nonzero, verifies that a transportable tablespace set has
no dependencies (specifically, IN pointers) on objects
outside the set, and vice versa. Only valid for
Transportable mode Exports.

 Default=0.

USER_METADATA NUMBER Export and
network
Import

For schema-mode operations, specifies that the metadata
to re-create the users' schemas (for example, privilege
grants to the exported schemas) should also be part of the
operation if set to nonzero. Users must be privileged to
explicitly set this parameter.

The USER_METADATA parameter cannot be used in Table,
Tablespace, or Transportable Tablespace mode.

Default=1 if user has EXP_FULL_DATABASE role; 0
otherwise.

Table 25–20 (Cont.) Valid Options for the name Parameter in the SET_PARAMETER Procedure

Parameter Name Datatype
Supported
Operations Meaning

SET_PARAMETER Procedures

25-44 PL/SQL Packages and Types Reference

■ INVALID_STATE. The specified job is not in the Defining state.

■ INCONSISTENT_ARGS. Either the specified parameter is not supported for the
current operation type or it is not supported for the current mode.

■ PRIVILEGE_ERROR. The user does not have the EXP_FULL_DATABASE or
IMP_FULL_DATABASE role required for the specified parameter.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ The SET_PARAMETER procedure is used to specify optional features for the

current job. See Table 25–20 for a list of supported options.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-45

START_JOB Procedure

This procedure begins or resumes execution of a job.

Syntax
DBMS_DATAPUMP.START_JOB (
 handle IN NUMBER,
 skip_current IN NUMBER DEFAULT 0);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

■ INVALID_STATE. The causes of this exception can be any of the following:

– No files have been defined for an Export, non-network Import, or SQL_
FILE job

– An ADD_FILE procedure has not been called to define the output for a
SQL_FILE job

– A TABLESPACE_DATAFILE parameter has not been defined for a
Transportable Import job

Table 25–21 START_JOB Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously attached
to the handle through either the OPEN or ATTACH procedure.

skip_
current

If nonzero, causes actions that were 'in progress' on a previous
execution of the job to be skipped when the job restarts. The skip will
only be honored for Import jobs. This mechanism allows the user to skip
actions that trigger fatal bugs and cause the premature termination of a
job. Multiple actions can be skipped on a restart. The log file will
identify which actions are skipped. If a domain index was being
processed, all pieces of the domain index are skipped even if the error
occurred in only a subcomponent of the domain index.

A description of the actions skipped is entered into the log file. skip_
current is ignored for the initial START_JOB in a job.

 If zero, no data or metadata is lost upon a restart.

START_JOB Procedure

25-46 PL/SQL Packages and Types Reference

– A TABLESPACE_EXPR metadata filter has not been defined for a
Transportable or Tablespace mode Export or Network job

– The dump file set on an Import of SQL_FILE job was either incomplete or
missing a master table specification

■ INVALID_OPERATION. Unable to restore master table from a dump file set.

■ INTERNAL_ERROR. An inconsistency was detected when the job was started.
Additional information may be available through the GET_STATUS procedure.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ When this procedure is called to request that the corresponding job be started

or restarted, the state of the job is changed from either the Defining or Idling
state to the Executing state.

■ If the SET_PARALLEL procedure was not called prior to the START_JOB
procedure, the initial level of parallelism used in the job will be 1. If SET_
PARALLEL was called prior to the job starting, the degree specified by the last
SET_PARALLEL call determines the parallelism for the job. On restarts, the
parallelism is determined by the previous parallel setting for the job, unless it is
overridden by another SET_PARALLEL call.

■ To restart a stopped job, an ATTACH must be performed prior to executing the
START_JOB procedure.

Summary of DBMS_DATAPUMP Subprograms

DBMS_DATAPUMP 25-47

STOP_JOB Procedure

This procedure terminates a job, but optionally, preserves the state of the job.

Syntax
DBMS_DATAPUMP.STOP_JOB (
 handle IN NUMBER,
 immediate IN NUMBER DEFAULT 0,
 keep_master IN NUMBER DEFAULT NULL,
 delay IN NUMBER DEFAULT 0);

Parameters

Exceptions
■ INVALID_HANDLE. The specified handle is not attached to a Data Pump job.

Table 25–22 STOP_JOB Procedure Parameters

Parameter Description

handle The handle of a job. The current session must have previously attached
to the handle through an OPEN or ATTACH call. At the end of the
procedure, the user is detached from the handle.

immediate If nonzero, the worker processes are aborted immediately. If zero, the
worker processes are allowed to complete their current work item
(either metadata or table data) before they are terminated.

Performing an immediate shutdown halts the job more quickly, but
parts of the job will have to be rerun if the job is ever restarted.

keep_master If nonzero, the master table is retained when the job is stopped. If zero,
the master table is dropped when the job is stopped. If the master table
is dropped, the job will not be restartable. If the master table is dropped
during an export job, the created dump files are deleted.

delay The number of seconds to wait until other attached sessions are forcibly
detached. The delay allows other sessions attached to the job to be
notified that a stop has been performed. The job keeps running until
either all clients have detached or the delay has been satisfied. If no
delay is specified, then the default delay is 60 seconds. If a shorter delay
is used, clients might not be able to retrieve the final messages for the
job through the GET_STATUS procedure.

STOP_JOB Procedure

25-48 PL/SQL Packages and Types Reference

■ INVALID STATE. The job is already in the process of being stopped or
completed.

■ SUCCESS_WITH_INFO. The procedure succeeded, but further information is
available through the GET_STATUS procedure.

■ NO_SUCH_JOB. The specified job does not exist.

Usage Notes
■ This procedure is used to request that the corresponding job stop executing.

■ The termination of a job that is in an Executing state may take several minutes
to complete in an orderly fashion.

■ For jobs in the Defining, Idling, or Completing states, this procedure is
functionally equivalent to the DETACH procedure.

■ Once a job is stopped, it can be restarted using the ATTACH and START_JOB
procedures, provided the master table and the dump file set are left intact.

■ If the KEEP_MASTER parameter is not specified, and the job is in the Defining
state or has a mode of Transportable, the master table is dropped. Otherwise,
the master table is retained.

DBMS_DDL 26-1

26
DBMS_DDL

This package provides access to some SQL data definition language (DDL)
statements from stored procedures. It also provides special administration
operations that are not available as DDLs.

This chapter contains the following topics:

■ Using DBMS_DDL

■ Security Model

■ Operational Notes

■ Summary of DBMS_DDL Subprograms

Using DBMS_DDL

26-2 PL/SQL Packages and Types Reference

Using DBMS_DDL

■ Security Model

■ Operational Notes

Security Model

This package runs with the privileges of the calling user, rather than the package
owner SYS.

Operational Notes

The ALTER_COMPILE procedure commits the current transaction, performs the
operation, and then commits again.

Summary of DBMS_DDL Subprograms

DBMS_DDL 26-3

Summary of DBMS_DDL Subprograms

Table 26–1 DBMS_DDL Package Subprograms

Subprogram Description

ALTER_COMPILE Procedure on
page 26-4

Compiles the PL/SQL object

ALTER_TABLE_NOT_
REFERENCEABLE Procedure on
page 26-5

Reorganizes object tables and swizzles references

ALTER_TABLE_REFERENCEABLE
Procedure on page 26-5

Reorganizes object tables and swizzles
references

IS_TRIGGER_FIRE_ONCE Function
on page 26-8

Returns TRUE if the specified DML or DDL trigger is
set to fire once. Otherwise, returns FALSE

SET_TRIGGER_FIRING_PROPERTY
Procedure on page 26-9

Sets the specified DML or DDL trigger's firing
property

ALTER_COMPILE Procedure

26-4 PL/SQL Packages and Types Reference

ALTER_COMPILE Procedure

This procedure is equivalent to the following SQL statement:

ALTER PROCEDURE|FUNCTION|PACKAGE [<schema>.] <name> COMPILE [BODY]

Syntax
DBMS_DDL.ALTER_COMPILE (
 type VARCHAR2,
 schema VARCHAR2,
 name VARCHAR2);

Parameters

Exceptions

Table 26–2 ALTER_COMPILE Procedure Parameters

Parameter Description

type Must be either PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY
or TRIGGER.

schema Schema name.

If NULL, then use current schema (case-sensitive).

name Name of the object (case-sensitive).

Table 26–3 ALTER_COMPILE Procedure Exceptions

Exception Description

ORA-20000: Insufficient privileges or object does not exist.

ORA-20001: Remote object, cannot compile.

ORA-20002: Bad value for object type

Should be either PACKAGE, PACKAGE BODY, PROCEDURE,
FUNCTION, or TRIGGER.

Summary of DBMS_DDL Subprograms

DBMS_DDL 26-5

ALTER_TABLE_NOT_REFERENCEABLE Procedure

This procedure alters the given object table table_schema.table_name so it
becomes not the default referenceable table for the schema affected_schema.
This is equivalent to SQL

ALTER TABLE [<table_schema>.]<table_name> NOT REFERENCEABLE FOR <affected_
schema>

which is currently not supported or available as a DDL statement.

Syntax
DBMS_DDL.ALTER_TABLE_NOT_REFERENCEABLE (
 table_name IN VARCHAR2,
 table_schema IN DEFAULT NULL,
 affected_schema IN DEFAULT NULL);

Parameters

Usage Notes
This procedure simply reverts for the affected schema to the default table
referenceable for PUBLIC; that is., it simply undoes the previous ALTER_TABLE_
REFERENCEABLE call for this specific schema. The affected schema must a
particular schema (cannot be PUBLIC).

The user that executes this procedure must own the table (that is, the schema is the
same as the user), and the affected schema must be the same as the user.

Table 26–4 ALTER_TABLE_NOT_REFERENCEABLE Procedure Parameters

Parameter Description

table_name The name of the table to be altered. Cannot be a synonym. Must not
be NULL. Case sensitive.

table_schema The name of the schema owning the table to be altered. If NULL
then the current schema is used. Case sensitive.

affected_schema The name of the schema affected by this alteration. If NULL then
the current schema is used. Case sensitive.

ALTER_TABLE_NOT_REFERENCEABLE Procedure

26-6 PL/SQL Packages and Types Reference

If the user executing this procedure has ALTER ANY TABLE and SELECT ANY TABLE
and DROP ANY TABLE privileges, the user doesn't have to own the table and the
affected schema can be any valid schema.

Summary of DBMS_DDL Subprograms

DBMS_DDL 26-7

ALTER_TABLE_REFERENCEABLE Procedure

This procedure alters the given object table table_schema.table_name so it
becomes the referenceable table for the given schema affected_schema. This is
equivalent to SQL

ALTER TABLE [<table_schema>.]<table_name> REFERENCEABLE FOR <affected_schema>

which is currently not supported or available as a DDL statement.

Syntax
DBMS_DDL.ALTER_TABLE_REFERENCEABLE
 table_name IN VARCHAR2,
 table_schema IN DEFAULT NULL,
 affected_schema IN DEFAULT NULL);

Parameters

Usage Notes
When you create an object table, it automatically becomes referenceable, unless you
use the OID AS clause when creating the table. The OID AS clause makes it possible
for you to create an object table and to assign to the new table the same EOID as
another object table of the same type. After you create a new table using the OID AS
clause, you end up with two object table with the same EOID; the new table is not
referenceable, the original one is. All references that used to point to the objects in
the original table still reference the same objects in the same original table.

If you execute this procedure on the new table, it will make the new table the
referenceable table replacing the original one; thus, those references now point to
the objects in the new table instead of the original table.

Table 26–5 ALTER_TABLE_REFERENCEABLE Procedure Parameters

Parameter Description

table_name The name of the table to be altered. Cannot be a synonym. Must not
be NULL. Case sensitive.

table_schema The name of the schema owning the table to be altered. If NULL
then the current schema is used. Case sensitive.

affected_schema The name of the schema affected by this alteration. If NULL then
the current schema is used. Case sensitive.

IS_TRIGGER_FIRE_ONCE Function

26-8 PL/SQL Packages and Types Reference

IS_TRIGGER_FIRE_ONCE Function

This function returns TRUE if the specified DML or DDL trigger is set to fire once.
Otherwise, it returns FALSE.

A fire once trigger fires in a user session but does not fire in the following cases:

■ For changes made by a Streams apply process

■ For changes made by executing one or more Streams apply errors using the
EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_
ADM package

Syntax
DBMS_DDL.IS_TRIGGER_FIRE_ONCE
 trig_owner IN VARCHAR2,
 trig_name IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Note: Only DML and DDL triggers can be fire once. All other
types of triggers always fire.

See Also: "SET_TRIGGER_FIRING_PROPERTY Procedure" on
page 26-9

Table 26–6 IS_TRIGGER_FIRE_ONCE Function Parameters

Parameter Description

trig_owner Schema of trigger

trig_name Name of trigger

Summary of DBMS_DDL Subprograms

DBMS_DDL 26-9

SET_TRIGGER_FIRING_PROPERTY Procedure

This procedure sets the specified DML or DDL trigger's firing property. Use this
procedure to control a DML or DDL trigger's firing property for changes:

■ Applied by a Streams apply process

■ Made by executing one or more Streams apply errors using the EXECUTE_
ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM
package.

Syntax
DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY
 trig_owner IN VARCHAR2,
 trig_name IN VARCHAR2,
 fire_once IN BOOLEAN);

Parameters

Usage Notes
You can specify one of the following settings for a trigger's firing property:

■ If the fire_once parameter is set to TRUE for a trigger, then the trigger does
not fire for these types of changes.

■ If the fire_once parameter is set to FALSE for a trigger, then the trigger fires
for these types of changes.

Regardless of the firing property set by this procedure, a trigger continues to fire
when changes are made by means other than the apply process or apply error
execution. For example, if a user session or an application makes a change, then the
trigger continues to fire, regardless of the firing property.

Table 26–7 SET_TRIGGER_FIRING_PROPERTY Procedure Parameters

Parameter Description

trig_owner Schema of the trigger to set

trig_name Name of the trigger to set

fire_once If TRUE, then the trigger is set to fire once. By default, the fire_
once parameter is set to TRUE for DML and DDL triggers.

If FALSE, then the trigger is set to always fire.

SET_TRIGGER_FIRING_PROPERTY Procedure

26-10 PL/SQL Packages and Types Reference

Note:

■ If you dequeue an error transaction from the error queue and
execute it without using the DBMS_APPLY_ADM package, then
relevant changes resulting from this execution cause a trigger to
fire, regardless of the trigger firing property.

■ Only DML and DDL triggers can be fire once. All other types of
triggers always fire.

See Also: Oracle Streams Concepts and Administration for more
information about the apply process and controlling a trigger's
firing property

DBMS_DEBUG 27-1

27
DBMS_DEBUG

DBMS_DEBUG is a PL/SQL interface to the PL/SQL debugger layer, Probe, in the
Oracle server.

This API is primarily intended to implement server-side debuggers and it provides
a way to debug server-side PL/SQL program units.

This chapter contains the following topics:

■ Using DBMS_DEBUG

■ Overview

■ Constants

■ Variables

■ Types

■ Exceptions

■ Operational Notes

■ Summary of DBMS_DEBUG Subprograms

Note: The term program unit refers to a PL/SQL program of any
type (procedure, function, package, package body, trigger,
anonymous block, object type, or object type body).

Using DBMS_DEBUG

27-2 PL/SQL Packages and Types Reference

Using DBMS_DEBUG

■ Overview

■ Constants

■ Variables

■ Types

■ Exceptions

■ Operational Notes

Overview

To debug server-side code, you must have two database sessions: one session to run
the code in debug mode (the target session), and a second session to supervise the
target session (the debug session).

The target session becomes available for debugging by making initializing calls
with DBMS_DEBUG. This marks the session so that the PL/SQL interpreter runs in
debug mode and generates debug events. As debug events are generated, they are
posted from the session. In most cases, debug events require return notification: the
interpreter pauses awaiting a reply.

Meanwhile, the debug session must also initialize itself using DBMS_DEBUG: This
tells it which target session to supervise. The debug session may then call entry
points in DBMS_DEBUG to read events that were posted from the target session and
to communicate with the target session.

The following subprograms are run in the target session (the session that is to be
debugged):

■ SYNCHRONIZE Function

■ DEBUG_ON Procedure

■ DEBUG_OFF Procedure

DBMS_DEBUG does not provide an interface to the PL/SQL compiler, but it does
depend on debug information optionally generated by the compiler. Without debug
information, it is not possible to examine or modify the values of parameters or
variables.

Using DBMS_DEBUG

DBMS_DEBUG 27-3

Constants

A breakpoint status may have the following value:

■ breakpoint_status_unused—breakpoint is not in use

Otherwise, the status is a mask of the following values:

■ breakpoint_status_active—a line breakpoint

■ breakpoint_status_disabled—breakpoint is currently disabled

■ breakpoint_status_remote—a shadow breakpoint (a local representation
of a remote breakpoint)

Variables

Types

■ BACKTRACE_TABLE Type

■ BREAKPOINT_INFO Type

■ BREAKPOINT_TABLE Type

■ INDEX_TABLE Type

■ PROGRAM_INFO Types

■ RUNTIME_INFO Type

■ VC2_TABLE Type

BACKTRACE_TABLE Type
This type is used by PRINT_BACKTRACE.

TYPE backtrace_table IS TABLE OF program_info INDEX BY BINARY_INTEGER;

Variable Description

default_timeout The timeout value (used by both sessions).The smallest possible
timeout is 1 second. If this value is set to 0, then a large value
(3600) is used.

Types

27-4 PL/SQL Packages and Types Reference

BREAKPOINT_INFO Type
This type gives information about a breakpoint, such as its current status and the
program unit in which it was placed.

TYPE breakpoint_info IS RECORD
(
 -- These fields are duplicates of 'program_info':
 Name VARCHAR2(30),
 Owner VARCHAR2(30),
 DbLink VARCHAR2(30),
 Line# BINARY_INTEGER,
 LibunitType BINARY_INTEGER,
 Status BINARY_INTEGER -- see breakpoint_status_* in following sections
);

BREAKPOINT_TABLE Type
This type is used by SHOW_BREAKPOINTS.

TYPE breakpoint_table IS TABLE OF breakpoint_info INDEX BY BINARY_INTEGER;

INDEX_TABLE Type
This type is used by GET_INDEXES to return the available indexes for an indexed
table.

TYPE index_table IS table of BINARY_INTEGER INDEX BY BINARY_INTEGER;

PROGRAM_INFO Types
This type specifies a program location. It is a line number in a program unit. This is
used for stack backtraces and for setting and examining breakpoints. The read-only
fields are currently ignored by Probe for breakpoint operations. They are set by
Probe only for stack backtraces.

Type Description

EntrypointName Null, unless this is a nested procedure or function.

LibunitType Disambiguate among objects that share the same
namespace (for example, procedure and package
specifications).

See the Libunit Types on page 27-13 for more information.

Using DBMS_DEBUG

DBMS_DEBUG 27-5

TYPE program_info IS RECORD
(
 -- The following fields are used when setting a breakpoint
 Namespace BINARY_INTEGER, -- See 'NAMESPACES' in following sections
 Name VARCHAR2(30), -- name of the program unit
 Owner VARCHAR2(30), -- owner of the program unit
 Dblink VARCHAR2(30), -- database link, if remote
 Line# BINARY_INTEGER,
 -- Read-only fields (set by Probe when doing a stack backtrace)
 LibunitType BINARY_INTEGER,
 EntrypointName VARCHAR2(30)
);

RUNTIME_INFO Type
This type gives context information about the running program.

TYPE runtime_info IS RECORD
(
 Line# BINARY_INTEGER, -- (duplicate of program.line#)
 Terminated BINARY_INTEGER, -- has the program terminated?
 Breakpoint BINARY_INTEGER, -- breakpoint number
 StackDepth BINARY_INTEGER, -- number of frames on the stack
 InterpreterDepth BINARY_INTEGER, -- <reserved field>
 Reason BINARY_INTEGER, -- reason for suspension
 Program program_info -- source location
);

VC2_TABLE Type
This type is used by SHOW_SOURCE.

TYPE vc2_table IS TABLE OF VARCHAR2(90) INDEX BY BINARY_INTEGER;

Exceptions

These values are returned by the various functions called in the debug session
(SYNCHRONIZE, CONTINUE, SET_BREAKPOINT, and so on). If PL/SQL exceptions
worked across client/server and server/server boundaries, then these would all be
exceptions rather than error codes.

Value Description

success Normal termination.

Exceptions

27-6 PL/SQL Packages and Types Reference

Statuses returned by GET_VALUE and SET_VALUE:

Statuses returned by SET_VALUE:

Statuses returned by the breakpoint functions:

General error codes (returned by many of the DBMS_DEBUG subprograms):

Status Description

error_bogus_frame No such entrypoint on the stack.

error_no_debug_info Program was compiled without debug symbols.

error_no_such_object No such variable or parameter.

error_unknown_type Debug information is unreadable.

error_indexed_table Returned by GET_VALUE if the object is a table, but no
index was provided.

error_illegal_index No such element exists in the collection.

error_nullcollection Table is atomically null.

error_nullvalue Value is null.

Status Description

error_illegal_value Constraint violation.

error_illegal_null Constraint violation.

error_value_malformed Unable to decipher the given value.

error_other Some other error.

error_name_incomplete Name did not resolve to a scalar.

Status Description

error_no_such_breakpt No such breakpoint.

error_idle_breakpt Cannot enable or disable an unused breakpoint.

error_bad_handle Unable to set breakpoint in given program (nonexistent or
security violation).

Using DBMS_DEBUG

DBMS_DEBUG 27-7

The following exceptions are raised by procedure SELF_CHECK:

Operational Notes

There are two ways to ensure that debug information is generated: through a
session switch, or through individual recompilation.

To set the session switch, enter the following statement:

ALTER SESSION SET PLSQL_DEBUG = true;

This instructs the compiler to generate debug information for the remainder of the
session. It does not recompile any existing PL/SQL.

To generate debug information for existing PL/SQL code, use one of the following
statements (the second recompiles a package or type body):

ALTER [PROCEDURE | FUNCTION | PACKAGE | TRIGGER | TYPE] <name> COMPILE DEBUG;

Status Description

error_unimplemented Functionality is not yet implemented.

error_deferred No program running; operation deferred.

error_exception An exception was raised in the DBMS_DEBUG or Probe
packages on the server.

error_communication Some error other than a timeout occurred.

error_timeout Timout occurred.

Exception Description

illegal_init DEBUG_ON was called prior to INITIALIZE.

Exception Description

pipe_creation_failure Could not create a pipe.

pipe_send_failure Could not write data to the pipe.

pipe_receive_failure Could not read data from the pipe.

pipe_datatype_mismatch Datatype in the pipe was wrong.

pipe_data_error Data got garbled in the pipe.

Operational Notes

27-8 PL/SQL Packages and Types Reference

ALTER [PACKAGE | TYPE] <name> COMPILE DEBUG BODY;

Figure 27–1 and Figure 27–2 illustrate the flow of operations in the session to be
debugged and in the debugging session.

Figure 27–1 Target Session

Initialize session for debugging,
and generate/specify unique debugID.
DBMS_DEBUB.initialize()

Stop debugging
DBMS_DEBUG.debug_off()

Execute PL/SQL programs

Start debugging
DBMS_DEBUG.debug_on()

Using DBMS_DEBUG

DBMS_DEBUG 27-9

Figure 27–2 Debug Session

Manipulate breakpoints
DBMS_DEBUG.set_breakpoint()
DBMS_DEBUG.delete_breakpoint()
DBMS_DEBUG.disable_breakpoint()
DBMS_DEBUG.enable_breakpoint()
DBMS_DEBUG.show_breakpoints()

Input:
debugID from
target session

1 2

Maniputlate breakpoints
DBMS_DEBUG.set_breakpoint()
DBMS_DEBUG.delete_breakpoint()
DBMS_DEBUG.disable_breakpoint()
DBMS_DEBUG.enable_breakpoint()
DBMS_DEBUG.show_breakpoints()

Read first event from target session
DBMS_DEBUG.synchronize()

Initialize
DBMS_DEBUG.attach_session()

Manipulate breakpoints

Show stack
DBMS_DEBUG.print_backtrace()

Show source
DBMS_DEBUG.show_source()

Get/set values
DBMS_DEBUG.get_value()
DBMS_DEBUG.set_value()

Operational Notes

27-10 PL/SQL Packages and Types Reference

Figure 27–3 Debug Session (Cont.)

Control of the Interpreter
The interpreter pauses execution at the following times:

1. At startup of the interpreter so any deferred breakpoints may be installed prior
to execution.

2. At any line containing an enabled breakpoint.

3. At any line where an interesting event occurs. The set of interesting events is
specified by the flags passed to DBMS_DEBUG.CONTINUE in the breakflags
parameter.

Session Termination
There is no event for session termination. Therefore, it is the responsibility of the
debug session to check and make sure that the target session has not ended. A call
to DBMS_DEBUG.SYNCHRONIZE after the target session has ended causes the debug
session to hang until it times out.

Deferred Operations
The diagram suggests that it is possible to set breakpoints prior to having a target
session. This is true. In this case, Probe caches the breakpoint request and transmits
it to the target session at first synchronization. However, if a breakpoint request is
deferred in this fashion, then:

Detach session
DBMS_DEBUG.detach_session()

No

Yes

next program to debug

1 2
Continue execution and wait for
next event DBMS_DEBUG.continue()

Program terminated?
(event is DBMS_DEBUG.reason_knl_exit)

Using DBMS_DEBUG

DBMS_DEBUG 27-11

■ SET_BREAKPOINT does not set the breakpoint number (it can be obtained later
from SHOW_BREAKPOINTS if necessary).

■ SET_BREAKPOINT does not validate the breakpoint request. If the requested
source line does not exist, then an error silently occurs at synchronization, and
no breakpoint is set.

Diagnostic Output
To debug Probe, there are diagnostics parameters to some of the calls in DBMS_
DEBUG. These parameters specify whether to place diagnostic output in the RDBMS
tracefile. If output to the RDBMS tracefile is disabled, these parameters have no
effect.

Common and Debug Session Sections

Common Section
The following subprograms may be called in either the target or the debug session:

■ PROBE_VERSION Procedure

■ SELF_CHECK Procedure

■ SET_TIMEOUT Function

Target Session
The following subprograms may be called only in the target session:

■ INITIALIZE Function

■ DEBUG_ON Procedure

■ DEBUG_OFF Procedure

■ SET_TIMEOUT_BEHAVIOUR Procedure

■ GET_TIMEOUT_BEHAVIOUR Function

Debug Session Section
The following subprograms should be run in the debug session only:

■ ATTACH_SESSION Procedure

■ SYNCHRONIZE Function

■ SHOW_FRAME_SOURCE Procedure

■ SHOW_SOURCE Procedures

Operational Notes

27-12 PL/SQL Packages and Types Reference

■ GET_MORE_SOURCE Procedure

■ PRINT_BACKTRACE Procedure

■ CONTINUE Function

■ SET_BREAKPOINT Function

■ DELETE_BREAKPOINT Function

■ SET_OER_BREAKPOINT Function

■ DELETE_OER_BREAKPOINT Function

■ ENABLE_BREAKPOINT Function

■ DISABLE_BREAKPOINT Function

■ SHOW_BREAKPOINTS Procedures

■ SET_VALUE Functionn

■ GET_VALUE Function

■ TARGET_PROGRAM_RUNNING Procedure

■ DETACH_SESSION Procedure

■ GET_RUNTIME_INFO Function

■ PRINT_INSTANTIATIONS Procedure

■ PING Procedure

■ GET_LINE_MAP Function

■ GET_RUNTIME_INFO Function

■ GET_INDEXES Function

■ EXECUTE Procedure

OER Breakpoints
Exceptions that are declared in PL/SQL programs are known as user-defined
exceptions. In addition, there are Oracle Errors (OERs) that are returned from the
Oracle kernel. To tie the two mechanisms together, PL/SQL provides the
exception_init pragma that turns a user-defined exception into an OER, so that
a PL/SQL handler may be used for it, and so that the PL/SQL engine can return
OERs to the Oracle kernel. As of the current release, the only information available
about an OER is its number. If two user-defined exceptions are exception_init'd to
the same OER, they are indistinguishable.

Using DBMS_DEBUG

DBMS_DEBUG 27-13

Namespaces
Program units on the server reside in different namespaces. When setting a
breakpoint, specify the desired namespace.

1. Namespace_cursor contains cursors (anonymous blocks).

2. Namespace_pgkspec_or_toplevel contains:

■ Package specifications.

■ Procedures and functions that are not nested inside other packages,
procedures, or functions.

■ Object types.

3. Namespace_pkg_body contains package bodies and type bodies.

4. Namespace_trigger contains triggers.

Libunit Types
These values are used to disambiguate among objects in a given namespace. These
constants are used in PROGRAM_INFO when Probe is giving a stack backtrace.

■ LibunitType_cursor

■ LibunitType_procedure

■ LibunitType_function

■ LibunitType_package

■ LibunitType_package_body

■ LibunitType_trigger

■ LibunitType_Unknown

Breakflags
These are values to use for the breakflags parameter to CONTINUE, in order to
tell Probe what events are of interest to the client. These flags may be combined.

Value Description

break_next_line Break at next source line (step over calls).

break_any_call Break at next source line (step into calls).

Operational Notes

27-14 PL/SQL Packages and Types Reference

Information Flags
These are flags which may be passed as the info_requested parameter to
SYNCHRONIZE, CONTINUE, and GET_RUNTIME_INFO.

Reasons for Suspension
After CONTINUE is run, the program either runs to completion or breaks on some
line.

break_any_return Break after returning from current entrypoint (skip over any
entrypoints called from the current routine).

break_return Break the next time an entrypoint gets ready to return. (This
includes entrypoints called from the current one. If interpreter is
running Proc1, which calls Proc2, then break_return stops
at the end of Proc2.)

break_exception Break when an exception is raised.

break_handler Break when an exception handler is executed.

abort_execution Stop execution and force an 'exit' event as soon as DBMS_
DEBUG.CONTINUE is called.

Flag Description

info_getStackDepth Get the current depth of the stack.

info_getBreakpoint Get the breakpoint number.

info_getLineinfo Get program unit information.

Reason Description

reason_none -

reason_
interpreter_
starting

Interpreter is starting.

reason_breakpoint Hit a breakpoint.

reason_enter Procedure entry.

reason_return Procedure is about to return.

Value Description

Using DBMS_DEBUG

DBMS_DEBUG 27-15

reason_finish Procedure is finished.

reason_line Reached a new line.

reason_interrupt An interrupt occurred.

reason_exception An exception was raised.

reason_exit Interpreter is exiting (old form).

reason_knl_exit Kernel is exiting.

reason_handler Start exception-handler.

reason_timeout A timeout occurred.

reason_instantiate Instantiation block.

reason_abort Interpreter is aborting.

Reason Description

Summary of DBMS_DEBUG Subprograms

27-16 PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Table 27–1 DBMS_DEBUG Package Subprograms

Subprogram Description

ATTACH_SESSION
Procedure on page 27-19

Notifies the debug session about the target debugID

CONTINUE Function on
page 27-20

Continues execution of the target program

DEBUG_OFF Procedure on
page 21

Turns debug-mode off

DEBUG_ON Procedure on
page 27-22

Turns debug-mode on

DELETE_BREAKPOINT
Function on page 27-23

Deletes a breakpoint

DELETE_OER_
BREAKPOINT Function on
page 27-24

Deletes an OER breakpoint

DETACH_SESSION
Procedure on page 27-25

Stops debugging the target program

DISABLE_BREAKPOINT
Function on page 27-26

Disables a breakpoint

ENABLE_BREAKPOINT
Function on page 27-27

Activates an existing breakpoint

EXECUTE Procedure on
page 27-28

Executes SQL or PL/SQL in the target session

GET_INDEXES Function on
page 27-31

Returns the set of indexes for an indexed table

GET_MORE_SOURCE
Procedure on page 27-32

Provides additional source in the event of buffer overflow
when using SHOW_SOURCE

GET_LINE_MAP Function
on page 27-33

Returns information about line numbers in a program unit

GET_RUNTIME_INFO
Function on page 27-34

Returns information about the current program

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-17

GET_TIMEOUT_
BEHAVIOUR Function on
page 27-35

Returns the current timeout behavior

GET_VALUE Function on
page 27-36

Gets a value from the currently-running program

INITIALIZE Function on
page 27-39

Sets debugID in target session

PING Procedure on
page 27-41

Pings the target session to prevent it from timing out

PRINT_BACKTRACE
Procedure on page 27-42

Prints a stack backtrace

PRINT_INSTANTIATIONS
Procedure on page 27-43

Prints a stack backtrace

PROBE_VERSION
Procedure on page 27-44

Returns the version number of DBMS_DEBUG on the server

SELF_CHECK Procedure on
page 27-45

Performs an internal consistency check

SET_BREAKPOINT
Function on page 27-46

Sets a breakpoint in a program unit

SET_OER_BREAKPOINT
Function on page 27-48

Sets an OER breakpoint

SET_TIMEOUT Function on
page 27-49

Sets the timeout value

SET_TIMEOUT_
BEHAVIOUR Procedure on
page 27-50

Tells Probe what to do with the target session when a
timeout occurs

SET_VALUE Function on
page 27-51

Sets a value in the currently-running program

SHOW_BREAKPOINTS
Procedures on page 27-53

Returns a listing of the current breakpoints

SHOW_FRAME_SOURCE
Procedure on page 27-54

Fetches the frame source

SHOW_SOURCE
Procedures on page 27-55

Fetches program source

Table 27–1 (Cont.) DBMS_DEBUG Package Subprograms

Subprogram Description

Summary of DBMS_DEBUG Subprograms

27-18 PL/SQL Packages and Types Reference

SYNCHRONIZE Function
on page 27-57

Waits for program to start running

TARGET_PROGRAM_
RUNNING Procedure on
page 27-58

Returns TRUE if the target session is currently executing a
stored procedure, or FALSE if it is not

Table 27–1 (Cont.) DBMS_DEBUG Package Subprograms

Subprogram Description

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-19

ATTACH_SESSION Procedure

This procedure notifies the debug session about the target program.

Syntax
DBMS_DEBUG.ATTACH_SESSION (
 debug_session_id IN VARCHAR2,
 diagnostics IN BINARY_INTEGER := 0);

Parameters

Table 27–2 ATTACH_SESSION Procedure Parameters

Parameter Description

debug_session_id Debug ID from a call to INITIALIZE in target session.

diagnostics Generate diagnostic output if nonzero.

CONTINUE Function

27-20 PL/SQL Packages and Types Reference

CONTINUE Function

This function passes the given breakflags (a mask of the events that are of interest)
to Probe in the target process. It tells Probe to continue execution of the target
process, and it waits until the target process runs to completion or signals an event.

If info_requested is not NULL, then calls GET_RUNTIME_INFO.

Syntax
DBMS_DEBUG.CONTINUE (
 run_info IN OUT runtime_info,
 breakflags IN BINARY_INTEGER,
 info_requested IN BINARY_INTEGER := NULL)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–3 CONTINUE Function Parameters

Parameter Description

run_info Information about the state of the program.

breakflags Mask of events that are of interest. See "Breakflags" on
page 27-13.

info_requested Which information should be returned in run_info when the
program stops. See "Information Flags" on page 27-14.

Table 27–4 CONTINUE Function Return Values

Return Description

success

error_timeout Timed out before the program started running.

error_communication Other communication error.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-21

DEBUG_OFF Procedure

This procedure notifies the target session that debugging should no longer take
place in that session. It is not necessary to call this function before ending the
session.

Syntax
DBMS_DEBUG.DEBUG_OFF;

Usage Notes
The server does not handle this entrypoint specially. Therefore, it attempts to debug
this entrypoint.

Caution: There must be a debug session waiting if immediate is
TRUE.

DEBUG_ON Procedure

27-22 PL/SQL Packages and Types Reference

DEBUG_ON Procedure

This procedure marks the target session so that all PL/SQL is run in debug mode.
This must be done before any debugging can take place.

Syntax
DBMS_DEBUG.DEBUG_ON (
 no_client_side_plsql_engine BOOLEAN := TRUE,
 immediate BOOLEAN := FALSE);

Parameters

Table 27–5 DEBUG_ON Procedure Parameters

Parameter Description

no_client_side_
plsql_engine

Should be left to its default value unless the debugging session
is taking place from a client-side PL/SQL engine.

immediate If this is TRUE, then the interpreter immediately switches itself
into debug-mode, instead of continuing in regular mode for
the duration of the call.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-23

DELETE_BREAKPOINT Function

This function deletes a breakpoint.

Syntax
DBMS_DEBUG.DELETE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–6 DELETE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.

Table 27–7 DELETE_BREAKPOINT Function Return Values

Return Description

success

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot delete an unused breakpoint.

error_stale_breakpt The program unit was redefined since the breakpoint was set.

DELETE_OER_BREAKPOINT Function

27-24 PL/SQL Packages and Types Reference

DELETE_OER_BREAKPOINT Function

This function deletes an OER breakpoint.

Syntax
DBMS_DEBUG.DELETE_OER_BREAKPOINT (
 oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Table 27–8 DELETE_OER_BREAKPOINT Function Parameters

Parameter Description

oer The OER (positive 4-byte number) to delete.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-25

DETACH_SESSION Procedure

This procedure stops debugging the target program. This procedure may be called
at any time, but it does not notify the target session that the debug session is
detaching itself, and it does not terminate execution of the target session. Therefore,
care should be taken to ensure that the target session does not hang itself.

Syntax
DBMS_DEBUG.DETACH_SESSION;

DISABLE_BREAKPOINT Function

27-26 PL/SQL Packages and Types Reference

DISABLE_BREAKPOINT Function

This function makes an existing breakpoint inactive but leaves it in place.

Syntax
DBMS_DEBUG.DISABLE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–9 DISABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.

Table 27–10 DISABLE_BREAKPOINT Function Return Values

Returns Description

success

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot disable an unused breakpoint.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-27

ENABLE_BREAKPOINT Function

This function is the reverse of disabling. This enables a previously disabled
breakpoint.

Syntax
DBMS_DEBUG.ENABLE_BREAKPOINT (
 breakpoint IN BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–11 ENABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.

Table 27–12 ENABLE_BREAKPOINT Function Return Values

Return Description

success Success.

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot enable an unused breakpoint.

EXECUTE Procedure

27-28 PL/SQL Packages and Types Reference

EXECUTE Procedure

This procedure executes SQL or PL/SQL code in the target session. The target
session is assumed to be waiting at a breakpoint (or other event). The call to DBMS_
DEBUG.EXECUTE occurs in the debug session, which then asks the target session to
execute the code.

Syntax
DBMS_DEBUG.EXECUTE (
 what IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 bind_results IN BINARY_INTEGER,
 results IN OUT NOCOPY dbms_debug_vc2coll,
 errm IN OUT NOCOPY VARCHAR2);

Parameters

Examples

Example 1
This example executes a SQL statement. It returns no results.

DECLARE
 coll sys.dbms_debug_vc2coll; -- results (unused)
 errm VARCHAR2(100);

Table 27–13 EXECUTE Procedure Parameters

Parameter Description

what SQL or PL/SQL source to execute.

frame# The context in which to execute the code. Only -1 (global
context) is supported at this time.

bind_results Whether the source wants to bind to results in order to
return values from the target session.

0 = No

1 = Yes

results Collection in which to place results, if bind_results is not 0.

errm Error message, if an error occurred; otherwise, NULL.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-29

BEGIN
 dbms_debug.execute('insert into emp(ename,empno,deptno) ' ||
 'values(''LJE'', 1, 1)',
 -1, 0, coll, errm);
END;

Example 2
This example executes a PL/SQL block, and it returns no results. The block is an
autonomous transaction, which means that the value inserted into the table
becomes visible in the debug session.

DECLARE
 coll sys.dbms_debug_vc2coll;
 errm VARCHAR2(100);
BEGIN
 dbms_debug.execute(
 'DECLARE PRAGMA autonomous_transaction; ' ||
 'BEGIN ' ||
 ' insert into emp(ename, empno, deptno) ' ||
 ' values(''LJE'', 1, 1); ' ||
 ' COMMIT; ' ||
 'END;',
 -1, 0, coll, errm);
END;

Example 3
This example executes a PL/SQL block, and it returns some results.

DECLARE
 coll sys.dbms_debug_vc2coll;
 errm VARCHAR2(100);
BEGIN
 dbms_debug.execute(
 'DECLARE ' ||
 ' pp SYS.dbms_debug_vc2coll := SYS.dbms_debug_vc2coll(); ' ||
 ' x PLS_INTEGER; ' ||
 ' i PLS_INTEGER := 1; ' ||
 'BEGIN ' ||
 ' SELECT COUNT(*) INTO x FROM emp; ' ||
 ' pp.EXTEND(x * 6); ' ||
 ' FOR c IN (SELECT * FROM emp) LOOP ' ||
 ' pp(i) := ''Ename: '' || c.ename; i := i+1; ' ||
 ' pp(i) := ''Empno: '' || c.empno; i := i+1; ' ||
 ' pp(i) := ''Job: '' || c.job; i := i+1; ' ||

EXECUTE Procedure

27-30 PL/SQL Packages and Types Reference

 ' pp(i) := ''Mgr: '' || c.mgr; i := i+1; ' ||
 ' pp(i) := ''Sal: '' || c.sal; i := i+1; ' ||
 ' pp(i) := null; i := i+1; ' ||
 ' END LOOP; ' ||
 ' :1 := pp;' ||
 'END;',
 -1, 1, coll, errm);
 each := coll.FIRST;
 WHILE (each IS NOT NULL) LOOP
 dosomething(coll(each));
 each := coll.NEXT(each);
 END LOOP;
END;

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-31

GET_INDEXES Function

Given a name of a variable or parameter, this function returns the set of its indexes,
if it is an indexed table. An error is returned if it is not an indexed table.

Syntax
DBMS_DEBUG.GET_INDEXES (
 varname IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 handle IN program_info,
 entries OUT index_table)
RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–14 GET_INDEXES Function Parameters

Parameter Description

varname Name of the variable to get index information about.

frame# Number of frame in which the variable or parameter resides;
NULL for a package variable.

handle Package description, if object is a package variable.

entries 1-based table of the indexes. If non-NULL, then entries(1)
contains the first index of the table, entries(2) contains the
second index, and so on.

Table 27–15 GET_INDEXES Function Return Values

Return Description

error_no_such_object Either:

- The package does not exist.

- The package is not instantiated.

- The user does not have privileges to debug the package.

- The object does not exist in the package.

GET_MORE_SOURCE Procedure

27-32 PL/SQL Packages and Types Reference

GET_MORE_SOURCE Procedure

When source does not fit in the buffer provided by that version of the SHOW_
SOURCE Procedures which produce a formatted buffer, this procedure provides
additional source.

Syntax
DBMS_DEBUG.GET_MORE_SOURCE (
 buffer IN OUT VARCHAR2,
 buflen IN BINARY_INTEGER,
 piece# IN BINARY_INTEGER);

Parameters

Usage Notes
This procedure should be called only after the version of SHOW_SOURCE that
returns a formatted buffer.

Table 27–16 GET_MORE_SOURCE Procedure Parameters

Parameter Description

buffer The buffer.

buflen The length of the buffer.

piece# A value between 2 and the value returned in the parameter
pieces from the call to the relevant version of the SHOW_
SOURCE Procedures.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-33

GET_LINE_MAP Function

This function finds line and entrypoint information about a program so that a
debugger can determine the source lines at which it is possible to place breakpoints.

Syntax
DBMS_DEBUG.GET_LINE_MAP (
 program IN program_info,
 maxline OUT BINARY_INTEGER,
 number_of_entry_points OUT BINARY_INTEGER,
 linemap OUT RAW)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–17 GET_LINE_MAP Function Parameters

Parameter Description

program A top-level program unit (procedure / package / function /
package body, and so on). Its Namespace, Name, and Owner
fields must be initialized, the remaining fields are ignored.

maxline The largest source code line number in 'program'.

number_of_entry_
points

The number of subprograms in 'program'

linemap A bitmap representing the executable lines of 'program'. If line
number N is executable, bit number N MOD 8 will be set to 1
at linemap position N / 8. The length of returned linemap is
either maxline divided by 8 (plus one if maxline MOD 8 is
not zero) or 32767 in the unlikely case of maxline being
larger than 32767 * 8.

Table 27–18 GET_LINE_MAP Function Return Values

Return Description

success A successful completion.

error_no_debug_info The program unit exists, but has no debug info.

error_bad_handle No such program unit exists.

GET_RUNTIME_INFO Function

27-34 PL/SQL Packages and Types Reference

GET_RUNTIME_INFO Function

This function returns information about the current program. It is only needed if the
info_requested parameter to SYNCHRONIZE or CONTINUE was set to 0.

Syntax
DBMS_DEBUG.GET_RUNTIME_INFO (
 info_requested IN BINARY_INTEGER,
 run_info OUT runtime_info)
 RETURN BINARY_INTEGER;

Parameters

Note: This is currently only used by client-side PL/SQL.

Table 27–19 GET_RUNTIME_INFO Function Parameters

Parameter Description

info_requested Which information should be returned in run_info when the
program stops. See "Information Flags" on page 27-14.

run_info Information about the state of the program.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-35

GET_TIMEOUT_BEHAVIOUR Function

This procedure returns the current timeout behavior. This call is made in the target
session.

Syntax
DBMS_DEBUG.GET_TIMEOUT_BEHAVIOUR
 RETURN BINARY_INTEGER;

Parameters

Return Values

Information Flags
info_getOerInfo CONSTANT PLS_INTEGER:= 32;

Usage Notes
Less functionality is supported on OER breakpoints than on code breakpoints. In
particular, note that:

■ No "breakpoint number" is returned - the number of the OER is used instead.
Thus it is impossible to set duplicate breakpoints on a given OER (it is a no-op).

■ It is not possible to disable an OER breakpoint (although clients are free to
simulate this by deleting it).

■ OER breakpoints are deleted using delete_oer_breakpoint.

Table 27–20 GET_TIMEOUT_BEHAVIOUR Function Parameters

Parameter Description

oer The OER (a 4-byte positive number).

Table 27–21 GET_TIMEOUT_BEHAVIOUR Function Return Values

Return Description

success A successful completion.

GET_VALUE Function

27-36 PL/SQL Packages and Types Reference

GET_VALUE Function

This function gets a value from the currently-running program. There are two
overloaded GET_VALUE functions.

Syntax
DBMS_DEBUG.GET_VALUE (
 variable_name IN VARCHAR2,
 frame# IN BINARY_INTEGER,
 scalar_value OUT VARCHAR2,
 format IN VARCHAR2 := NULL)
RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–22 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

frame# Frame in which it lives; 0 means the current procedure.

scalar_value Value.

format Optional date format to use, if meaningful.

Table 27–23 GET_VALUE Function Return Values

Return Description

success A successful completion.

error_bogus_frame Frame does not exist.

error_no_debug_info Entrypoint has no debug information.

error_no_such_object variable_name does not exist in frame#.

error_unknown_type The type information in the debug information is illegible.

error_nullvalue Value is NULL.

error_indexed_table The object is a table, but no index was provided.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-37

This form of GET_VALUE is for fetching package variables. Instead of a frame#, it
takes a handle, which describes the package containing the variable.

Syntax
DBMS_DEBUG.GET_VALUE (
 variable_name IN VARCHAR2,
 handle IN program_info,
 scalar_value OUT VARCHAR2,
 format IN VARCHAR2 := NULL)
RETURN BINARY_INTEGER;

Parameters

Return Values

Examples
This example illustrates how to get the value with a given package PACK in schema
SCOTT, containing variable VAR:

DECLARE

Table 27–24 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

handle Description of the package containing the variable.

scalar_value Value.

format Optional date format to use, if meaningful.

Table 27–25 GET_VALUE Function Return Values

Return Description

error_no_such_object Either:

- Package does not exist.

- Package is not instantiated.

- User does not have privileges to debug the package.

- Object does not exist in the package.

error_indexed_table The object is a table, but no index was provided.

GET_VALUE Function

27-38 PL/SQL Packages and Types Reference

 handle dbms_debug.program_info;
 resultbuf VARCHAR2(500);
 retval BINARY_INTEGER;
BEGIN
 handle.Owner := 'SCOTT';
 handle.Name := 'PACK';
 handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
 retval := dbms_debug.get_value('VAR', handle, resultbuf, NULL);
END;

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-39

INITIALIZE Function

This function initializes the target session for debugging.

Syntax
DBMS_DEBUG.INITIALIZE (
 debug_session_id IN VARCHAR2 := NULL,
 diagnostics IN BINARY_INTEGER := 0)
 RETURN VARCHAR2;

Parameters

Return Values
The newly-registered debug session ID (debugID)

Usage Notes
You cannot use DBMS_DEBUG and the JDWP-based debugging interface
simultaneously. This call will either fail with an ORA-30677 error if the session is
currently being debugged with the JDWP-based debugging interface or, if the call
succeeds, any further use of the JDWP-based interface to debug this session will be
disallowed.

Calls to DBMS_DEBUG will succeed only if either the caller or the specified debug
role carries the DEBUG CONNECT SESSION privilege. Failing that, an ORA-1031
error will be raised. Other exceptions are also possible if a debug role is specified
but the password does not match, or if the calling user has not been granted the
role, or the role is application-enabled and this call does not originate from within
the role-enabling package.

Table 27–26 INITIALIZE Function Parameters

Parameter Description

debug_session_id Name of session ID. If NULL, then a unique ID is generated.

diagnostics Indicates whether to dump diagnostic output to the tracefile.

0 = (default) no diagnostics

1 = print diagnostics

INITIALIZE Function

27-40 PL/SQL Packages and Types Reference

The CREATE ANY PROCEDURE privilege does not affect the visibility of routines
through the debugger. A privilege DEBUG for each object has been introduced with
a corresponding DEBUG ANY PROCEDURE variant. These are required in order to see
routines owned by users other than the session's login user.

Authentication of the debug role and the check for DEBUG CONNECT SESSION
privilege will be done in the context of the caller to this routine. If the caller is a
definer's rights routine or has been called from one, only privileges granted to the
defining user, the debug role, or PUBLIC will be used to check for DEBUG CONNECT
SESSION. If this call is from within a definer's rights routine, the debug role, if
specified, must be one that has been granted to that definer, but it need not also
have been granted to the session login user or be enabled in the calling session at
the time the call is made.

The checks made by the debugger after this call is made looking for the DEBUG
privilege on individual procedures will be done in the context of the session's login
user, the roles that were enabled at session level at the moment this call was made
(even if those roles were not available within a definer's rights environment of the
call), and the debug role.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-41

PING Procedure

This procedure pings the target session to prevent it from timing out. Use this
procedure when execution is suspended in the target session, for example at a
breakpoint.

If the timeout_behaviour is set to retry_on_timeout then this procedure is
not necessary.

Syntax
DBMS_DEBUG.PING;

Exceptions
Oracle will display the no_target_program exception if there is no target
program or if the target session is not currently waiting for input from the debug
session.

Usage Notes
Timeout options for the target session are registered with the target session by
calling set_timeout_behaviour.

■ retry_on_timeout - Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

■ continue_on_timeout - Continue execution, using same event flags.

■ nodebug_on_timeout - Turn debug-mode OFF (in other words, call debug_
off) and then continue execution. No more events will be generated by this
target session unless it is re-initialized by calling debug_on.

■ abort_on_timeout - Continue execution, using the abort_execution flag,
which should cause the program to terminate immediately. The session remains
in debug-mode.

retry_on_timeout CONSTANT BINARY_INTEGER:= 0;

continue_on_timeout CONSTANT BINARY_INTEGER:= 1;

nodebug_on_timeout CONSTANT BINARY_INTEGER:= 2;

abort_on_timeout CONSTANT BINARY_INTEGER:= 3;

PRINT_BACKTRACE Procedure

27-42 PL/SQL Packages and Types Reference

PRINT_BACKTRACE Procedure

This procedure prints a backtrace listing of the current execution stack. This should
only be called if a program is currently running.

There are two overloaded PRINT_BACKTRACE procedures.

Syntax
DBMS_DEBUG.PRINT_BACKTRACE (
 listing IN OUT VARCHAR2);

DBMS_DEBUG.PRINT_BACKTRACE (
 backtrace OUT backtrace_table);

Table 27–27 PRINT_BACKTRACE Procedure Parameters

Parameter Description

listing A formatted character buffer with embedded newlines.

backtrace 1-based indexed table of backtrace entries. The
currently-running procedure is the last entry in the table (that
is, the frame numbering is the same as that used by GET_
VALUE). Entry 1 is the oldest procedure on the stack.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-43

PRINT_INSTANTIATIONS Procedure

This procedure returns a list of the packages that have been instantiated in the
current session.

Syntax
DBMS_DEBUG.PRINT_INSTANTIATIONS (
 pkgs IN OUT NOCOPY backtrace_table,
 flags IN BINARY_INTEGER);

Parameters

Exceptions
no_target_program - target session is not currently executing

Usage Notes
On return, pkgs contains a program_info for each instantiation. The valid fields
are: Namespace, Name, Owner, and LibunitType.

In addition, Line# contains a bitmask of:

■ 1 - the libunit contains debug info

■ 2 - the libunit is shrink-wrapped

Table 27–28 PRINT_INSTANTIATIONS Procedure Parameters

Parameter Description

pkgs (OUT) The instantiated packages

flags Bitmask of options:

■ 1 - show specs

■ 2 - show bodies

■ 4 - show local instantiations

■ 8 - show remote instantiations (NYI)

■ 16 - do a fast job. The routine does not test whether debug
information exists or whether the libunit is
shrink-wrapped.

PROBE_VERSION Procedure

27-44 PL/SQL Packages and Types Reference

PROBE_VERSION Procedure

This procedure returns the version number of DBMS_DEBUG on the server.

Syntax
DBMS_DEBUG.PROBE_VERSION (
 major out BINARY_INTEGER,
 minor out BINARY_INTEGER);

Parameters

Table 27–29 PROBE_VERSION Procedure Parameters

Parameter Description

major Major version number.

minor Minor version number: increments as functionality is added.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-45

SELF_CHECK Procedure

This procedure performs an internal consistency check. SELF_CHECK also runs a
communications test to ensure that the Probe processes are able to communicate.

If SELF_CHECK does not return successfully, then an incorrect version of DBMS_
DEBUG was probably installed on this server. The solution is to install the correct
version (pbload.sql loads DBMS_DEBUG and the other relevant packages).

Syntax
DBMS_DEBUG.SELF_CHECK (
 timeout IN binary_integer := 60);

Parameters

Exceptions

All of these exceptions are fatal. They indicate a serious problem with Probe that
prevents it from working correctly.

Table 27–30 SELF_CHECK Procedure Parameters

Parameter Description

timeout The timeout to use for the communication test. Default is 60
seconds.

Table 27–31 SELF_CHECK Procedure Exceptions

Exception Description

OER-6516 Probe version is inconsistent.

pipe_creation_
failure

Could not create a pipe.

pipe_send_failure Could not write data to the pipe.

pipe_receive_failure Could not read data from the pipe.

pipe_datatype_
mismatch

Datatype in the pipe was wrong.

pipe_data_error Data got garbled in the pipe.

SET_BREAKPOINT Function

27-46 PL/SQL Packages and Types Reference

SET_BREAKPOINT Function

This function sets a breakpoint in a program unit, which persists for the current
session. Execution pauses if the target program reaches the breakpoint.

Syntax
DBMS_DEBUG.SET_BREAKPOINT (
 program IN program_info,
 line# IN BINARY_INTEGER,
 breakpoint# OUT BINARY_INTEGER,
 fuzzy IN BINARY_INTEGER := 0,
 iterations IN BINARY_INTEGER := 0)
 RETURN BINARY_INTEGER;

Parameters

Table 27–32 SET_BREAKPOINT Function Parameters

Parameter Description

program Information about the program unit in which the breakpoint is
to be set. (In version 2.1 and later, the namespace, name,
owner, and dblink may be set to NULL, in which case the
breakpoint is placed in the currently-running program unit.)

line# Line at which the breakpoint is to be set.

breakpoint# On successful completion, contains the unique breakpoint
number by which to refer to the breakpoint.

fuzzy Only applicable if there is no executable code at the specified
line:

0 means return error_illegal_line.

1 means search forward for an adjacent line at which to place
the breakpoint.

-1 means search backward for an adjacent line at which to
place the breakpoint.

iterations Number of times to wait before signalling this breakpoint.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-47

Return Values

Note: The fuzzy and iterations parameters are not yet
implemented.

Table 27–33 SET_BREAKPOINT Function Return Values

Return Description

success A successful completion.

error_illegal_line Cannot set a breakpoint at that line.

error_bad_handle No such program unit exists.

SET_OER_BREAKPOINT Function

27-48 PL/SQL Packages and Types Reference

SET_OER_BREAKPOINT Function

This function sets an OER breakpoint.

Syntax
DBMS_DEBUG.SET_OER_BREAKPOINT (
 oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Return Values

Table 27–34 SET_OER_BREAKPOINT Function Parameters

Parameter Description

oer The OER (positive 4-byte number) to delete.

Table 27–35 SET_OER_BREAKPOINT Function Return Values

Return Description

success A successful completion.

error_no_such_
breakpt

No such OER breakpoint exists.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-49

SET_TIMEOUT Function

This function sets the timeout value and returns the new timeout value.

Syntax
DBMS_DEBUG.SET_TIMEOUT (
 timeout BINARY_INTEGER)
 RETURN BINARY_INTEGER;

Parameters

Table 27–36 SET_TIMEOUT Function Parameters

Parameter Description

timeout The timeout to use for communication between the target and
debug sessions.

SET_TIMEOUT_BEHAVIOUR Procedure

27-50 PL/SQL Packages and Types Reference

SET_TIMEOUT_BEHAVIOUR Procedure

This procedure tells Probe what to do with the target session when a timeout
occurs. This call is made in the target session.

Syntax
DBMS_DEBUG.SET_TIMEOUT_BEHAVIOUR (
 behaviour IN PLS_INTEGER);

Parameters

Exceptions
unimplemented - the requested behavior is not recognized

Usage Notes
The default behavior (if this procedure is not called) is continue_on_timeout,
since it allows a debugger client to reestablish control (at the next event) but does
not cause the target session to hang indefinitely.

Table 27–37 SET_TIMEOUT_BEHAVIOUR Procedure Parameters

Parameter Description

behaviour - One of the
following:

retry_on_timeout Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

continue_on_timeout Continue execution, using same event flags.

nodebug_on_timeout Turn debug-mode OFF (in other words, call debug_off)
and continue execution. No more events will be generated
by this target session unless it is re-initialized by calling
debug_on.

abort_on_timeout Continue execution, using the abort_execution flag,
which should cause the program to terminate
immediately. The session remains in debug-mode.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-51

SET_VALUE Function

This function sets a value in the currently-running program. There are two
overloaded SET_VALUE functions.

Syntax
DBMS_DEBUG.SET_VALUE (
 frame# IN binary_integer,
 assignment_statement IN varchar2)
 RETURN BINARY_INTEGER;

DBMS_DEBUG.SET_VALUE (
 handle IN program_info,
 assignment_statement IN VARCHAR2)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–38 SET_VALUE Function Parameters

Parameter Description

frame# Frame in which the value is to be set; 0 means the currently
executing frame.

handle Description of the package containing the variable.

assignment_statement An assignment statement (which must be legal PL/SQL) to run
in order to set the value. For example, 'x := 3;'.

Only scalar values are supported in this release. The right side
of the assignment statement must be a scalar.

Table 27–39 SET_VALUE Function Return Values

Return Description

success -

error_illegal_value Not possible to set it to that value.

error_illegal_null Cannot set to NULL because object type specifies it as 'not null'.

SET_VALUE Function

27-52 PL/SQL Packages and Types Reference

Usage Notes
In some cases, the PL/SQL compiler uses temporaries to access package variables,
and does not guarantee to update such temporaries. It is possible, although
unlikely, that modification to a package variable using SET_VALUE might not take
effect for a line or two.

Examples
To set the value of SCOTT.PACK.var to 6:

DECLARE
 handle dbms_debug.program_info;
 retval BINARY_INTEGER;
BEGIN
 handle.Owner := 'SCOTT';
 handle.Name := 'PACK';
 handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
 retval := dbms_debug.set_value(handle, 'var := 6;');
END;

error_value_
malformed

Value is not a scalar.

error_name_
incomplete

The assignment statement does not resolve to a scalar. For
example, 'x := 3;', if x is a record.

error_no_such_object Either:

- Package does not exist.

- Package is not instantiated.

- User does not have privileges to debug the package.

- Object does not exist in the package.

Table 27–39 SET_VALUE Function Return Values

Return Description

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-53

SHOW_BREAKPOINTS Procedures

There are two overloaded procedures that return a listing of the current
breakpoints. There are three overloaded SHOW_BREAKPOINTS procedures.

Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (
 listing IN OUT VARCHAR2);

DBMS_DEBUG.SHOW_BREAKPOINTS (
 listing OUT breakpoint_table);

DBMS_DEBUG.SHOW_BREAKPOINTS (
 code_breakpoints OUT breakpoint_table,
 oer_breakpoints OUT oer_table);

Parameters

Table 27–40 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

listing A formatted buffer (including newlines) of the breakpoints.

Indexed table of breakpoint entries. The breakpoint number is
indicated by the index into the table. Breakpoint numbers start
at 1 and are reused when deleted.

code_breakpoints The indexed table of breakpoint entries, indexed by breakpoint
number.

oer_breakpoints The indexed table of OER breakpoints, indexed by OER.

SHOW_FRAME_SOURCE Procedure

27-54 PL/SQL Packages and Types Reference

SHOW_FRAME_SOURCE Procedure

The procedure gets the source code. There are two overloaded SHOW_SOURCE
procedures.

Syntax
DBMS_DEBUG.SHOW_FRAME_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 source IN OUT NOCOPY vc2_table,
 frame_num IN BINARY_INTEGER);

Parameters

Usage Notes
■ You use this function only when backtrace shows an anonymous unit is

executing at a given frame position and you need to view the source n order to
set a breakpoint.

■ If frame number is top of the stack and it's an anonymous block then SHOW_
SOURCE can also be used.

■ If it's a stored PLSQL package/function/procedure then use SQL as described
in the Usage Notes to SHOW_SOURCE Procedures.

Table 27–41 SHOW_FRAME_SOURCE Procedure Parameters

Parameter Description

first_line Line number of first line to fetch. (PL/SQL programs always
start at line 1 and have no holes.)

last_line Line number of last line to fetch. No lines are fetched past the
end of the program.

source The resulting table, which may be indexed by line#.

frame_num 1-based frame number.

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-55

SHOW_SOURCE Procedures

The procedure gets the source code. There are two overloaded SHOW_SOURCE
procedures.

Syntax
DBMS_DEBUG.SHOW_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 source OUT vc2_table);

DBMS_DEBUG.SHOW_SOURCE (
 first_line IN BINARY_INTEGER,
 last_line IN BINARY_INTEGER,
 window IN BINARY_INTEGER,
 print_arrow IN BINARY_INTEGER,
 buffer IN OUT VARCHAR2,
 buflen IN BINARY_INTEGER,
 pieces OUT BINARY_INTEGER);

Parameters

Table 27–42 SHOW_SOURCE Procedure Parameters

Parameter Description

first_line Line number of first line to fetch. (PL/SQL programs always
start at line 1 and have no holes.)

last_line Line number of last line to fetch. No lines are fetched past the
end of the program.

source The resulting table, which may be indexed by line#.

window 'Window' of lines (the number of lines around the current
source line).

print_arrow Nonzero means to print an arrow before the current line.

buffer Buffer in which to place the source listing.

buflen Length of buffer.

pieces Set to nonzero if not all the source could be placed into the
given buffer.

SHOW_SOURCE Procedures

27-56 PL/SQL Packages and Types Reference

Return Values
An indexed table of source-lines. The source lines are stored starting at first_
line. If any error occurs, then the table is empty.

Usage Notes
The best way to get the source code (for a program that is being run) is to use SQL.
For example:

DECLARE
 info DBMS_DEBUG.runtime_info;
BEGIN
 -- call DBMS_DEBUG.SYNCHRONIZE, CONTINUE,
 -- or GET_RUNTIME_INFO to fill in 'info'
 SELECT text INTO <buffer> FROM all_source
 WHERE owner = info.Program.Owner
 AND name = info.Program.Name
 AND line = info.Line#;
END;

However, this does not work for nonpersistent programs (for example, anonymous
blocks and trigger invocation blocks). For nonpersistent programs, call SHOW_
SOURCE. There are two flavors: one returns an indexed table of source lines, and the
other returns a packed (and formatted) buffer.

The second overloading of SHOW_SOURCE returns the source in a formatted buffer,
complete with line-numbers. It is faster than the indexed table version, but it does
not guarantee to fetch all the source.

If the source does not fit in bufferlength (buflen), then additional pieces can be
retrieved using the GET_MORE_SOURCE procedure (pieces returns the number of
additional pieces that need to be retrieved).

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG 27-57

SYNCHRONIZE Function

This function waits until the target program signals an event. If info_requested
is not NULL, then it calls GET_RUNTIME_INFO.

Syntax
DBMS_DEBUG.SYNCHRONIZE (
 run_info OUT runtime_info,
 info_requested IN BINARY_INTEGER := NULL)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Table 27–43 SYNCHRONIZE Function Parameters

Parameter Description

run_info Structure in which to write information about the program. By
default, this includes information about what program is
running and at which line execution has paused.

info_requested Optional bit-field in which to request information other than
the default (which is info_getStackDepth + info_
getLineInfo). 0 means that no information is requested at
all.

See "Information Flags" on page 27-14.

Table 27–44 SYNCHRONIZE Function Return Values

Return Description

success A successful completion.

error_timeout Timed out before the program started execution.

error_communication Other communication error.

TARGET_PROGRAM_RUNNING Procedure

27-58 PL/SQL Packages and Types Reference

TARGET_PROGRAM_RUNNING Procedure

This procedure returns TRUE if the target session is currently executing a stored
procedure, or FALSE if it is not.

Syntax
DBMS_DEBUG.TARGET_PROGRAM_RUNNING
 RETURN BOOLEAN;

DBMS_DEFER 28-1

28
DBMS_DEFER

DBMS_DEFER is the user interface to a replicated transactional deferred remote
procedure call facility. Replicated applications use the calls in this interface to queue
procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application
specified update procedures.

■ Documentation of DBMS_DEFER

Documentation of DBMS_DEFER

28-2 PL/SQL Packages and Types Reference

Documentation of DBMS_DEFER

For a complete description of this package within the context of Replication, see
DBMS_DEFER in the Oracle Database Advanced Replication Management API Reference.

DBMS_DEFER_QUERY 29-1

29
DBMS_DEFER_QUERY

DBMS_DEFER_QUERY enables you to query the deferred transactions queue data
that is not exposed through views.

■ Documentation of DBMS_DEFER_QUERY

Documentation of DBMS_DEFER_QUERY

29-2 PL/SQL Packages and Types Reference

Documentation of DBMS_DEFER_QUERY

For a complete description of this package within the context of Replication, see
DBMS_DEFER_QUERY in the Oracle Database Advanced Replication Management API
Reference.

DBMS_DEFER_SYS 30-1

30
DBMS_DEFER_SYS

DBMS_DEFER_SYS subprograms manage default replication node lists. This
package is the system administrator interface to a replicated transactional deferred
remote procedure call facility. Administrators and replication daemons can execute
transactions queued for remote nodes using this facility, and administrators can
control the nodes to which remote calls are destined.

■ Documentation of DBMS_DEFER_SYS

Documentation of DBMS_DEFER_SYS

30-2 PL/SQL Packages and Types Reference

Documentation of DBMS_DEFER_SYS

For a complete description of this package within the context of Replication, see
DBMS_DEFER_SYS in the Oracle Database Advanced Replication Management API
Reference.

DBMS_DESCRIBE 31-1

31
DBMS_DESCRIBE

You can use the DBMS_DESCRIBE package to get information about a PL/SQL
object. When you specify an object name, DBMS_DESCRIBE returns a set of indexed
tables with the results. Full name translation is performed and security checking is
also checked on the final object.

This chapter contains the following topics:

■ Using DBMS_DESCRIBE

■ Overview

■ Security Model

■ Types

■ Exceptions

■ Operational Notes

■ Examples

■ Summary of DBMS_DESCRIBE Subprograms

Using DBMS_DESCRIBE

31-2 PL/SQL Packages and Types Reference

Using DBMS_DESCRIBE

■ Overview

■ Security Model

■ Types

■ Exceptions

■ Operational Notes

■ Examples

Overview

This package provides the same functionality as the Oracle Call Interface
OCIDescribeAny call.

Security Model

This package is available to PUBLIC and performs its own security checking based
on the schema object being described.

Types

The DBMS_DESCRIBE package declares two PL/SQL table types, which are used to
hold data returned by DESCRIBE_PROCEDURE in its OUT parameters. The types are:

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)
 INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;

Exceptions

DBMS_DESCRIBE can raise application errors in the range -20000 to -20004.

See Also: Oracle Call Interface Programmer's Guide

Using DBMS_DESCRIBE

DBMS_DESCRIBE 31-3

Operational Notes

From a third generation language, we cannot directly bind to an argument of
record or boolean type. For a Boolean, the following workaround is available:

Assume function F returns a Boolean. G is a procedure with one IN Boolean
argument, and H is a procedure with one OUT Boolean argument. You can execute
these functions, binding in DTYINTs (native integer) as follows, where 0=>FALSE
and 1=>TRUE:

 DECLARE b BOOLEAN;
 BEGIN h(b);
 IF b
 THEN :dtyint_bind_var := 1;
 ELSE :dtyint_bind_var := 0;
 END IF;
 END;

Access to procedures with arguments of the record type require writing a wrapper
similar to that in the preceding example.

Examples

One use of the DESCRIBE_PROCEDURE procedure is as an external service interface.

For example, consider a client that provides an OBJECT_NAME of SCOTT.ACCOUNT_
UPDATE, where ACCOUNT_UPDATE is an overloaded function with specification:

TABLE account (account_no NUMBER, person_id NUMBER,
 balance NUMBER(7,2))
TABLE person (person_id number(4), person_nm varchar2(10))

Table 31–1 DBMS_DESCRIBE Errors

Error Description

ORA-20000 ORU 10035: cannot describe a package ('X') only a procedure within a
package.

ORA-20001 ORU-10032: procedure 'X' within package 'Y' does not exist.

ORA-20002 ORU-10033: object 'X' is remote, cannot describe; expanded name 'Y'.

ORA-20003 ORU-10036: object 'X' is invalid and cannot be described.

ORA-20004 Syntax error attempting to parse 'X'.

Examples

31-4 PL/SQL Packages and Types Reference

FUNCTION ACCOUNT_UPDATE (account_no NUMBER,
 person person%rowtype,
 amounts DBMS_DESCRIBE.NUMBER_TABLE,
 trans_date DATE)
 return account.balance%type;

FUNCTION ACCOUNT_UPDATE (account_no NUMBER,
 person person%rowtype,
 amounts DBMS_DESCRIBE.NUMBER_TABLE,
 trans_no NUMBER)
 return account.balance%type;

This procedure might look similar to the following output:

overload position argument level datatype length prec scale rad
-------- --------- -------- ------ -------- ------ ---- ----- ---
 1 0 0 2 22 7 2 10
 1 1 ACCOUNT 0 2 0 0 0 0
 1 2 PERSON 0 250 0 0 0 0
 1 1 PERSON_ID 1 2 22 4 0 10
 1 2 PERSON_NM 1 1 10 0 0 0
 1 3 AMOUNTS 0 251 0 0 0 0
 1 1 1 2 22 0 0 0
 1 4 TRANS_DATE 0 12 0 0 0 0
 2 0 0 2 22 7 2 10
 2 1 ACCOUNT_NO 0 2 22 0 0 0
 2 2 PERSON 0 2 22 4 0 10
 2 3 AMOUNTS 0 251 22 4 0 10
 2 1 1 2 0 0 0 0
 2 4 TRANS_NO 0 2 0 0 0 0

The following PL/SQL procedure has as its parameters all of the PL/SQL
datatypes:

CREATE OR REPLACE PROCEDURE p1 (
 pvc2 IN VARCHAR2,
 pvc OUT VARCHAR,
 pstr IN OUT STRING,
 plong IN LONG,
 prowid IN ROWID,
 pchara IN CHARACTER,
 pchar IN CHAR,
 praw IN RAW,
 plraw IN LONG RAW,
 pbinint IN BINARY_INTEGER,

Using DBMS_DESCRIBE

DBMS_DESCRIBE 31-5

 pplsint IN PLS_INTEGER,
 pbool IN BOOLEAN,
 pnat IN NATURAL,
 ppos IN POSITIVE,
 pposn IN POSITIVEN,
 pnatn IN NATURALN,
 pnum IN NUMBER,
 pintgr IN INTEGER,
 pint IN INT,
 psmall IN SMALLINT,
 pdec IN DECIMAL,
 preal IN REAL,
 pfloat IN FLOAT,
 pnumer IN NUMERIC,
 pdp IN DOUBLE PRECISION,
 pdate IN DATE,
 pmls IN MLSLABEL) AS

BEGIN
 NULL;
END;

If you describe this procedure using the following:

CREATE OR REPLACE PACKAGE describe_it AS

 PROCEDURE desc_proc (name VARCHAR2);

END describe_it;

CREATE OR REPLACE PACKAGE BODY describe_it AS

 PROCEDURE prt_value(val VARCHAR2, isize INTEGER) IS
 n INTEGER;
 BEGIN
 n := isize - LENGTHB(val);
 IF n < 0 THEN
 n := 0;
 END IF;
 DBMS_OUTPUT.PUT(val);
 FOR i in 1..n LOOP
 DBMS_OUTPUT.PUT(' ');
 END LOOP;
 END prt_value;

Examples

31-6 PL/SQL Packages and Types Reference

 PROCEDURE desc_proc (name VARCHAR2) IS

 overload DBMS_DESCRIBE.NUMBER_TABLE;
 position DBMS_DESCRIBE.NUMBER_TABLE;
 c_level DBMS_DESCRIBE.NUMBER_TABLE;
 arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;
 dty DBMS_DESCRIBE.NUMBER_TABLE;
 def_val DBMS_DESCRIBE.NUMBER_TABLE;
 p_mode DBMS_DESCRIBE.NUMBER_TABLE;
 length DBMS_DESCRIBE.NUMBER_TABLE;
 precision DBMS_DESCRIBE.NUMBER_TABLE;
 scale DBMS_DESCRIBE.NUMBER_TABLE;
 radix DBMS_DESCRIBE.NUMBER_TABLE;
 spare DBMS_DESCRIBE.NUMBER_TABLE;
 idx INTEGER := 0;

 BEGIN
 DBMS_DESCRIBE.DESCRIBE_PROCEDURE(
 name,
 null,
 null,
 overload,
 position,
 c_level,
 arg_name,
 dty,
 def_val,
 p_mode,
 length,
 precision,
 scale,
 radix,
 spare);

 DBMS_OUTPUT.PUT_LINE('Position Name DTY Mode');
 LOOP
 idx := idx + 1;
 prt_value(TO_CHAR(position(idx)), 12);
 prt_value(arg_name(idx), 12);
 prt_value(TO_CHAR(dty(idx)), 5);
 prt_value(TO_CHAR(p_mode(idx)), 5);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN

Using DBMS_DESCRIBE

DBMS_DESCRIBE 31-7

 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.NEW_LINE;

 END desc_proc;
END describe_it;

Then the results list all the numeric codes for the PL/SQL datatypes:

Position Name Datatype_Code Mode
1 PVC2 1 0
2 PVC 1 1
3 PSTR 1 2
4 PLONG 8 0
5 PROWID 11 0
6 PCHARA 96 0
7 PCHAR 96 0
8 PRAW 23 0
9 PLRAW 24 0
10 PBININT 3 0
11 PPLSINT 3 0
12 PBOOL 252 0
13 PNAT 3 0
14 PPOS 3 0
15 PPOSN 3 0
16 PNATN 3 0
17 PNUM 2 0
18 PINTGR 2 0
19 PINT 2 0
20 PSMALL 2 0
21 PDEC 2 0
22 PREAL 2 0
23 PFLOAT 2 0
24 PNUMER 2 0
25 PDP 2 0
26 PDATE 12 0
27 PMLS 106 0

Summary of DBMS_DESCRIBE Subprograms

31-8 PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms

Table 31–2 DBMS_DESCRIBE Package Subprograms

Subprogram Description

DESCRIBE_PROCEDURE
Procedure on page 31-9

Provides a brief description of a PL/SQL stored
procedure

Summary of DBMS_DESCRIBE Subprograms

DBMS_DESCRIBE 31-9

DESCRIBE_PROCEDURE Procedure

The procedure DESCRIBE_PROCEDURE provides a brief description of a PL/SQL
stored procedure. It takes the name of a stored procedure and returns information
about each parameter of that procedure.

Syntax
DBMS_DESCRIBE.DESCRIBE_PROCEDURE(
 object_name IN VARCHAR2,
 reserved1 IN VARCHAR2,
 reserved2 IN VARCHAR2,
 overload OUT NUMBER_TABLE,
 position OUT NUMBER_TABLE,
 level OUT NUMBER_TABLE,
 argument_name OUT VARCHAR2_TABLE,
 datatype OUT NUMBER_TABLE,
 default_value OUT NUMBER_TABLE,
 in_out OUT NUMBER_TABLE,
 length OUT NUMBER_TABLE,
 precision OUT NUMBER_TABLE,
 scale OUT NUMBER_TABLE,
 radix OUT NUMBER_TABLE,
 spare OUT NUMBER_TABLE
 include_string_constraints OUT BOOLEAN DEFAULT FALSE);

DESCRIBE_PROCEDURE Procedure

31-10 PL/SQL Packages and Types Reference

Parameters

Table 31–3 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description

object_name Name of the procedure being described.

The syntax for this parameter follows the rules used for identifiers in
SQL. The name can be a synonym. This parameter is required and may
not be null. The total length of the name cannot exceed 197 bytes. An
incorrectly specified OBJECT_NAME can result in one of the following
exceptions:

ORA-20000 - A package was specified. You can only specify a stored
procedure, stored function, packaged procedure, or packaged function.

ORA-20001 - The procedure or function that you specified does not
exist within the given package.

ORA-20002 - The object that you specified is a remote object. This
procedure cannot currently describe remote objects.

ORA-20003 - The object that you specified is invalid and cannot be
described.

ORA-20004 - The object was specified with a syntax error.

reserved1
reserved2

Reserved for future use -- must be set to NULL or the empty string.

overload A unique number assigned to the procedure's signature.

If a procedure is overloaded, then this field holds a different value for
each version of the procedure.

position Position of the argument in the parameter list.

Position 0 returns the values for the return type of a function.

level If the argument is a composite type, such as record, then this parameter
returns the level of the datatype. See the Oracle Call Interface
Programmer's Guide for a description of the ODESSP call for an example.

argument_name Name of the argument associated with the procedure that you are
describing.

Summary of DBMS_DESCRIBE Subprograms

DBMS_DESCRIBE 31-11

datatype Oracle datatype of the argument being described. The datatypes and
their numeric type codes are:

0 placeholder for procedures with no arguments
1 VARCHAR, VARCHAR, STRING
2 NUMBER, INTEGER, SMALLINT, REAL, FLOAT, DECIMAL
3 BINARY_INTEGER, PLS_INTEGER, POSITIVE, NATURAL
8 LONG
11 ROWID
12 DATE
23 RAW
24 LONG RAW
58 OPAQUE TYPE
96 CHAR (ANSI FIXED CHAR), CHARACTER
106 MLSLABEL
121 OBJECT
122 NESTED TABLE
123 VARRAY
178 TIME
179 TIME WITH TIME ZONE
180 TIMESTAMP
181 TIMESTAMP WITH TIME ZONE
231 TIMESTAMP WITH LOCAL TIME ZONE
250 PL/SQL RECORD
251 PL/SQL TABLE
252 PL/SQL BOOLEAN

default_value 1 if the argument being described has a default value; otherwise, the
value is 0.

in_out Describes the mode of the parameter:

0 IN
1 OUT
2 IN OUT

length For %rowtype formal arguments, the length constraint is returned,
otherwise 0 is returned.If the include_string_constraints
parameter is set to TRUE, the argument's formal length constraint is
passed back if it is of the appropriate type. Those are the string types:
1;8;23;24;96

precision If the argument being described is of datatype 2 (NUMBER), then this
parameter is the precision of that number.

Table 31–3 (Cont.) DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description

DESCRIBE_PROCEDURE Procedure

31-12 PL/SQL Packages and Types Reference

Return Values
All values from DESCRIBE_PROCEDURE are returned in its OUT parameters. The
datatypes for these are PL/SQL tables, to accommodate a variable number of
parameters.

scale If the argument being described is of datatype 2 (NUMBER), then this
parameter is the scale of that number.

radix If the argument being described is of datatype 2 (NUMBER), then this
parameter is the radix of that number.

spare Reserved for future functionality.

include_string_
constraints

The default is FALSE. If the parameter is set to TRUE, the arguments'
formal type constraints is passed back if it is of the appropriate
type.Those are the string types: 1;8;23;24;96

Table 31–3 (Cont.) DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description

DBMS_DIMENSION 32-1

32
DBMS_DIMENSION

DBMS_DIMENSION enables you to verify dimension relationships and provides an
alternative to the Enterprise Manager Dimension Wizard for displaying a
dimension definition.

This chapter contains the following topics:

■ Using DBMS_DIMENSION

■ Security Model

■ Summary of DBMS_DIMENSION Subprograms

See Also: Oracle Data Warehousing Guide for detailed conceptual
and usage information about the DBMS_DIMENSION package

Using DBMS_DIMENSION

32-2 PL/SQL Packages and Types Reference

Using DBMS_DIMENSION

■ Security Model

Security Model

Security on this package can be controlled by granting EXECUTE to selected users or
roles.

A user can validate or describe all the dimensions in his own schema. To validate or
describe a dimension in another schema, you must have either an object privilege
on the dimension or one of the following system privileges: CREATE ANY
DIMENSION, ALTER ANY DIMENSION, and DROP ANY DIMENSION.

Summary of DBMS_DIMENSION Subprograms

DBMS_DIMENSION 32-3

Summary of DBMS_DIMENSION Subprograms

Table 32–1 DBMS_DIMENSION Package Subprograms

Subprogram Description

DESCRIBE_DIMENSION
Procedure on page 32-4

Prints out the definition of the input dimension, including
dimension owner and name, levels, hierarchies, and attributes

VALIDATE_DIMENSION
Procedure on page 32-5

Verifies that the relationships specified in a dimension are
correct

DESCRIBE_DIMENSION Procedure

32-4 PL/SQL Packages and Types Reference

DESCRIBE_DIMENSION Procedure

This procedure displays the definition of the dimension, including dimension name,
levels, hierarchies, and attributes. It displays the output using the DBMS_OUTPUT
package.

Syntax
DBMS_DIMENSION.DESCRIBE_DIMENSION (
 dimension IN VARCHAR2);

Parameters

Table 32–2 DESCRIBE_DIMENSION Procedure Parameter

Parameter Description

dimension The owner and name of the dimension in the format of
owner.name.

Summary of DBMS_DIMENSION Subprograms

DBMS_DIMENSION 32-5

VALIDATE_DIMENSION Procedure

This procedure verifies that the relationships specified in a dimension are valid. The
rowid for any row that is found to be invalid will be stored in the table
DIMENSION_EXCEPTIONS in the user's schema.

Syntax
DBMS_DIMENSION.VALIDATE_DIMENSION (
 dimension IN VARCHAR2,
 incremental IN BOOLEAN := TRUE,
 check_nulls IN BOOLEAN := FALSE,
 statement_id IN VARCHAR2 := NULL);

Parameters

Table 32–3 VALIDATE_DIMENSION Procedure Parameters

Parameter Description

dimension The owner and name of the dimension in the format of owner.name.

incremental If TRUE, check only the new rows for tables of this dimension. If
FALSE, check all the rows.

check_nulls If TRUE, then all level columns are verified to be non-null.

If FALSE, this check is omitted. Specify FALSE when non-nullness is
guaranteed by other means, such as NOT NULL constraints.

statement_id A client-supplied unique identifier to associate output rows with
specific invocations of the procedure.

VALIDATE_DIMENSION Procedure

32-6 PL/SQL Packages and Types Reference

DBMS_DISTRIBUTED_TRUST_ADMIN 33-1

33
DBMS_DISTRIBUTED_TRUST_ADMIN

DBMS_DISTRIBUTED_TRUST_ADMIN procedures maintain the Trusted Servers List.
Use these procedures to define whether a server is trusted. If a database is not
trusted, Oracle refuses current user database links from the database.

This chapter contains the following topics:

■ Using DBMS_DISTRIBUTED_TRUST_ADMIN

■ Overview

■ Security Model

■ Examples

■ Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Using DBMS_DISTRIBUTED_TRUST_ADMIN

33-2 PL/SQL Packages and Types Reference

Using DBMS_DISTRIBUTED_TRUST_ADMIN

■ Overview

■ Security Model

■ Examples

Overview

Oracle uses local Trusted Servers Lists, along with enterprise domain membership
lists stored in the enterprise LDAP directory service, to determine if another
database is trusted. The LDAP directory service entries are managed with the
Enterprise Security Manager Tool in Oracle Enterprise Manager.

Oracle considers another database to be "trusted" if it meets the following criteria:

1. It is in the same enterprise domain in the directory service as the local database.

2. The enterprise domain is marked as trusted in the directory service.

3. It is not listed as untrusted in the local Trusted Servers List. Current user
database links will only be accepted from another database if both databases
involved trust each other.

You can list a database server locally in the Trusted Servers List regardless of what
is listed in the directory service. However, if you list a database that is not in the
same domain as the local database, or if that domain is untrusted, the entry will
have no effect.

This functionality is part of the Enterprise User Security feature of the Oracle
Advanced Security Option.

Security Model

To execute DBMS_DISTRIBUTED_TRUST_ADMIN, the EXECUTE_CATALOG_ROLE
role must be granted to the DBA. To select from the view TRUSTED_SERVERS, the
SELECT_CATALOG_ROLE role must be granted to the DBA.

It is important to know whether all servers are trusted or not trusted. Trusting a
particular server with the ALLOW_SERVER procedure does not have any effect if the
database already trusts all databases, or if that database is already trusted. Similarly,

Using DBMS_DISTRIBUTED_TRUST_ADMIN

DBMS_DISTRIBUTED_TRUST_ADMIN 33-3

denying a particular server with the DENY_SERVER procedure does not have any
effect if the database already does not trust any database or if that database is
already untrusted.

The procedures DENY_ALL and ALLOW_ALL delete all entries (in other words,
server names) that are explicitly allowed or denied using the ALLOW_SERVER
procedure or DENY_SERVER procedure respectively.

Examples

If you have not yet used the package DBMS_DISTRIBUTED_TRUST_ADMIN to
change the trust listing, by default you trust all databases in the same enterprise
domain if that domain it listed as trusted in the directory service:

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- ---------------------
Trusted All

Because all servers are currently trusted, you can execute the DENY_SERVER
Procedure and specify that a particular server is not trusted:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER
 ('SALES.US.AMERICAS.ACME_AUTO.COM');
PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- ---
Untrusted SALES.US.AMERICAS.ACME_AUTO.COM

By executing the DENY_ALL Procedure, you can choose to not trust any database
server:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;

TRUST NAME
--------- ---
Untrusted All

Examples

33-4 PL/SQL Packages and Types Reference

The ALLOW_SERVER Procedure can be used to specify that one particular
database is to be trusted:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER
 ('SALES.US.AMERICAS.ACME_AUTO.COM');
PL/SQL procedure successfully completed.

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- --
Trusted SALES.US.AMERICAS.ACME_AUTO.COM

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

DBMS_DISTRIBUTED_TRUST_ADMIN 33-5

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Table 33–1 DBMS_DISTRIBUTED_TRUST_ADMIN Package Subprograms

Subprogram Description

ALLOW_ALL Procedure
on page 33-6

Empties the list and inserts a row indicating that all servers
should be trusted

ALLOW_SERVER
Procedure on page 33-7

Enables a specific server to be allowed access even though
deny all is indicated in the list

DENY_ALL Procedure on
page 33-8

Empties the list and inserts a row indicating that all servers
should be untrusted

DENY_SERVER Procedure
on page 33-9

Enables a specific server to be denied access even though allow
all is indicated in the list

ALLOW_ALL Procedure

33-6 PL/SQL Packages and Types Reference

ALLOW_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers that
are members of a trusted domain in an enterprise directory service and that are in
the same domain are allowed access.

The view TRUSTED_SERVERS will show "TRUSTED ALL" indicating that the
database trusts all servers that are currently trusted by the enterprise directory
service.

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ALL;

Usage Notes
ALLOW_ALL only applies to servers listed as trusted in the enterprise directory
service and in the same enterprise domain.

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

DBMS_DISTRIBUTED_TRUST_ADMIN 33-7

ALLOW_SERVER Procedure

This procedure ensures that the specified server is considered trusted (even if you
have previously specified "deny all").

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (
 server IN VARCHAR2);

Parameters

Usage Notes
If the Trusted Servers List contains the entry "deny all", then this procedure adds a
specification indicating that a specific database (for example, DBx) is to be trusted.

If the Trusted Servers List contains the entry "allow all", and if there is no "deny
DBx" entry in the list, then executing this procedure causes no change.

If the Trusted Servers List contains the entry "allow all", and if there is a "deny
DBx" entry in the list, then that entry is deleted.

Table 33–2 ALLOW_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be trusted.

DENY_ALL Procedure

33-8 PL/SQL Packages and Types Reference

DENY_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers are
denied access.

The view TRUSTED_SERVERS will show "UNTRUSTED ALL" indicating that no
servers are currently trusted.

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

DBMS_DISTRIBUTED_TRUST_ADMIN 33-9

DENY_SERVER Procedure

This procedure ensures that the specified server is considered untrusted (even if
you have previously specified allow all).

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (
 server IN VARCHAR2);

Parameters

Usage Notes
If the Trusted Servers List contains the entry allow all, then this procedure adds
an entry indicating that the specified database (for example, DBx) is not to be
trusted.

If the Trusted Servers List contains the entry "deny all", and if there is no "allow
DBx" entry in the list, then this procedure causes no change.

If the Trusted Servers List contains the entry "deny all", and if there is an "allow
DBx" entry, then this procedure causes that entry to be deleted.

Table 33–3 DENY_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be untrusted.

DENY_SERVER Procedure

33-10 PL/SQL Packages and Types Reference

DBMS_FGA 34-1

34
DBMS_FGA

The DBMS_FGA package provides fine-grained security functions.

This chapter contains the following topics:

■ Using DBMS_FGA

■ Security Model

■ Operational Notes

■ Summary of DBMS_FGA Subprograms

See Also: Oracle Database Application Developer's Guide -
Fundamentals for a fuller discussion and more usage information on
DBMS_FGA.

Using DBMS_FGA

34-2 PL/SQL Packages and Types Reference

Using DBMS_FGA

■ Security Model

■ Operational Notes

Security Model

Execute privilege on DBMS_FGA is needed for administering audit policies. Because
the audit function can potentially capture all user environment and application
context values, policy administration should be executable by privileged users only.

Operational Notes

This package is available for only cost-based optimization. The rule-based optimizer
may generate unnecessary audit records since audit monitoring can occur before
row filtering. For both the rule-based optimizer and the cost-based optimizer, you
can refer to DBA_FGA_AUDIT_TRAIL to analyze the SQL text and corresponding
bind variables that are issued.

Summary of DBMS_FGA Subprograms

DBMS_FGA 34-3

Summary of DBMS_FGA Subprograms

Table 34–1 DBMS_FGA Package Subprograms

Subprogram Description

ADD_POLICY Procedure
on page 34-4

Creates an audit policy using the supplied predicate as the
audit condition

DISABLE_POLICY
Procedure on page 34-8

Disables an audit policy

DROP_POLICY Procedure
on page 34-9

Drops an audit policy

ENABLE_POLICY
Procedure on page 34-10

Enables an audit policy

ADD_POLICY Procedure

34-4 PL/SQL Packages and Types Reference

ADD_POLICY Procedure

This procedure creates an audit policy using the supplied predicate as the audit
condition. The maximum number of FGA policies on any table or view object is 256.

Syntax
DBMS_FGA.ADD_POLICY(

object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 audit_condition VARCHAR2,
 audit_column VARCHAR2,
 handler_schema VARCHAR2,

handler_module VARCHAR2,
 enable BOOLEAN,
 statement_types VARCHAR2,
 audit_trail BINARY_INTEGER IN DEFAULT,
 audit_column_opts BINARY_INTEGER IN DEFAULT);

Parameters

Table 34–2 ADD_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited.

Default value: NULL. (If NULL, the current effective
user schema is assumed.)

object_name The name of the object to be audited.

policy_name The unique name of the policy.

audit_condition A condition in a row that indicates a monitoring condition.
NULL is allowed and acts as TRUE.

Default value: NULL

audit_column The columns to be checked for access. These can include
hidden columns. The default, NULL, causes audit if any column
is accessed or affected.

Default value: NULL

Summary of DBMS_FGA Subprograms

DBMS_FGA 34-5

Usage Notes
■ Example: DBMS_FGA.ADD_POLICY(object_schema => 'scott',

object_name=>'emp', policy_name => 'mypolicy1', audit_
condition => 'sal < 100', audit_column =>'comm, credit_
card, expirn_date', handler_schema => NULL, handler_module
=> NULL, enable => TRUE, statement_types=> 'INSERT,
UPDATE');

■ An FGA policy should not be applied to out-of-line columns such as LOB
columns.

■ If object_schema is NULL, the current effective user schema is assumed.

■ The audit function (handler_module) is an alerting mechanism for the
administrator; it must have the following interface:

handler_schema The schema that contains the event handler. The default, NULL,
causes the current schema to be used.

Default value: NULL

handler_module The function name of the event handler; includes the package
name if necessary. This function is invoked only after the first
row that matches the audit condition is processed in the query.
If the procedure fails with exception, the user SQL statement
will fail as well.

Default value: NULL

enable Enables the policy if TRUE, which is the default.

Default value: TRUE

statement_types The SQL statement types to which this policy is applicable:
insert, update, delete, or select only.

Default value: SELECT

audit_trail Whether to populate LSQLTEXT and LSQLBIND in fga_log$.

Default value: DB_EXTENDED

audit_column_opts Establishes whether a statement is audited when the query
references any column specified in the audit_column parameter
or only when all such columns are referenced.

Default value: ANY_COLUMNS

Table 34–2 ADD_POLICY Procedure Parameters

Parameter Description

ADD_POLICY Procedure

34-6 PL/SQL Packages and Types Reference

PROCEDURE <fname> (object_schema VARCHAR2, object_name VARCHAR2, policy_
name VARCHAR2) AS ...

where fname is the name of the procedure, object_schema is the name of
the schema of the table audited, object_name is the name of the table to be
audited, and policy_name is the name of the policy being enforced.

■ Each audit policy is applied to the query individually. However, at most one
audit record may be generated for each policy, no matter how many rows being
returned satisfy that policy's audit_condition. In other words, whenever any
number of rows being returned satisfy an audit condition defined on the table, a
single audit record will be generated for each such policy.

■ If a table with an FGA policy defined on it receives a Fast Path insert or a
vectored update, the hint is automatically disabled before any such operations.
Disabling the hint allows auditing to occur according to the policy's terms. (One
example of a Fast Path insert is the statement INSERT-WITH-APPEND-hint.)

■ The audit_condition must be a boolean expression that can be evaluated using
the values in the row being inserted, updated, or deleted. This condition can be
NULL (or omitted), which is interpreted as TRUE, but it cannot contain the
following elements:

■ Subqueries or sequences

■ Any direct use of SYSDATE, UID, USER or USERENV functions. However, a
user-defined function and other SQL functions can use these functions to
return the desired information.

■ Any use of the pseudocolumns LEVEL, PRIOR, or ROWNUM.

Specifying an audit condition of "1=1" to force auditing of all specified
statements ("statement_types") affecting the specified column ("audit_column")
is no longer needed to achieve this purpose. NULL will cause audit even if no
rows were processed, so that all actions on a table with this policy are audited.

■ The audit_trail parameter specifies whether to record the query's SQL Text and SQL
Bind variable information in the FGA audit trail (fga_log$) columns named LSQLTEXT

and LSQLBIND:

■ To populate, set to DBMS_FGA.DB_EXTENDED (the default);

■ To leave unpopulated, set to DBMS_FGA.DB.

The audit_trail parameter appears in the ALL_AUDIT_POLICIES view.

■ The audit_column_opts parameter establishes whether a statement is audited

Summary of DBMS_FGA Subprograms

DBMS_FGA 34-7

■ when the query references any column specified in the audit_column
parameter (audit_column_opts = DBMS_FGA.ANY_COLUMNS), or

■ only when all such columns are referenced (audit_column_opts = DBMS_
FGA.ALL_COLUMNS).

The default is DBMS_FGA.ANY_COLUMNS.

The ALL_AUDIT_POLICIES view also shows audit_column_opts.

Examples
DBMS_FGA.ADD_POLICY (object_schema => 'scott', object_name=>'emp', policy_name
=> 'mypolicy1', audit_condition => 'sal < 100', audit_column =>'comm, credit_
card, expirn_date', handler_schema => NULL, handler_module => NULL, enable =>
TRUE, statement_types=> 'INSERT, UPDATE');

DISABLE_POLICY Procedure

34-8 PL/SQL Packages and Types Reference

DISABLE_POLICY Procedure

This procedure disables an audit policy.

Syntax
DBMS_FGA.DISABLE_POLICY(

object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

The default value for object_schema is NULL. (If NULL, the current effective user
schema is assumed.)

Table 34–3 DISABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited. (If NULL, the current
effective user schema is assumed.)

object_name The name of the object to be audited.

policy_name The unique name of the policy.

Summary of DBMS_FGA Subprograms

DBMS_FGA 34-9

DROP_POLICY Procedure

This procedure drops an audit policy.

Syntax
DBMS_FGA.DROP_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

Usage Notes
The DBMS_FGA procedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_FGA procedures are
part of the DDL transaction. The default value for object_schema is NULL. (If
NULL, the current effective user schema is assumed.)

Table 34–4 DROP_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited. (If NULL, the current
effective user schema is assumed.)

object_name The name of the object to be audited.

policy_name The unique name of the policy.

ENABLE_POLICY Procedure

34-10 PL/SQL Packages and Types Reference

ENABLE_POLICY Procedure

This procedure enables an audit policy.

Syntax
DBMS_FGA.ENABLE_POLICY(

object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 enable BOOLEAN);

Parameters

Table 34–5 ENABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited. (If NULL, the current
effective user schema is assumed.)

object_name The name of the object to be audited.

policy_name The unique name of the policy.

enable Defaults to TRUE to enable the policy.

DBMS_FILE_TRANSFER 35-1

35
DBMS_FILE_TRANSFER

The DBMS_FILE_TRANSFER package provides procedures to copy a binary file
within a database or to transfer a binary file between databases.

This chapter contains the following topic:

■ Summary of DBMS_FILE_TRANSFER Subprograms

See Also:

■ Oracle Database Concepts for conceptual information about file
transfer

■ Oracle Database Administrator's Guide for instructions about
using file transfer

■ Oracle Streams Concepts and Administration for applications of file
transfer.

Summary of DBMS_FILE_TRANSFER Subprograms

35-2 PL/SQL Packages and Types Reference

Summary of DBMS_FILE_TRANSFER Subprograms

Table 35–1 DBMS_FILE_TRANSFER Package Subprograms

Subprogram Description

COPY_FILE Procedure on page 35-3 Reads a local file and creates a copy of it in the
local file system

GET_FILE Procedure on page 35-5 Contacts a remote database to read a remote file
and then creates a copy of the file in the local file
system

PUT_FILE Procedure on page 35-7 Reads a local file and contacts a remote database to
create a copy of the file in the remote file system

Summary of DBMS_FILE_TRANSFER Subprograms

DBMS_FILE_TRANSFER 35-3

COPY_FILE Procedure

This procedure reads a local file and creates a copy of it in the local file system. The
file that is copied is the source file, and new file that results from the copy is the
destination file. The destination file is not closed until the procedure completes
successfully.

Syntax
DBMS_FILE_TRANSFER.COPY_FILE(
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2);

Parameters

Usage Notes
To run this procedure successfully, the current user must have the following
privileges:

■ Read privilege on the directory object specified in the source_directory_
object parameter

Table 35–2 COPY_FILE Procedure Parameters

Parameter Description

source_directory_object The directory object from which the file is copied in
the local file system. This directory object must
exist.

source_file_name The name of the file that is copied in the local file
system. This file must exist in the local file system
in the directory associated with the source directory
object.

destination_directory_object The directory object into which the file is placed in
the local file system. This directory object must exist
in the local file system.

destination_file_name The name of the file copied to the destination
directory object in the local file system. A file with
the same name must not exist in the destination
directory in the local file system.

COPY_FILE Procedure

35-4 PL/SQL Packages and Types Reference

■ Write privilege on directory object specified in the destination_
directory_object parameter

This procedure converts directory object parameters to uppercase unless they are
surrounded by double quotation marks, but this procedure does not convert file
names to uppercase.

Also, the copied file must meet the following requirements:

■ The size of the copied file must be a multiple of 512 bytes.

■ The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file,
and no character set conversion is performed. To monitor the progress of a long file
copy, query the V$SESSION_LONGOPS dynamic performance view.

Summary of DBMS_FILE_TRANSFER Subprograms

DBMS_FILE_TRANSFER 35-5

GET_FILE Procedure

This procedure contacts a remote database to read a remote file and then creates a
copy of the file in the local file system. The file that is copied is the source file, and
the new file that results from the copy is the destination file. The destination file is
not closed until the procedure completes successfully.

Syntax
DBMS_FILE_TRANSFER.GET_FILE
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 source_database IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2);

Parameters

Usage Notes
To run this procedure successfully, the following users must have the following
privileges:

Table 35–3 GET_FILE Procedure Parameters

Parameter Description

source_directory_object The directory object from which the file is copied at
the source site. This directory object must exist at
the source site.

source_file_name The name of the file that is copied in the remote file
system. This file must exist in the remote file system
in the directory associated with the source directory
object.

source_database The name of a database link to the remote database
where the file is located.

destination_directory_object The directory object into which the file is placed at
the destination site. This directory object must exist
in the local file system.

destination_file_name The name of the file copied to the local file system.
A file with the same name must not exist in the
destination directory in the local file system.

GET_FILE Procedure

35-6 PL/SQL Packages and Types Reference

■ The connected user at the source database must have read privilege on the
directory object specified in the source_directory_object parameter.

■ The current user at the local database must have write privilege on the directory
object specified in the destination_directory_object parameter.

This procedure converts directory object parameters to uppercase unless they are
surrounded by double quotation marks, but this procedure does not convert file
names to uppercase.

Also, the copied file must meet the following requirements:

■ The size of the copied file must be a multiple of 512 bytes.

■ The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file,
and no character set conversion is performed. To monitor the progress of a long file
transfer, query the V$SESSION_LONGOPS dynamic performance view.

Summary of DBMS_FILE_TRANSFER Subprograms

DBMS_FILE_TRANSFER 35-7

PUT_FILE Procedure

This procedure reads a local file and contacts a remote database to create a copy of
the file in the remote file system. The file that is copied is the source file, and the
new file that results from the copy is the destination file. The destination file is not
closed until the procedure completes successfully.

Syntax
DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object IN VARCHAR2,
 source_file_name IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_file_name IN VARCHAR2,
 destination_database IN VARCHAR2);

Parameters

Usage Notes
To run this procedure successfully, the following users must have the following
privileges:

Table 35–4 PUT_FILE Procedure Parameters

Parameter Description

source_directory_object The directory object from which the file is copied at
the local source site. This directory object must exist
at the source site.

source_file_name The name of the file that is copied from the local file
system. This file must exist in the local file system
in the directory associated with the source directory
object.

destination_directory_object The directory object into which the file is placed at
the destination site. This directory object must exist
in the remote file system.

destination_file_name The name of the file placed in the remote file
system. A file with the same name must not exist in
the destination directory in the remote file system.

destination_database The name of a database link to the remote database
to which the file is copied.

PUT_FILE Procedure

35-8 PL/SQL Packages and Types Reference

■ The current user at the local database must have read privilege on the directory
object specified in the source_directory_object parameter.

■ The connected user at the destination database must have write privilege to the
directory object specified in the destination_directory_object
parameter.

This procedure converts directory object parameters to uppercase unless they are
surrounded by double quotation marks, but this procedure does not convert file
names to uppercase.

Also, the copied file must meet the following requirements:

■ The size of the copied file must be a multiple of 512 bytes.

■ The size of the copied file must be less than or equal to two terabytes.

Transferring the file is not transactional. The copied file is treated as a binary file,
and no character set conversion is performed. To monitor the progress of a long file
transfer, query the V$SESSION_LONGOPS dynamic performance view.

DBMS_FLASHBACK 36-1

36
DBMS_FLASHBACK

Using DBMS_FLASHBACK, you can flash back to a version of the database at a
specified wall-clock time or a specified system change number (SCN)
.

This chapter contains the following topics:

■ Using DBMS_FLASHBACK

■ Overview

■ Security Model

■ Exceptions

■ Operational Notes

■ Examples

■ Summary of DBMS_FLASHBACK Subprograms

See Also: Oracle Database Application Developer's Guide -
Fundamentals and Oracle Database SQL Reference for detailed
information about DBMS_FLASHBACK.

Using DBMS_FLASHBACK

36-2 PL/SQL Packages and Types Reference

Using DBMS_FLASHBACK

■ Overview

■ Security Model

■ Exceptions

■ Operational Notes

■ Examples

Overview

When DBMS_FLASHBACK is enabled, the user session uses the Flashback version of
the database, and applications can execute against the Flashback version of the
database.

You may want to use DBMS_FLASHBACK for the following reasons:

■ Self-service repair: If you accidentally delete rows from a table, you can recover
the deleted rows.

■ Packaged applications such as e-mail and voicemail: You can use Flashback to
restore deleted e-mail by re-inserting the deleted message into the current
message box.

■ Decision support system (DSS) and online analytical processing (OLAP)
applications: You can perform data analysis or data modeling to track seasonal
demand.

Security Model

To use this package, a database administrator must grant EXECUTE privileges for
DBMS_FLASHBACK.

Using DBMS_FLASHBACK

DBMS_FLASHBACK 36-3

Exceptions

Operational Notes

DBMS_FLASHBACK is automatically turned off when the session ends, either by
disconnection or by starting another connection.

PL/SQL cursors opened in Flashback mode return rows as of the flashback time or
SCN. Different concurrent sessions (connections) in the database can perform
Flashback to different wall-clock times or SCNs. DML and DDL operations and
distributed operations are not allowed while a session is running in Flashback
mode. You can use PL/SQL cursors opened before disabling Flashback to perform
DML.

Under Automatic Undo Management (AUM) mode, you can use retention control
to control how far back in time to go for the version of the database you need. If you
need to perform a Flashback over a 24-hour period, the DBA should set the undo_
retention parameter to 24 hours. This way, the system retains enough undo
information to regenerate the older versions of the data.

You can set the RETENTION GUARANTEE clause for the undo tablespace to ensure
that unexpired undo is not discarded.UNDO_RETENTION is not in itself a complete
guarantee because, if the system is under space pressure, unexpired undo may be
overwritten with freshly generated undo. In such cases, RETENTION GUARANTEE
prevents this. For more information, see the Oracle Database Administrator's Guide

In a Flashback-enabled session, SYSDATE will not be affected; it will continue to
provide the current time.

Table 36–1 DBMS_FLASHBACK Error Messages

Error Description

ORA-08180 Time specified is too old.

ORA-08181 Invalid system change number specified.

ORA-08182 User cannot begin read-only or serializable transactions in
Flashback mode.

ORA-08183 User cannot enable Flashback within an uncommitted
transaction.

ORA-08184 User cannot enable Flashback within another Flashback
session.

ORA-08185 SYS cannot enable Flashback mode.

Examples

36-4 PL/SQL Packages and Types Reference

DBMS_FLASHBACK can be used within logon triggers to enable Flashback without
changing the application code.

Examples

The following example illustrates how Flashback can be used when the deletion of a
senior employee triggers the deletion of all the personnel reporting to him. Using
the Flashback feature, you can recover and re-insert the missing employees.

DROP TABLE employee;
DROP TABLE keep_scn;

REM keep_scn is a temporary table to store scns that we are interested in

CREATE TABLE keep_scn (scn number);
SET ECHO ON
CREATE TABLE employee (
 employee_no number(5) PRIMARY KEY,
 employee_name varchar2(20),
 employee_mgr number(5)
 CONSTRAINT mgr_fkey REFERENCES EMPLOYEE ON DELETE CASCADE,
 salary number,
 hiredate date
);

REM Populate the company with employees
INSERT INTO employee VALUES (1, 'John Doe', null, 1000000, '5-jul-81');
INSERT INTO employee VALUES (10, 'Joe Johnson', 1, 500000, '12-aug-84');
INSERT INTO employee VALUES (20, 'Susie Tiger', 10, 250000, '13-dec-90');
INSERT INTO employee VALUES (100, 'Scott Tiger', 20, 200000, '3-feb-86');
INSERT INTO employee VALUES (200, 'Charles Smith', 100, 150000, '22-mar-88');
INSERT INTO employee VALUES (210, 'Jane Johnson', 100, 100000, '11-apr-87');
INSERT INTO employee VALUES (220, 'Nancy Doe', 100, 100000, '18-sep-93');
INSERT INTO employee VALUES (300, 'Gary Smith', 210, 75000, '4-nov-96');
INSERT INTO employee VALUES (310, 'Bob Smith', 210, 65000, '3-may-95');
COMMIT;

REM Show the entire org
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

Using DBMS_FLASHBACK

DBMS_FLASHBACK 36-5

REM Sleep for a short time (approximately 10 to 20 seconds) to avoid querying
REM close to table creation

EXECUTE DBMS_LOCK.SLEEP(10);

REM Store this snapshot for later access through Flashback
DECLARE
I NUMBER;
BEGIN
I := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
INSERT INTO keep_scn VALUES (I);
COMMIT;
END;
/

REM Scott decides to retire but the transaction is done incorrectly
DELETE FROM EMPLOYEE WHERE employee_name = 'Scott Tiger';
COMMIT;

REM notice that all of scott's employees are gone
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM EMPLOYEE
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

REM Flashback to see Scott's organization
DECLARE
 restore_scn number;
BEGIN
 SELECT scn INTO restore_scn FROM keep_scn;
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER (restore_scn);
END;
/

REM Show Scott's org.
SELECT lpad(' ', 2*(level-1)) || employee_name Name
FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no =
 (SELECT employee_no FROM employee WHERE employee_name = 'Scott Tiger')
ORDER BY LEVEL;

REM Restore scott's organization.

Examples

36-6 PL/SQL Packages and Types Reference

DECLARE
 scotts_emp NUMBER;
 scotts_mgr NUMBER;
 CURSOR c1 IS
 SELECT employee_no, employee_name, employee_mgr, salary, hiredate
 FROM employee
 CONNECT BY PRIOR employee_no = employee_mgr
 START WITH employee_no =

(SELECT employee_no FROM employee WHERE employee_name = 'Scott Tiger');
 c1_rec c1 % ROWTYPE;
BEGIN
 SELECT employee_no, employee_mgr INTO scotts_emp, scotts_mgr FROM employee
 WHERE employee_name = 'Scott Tiger';
 /* Open c1 in flashback mode */
 OPEN c1;
 /* Disable Flashback */
 DBMS_FLASHBACK.DISABLE;
 LOOP
 FETCH c1 INTO c1_rec;
 EXIT WHEN c1%NOTFOUND;
 /*
 Note that all the DML operations inside the loop are performed
 with Flashback disabled
 */
 IF (c1_rec.employee_mgr = scotts_emp) then
 INSERT INTO employee VALUES (c1_rec.employee_no,
 c1_rec.employee_name,
 scotts_mgr,
 c1_rec.salary,
 c1_rec.hiredate);
 ELSE
 IF (c1_rec.employee_no != scotts_emp) THEN
 INSERT INTO employee VALUES (c1_rec.employee_no,
 c1_rec.employee_name,
 c1_rec.employee_mgr,
 c1_rec.salary,
 c1_rec.hiredate);
 END IF;
 END IF;
 END LOOP;
END;
/

REM Show the restored organization.
select lpad(' ', 2*(level-1)) || employee_name Name

Using DBMS_FLASHBACK

DBMS_FLASHBACK 36-7

FROM employee
CONNECT BY PRIOR employee_no = employee_mgr
START WITH employee_no = 1
ORDER BY LEVEL;

Summary of DBMS_FLASHBACK Subprograms

36-8 PL/SQL Packages and Types Reference

Summary of DBMS_FLASHBACK Subprograms

Table 36–2 DBMS_FLASHBACK Package Subprograms

Subprogram Description

DISABLE Procedure on
page 36-9

Disables the Flashback mode for the entire session

ENABLE_AT_SYSTEM_
CHANGE_NUMBER
Procedure on page 36-10

Enables Flashback for the entire session. Takes an SCN as an
Oracle number and sets the session snapshot to the specified
number. Inside the Flashback mode, all queries will return data
consistent as of the specified wall-clock time or SCN

ENABLE_AT_TIME
Procedure on page 36-11

Enables Flashback for the entire session. The snapshot time is
set to the SCN that most closely matches the time specified in
query_time

GET_SYSTEM_CHANGE_
NUMBER Function on
page 36-12

Returns the current SCN as an Oracle number. You can use the
SCN to store specific snapshots

SCN_TO_TIMESTAMP
Function on page 36-13

Takes the current SCN as an Oracle number datatype and
returns a TIMESTAMP.

TIMESTAMP_TO_SCN
Function on page 36-14

Takes a TIMESTAMP as input and returns the current SCN as
an Oracle number datatype

Summary of DBMS_FLASHBACK Subprograms

DBMS_FLASHBACK 36-9

DISABLE Procedure

This procedure disables the Flashback mode for the entire session.

Syntax
DBMS_FLASHBACK.DISABLE;

Examples
The following example queries the salary of an employee, Joe, on August 30, 2000:

EXECUTE dbms_flashback.enable_at_time('30-AUG-2000');
SELECT salary FROM emp where name = 'Joe'
EXECUTE dbms_flashback.disable;

ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure

36-10 PL/SQL Packages and Types Reference

ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure

This procedure takes an SCN as an input parameter and sets the session snapshot to
the specified number. In the Flashback mode, all queries return data consistent as of
the specified wall-clock time or SCN. It enables Flashback for the entire session.

Syntax
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER (
 query_scn IN NUMBER);

Parameters

Table 36–3 ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure Parameters

Parameter Description

query_scn The system change number (SCN), a version number for the
database that is incremented on every transaction commit.

Summary of DBMS_FLASHBACK Subprograms

DBMS_FLASHBACK 36-11

ENABLE_AT_TIME Procedure

This procedure enables Flashback for the entire session. The snapshot time is set to
the SCN that most closely matches the time specified in query_time.It enables
Flashback for the entire session.

Syntax
DBMS_FLASHBACK.ENABLE_AT_TIME (
 query_time IN TIMESTAMP);

Parameters

Table 36–4 ENABLE_AT_TIME Procedure Parameters

Parameter Description

query_time This is an input parameter of type TIMESTAMP. A time stamp
can be specified in the following ways:

■ Using the TIMESTAMP constructor: Example: execute
dbms_flashback.enable_at_time(TIMESTAMP
'2001-01-09 12:31:00'). Use the Globalization
Support (NLS) format and supply a string. The format
depends on the Globalization Support settings.

■ Using the TO_TIMESTAMP function: Example: execute
dbms_flashback.enable_at_time(TO_
TIMESTAMP('12-02-2001 14:35:00',
'DD-MM-YYYY HH24:MI:SS')). You provide the
format you want to use. This example shows the TO_
TIMESTAMP function for February 12, 2001, 2:35 PM.

■ If the time is omitted from query time, it defaults to the
beginning of the day, that is, 12:00 A.M.

■ Note that if the query time contains a time zone, the time
zone information is truncated.

GET_SYSTEM_CHANGE_NUMBER Function

36-12 PL/SQL Packages and Types Reference

GET_SYSTEM_CHANGE_NUMBER Function

This function returns the current SCN as an Oracle number datatype. You can
obtain the current change number and store it for later use. This helps you retain
specific snapshots.

Syntax
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER
 RETURN NUMBER;

Summary of DBMS_FLASHBACK Subprograms

DBMS_FLASHBACK 36-13

SCN_TO_TIMESTAMP Function

This function takes the SCN as an Oracle number datatype and returns the
corresponding TIMESTAMP.

Syntax
DBMS_FLASHBACK.SCN_TO_TIMESTAMP
 query_scn IN NUMBER)
RETURN TIMESTAMP;

Parameters

Table 36–5 SCN_TO_TIMESTAMP Procedure Parameters

Parameter Description

query_scn The system change number (SCN), a version number for the
database that is incremented on every transaction commit.

TIMESTAMP_TO_SCN Function

36-14 PL/SQL Packages and Types Reference

TIMESTAMP_TO_SCN Function

This function takes a TIMESTAMP as input and returns the corresponding SCN as an
Oracle number datatype.

Syntax
DBMS_FLASHBACK.TIMESTAMP_TO_SCN
 query_time IN TIMESTAMP
RETURN NUMBER);

Parameters

Table 36–6 TIMESTAMP_TO_SCN Procedure Parameters

Parameter Description

query_time This is an input parameter of type TIMESTAMP. A time stamp
can be specified in the following ways:

■ Using the TIMESTAMP constructor: Example: execute
DBMS_FLASHBACK.ENABLE_AT_TIME(TIMESTAMP
'2001-01-09 12:31:00'). Use the Globalization
Support (NLS) format and supply a string. The format
depends on the Globalization Support settings.

■ Using the TO_TIMESTAMP function: Example: execute
dbms_flashback.enable_at_time(TO_
TIMESTAMP('12-02-2001 14:35:00',
'DD-MM-YYYY HH24:MI:SS')). You provide the
format you want to use. This example shows the TO_
TIMESTAMP function for February 12, 2001, 2:35 PM.

■ If the time is omitted from query time, it defaults to the
beginning of the day, that is, 12:00 A.M.

■ Note that if the query time contains a time zone, the time
zone information is truncated.

DBMS_FREQUENT_ITEMSET 37-1

37
DBMS_FREQUENT_ITEMSET

The DBMS_FREQUENT_ITEMSET package enables frequent itemset counting. The
two functions are identical except in the input cursor format difference.

This chapter contains the following topics:

■ Summary of DBMS_FREQUENT_ITEMSET Subprograms

Summary of DBMS_FREQUENT_ITEMSET Subprograms

37-2 PL/SQL Packages and Types Reference

Summary of DBMS_FREQUENT_ITEMSET Subprograms

Table 37–1 DBMS_FREQUENT_ITEMSET Package Subprograms

Subprogram Description

FI_TRANSACTIONAL
Function on page 37-3

Counts all frequent itemsets given a cursor for input data
which is in 'TRANSACTIONAL' row format, support threshold,
minimum itemset length, maximum itemset length, items to
be included, items to be excluded

FI_HORIZONTAL Function
on page 37-8

Counts all frequent itemsets given a cursor for input data
which is in 'HORIZONTAL' row format, support threshold,
minimum itemset length, maximum itemset length, items to
be included, items to be excluded

Summary of DBMS_FREQUENT_ITEMSET Subprograms

DBMS_FREQUENT_ITEMSET 37-3

FI_TRANSACTIONAL Function

This procedure counts all frequent itemsets given a cursor for input data which is in
'TRANSACTIONAL' row format, support threshold, minimum itemset length,
maximum itemset length, items to be included, items to be excluded. The result will
be a table of rows in form of itemset, support, length, total number of transactions.

In 'TRANSACTIONAL' row format, each transaction is spread across multiple rows.
All the rows of a given transaction have the same transaction id, and each row has a
different item id. Combining all of the item ids which share a given transaction id
results in a single transaction.

Syntax
DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL (
 tranx_cursor IN SYSREFCURSOR,
 support_threshold IN NUMBER,
 itemset_length_min IN NUMBER,
 itemset_length_max IN NUMBER,
 including_items IN SYS_REFCURSOR DEFAULT NULL,
 excluding_items IN SYS_REFCURSOR DEFAULT NULL)
 RETURN TABLE OF ROW (
 itemset [Nested Table of Item Type DERIVED FROM tranx_cursor],
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER);

Parameters

Table 37–2 FI_TRANSACTIONAL Procedure Parameters

Parameter Description

tranx_cursor The cursor parameter that the user will supply when calling
the function. It should return two columns in its returning row,
the first column being the transaction id, the second column
being the item id. The item id must be number or character
type (for example, VARCHAR2(n)).

support_threshold A fraction number of total transaction count. An itemset is
termed "frequent" if [the number of transactions it occurs in]
divided by [the total number of transactions] exceed the
fraction. The parameter must be a NUMBER.

FI_TRANSACTIONAL Function

37-4 PL/SQL Packages and Types Reference

Return Values

Usage Notes
Applications must predefine a nested table type of the input item type and cast the
output itemset into this predefined nested table type before further processing, such
as loading into a table.

Examples
Suppose that the input table tranx_table_in looks as follows:

(1, 'apple')

itemset_length_min The minimum length for interested frequent itemset. The
parameter must be a NUMBER between 1 and 20, inclusive.

itemset_length_max The maximum length for interested frequent itemset. This
parameter must be a NUMBER between 1 and 20, inclusive, and
must not be less than itemset_length_min.

including_items A cursor from which a list of items can be fetched. At least one
item from the list must appear in frequent itemsets that will be
returned. The default is NULL.

excluding_items A cursor from which a list of items can be fetched. No item
from the list can appear in frequent itemsets that will returned.
The default is NULL.

Table 37–3 FI_TRANSACTIONAL Procedure Parameters

Parameter Description

support The number of transactions in which a frequent itemset occurs.
This will be returned as a NUMBER.

itemset A collection of items which is computed as frequent itemset.
This will be returned as a nested table of item type which is the
item column type of the input cursor.

length Number of items in a frequent itemset. This will be returned as
a NUMBER.

total_tranx The total transaction count. This will be returned as a NUMBER,
and will be the same for all returned rows, similar to a
reporting aggregate.

Table 37–2 (Cont.) FI_TRANSACTIONAL Procedure Parameters

Parameter Description

Summary of DBMS_FREQUENT_ITEMSET Subprograms

DBMS_FREQUENT_ITEMSET 37-5

(1, 'banana')
(2, 'apple')
(2, 'milk')
(2, 'banana')
(3, 'orange')

and the user is trying to find itemsets that satisfy a support-threshold of 60% and
have the itemset-length greater than 1 (namely, (apple, banana)).

The output of this function would contain the following output row:

itemset=('apple','banana'), support=2, length=2, total_tranx=3

You need to create a nested table of item type before you submit a query to perform
the frequent itemset counting. In this example, since item is of VARCHAR2(30), you
must create a nested table of VARCHAR2(30):

CREATE TYPE fi_varchar_nt AS TABLE OF VARCHAR2(30);
SELECT CAST(itemset as FI_VARCHAR_NT) itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in),
 0.6,
 2,
 5,
 NULL,
 NULL));

Here is another example to illustrate how to include certain items and exclude
certain items in the counting.

SELECT CAST(itemset as FI_VARCHAR_NT)itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 CURSOR(SELECT tid, iid FROM tranx_table_in),
 0.6,
 2,
 5,
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT
 ('apple','banana','orange'))),
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT('milk')))));

Using the including/excluding items parameter, you are able to further optimize
the execution by ignoring itemsets that are not expected by application.

You can also use transactional output through collection unnesting:

 SELECT
 bt.setid, nt.*

FI_TRANSACTIONAL Function

37-6 PL/SQL Packages and Types Reference

 FROM
 (SELECT cast(Itemset as FI_VARCHAR_NT) itemset, rownum setid
 FROM table(
 DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 CURSOR(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL))) bt,
 table(bt.itemset) nt;

If you want to use an insert statement to load frequent itemsets into a nested table,
it is better to use the NESTED_TABLE_FAST_INSERT hint for performance:

 CREATE TABLE fq_nt (coll FI_VARCHAR_NT) NESTED TABLE coll STORE AS
 coll_nest;
 INSERT /*+ NESTED_TABLE_FAST_INSERT */ INTO fq_nt
 SELECT cast(itemset as FI_VARCHAR_NT)
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL));

Note that if you want to use the package inside a PL/SQL cursor, you must cast the
return type of the table function:

 CREATE TYPE fi_res AS OBJECT (
 itemset FI_VARCHAR_NT,
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER
);
 /
 CREATE TYPE fi_coll AS TABLE OF fi_res;
 /

 DECLARE
 cursor freqC is
 SELECT Itemset
 FROM table(
 CAST(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL(
 cursor(SELECT tid, iid FROM tranx_table_in), 0.6, 2, 5,
 NULL, NULL) AS fi_coll));
 coll_nt FI_VARCHAR_NT;
 num_rows int;
 num_itms int;
 BEGIN
 num_rows := 0;
 num_itms := 0;
 OPEN freqC;

Summary of DBMS_FREQUENT_ITEMSET Subprograms

DBMS_FREQUENT_ITEMSET 37-7

 LOOP
 FETCH freqC INTO coll_nt;
 EXIT WHEN freqC%NOTFOUND;
 num_rows := num_rows + 1;
 num_itms := num_itms + coll_nt.count;
 END LOOP;
 CLOSE freqC;
 DBMS_OUTPUT.PUT_LINE('Totally ' || num_rows || ' rows ' || num_itms || '
items were produced.');
END;
/

FI_HORIZONTAL Function

37-8 PL/SQL Packages and Types Reference

FI_HORIZONTAL Function

The purpose of this table function is to count all frequent itemsets given a cursor for
input data which is in 'HORIZONTAL' row format, support threshold, minimum
itemset length, maximum itemset length, items to be included, items to be excluded.
The result will be a table of rows in form of itemset, support, length, total
transactions counted.

In 'HORIZONTAL' row format, each row contains all of the item ids for a single
transaction. Since all of the items come together, no transaction id is necessary.

The benefit of this table function is that if an application already has data in
horizontal format, the database can skip the step of transforming rows that are in
transactional format into horizontal format.

Syntax
DBMS_FREQUENT_ITEMSET.FI_HORIZONTAL(
 tranx_cursor IN SYSREFCURSOR,
 support_threshold IN NUMBER,
 itemset_length_min IN NUMBER,
 itemset_length_max IN NUMBER,
 including_items IN SYS_REFCURSOR DEFAULT NULL,
 excluding_items IN SYS_REFCURSOR DEFAULT NULL)
 RETURN TABLE OF ROW (
 itemset [Nested Table of Item Type DERIVED FROM tranx_cursor],
 support NUMBER,
 length NUMBER,
 total_tranx NUMBER);

Parameters

Table 37–4 FI_HORIZONTAL Procedure Parameters

Parameter Description

tranx_cursor The cursor parameter that the user will supply when calling
the function. There is no limits on the number of returning
columns.Each column of cursor represents an item. All
columns of the cursor must be of the same data type. The item
id must be number or character type (for example,
VARCHAR2(n)).

Summary of DBMS_FREQUENT_ITEMSET Subprograms

DBMS_FREQUENT_ITEMSET 37-9

Return Values

Example
Suppose you have a table horiz_table_in.

horiz_table_in(iid1 VARCHAR2(30), iid2 VARCHAR2(30), iid3 VARCHAR2(30), iid4
VARCHAR2(30), iid5 VARCHAR2(30));

and the data in horiz_table_in looks as follows:

support_threshold A fraction number of total transaction count. An itemset is
termed "frequent" if [the number of transactions it occurs in]
divided by [the total number of transactions] exceed the
fraction. The parameter must be a NUMBER.

itemset_length_min The minimum length for interested frequent itemset. The
parameter must be a NUMBER between 1 and 20, inclusive.

itemset_length_max The maximum length for interested frequent itemset. This
parameter must be a NUMBER between 1 and 20, inclusive, and
must not be less than itemset_length_min.

including_items A cursor from which a list of items can be fetched. At least one
item from the list must appear in frequent itemsets that are
returned. The default is NULL.

excluding_items A cursor from which a list of items can be fetched. No item
from the list can appear in frequent itemsets that are
returned.The default is NULL.

Table 37–5 FI_HORIZONTAL Procedure Parameters

Parameter Description

support The number of transactions in which a frequent itemset occurs.
This will be returned as a NUMBER.

itemset A collection of items which is computed as frequent itemset.
This will be returned as a nested table of item type which is the
item column type of the input cursor.

length Number of items in a frequent itemset. This will be returned as
a NUMBER.

total_tranx The total transaction count. This will be returned as a NUMBER.

Table 37–4 (Cont.) FI_HORIZONTAL Procedure Parameters

Parameter Description

FI_HORIZONTAL Function

37-10 PL/SQL Packages and Types Reference

('apple', 'banana', NULL, NULL, NULL)
('apple', 'milk', 'banana', NULL, NULL)
('orange', NULL, NULL, NULL, NULL)

Suppose you want to find out what combinations of items is frequent with a given
support threshold of 30%, requiring itemset containing at least one of
('apple','banana','orange'), but excluding any of ('milk') in any itemset. You use the
following query:

CREATE TYPE fi_varchar_nt AS TABLE OF VARCHAR2(30);
SELECT CAST(itemset as FI_VARCHAR_NT)itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_HORIZONTAL(
 CURSOR(SELECT iid1, iid2, iid3, iid4, iid5
 FROM horiz_table_in),
 0.3,
 2,
 5,
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT
 ('apple','banana','orange'))),
 CURSOR(SELECT * FROM table(FI_VARCHAR_NT('milk')))));

DBMS_HS_PASSTHROUGH 38-1

38
DBMS_HS_PASSTHROUGH

The pass-through SQL feature allows an application developer to send a statement
directly to a non-Oracle system without being interpreted by the Oracle server. This
can be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

You can run these statements directly at the non-Oracle system using the PL/SQL
package DBMS_HS_PASSTHROUGH. Any statement executed with this package is
run in the same transaction as regular "transparent" SQL statements.

This chapter discusses the following topic:

■ Summary of DBMS_HS_PASSTHROUGH Subprograms

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide

Summary of DBMS_HS_PASSTHROUGH Subprograms

38-2 PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 38–1 DBMS_HS_PASSTHROUGH Package Subprograms

Subprogram Description

BIND_VARIABLE Procedure
on page 38-3

Binds an IN variable positionally with a PL/SQL program
variable

BIND_VARIABLE_RAW
Procedure on page 38-5

Binds IN variables of type RAW

BIND_OUT_VARIABLE
Procedure on page 38-7

Binds an OUT variable with a PL/SQL program variable

BIND_OUT_VARIABLE_RAW
Procedure on page 38-9

Binds an OUT variable of datatype RAW with a PL/SQL
program variable

BIND_INOUT_VARIABLE
Procedure on page 38-11

Binds IN OUT bind variables

BIND_INOUT_VARIABLE_
RAW Procedure on page 38-13

Binds IN OUT bind variables of datatype RAW

CLOSE_CURSOR Procedure
on page 38-15

Closes the cursor and releases associated memory after the
SQL statement has been run at the non-Oracle system

EXECUTE_IMMEDIATE
Procedure on page 38-16

Runs a (non-SELECT) SQL statement immediately,
without bind variables

EXECUTE_NON_QUERY
Function on page 38-17

Runs a (non-SELECT) SQL statement

FETCH_ROW Function on
page 38-18

Fetches rows from a query

GET_VALUE Procedure on
page 38-20

Retrieves column value from SELECT statement, or
retrieves OUT bind parameters

GET_VALUE_RAW Procedure
on page 38-22

Similar to GET_VALUE, but for datatype RAW

OPEN_CURSOR Function on
page 38-24

Opens a cursor for running a passthrough SQL statement
at the non-Oracle system

PARSE Procedure on
page 38-25

Parses SQL statement at non-Oracle system

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-3

BIND_VARIABLE Procedure

This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

Parameters

Exceptions

See Also: To bind RAW variables use BIND_VARIABLE_RAW
Procedure on page 38-5.

Table 38–2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v Value that must be passed to the bind variable name.

n (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 38–3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

BIND_VARIABLE Procedure

38-4 PL/SQL Packages and Types Reference

Pragmas
Purity level defined: WNDS, RNDS

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 38–3 BIND_VARIABLE Procedure Exceptions

Exception Description

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-5

BIND_VARIABLE_RAW Procedure

This procedure binds IN variables of type RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN RAW,
 n IN VARCHAR2);

Parameters

Exceptions

Table 38–4 BIND_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v Value that must be passed to the bind variable.

n (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 38–5 BIND_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

BIND_VARIABLE_RAW Procedure

38-6 PL/SQL Packages and Types Reference

Pragmas
Purity level defined : WNDS, RNDS

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-7

BIND_OUT_VARIABLE Procedure

This procedure binds an OUT variable with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NULL,
 v OUT <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

Parameters

See Also: For binding OUT variables of datatype RAW, see BIND_
OUT_VARIABLE_RAW Procedure on page 38-9.

Table 38–6 BIND_OUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v Variable in which the OUT bind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALUE to retrieve the
value of the OUT parameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE.

n (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

BIND_OUT_VARIABLE Procedure

38-8 PL/SQL Packages and Types Reference

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 38–7 BIND_OUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-9

BIND_OUT_VARIABLE_RAW Procedure

This procedure binds an OUT variable of datatype RAW with a PL/SQL program
variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT RAW,
 n IN VARCHAR2);

Parameters

Exceptions

Table 38–8 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v Variable in which the OUT bind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALUE to retrieve the
value of the OUT parameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE_RAW.

n (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 38–9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

BIND_OUT_VARIABLE_RAW Procedure

38-10 PL/SQL Packages and Types Reference

Pragmas
Purity level defined : WNDS, RNDS

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 38–9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

Exception Description

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-11

BIND_INOUT_VARIABLE Procedure

This procedure binds IN OUT bind variables.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN OUT <dty>,
 n IN VARCHAR2);

<dty> is either DATE, NUMBER, or VARCHAR2.

Parameters

See Also: For binding IN OUT variables of datatype RAW see
BIND_INOUT_VARIABLE_RAW Procedure on page 38-13.

Table 38–10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

n (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

BIND_INOUT_VARIABLE Procedure

38-12 PL/SQL Packages and Types Reference

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 38–11 BIND_INOUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-13

BIND_INOUT_VARIABLE_RAW Procedure

This procedure binds IN OUT bind variables of datatype RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v IN OUT RAW,
 n IN VARCHAR2);

Parameters

Exceptions

Table 38–12 BIND_INOUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable in the SQL statement: Starts at 1.

v This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

n (Optional) Name the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename, the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 38–13 BIND_INOUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

BIND_INOUT_VARIABLE_RAW Procedure

38-14 PL/SQL Packages and Types Reference

Pragmas
Purity level defined : WNDS, RNDS

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 38–13 BIND_INOUT_VARIABLE_RAW Procedure Exceptions

Exception Description

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-15

CLOSE_CURSOR Procedure

This function closes the cursor and releases associated memory after the SQL
statement has been run at the non-Oracle system. If the cursor was not open, then
the operation is a "no operation".

Syntax
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (
 c IN BINARY_INTEGER NOT NULL);

Parameters

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 38–14 CLOSE_CURSOR Procedure Parameters

Parameter Description

c Cursor to be released.

Table 38–15 CLOSE_CURSOR Procedure Exceptions

Exception Description

ORA-28555 A NULL value was passed for a NOT NULL parameter.

EXECUTE_IMMEDIATE Procedure

38-16 PL/SQL Packages and Types Reference

EXECUTE_IMMEDIATE Procedure

This function runs a SQL statement immediately. Any valid SQL command except
SELECT can be run immediately. The statement must not contain any bind
variables. The statement is passed in as a VARCHAR2 in the argument. Internally the
SQL statement is run using the PASSTHROUGH SQL protocol sequence of OPEN_
CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE (
 s IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER;

Parameters

Return Values
The number of rows affected by the execution of the SQL statement.

Exceptions

Table 38–16 EXECUTE_IMMEDIATE Procedure Parameters

 Parameter Description

s VARCHAR2 variable with the statement to be executed
immediately.

Table 38–17 EXECUTE_IMMEDIATE Procedure Exceptions

Exception Description

ORA-28551 SQL statement is invalid.

ORA-28544 Max open cursors.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-17

EXECUTE_NON_QUERY Function

This function runs a SQL statement. The SQL statement cannot be a SELECT
statement. A cursor has to be open and the SQL statement has to be parsed before
the SQL statement can be run.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY (
 c IN BINARY_INTEGER NOT NULL)
 RETURN BINARY_INTEGER;

Parameters

Return Values
The number of rows affected by the SQL statement in the non-Oracle system

Exceptions

Table 38–18 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

Table 38–19 EXECUTE_NON_QUERY Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not run in right order. (Did you
first open the cursor and parse the SQL statement?)

ORA-28555 A NULL value was passed for a NOT NULL parameter.

FETCH_ROW Function

38-18 PL/SQL Packages and Types Reference

FETCH_ROW Function

This function fetches rows from a result set. The result set is defined with a SQL
SELECT statement. When there are no more rows to be fetched, the exception NO_
DATA_FOUND is raised. Before the rows can be fetched, a cursor has to be opened,
and the SQL statement has to be parsed.

Syntax
DBMS_HS_PASSTHROUGH.FETCH_ROW (
 c IN BINARY_INTEGER NOT NULL,
 f IN BOOLEAN)
 RETURN BINARY_INTEGER;

Parameters

Return Values
The returns the number of rows fetched. The function returns "0" if the last row was
already fetched.

Exceptions

Table 38–20 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

first (Optional) Reexecutes SELECT statement. Possible values:

- TRUE: reexecute SELECT statement.

- FALSE: fetch the next row, or if run for the first time, then
execute and fetch rows (default).

Table 38–21 FETCH_ROW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-19

Pragmas
Purity level defined : WNDS

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 38–21 FETCH_ROW Procedure Exceptions

Exception Description

GET_VALUE Procedure

38-20 PL/SQL Packages and Types Reference

GET_VALUE Procedure

This procedure has two purposes:

■ It retrieves the select list items of SELECT statements, after a row has been
fetched.

■ It retrieves the OUT bind values, after the SQL statement has been run.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT <dty>);

<dty> is either DATE, NUMBER, or VARCHAR2.

Parameters

See Also: For retrieving values of datatype RAW, see GET_
VALUE_RAW Procedure on page 38-22.

Table 38–22 GET_VALUE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable or select list item in the SQL
statement: Starts at 1.

v Variable in which the OUT bind variable or select list item
stores its value.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-21

Exceptions

Pragmas
Purity level defined : WNDS

Table 38–23 GET_VALUE Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when running the GET_
VALUE after the last row was fetched (that is, FETCH_ROW
returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

GET_VALUE_RAW Procedure

38-22 PL/SQL Packages and Types Reference

GET_VALUE_RAW Procedure

This procedure is similar to GET_VALUE, but for datatype RAW.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (
 c IN BINARY_INTEGER NOT NULL,
 p IN BINARY_INTEGER NOT NULL,
 v OUT RAW);

Parameters

Exceptions

Table 38–24 GET_VALUE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

p Position of the bind variable or select list item in the SQL
statement: Starts at 1.

v Variable in which the OUT bind variable or select list item
stores its value.

Table 38–25 GET_VALUE_RAW Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when running the GET_
VALUE after the last row was fetched (that is, FETCH_ROW
returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-23

Pragmas
Purity level defined : WNDS

OPEN_CURSOR Function

38-24 PL/SQL Packages and Types Reference

OPEN_CURSOR Function

This function opens a cursor for running a pass-through SQL statement at the
non-Oracle system. This function must be called for any type of SQL statement.

The function returns a cursor, which must be used in subsequent calls. This call
allocates memory. To deallocate the associated memory, call the procedure CLOSE_
CURSOR.

Syntax
DBMS_HS_PASSTHROUGH.OPEN_CURSOR
 RETURN BINARY_INTEGER;

Return Values
The cursor to be used on subsequent procedure and function calls.

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 38–26 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase
Heterogeneous Services' OPEN_CURSORS initialization
parameter.

Summary of DBMS_HS_PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 38-25

PARSE Procedure

This procedure parses SQL statement at non-Oracle system.

Syntax
DBMS_HS_PASSTHROUGH.PARSE (
 c IN BINARY_INTEGER NOT NULL,
 stmt IN VARCHAR2 NOT NULL);

Parameters

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 38–27 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR.

stmt Statement to be parsed.

Table 38–28 PARSE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

PARSE Procedure

38-26 PL/SQL Packages and Types Reference

DBMS_IOT 39-1

39
DBMS_IOT

The DBMS_IOT package creates a table into which references to the chained rows
for an index-organized table can be placed using the ANALYZE command. DBMS_
IOT can also create an exception table into which references to the rows of an
index-organized table that violate a constraint can be placed during the enable_
constraint operation.

DBMS_IOT is not loaded during database installation. To install DBMS_IOT, run
dbmsiotc.sql, available in the ADMIN directory.

This chapter contains the following topics:

■ Summary of DBMS_IOT Subprograms

Note: With the introduction of logical-rowids for IOTs with Oracle
Database Release 8.1, you no longer need to use the procedures
contained in this package which is retained for backward
compatibility only. It is however required for servers running with
Oracle Database Release 8.0.

Summary of DBMS_IOT Subprograms

39-2 PL/SQL Packages and Types Reference

Summary of DBMS_IOT Subprograms

Table 39–1 DBMS_IOT Package Subprograms

Subprogram Description

BUILD_CHAIN_ROWS_
TABLE Procedure on
page 39-3

Creates a table into which references to the chained rows for
an index-organized table can be placed using the ANALYZE
command

BUILD_EXCEPTIONS_
TABLE Procedure on
page 39-5

Creates an exception table into which rows of an
index-organized table that violate a constraint can be placed

Summary of DBMS_IOT Subprograms

DBMS_IOT 39-3

BUILD_CHAIN_ROWS_TABLE Procedure

This procedure creates a table into which references to the chained rows for an
index-organized table can be placed using the ANALYZE command.

Syntax
DBMS_IOT.BUILD_CHAIN_ROWS_TABLE (
 owner IN VARCHAR2,
 iot_name IN VARCHAR2,
 chainrow_table_name IN VARCHAR2 default 'IOT_CHAINED_ROWS');

Parameters

Usage Notes
You should create a separate chained-rows table for each index-organized table to
accommodate its primary key.

Examples
CREATE TABLE l(a char(16),b char(16), c char(16), d char(240),
PRIMARY KEY(a,b,c)) ORGANIZATION INDEX pctthreshold 10 overflow;
EXECUTE DBMS_IOT.BUILD_CHAIN_ROWS_TABLE('SYS','L','LC');

A chained-row table is created with the following columns:

Column Name Null? Type
------------------------------ -------- ----
OWNER_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
HEAD_ROWID ROWID

Table 39–2 BUILD_CHAIN_ROWS_TABLE Procedure Parameters

Parameter Description

owner Owner of the index-organized table.

iot_name Index-organized table name.

chainrow_table_name Intended name for the chained-rows table.

BUILD_CHAIN_ROWS_TABLE Procedure

39-4 PL/SQL Packages and Types Reference

TIMESTAMP DATE
A CHAR(16)
B CHAR(16)
C CHAR(16)

Summary of DBMS_IOT Subprograms

DBMS_IOT 39-5

BUILD_EXCEPTIONS_TABLE Procedure

This procedure creates an exception table into which rows of an index-organized
table that violate a constraint can be placed during the execution of the following
SQL statements:

■ ALTER TABLE ... ENABLE CONSTRAINT ... EXCEPTIONS INTO

■ ALTER TABLE ... ADD CONSTRAINT ... EXCEPTIONS INTO

Syntax
DBMS_IOT.BUILD_EXCEPTIONS_TABLE (
 owner IN VARCHAR2,
 iot_name IN VARCHAR2,
 exceptions_table_name IN VARCHAR2 default 'IOT_EXCEPTIONS');

Parameters

Usage Notes
You should create a separate exception table for each index-organized table to
accommodate its primary key.

Examples
EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE('SYS','L','LE');

An exception table for the preceding index-organized table with the following
columns:

Column Name Null? Type
------------------------------ -------- ----
ROW_ID VARCHAR2(30)
OWNER VARCHAR2(30)

Table 39–3 BUILD_EXCEPTIONS_TABLE Procedure Parameters

Parameter Description

owner Owner of the index-organized table.

iot_name Index-organized table name.

exceptions_table_
name

Intended name for exception-table.

BUILD_EXCEPTIONS_TABLE Procedure

39-6 PL/SQL Packages and Types Reference

TABLE_NAME VARCHAR2(30)
CONSTRAINT VARCHAR2(30)
A CHAR(16)
B CHAR(16)
C CHAR(16)

DBMS_JAVA 40-1

40
DBMS_JAVA

The DBMS_JAVA package provides a PL/SQL interface for accessing database
functionality from Java.

■ Documentation of DBMS_JAVA

Documentation of DBMS_JAVA

40-2 PL/SQL Packages and Types Reference

Documentation of DBMS_JAVA

For a complete description of this package within the context of DBMS_JAVA, see
DBMS_JAVA in the Oracle Database Java Developer's Guide.

DBMS_JOB 41-1

41
DBMS_JOB

The DBMS_JOB package schedules and manages jobs in the job queue.

This chapter contains the following topics:

■ Using DBMS_JOB

■ Security Model

■ Operational Notes

■ Summary of DBMS_JOB Subprograms

Note: The DBMS_JOB package has been superseded by the DBMS_
SCHEDULER package. In particular, if you are administering jobs to
manage system load, you should consider disabling DBMS_JOB by
revoking the package execution privilege for users.

For more information, see "Moving from DBMS_JOB to DBMS_
SCHEDULER" in Oracle Database Administrator's Guide.

Using DBMS_JOB

41-2 PL/SQL Packages and Types Reference

Using DBMS_JOB

■ Security Model

■ Operational Notes

Security Model

No specific system privileges are required to use DBMS_JOB. No system privileges
are available to manage DBMS_JOB. Jobs cannot be altered or deleted other than
jobs owned by the user. This is true for all users including those users granted DBA
privileges.

You can execute procedures that are owned by the user or for which the user is
explicitly granted EXECUTE. However, procedures for which the user is granted the
execute privilege through roles cannot be executed.

 Note that, once a job is started and running, there is no easy way to stop the job.

Operational Notes

■ Working with Real Application Clusters

■ Stopping a Job

Working with Real Application Clusters
DBMS_JOB supports multi-instance execution of jobs. By default jobs can be
executed on any instance, but only one single instance will execute the job. In
addition, you can force instance binding by binding the job to a particular instance.
You implement instance binding by specifying an instance number to the instance
affinity parameter. Note, however, that in 10i instance binding is not recommended.
Service affinity is preferred. This concept is implemented in the DBMS_
SCHEDULER package.

The following procedures can be used to create, alter or run jobs with instance
affinity. Note that not specifying affinity means any instance can run the job.

DBMS_JOB.SUBMIT
To submit a job to the job queue, use the following syntax:

DBMS_JOB.SUBMIT(

Using DBMS_JOB

DBMS_JOB 41-3

 JOB OUT BINARY_INTEGER,
 WHAT IN VARCHAR2, NEXT_DATE IN DATE DEFAULTSYSDATE,
 INTERVAL IN VARCHAR2 DEFAULT 'NULL',
 NO_PARSE IN BOOLEAN DEFAULT FALSE,
 INSTANCE IN BINARY_INTEGER DEFAULT ANY_INSTANCE,
 FORCE IN BOOLEAN DEFAULT FALSE);

Use the parameters INSTANCE and FORCE to control job and instance affinity. The
default value of INSTANCE is 0 (zero) to indicate that any instance can execute the
job. To run the job on a certain instance, specify the INSTANCE value. Oracle
displays error ORA-23319 if the INSTANCE value is a negative number or NULL.

The FORCE parameter defaults to FALSE. If force is TRUE, any positive integer is
acceptable as the job instance. If FORCE is FALSE, the specified instance must be
running, or Oracle displays error number ORA-23428.

DBMS_JOB.INSTANCE
To assign a particular instance to execute a job, use the following syntax:

 DBMS_JOB.INSTANCE(JOB IN BINARY_INTEGER,
 INSTANCE IN BINARY_INTEGER,
 FORCE IN BOOLEAN DEFAULT FALSE);

The FORCE parameter in this example defaults to FALSE. If the instance value is 0
(zero), job affinity is altered and any available instance can execute the job despite
the value of force. If the INSTANCE value is positive and the FORCE parameter is
FALSE, job affinity is altered only if the specified instance is running, or Oracle
displays error ORA-23428.

If the FORCE parameter is TRUE, any positive integer is acceptable as the job
instance and the job affinity is altered. Oracle displays error ORA-23319 if the
INSTANCE value is negative or NULL.

DBMS_JOB.CHANGE
To alter user-definable parameters associated with a job, use the following syntax:

 DBMS_JOB.CHANGE(JOB IN BINARY_INTEGER,
 WHAT IN VARCHAR2 DEFAULT NULL,
 NEXT_DATE IN DATE DEFAULT NULL,
 INTERVAL IN VARCHAR2 DEFAULT NULL,
 INSTANCE IN BINARY_INTEGER DEFAULT NULL,
 FORCE IN BOOLEAN DEFAULT FALSE);

Two parameters, INSTANCE and FORCE, appear in this example. The default value
of INSTANCE is NULL indicating that job affinity will not change.

Operational Notes

41-4 PL/SQL Packages and Types Reference

The default value of FORCE is FALSE. Oracle displays error ORA-23428 if the
specified instance is not running and error ORA-23319 if the INSTANCE number is
negative.

DBMS_JOB.RUN
The FORCE parameter for DBMS_JOB.RUN defaults to FALSE. If force is TRUE,
instance affinity is irrelevant for running jobs in the foreground process. If force is
FALSE, the job can run in the foreground only in the specified instance. Oracle
displays error ORA-23428 if force is FALSE and the connected instance is the
incorrect instance.

 DBMS_JOB.RUN(
 JOB IN BINARY_INTEGER,
 FORCE IN BOOLEAN DEFAULT FALSE);

Stopping a Job
 Note that, once a job is started and running, there is no easy way to stop the job.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-5

Summary of DBMS_JOB Subprograms

Table 41–1 DBMS_JOB Package Subprograms

Subprogram Description

BROKEN Procedure on
page 41-6

Disables job execution

CHANGE Procedure on
page 41-7

Alters any of the user-definable parameters associated with
a job

INSTANCE Procedure on
page 41-9

Assigns a job to be run by a instance

INTERVAL Procedure on
page 41-10

Alters the interval between executions for a specified job

NEXT_DATE Procedure on
page 41-11

Alters the next execution time for a specified job

REMOVE Procedure on
page 41-12

Removes specified job from the job queue

RUN Procedure on
page 41-13

Forces a specified job to run

SUBMIT Procedure on
page 41-14

Submits a new job to the job queue

USER_EXPORT Procedures
on page 41-16

Re-creates a given job for export, or re-creates a given job
for export with instance affinity

WHAT Procedure on
page 41-17

Alters the job description for a specified job

BROKEN Procedure

41-6 PL/SQL Packages and Types Reference

BROKEN Procedure

This procedure sets the broken flag. Broken jobs are never run.

Syntax
DBMS_JOB.BROKEN (
 job IN BINARY_INTEGER,
 broken IN BOOLEAN,
 next_date IN DATE DEFAULT SYSDATE);

Parameters

Usage Notes
You must issue a COMMIT statement immediately after the statement.

Table 41–2 BROKEN Procedure Parameters

Parameter Description

job Number of the job being run.

broken Job broken: IN value is FALSE.

next_data Date of the next refresh.

Note: If you set job as broken while it is running, Oracle resets the
job's status to normal after the job completes. Therefore, only
execute this procedure for jobs that are not running.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-7

CHANGE Procedure

This procedure changes any of the fields a user can set in a job.

Syntax
DBMS_JOB.CHANGE (
 job IN BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE,
 interval IN VARCHAR2,
 instance IN BINARY_INTEGER DEFAULT NULL,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
■ You must issue a COMMIT statement immediately after the statement.

■ The parameters instance and force are added for job queue affinity. Job
queue affinity gives users the ability to indicate whether a particular instance or
any instance can run a submitted job.

Table 41–3 CHANGE Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Date of the next refresh.

interval Date function; evaluated immediately before the job starts
running.

instance When a job is submitted, specifies which instance can run the
job. This defaults to NULL, which indicates that instance
affinity is not changed.

force If this is FALSE, then the specified instance (to which the
instance number change) must be running. Otherwise, the
routine raises an exception.

If this is TRUE, then any positive integer is acceptable as the job
instance.

CHANGE Procedure

41-8 PL/SQL Packages and Types Reference

■ If the parameters what, next_date, or interval are NULL, then leave that
value as it is.

Example
BEGIN
 DBMS_JOB.CHANGE(14144, null, null, 'sysdate+3');
 COMMIT;
END;

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-9

INSTANCE Procedure

This procedure changes job instance affinity.

Syntax
DBMS_JOB.INSTANCE (
 job IN BINARY_INTEGER,
 instance IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You must issue a COMMIT statement immediately after the statement.

Table 41–4 INSTANCE Procedure Parameters

Parameter Description

job Number of the job being run.

instance When a job is submitted, a user can specify which instance can
run the job.

force If this is TRUE, then any positive integer is acceptable as the job
instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.

INTERVAL Procedure

41-10 PL/SQL Packages and Types Reference

INTERVAL Procedure

This procedure changes how often a job runs.

Syntax
DBMS_JOB.INTERVAL (
 job IN BINARY_INTEGER,
 interval IN VARCHAR2);

Parameters

Usage Notes
■ If the job completes successfully, then this new date is placed in next_date.

interval is evaluated by plugging it into the statement select interval into
next_date from dual;

■ The interval parameter must evaluate to a time in the future. Legal intervals
include:

■ If interval evaluates to NULL and if a job completes successfully, then the job
is automatically deleted from the queue.

■ You must issue a COMMIT statement immediately after the statement.

Table 41–5 INTERVAL Procedure Parameters

Parameter Description

job Number of the job being run.

interval Date function, evaluated immediately before the job starts
running.

Interval Description

'sysdate + 7' Run once a week.

'next_day(sysdate,''TUESDAY'')' Run once every Tuesday.

'null' Run only once.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-11

NEXT_DATE Procedure

This procedure changes when an existing job next runs.

Syntax
DBMS_JOB.NEXT_DATE (
 job IN BINARY_INTEGER,
 next_date IN DATE);

Parameters

Usage Notes
You must issue a COMMIT statement immediately after the statement.

Table 41–6 NEXT_DATE Procedure Parameters

Parameter Description

job Number of the job being run.

next_date Date of the next refresh: it is when the job will be automatically
run, assuming there are background processes attempting to
run it.

REMOVE Procedure

41-12 PL/SQL Packages and Types Reference

REMOVE Procedure

This procedure removes an existing job from the job queue. This currently does not
stop a running job.

Syntax
DBMS_JOB.REMOVE (
 job IN BINARY_INTEGER);

Parameters

Usage Notes
You must issue a COMMIT statement immediately after the statement.

Example
BEGIN
 DBMS_JOB.REMOVE(14144);
 COMMIT;
END;

Table 41–7 REMOVE Procedure Parameters

Parameter Description

job Number of the job being run.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-13

RUN Procedure

This procedure runs job JOB now. It runs it even if it is broken.

Running the job recomputes next_date. See view user_jobs.

Syntax
DBMS_JOB.RUN (
 job IN BINARY_INTEGER,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Example
EXECUTE DBMS_JOB.RUN(14144);

Exceptions
An exception is raised if force is FALSE, and if the connected instance is the wrong
one.

Table 41–8 RUN Procedure Parameters

Parameter Description

job Number of the job being run.

force If this is TRUE, then instance affinity is irrelevant for running
jobs in the foreground process. If this is FALSE, then the job
can be run in the foreground only in the specified instance.

Caution: This re-initializes the current session's packages.

SUBMIT Procedure

41-14 PL/SQL Packages and Types Reference

SUBMIT Procedure

This procedure submits a new job. It chooses the job from the sequence
sys.jobseq.

Syntax
DBMS_JOB.SUBMIT (
 job OUT BINARY_INTEGER,
 what IN VARCHAR2,
 next_date IN DATE DEFAULT sysdate,
 interval IN VARCHAR2 DEFAULT 'null',
 no_parse IN BOOLEAN DEFAULT FALSE,
 instance IN BINARY_INTEGER DEFAULT any_instance,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 41–9 SUBMIT Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Next date when the job will be run.

interval Date function that calculates the next time to run the job. The
default is NULL. This must evaluate to a either a future point in
time or NULL.

no_parse A flag. The default is FALSE. If this is set to FALSE, then Oracle
parses the procedure associated with the job. If this is set to
TRUE, then Oracle parses the procedure associated with the job
the first time that the job is run.

For example, if you want to submit a job before you have
created the tables associated with the job, then set this to TRUE.

instance When a job is submitted, specifies which instance can run the
job.

force If this is TRUE, then any positive integer is acceptable as the job
instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-15

Usage Notes
■ You must issue a COMMIT statement immediately after the statement.

■ The parameters instance and force are added for job queue affinity. Job
queue affinity gives users the ability to indicate whether a particular instance or
any instance can run a submitted job.

Example
This submits a new job to the job queue. The job calls the procedure DBMS_
DDL.ANALYZE_OBJECT to generate optimizer statistics for the table
DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the
ACCOUNTS table. The job is run every 24 hours:

VARIABLE jobno number;
BEGIN
 DBMS_JOB.SUBMIT(:jobno,
 'dbms_ddl.analyze_object(''TABLE'',
 ''DQUON'', ''ACCOUNTS'',
 ''ESTIMATE'', NULL, 50);'
 SYSDATE, 'SYSDATE + 1');
 COMMIT;
END;
/
Statement processed.
print jobno
JOBNO

14144

USER_EXPORT Procedures

41-16 PL/SQL Packages and Types Reference

USER_EXPORT Procedures

There are two overloaded procedures. The first produces the text of a call to
re-create the given job. The second alters instance affinity (8i and after) and
preserves the compatibility.

Syntax
DBMS_JOB.USER_EXPORT (
 job IN BINARY_INTEGER,
 mycall IN OUT VARCHAR2);

DBMS_JOB.USER_EXPORT (
 job IN BINARY_INTEGER,
 mycall IN OUT VARCHAR2,
 myinst IN OUT VARCHAR2);

Parameters

Table 41–10 USER_EXPORT Procedure Parameter

Parameter Description

job Number of the job being run.

mycall Text of a call to re-create the given job.

myinst Text of a call to alter instance affinity.

Summary of DBMS_JOB Subprograms

DBMS_JOB 41-17

WHAT Procedure

This procedure changes what an existing job does, and replaces its environment.

Syntax
DBMS_JOB.WHAT (
 job IN BINARY_INTEGER,
 what IN VARCHAR2);

Parameters

Usage Notes
■ You must issue a COMMIT statement immediately after the statement.

■ Some legal values of what (assuming the routines exist) are:

– 'myproc(''10-JAN-82'', next_date, broken);'

– 'scott.emppackage.give_raise(''JENKINS'', 30000.00);'

– 'dbms_job.remove(job);'

Table 41–11 WHAT Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

WHAT Procedure

41-18 PL/SQL Packages and Types Reference

DBMS_LDAP 42-1

42
DBMS_LDAP

The DBMS_LDAP package lets you access data from LDAP servers.

■ Documentation of DBMS_LDAP

Documentation of DBMS_LDAP

42-2 PL/SQL Packages and Types Reference

Documentation of DBMS_LDAP

For a complete description of this package within the context of Oracle Internet
Directory, see DBMS_LDAP in the Oracle Internet Directory Application Developer's
Guide.

DBMS_LDAP_UTL 43-1

43
DBMS_LDAP_UTL

The DBMS_LDAP_UTL package contains the Oracle Extension utility functions.

■ Documentation of DBMS_LDAP_UTL

Documentation of DBMS_LDAP_UTL

43-2 PL/SQL Packages and Types Reference

Documentation of DBMS_LDAP_UTL

For a complete description of this package within the context of Oracle Internet
Directory, see DBMS_LDAP_UTL in the Oracle Internet Directory Application
Developer's Guide.

DBMS_LIBCACHE 44-1

44
DBMS_LIBCACHE

The DBMS_LIBCACHE package consists of one subprogram that prepares the
library cache on an Oracle instance by extracting SQL and PL/SQL from a remote
instance and compiling this SQL locally without execution. The value of compiling
the cache of an instance is to prepare the information the application requires to
execute in advance of failover or switchover.

This chapter contains the following topics:

■ Using DBMS_LIBCACHE

■ Overview

■ Security Model

■ Summary of DBMS_LIBCACHE Subprograms

Using DBMS_LIBCACHE

44-2 PL/SQL Packages and Types Reference

Using DBMS_LIBCACHE

■ Overview

■ Security Model

Overview

Compiling a shared cursor consists of open, parse, and bind operations, plus the
type-checking and execution plan functions performed at the first execution. All of
these steps are executed in advance by the package DBMS_LIBCACHE for SELECT
statements. The open and parse functions are executed in advance for PL/SQL and
DML. For PL/SQL, executing the parse phase has the effect of loading all library
cache heaps other than the MCODE.

Security Model

To execute DBMS_LIBCACHE you must directly access the same objects as do SQL
statements. You can best accomplish this by utilizing the same user id as the
original system on the remote system.

When there are multiple schema users, DBMS_LIBCACHE should be called for each.

Alternatively, DBMS_LIBCACHE may be called with the generic user PARSER.
However, this user cannot parse the SQL that uses objects with access granted
though roles. This is a standard PL/SQL security limitation.

Summary of DBMS_LIBCACHE Subprograms

DBMS_LIBCACHE 44-3

Summary of DBMS_LIBCACHE Subprograms

Table 44–1 DBMS_LIBCACHE Package Subprograms

Subprogram Description

COMPILE_FROM_REMOTE
Procedure on page 44-4

Extracts SQL in batch from the source instance and
compiles the SQL at the target instance

COMPILE_FROM_REMOTE Procedure

44-4 PL/SQL Packages and Types Reference

COMPILE_FROM_REMOTE Procedure

This procedure extracts SQL in batch from the source instance and compiles the
SQL at the target instance.

Syntax
DBMS_LIBCACHE.COMPILE_FROM_REMOTE (
 p_db_link IN dbms_libcache$def.db_link%type,
 p_username IN VARCHAR2 default null,
 p_threshold_executions IN NATURAL default 3,
 p_threshold_sharable_mem IN NATURAL default 1000,
 p_parallel_degree IN NATURAL default 1);

Parameters

Usage Notes
■ P_DB_LINK

The database link pointing to the instance that will be used for extracting the
SQL statements. The user must have the role SELECT_ON_CATALOG at the
source instance. For improved security, the connection may use a password file
or LDAP authentication. The database link is mandatory only for releases with
dbms_libcache$def.ACCESS_METHOD = DB_LINK_METHOD

Table 44–2 COMPILE_FROM_REMOTE Procedure Parameters

Parameter Description

p_db_link The database link to the source name (mandatory).

p_instance_name The source instance name (reserved for future use).

p_username The source username (default is all users).

p_threshold_executions The lower bound on the number of executions.

p_threshold_sharable_mem The lower bound on shared memory size.

p_parallel_degree The number of parallel jobs

Summary of DBMS_LIBCACHE Subprograms

DBMS_LIBCACHE 44-5

■ P_INSTANCE_NAME (reserved for future use)

The name of the instance that will be used for extracting the SQL statements.
The instance name must be unique for all instances excluding the local instance.
The name is not case sensitive.

■ P_USERNAME

The name of the username that will be used for extracting the SQL statements.
The username is an optional parameter that is used to ensure the parsing user
id is the same as that on the source instance. For an application where users
connect as a single user_id, for example APPS, APPS is the parsing user_id
that is recorded in the shared pool. To select only SQL statements parsed by
APPS, enter the string 'APPS' in this field. To also select statements executed by
batch, repeat the executing the procedure with the schema owner, for example
GL. If the username is supplied, it must be valid. The name is not case sensitive.

■ P_THRESHOLD_EXECUTIONS

The lower bound for the number of executions, below which a SQL statement
will not be selected for parsing. This parameter is optional. It allows the
application to extract and compile statements with executions, for example,
greater than 3. The default value is 1. This means SQL statements that have
never executed, including invalid SQL statements, will not be extracted.

■ P_THRESHOLD_SHARABLE_MEM

The lower bound for the size of the shared memory consumed by the cursors on
the source instance. Below this value a SQL statement will not be selected for
parsing. This parameter is optional. It allows the application to extract and
compile statements with shared memory for example, greater than 10000 bytes.

■ P_PARALLEL_DEGREE

The number of parallel jobs that execute to complete the parse operation.
These tasks are spawned as parallel jobs against a sub-range of the SQL
statements selected for parsing. This parameter is reserved for parallel compile
jobs which are currently not implemented.

COMPILE_FROM_REMOTE Procedure

44-6 PL/SQL Packages and Types Reference

DBMS_LOB 45-1

45
DBMS_LOB

The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs, and temporary LOBs. You can use DBMS_LOB to access and
manipulation specific parts of a LOB or complete LOBs.

This chapter contains the following topics:

■ Using DBMS_LOB

■ Overview

■ Security Model

■ Constants

■ Types

■ Rules and Limits

■ Operational Notes

■ Summary of DBMS_LOB Subprograms

See Also: Oracle Database Application Developer's Guide - Large
Objects

Using DBMS_LOB

45-2 PL/SQL Packages and Types Reference

Using DBMS_LOB

■ Overview

■ Security Model

■ Constants

■ Types

■ Rules and Limits

■ Operational Notes

Overview

DBMS_LOB can read and modify BLOBs, CLOBs, and NCLOBs; it provides read-only
operations for BFILEs. The bulk of the LOB operations are provided by this
package.

Security Model

This package must be created under SYS. Operations provided by this package are
performed under the current calling user, not under the package owner SYS.

Any DBMS_LOB subprogram called from an anonymous PL/SQL block is executed
using the privileges of the current user. Any DBMS_LOB subprogram called from a
stored procedure is executed using the privileges of the owner of the stored
procedure.

When creating the procedure, users can set the AUTHID to indicate whether they
want definer's rights or invoker's rights. For example:

CREATE PROCEDURE proc1 authid definer ...

or

CREATE PROCEDURE proc1 authid current_user ...

See Also: For more information on AUTHID and privileges, see
PL/SQL User's Guide and Reference

Using DBMS_LOB

DBMS_LOB 45-3

You can provide secure access to BFILEs using the DIRECTORY feature discussed
in BFILENAME function in the Oracle Database Application Developer's Guide - Large
Objects and the Oracle Database SQL Reference.

For information about the security model pertaining to temporary LOBs, see
Operational Notes.

Constants

DBMS_LOB defines the following constants:

file_readonly CONSTANT BINARY_INTEGER := 0;
lob_readonly CONSTANT BINARY_INTEGER := 0;
lob_readwrite CONSTANT BINARY_INTEGER := 1;
lobmaxsize CONSTANT INTEGER := 18446744073709551615;
call CONSTANT PLS_INTEGER := 12;
session CONSTANT PLS_INTEGER := 10;

Types

Parameters for the DBMS_LOB subprograms use these datatypes:

The DBMS_LOB package defines no special types. An NCLOB is a CLOB for holding
fixed-width and varying-width, multibyte national character sets. The clause ANY_
CS in the specification of DBMS_LOB subprograms for CLOBs enables the CLOB type
to accept a CLOB or NCLOB locator variable as input.

Table 45–1 DBMS_LOB Datatypes

Type Description

BLOB A source or destination binary LOB.

RAW A source or destination RAW buffer (used with BLOB).

CLOB A source or destination character LOB (including NCLOB).

VARCHAR2 A source or destination character buffer (used with CLOB and
NCLOB).

INTEGER Specifies the size of a buffer or LOB, the offset into a LOB, or the
amount to access.

BFILE A large, binary object stored outside the database.

Rules and Limits

45-4 PL/SQL Packages and Types Reference

Rules and Limits

■ General Rules and Limits

■ Rules and Limits Specific to External Files (BFILEs)

■ Maximum LOB Size

■ Maximum Buffer Size

General Rules and Limits
■ The following rules apply in the specification of subprograms in this package:

– length, offset, and amount parameters for subprograms operating on
BLOBs and BFILEs must be specified in terms of bytes.

– length, offset, and amount parameters for subprograms operating on
CLOBs must be specified in terms of characters.

■ A subprogram raises an INVALID_ARGVAL exception if the following
restrictions are not followed in specifying values for parameters (unless
otherwise specified):

1. Only positive, absolute offsets from the beginning of LOB data are
permitted: Negative offsets from the tail of the LOB are not permitted.

2. Only positive, nonzero values are permitted for the parameters that
represent size and positional quantities, such as amount, offset, newlen,
nth, and so on. Negative offsets and ranges observed in SQL string
functions and operators are not permitted.

3. The value of offset, amount, newlen, nth must not exceed the value
lobmaxsize (4GB-1) in any DBMS_LOB subprogram.

4. For CLOBs consisting of fixed-width multibyte characters, the maximum
value for these parameters must not exceed (lobmaxsize/character_
width_in_bytes) characters.

For example, if the CLOB consists of 2-byte characters, such as:

JA16SJISFIXED

Then, the maximum amount value should not exceed:

4294967295/2 = 2147483647 characters.

Using DBMS_LOB

DBMS_LOB 45-5

■ PL/SQL language specifications stipulate an upper limit of 32767 bytes (not
characters) for RAW and VARCHAR2 parameters used in DBMS_LOB
subprograms. For example, if you declare a variable to be:

charbuf VARCHAR2(3000)

Then, charbuf can hold 3000 single byte characters or 1500 2-byte fixed width
characters. This has an important consequence for DBMS_LOB subprograms for
CLOBs and NCLOBs.

■ The %CHARSET clause indicates that the form of the parameter with %CHARSET
must match the form of the ANY_CS parameter to which it refers.

For example, in DBMS_LOB subprograms that take a VARCHAR2 buffer
parameter, the form of the VARCHAR2 buffer must match the form of the CLOB
parameter. If the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB,
then the buffer must contain CHAR data.

For DBMS_LOB subprograms that take two CLOB parameters, both CLOB
parameters must have the same form; that is, they must both be NCLOBs, or
they must both be CLOBs.

■ If the value of amount plus the offset exceeds the maximum LOB size
allowed by the database, then access exceptions are raised.

Under these input conditions, read subprograms, such as READ, COMPARE,
INSTR, and SUBSTR, read until End of Lob/File is reached. For example, for
a READ operation on a BLOB or BFILE, if the user specifies offset value of 3
GB and an amount value of 2 GB, then READ reads only ((4GB-1)-3GB) bytes.

■ Functions with NULL or invalid input values for parameters return a NULL.
Procedures with NULL values for destination LOB parameters raise exceptions.

■ Operations involving patterns as parameters, such as COMPARE, INSTR, and
SUBSTR do not support regular expressions or special matching characters
(such as % in the LIKE operator in SQL) in the pattern parameter or
substrings.

■ The End Of LOB condition is indicated by the READ procedure using a NO_
DATA_FOUND exception. This exception is raised only upon an attempt by the
user to read beyond the end of the LOB. The READ buffer for the last read
contains 0 bytes.

Rules and Limits

45-6 PL/SQL Packages and Types Reference

■ For consistent LOB updates, you must lock the row containing the destination
LOB before making a call to any of the procedures (mutators) that modify LOB
data.

■ Unless otherwise stated, the default value for an offset parameter is 1, which
indicates the first byte in the BLOB or BFILE data, and the first character in the
CLOB or NCLOB value. No default values are specified for the amount
parameter — you must input the values explicitly.

■ You must lock the row containing the destination internal LOB before calling
any subprograms that modify the LOB, such as APPEND, COPY, ERASE, TRIM, or
WRITE. These subprograms do not implicitly lock the row containing the LOB.

Rules and Limits Specific to External Files (BFILEs)
■ The subprograms COMPARE, INSTR, READ, SUBSTR, FILECLOSE,

FILECLOSEALL and LOADFROMFILE operate only on an opened BFILE locator;
that is, a successful FILEOPEN call must precede a call to any of these
subprograms.

■ For the functions FILEEXISTS, FILEGETNAME and GETLENGTH, a file's
open/close status is unimportant; however, the file must exist physically, and
you must have adequate privileges on the DIRECTORY object and the file.

■ DBMS_LOB does not support any concurrency control mechanism for BFILE
operations.

■ In the event of several open files in the session whose closure has not been
handled properly, you can use the FILECLOSEALL subprogram to close all files
opened in the session and resume file operations from the beginning.

■ If you are the creator of a DIRECTORY, or if you have system privileges, then
use the CREATE OR REPLACE, DROP, and REVOKE statements in SQL with
extreme caution.

If you, or other grantees of a particular directory object, have several open files
in a session, then any of the preceding commands can adversely affect file
operations. In the event of such abnormal termination, your only choice is to
invoke a program or anonymous block that calls FILECLOSEALL, reopen your
files, and restart your file operations.

■ All files opened during a user session are implicitly closed at the end of the
session. However, Oracle strongly recommends that you close the files after both
normal and abnormal termination of operations on the BFILE.

Using DBMS_LOB

DBMS_LOB 45-7

In the event of normal program termination, proper file closure ensures that the
number of files that are open simultaneously in the session remains less than
SESSION_MAX_OPEN_FILES.

In the event of abnormal program termination from a PL/SQL program, it is
imperative that you provide an exception handler that ensures closure of all
files opened in that PL/SQL program. This is necessary because after an
exception occurs, only the exception handler has access to the BFILE variable in
its most current state.

After the exception transfers program control outside the PL/SQL program
block, all references to the open BFILEs are lost. The result is a larger open file
count which may or may not exceed the SESSION_MAX_OPEN_FILES value.

For example, consider a READ operation past the end of the BFILE value, which
generates a NO_DATA_FOUND exception:

DECLARE
 fil BFILE;
 pos INTEGER;
 amt BINARY_INTEGER;
 buf RAW(40);
BEGIN
 SELECT ad_graphic INTO fil FROM print_media WHERE product_id = 3106;
 dbms_lob.open(fil, dbms_lob.lob_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.close(fil);
END;

ORA-01403: no data found
ORA-06512: at "SYS.DBMS_LOB", line 373
ORA-06512: at line 10

After the exception has occurred, the BFILE locator variable file goes out of
scope, and no further operations on the file can be done using that variable.
Therefore, the solution is to use an exception handler:

DECLARE
 fil BFILE;
 pos INTEGER;
 amt BINARY_INTEGER;
 buf RAW(40);
BEGIN

Operational Notes

45-8 PL/SQL Packages and Types Reference

 SELECT ad_graphic INTO fil FROM print_media WHERE product_id = 3106;
 dbms_lob.open(fil, dbms_lob.lob_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.close(fil);
 exception
 WHEN no_data_found
 THEN
 BEGIN
 dbms_output.put_line('End of File reached. Closing file');
 dbms_lob.fileclose(fil);

 -- or dbms_lob.filecloseall if appropriate
 END;
END;
 /

Statement processed.
End of File reached. Closing file

In general, you should ensure that files opened in a PL/SQL block using DBMS_
LOB are closed before normal or abnormal termination of the block.

Maximum LOB Size
The maximum size of a LOB supported by the database is equal to the value of the
db_block_size initialization parameter times the value 4294967295. This allows
for a maximum LOB size ranging from 8 terabytes to 128 terabytes.

Maximum Buffer Size
The maximum buffer size, 32767 bytes, is represented by maxbufsize.

Operational Notes

All DBMS_LOB subprograms work based on LOB locators. For the successful
completion of DBMS_LOB subprograms, you must provide an input locator that
represents a LOB that already exists in the database tablespaces or external file
system. See also Chapter 1 of Oracle Database Application Developer's Guide - Large
Objects.

To use LOBs in your database, you must first use SQL data definition language
(DDL) to define the tables that contain LOB columns.

Using DBMS_LOB

DBMS_LOB 45-9

■ Internal LOBs

■ External LOBs

■ Temporary LOBs

Internal LOBs
To populate your table with internal LOBs after LOB columns are defined in a table,
you use the SQL data manipulation language (DML) to initialize or populate the
locators in the LOB columns.

External LOBs
For an external LOB (BFILE) to be represented by a LOB locator, you must:

■ Ensure that a DIRECTORY object representing a valid, existing physical
directory has been defined, and that physical files (the LOBs you plan to add)
exist with read permission for the database. If your operating system uses
case-sensitive path names, then be sure you specify the directory in the correct
format.

■ Pass the DIRECTORY object and the filename of the external LOB you are adding
to the BFILENAME function to create a LOB locator for your external LOB.

Once you have completed these tasks, you can insert or update a row containing a
LOB column using the given LOB locator.

After the LOBs are defined and created, you can then SELECT from a LOB locator
into a local PL/SQL LOB variable and use this variable as an input parameter to
DBMS_LOB for access to the LOB value.

For details on the different ways to do this, you must refer to the section of the
Oracle Database Application Developer's Guide - Large Objects that describes Accessing
External LOBs (BFILEs).

Temporary LOBs
The database supports the definition, creation, deletion, access, and update of
temporary LOBs. Your temporary tablespace stores the temporary LOB data.
Temporary LOBs are not permanently stored in the database. Their purpose is
mainly to perform transformations on LOB data.

For temporary LOBs, you must use the OCI, PL/SQL, or another programmatic
interface to create or manipulate them. Temporary LOBs can be either BLOBs,
CLOBs, or NCLOBs.

Operational Notes

45-10 PL/SQL Packages and Types Reference

A temporary LOB is empty when it is created. By default, all temporary LOBs are
deleted at the end of the session in which they were created. If a process dies
unexpectedly or if the database crashes, then temporary LOBs are deleted, and the
space for temporary LOBs is freed.

There is also an interface to let you group temporary LOBs together into a logical
bucket. The duration represents this logical store for temporary LOBs. Each
temporary LOB can have separate storage characteristics, such as CACHE/ NOCACHE.
There is a default store for every session into which temporary LOBs are placed if
you don't specify a specific duration. Additionally, you are able to perform a free
operation on durations, which causes all contents in a duration to be freed.

There is no support for consistent read (CR), undo, backup, parallel processing, or
transaction management for temporary LOBs. Because CR and rollbacks are not
supported for temporary LOBs, you must free the temporary LOB and start over
again if you encounter an error.

Because CR, undo, and versions are not generated for temporary LOBs, there is
potentially a performance impact if you assign multiple locators to the same
temporary LOB. Semantically, each locator should have its own copy of the
temporary LOB.

A copy of a temporary LOB is created if the user modifies the temporary LOB while
another locator is also pointing to it. The locator on which a modification was
performed now points to a new copy of the temporary LOB. Other locators no
longer see the same data as the locator through which the modification was made.
A deep copy was not incurred by permanent LOBs in these types of situations,
because CR snapshots and version pages enable users to see their own versions of
the LOB cheaply.

You can gain pseudo-REF semantics by using pointers to locators in OCI and by
having multiple pointers to locators point to the same temporary LOB locator, if
necessary. In PL/SQL, you must avoid using more than one locator for each
temporary LOB. The temporary LOB locator can be passed by reference to other
procedures.

Because temporary LOBs are not associated with any table schema, there are no
meanings to the terms in-row and out-of-row temporary LOBs. Creation of a
temporary LOB instance by a user causes the engine to create and return a locator to
the LOB data. The PL/SQL DBMS_LOB package, PRO*C, OCI, and other
programmatic interfaces operate on temporary LOBs through these locators just as
they do for permanent LOBs.

There is no support for client side temporary LOBs. All temporary LOBs reside in
the server.

Using DBMS_LOB

DBMS_LOB 45-11

Temporary LOBs do not support the EMPTY_BLOB or EMPTY_CLOB functions that
are supported for permanent LOBs. The EMPTY_BLOB function specifies the fact
that the LOB is initialized, but not populated with any data.

A temporary LOB instance can only be destroyed by using OCI or the DBMS_LOB
package by using the appropriate FREETEMPORARY or OCIDurationEnd
statement.

A temporary LOB instance can be accessed and modified using appropriate OCI and
DBMS_LOB statements, just as for regular permanent internal LOBs. To make a
temporary LOB permanent, you must explicitly use the OCI or DBMS_LOB COPY
command, and copy the temporary LOB into a permanent one.

Security is provided through the LOB locator. Only the user who created the
temporary LOB is able to see it. Locators are not expected to be able to pass from
one user's session to another. Even if someone did pass a locator from one session to
another, they would not access the temporary LOBs from the original session.
Temporary LOB lookup is localized to each user's own session. Someone using a
locator from somewhere else is only able to access LOBs within his own session that
have the same LOB ID. Users should not try to do this, but if they do, they are not
able to affect anyone else's data.

The database keeps track of temporary LOBs for each session in a v$ view called
V$TEMPORARY_LOBS, which contains information about how many temporary
LOBs exist for each session. V$ views are for DBA use. From the session, the
database can determine which user owns the temporary LOBs. By using
V$TEMPORARY_LOBS in conjunction with DBA_SEGMENTS, a DBA can see how
much space is being used by a session for temporary LOBs. These tables can be
used by DBAs to monitor and guide any emergency cleanup of temporary space
used by temporary LOBs.

The following notes are specific to temporary LOBs:

1. All functions in DBMS_LOB return NULL if any of the input parameters are
NULL. All procedures in DBMS_LOB raise an exception if the LOB locator is input
as NULL.

2. Operations based on CLOBs do not verify if the character set IDs of the
parameters (CLOB parameters, VARCHAR2 buffers and patterns, and so on)
match. It is the user's responsibility to ensure this.

3. Data storage resources are controlled by the DBA by creating different
temporary tablespaces. DBAs can define separate temporary tablespaces for
different users, if necessary.

Operational Notes

45-12 PL/SQL Packages and Types Reference

4. Temporary LOBs still adhere to value semantics in order to be consistent with
permanent LOBs and to try to conform to the ANSI standard for LOBs. As a
result, each time a user does an OCILobLocatatorAssign, or the equivalent
assignment in PL/SQL, the database makes a copy of the temporary LOB.

Each locator points to its own LOB value. If one locator is used to create a
temporary LOB, and then is assigned to another LOB locator using
OCILobLOcatorAssign in OCI or through an assignment operation in
PL/SQL, then the database copies the original temporary LOB and causes the
second locator to point to the copy.

In order for users to modify the same LOB, they must go through the same
locator. In OCI, this can be accomplished fairly easily by using pointers to
locators and assigning the pointers to point to the same locator. In PL/SQL, the
same LOB variable must be used to update the LOB to get this effect.

The following example shows a place where a user incurs a copy, or at least an
extra round-trip to the server.

DECLARE
 a blob;
 b blob;
BEGIN
 dbms_lob.createtemporary(b, TRUE);
 -- the following assignment results in a deep copy
 a := b;
END;

The PL/SQL compiler makes temporary copies of actual arguments bound to
OUT or IN OUT parameters. If the actual parameter is a temporary LOB, then the
temporary copy is a deep (value) copy.

The following PL/SQL block illustrates the case where the user incurs a deep
copy by passing a temporary LOB as an IN OUT parameter.

DECLARE
 a blob;
 procedure foo(parm IN OUT blob) is
 BEGIN
 ...
 END;
BEGIN
 dbms_lob.createtemporary(a, TRUE);
 -- the following call results in a deep copy of the blob a
 foo(a);
END;

Using DBMS_LOB

DBMS_LOB 45-13

To minimize deep copies on PL/SQL parameter passing, use the NOCOPY
compiler hint where possible.

The duration parameter passed to dbms_lob.createtemporary() is a hint.
The duration of the new temp LOB is the same as the duration of the locator
variable in PL/SQL. For example, in the preceding program block, the program
variable a has the duration of the residing frame. Therefore at the end of the
block, memory of a will be freed at the end of the function.

If a PL/SQL package variable is used to create a temp LOB, it will have the
duration of the package variable, which has a duration of SESSION.

BEGIN
 y clob;
 END;
/
BEGIN
 dbms_lob.createtemporary(package.y, TRUE);
END;

Exceptions

See Also: PL/SQL User's Guide and Reference for more information
on NOCOPY syntax

Table 45–2 DBMS_LOB Exceptions

Exception Code Description

INVALID_ARGVAL 21560 The argument is expecting a nonNULL, valid value but the
argument value passed in is NULL, invalid, or out of range.

ACCESS_ERROR 22925 You are trying to write too much data to the LOB: LOB size
is limited to 4 gigabytes.

NOEXIST_
DIRECTORY

22285 The directory leading to the file does not exist.

NOPRIV_
DIRECTORY

22286 The user does not have the necessary access privileges on
the directory or the file for the operation.

INVALID_
DIRECTORY

22287 The directory used for the current operation is not valid if
being accessed for the first time, or if it has been modified
by the DBA since the last access.

Exceptions

45-14 PL/SQL Packages and Types Reference

OPERATION_
FAILED

22288 The operation attempted on the file failed.

UNOPENED_FILE 22289 The file is not open for the required operation to be
performed.

OPEN_TOOMANY 22290 The number of open files has reached the maximum limit.

NO_DATA_FOUND EndofLob indicator for looping read operations. This is not
a hard error.

VALUE_ERROR 6502 PL/SQL error for invalid values to subprogram's
parameters.

Table 45–2 DBMS_LOB Exceptions

Exception Code Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-15

Summary of DBMS_LOB Subprograms

Table 45–3 DBMS_LOB Package Subprograms

Subprogram Description

APPEND Procedure on
page 45-17

Appends the contents of the source LOB to the destination
LOB

CLOSE Procedure on
page 45-19

Closes a previously opened internal or external LOB

COMPARE Function on
page 45-21

Compares two entire LOBs or parts of two LOBs

CONVERTTOBLOB
Procedure on page 45-24

Reads character data from a source CLOB or NCLOB instance,
converts the character data to the specified character, writes
the converted data to a destination BLOB instance in binary
format, and returns the new offsets

CONVERTTOCLOB
Procedure on page 45-28

Takes a source BLOB instance, converts the binary data in
the source instance to character data using the specified
character, writes the character data to a destination CLOB or
NCLOB instance, and returns the new offsets

COPY Procedure on
page 45-32

Copies all, or part, of the source LOB to the destination LOB

CREATETEMPORARY
Procedure on page 45-34

Creates a temporary BLOB or CLOB and its corresponding
index in the user's default temporary tablespace

ERASE Procedure on
page 45-35

Erases all or part of a LOB

FILECLOSE Procedure on
page 45-37

Closes the file

FILECLOSEALL Procedure
on page 45-39

Closes all previously opened files

FILEEXISTS Function on
page 45-40

Checks if the file exists on the server

FILEGETNAME Procedure
on page 45-42

Gets the directory object name and file name

FILEISOPEN Function on
page 45-43

Checks if the file was opened using the input BFILE
locators

Summary of DBMS_LOB Subprograms

45-16 PL/SQL Packages and Types Reference

FILEOPEN Procedure on
page 45-45

Opens a file

FREETEMPORARY
Procedure on page 45-47

Frees the temporary BLOB or CLOB in the user's default
temporary tablespace

GETCHUNKSIZE Function
on page 45-49

Returns the amount of space used in the LOB chunk to store
the LOB value

GETLENGTH Function on
page 45-51

Gets the length of the LOB value

GET_STORAGE_LIMIT on
page 45-48

Returns the storage limit for LOBs in your database
configuration

INSTR Function on
page 45-53

Returns the matching position of the nth occurrence of the
pattern in the LOB

ISOPEN Function on
page 45-56

Checks to see if the LOB was already opened using the input
locator

ISTEMPORARY Function on
page 45-58

Checks if the locator is pointing to a temporary LOB

LOADFROMFILE Procedure
on page 45-59

Loads BFILE data into an internal LOB

LOADBLOBFROMFILE
Procedure on page 45-62

Loads BFILE data into an internal BLOB

LOADCLOBFROMFILE
Procedure on page 45-65

Loads BFILE data into an internal CLOB

OPEN Procedure on
page 45-69

Opens a LOB (internal, external, or temporary) in the
indicated mode

READ Procedure on
page 45-71

Reads data from the LOB starting at the specified offset

SUBSTR Function on
page 45-74

Returns part of the LOB value starting at the specified offset

TRIM Procedure on
page 45-77

Trims the LOB value to the specified shorter length

WRITE Procedure on
page 45-79

Writes data to the LOB from a specified offset

WRITEAPPEND Procedure
on page 45-82

Writes a buffer to the end of a LOB

Table 45–3 (Cont.) DBMS_LOB Package Subprograms

Subprogram Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-17

APPEND Procedure

This procedure appends the contents of a source internal LOB to a destination LOB.
It appends the complete source LOB.

There are two overloaded APPEND procedures.

Syntax
DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB);

DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);

Parameters

Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

Table 45–4 APPEND Procedure Parameters

Parameter Description

dest_lob Locator for the internal LOB to which the data is to be appended.

src_lob Locator for the internal LOB from which the data is to be read.

Table 45–5 APPEND Procedure Exceptions

Exception Description

VALUE_ERROR Either the source or the destination LOB is NULL.

APPEND Procedure

45-18 PL/SQL Packages and Types Reference

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-19

CLOSE Procedure

This procedure closes a previously opened internal or external LOB.

Syntax
DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

DBMS_LOB.CLOSE (
 file_loc IN OUT NOCOPY BFILE);

Parameters

Exceptions
No error is returned if the BFILE exists but is not opened. An error is returned if
the LOB is not open.

Usage Notes
CLOSE requires a round-trip to the server for both internal and external LOBs. For
internal LOBs, CLOSE triggers other code that relies on the close call, and for
external LOBs (BFILEs), CLOSE actually closes the server-side operating system
file.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and non-LOB data in the transaction are committed, but

Table 45–6 CLOSE Procedure Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

CLOSE Procedure

45-20 PL/SQL Packages and Types Reference

the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-21

COMPARE Function

This function compares two entire LOBs or parts of two LOBs.

Syntax
DBMS_LOB.COMPARE (
 lob_1 IN BLOB,
 lob_2 IN BLOB,
 amount IN INTEGER := 4294967295,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.COMPARE (
 lob_1 IN CLOB CHARACTER SET ANY_CS,
 lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
 amount IN INTEGER := 4294967295,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.COMPARE (
 lob_1 IN BFILE,
 lob_2 IN BFILE,
 amount IN INTEGER,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

Pragmas
pragma restrict_references(COMPARE, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 45–7 COMPARE Function Parameters

Parameter Description

lob_1 LOB locator of first target for comparison.

lob_2 LOB locator of second target for comparison.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to compare.

COMPARE Function

45-22 PL/SQL Packages and Types Reference

Return Values
■ INTEGER: Zero if the comparison succeeds, nonzero if not.

■ NULL, if

– amount < 1

– amount > LOBMAXSIZE

– offset_1 or offset_2 < 1

* offset_1 or offset_2 > LOBMAXSIZE

Usage Notes
You can only compare LOBs of the same datatype (LOBs of BLOB type with other
BLOBs, and CLOBs with CLOBs, and BFILEs with BFILEs). For BFILEs, the file
must be already opened using a successful FILEOPEN operation for this operation
to succeed.

COMPARE returns zero if the data exactly matches over the range specified by the
offset and amount parameters. Otherwise, a nonzero INTEGER is returned.

For fixed-width n-byte CLOBs, if the input amount for COMPARE is specified to be
greater than (4294967295/n), then COMPARE matches characters in a range of size
(4294967295/n), or Max(length(clob1), length(clob2)), whichever is lesser.

Exceptions

offset_1 Offset in bytes or characters on the first LOB (origin: 1) for the
comparison.

offset_2 Offset in bytes or characters on the first LOB (origin: 1) for the
comparison.

Table 45–8 COMPARE Function Exceptions for BFILE operations

Exception Description

UNOPENED_FILE File was not opened using the input locator.

NOEXIST_
DIRECTORY

Directory does not exist.

Table 45–7 COMPARE Function Parameters

Parameter Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-23

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Table 45–8 COMPARE Function Exceptions for BFILE operations

Exception Description

CONVERTTOBLOB Procedure

45-24 PL/SQL Packages and Types Reference

CONVERTTOBLOB Procedure

This procedure reads character data from a source CLOB or NCLOB instance,
converts the character data to the character set you specify, writes the converted
data to a destination BLOB instance in binary format, and returns the new offsets.
You can use this interface with any combination of persistent or temporary LOB
instances as the source or destination.

Syntax
DBMS_LOB.CONVERTTOBLOB(
 dest_lob IN OUT NOCOPY BLOB,
 src_clob IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 45–9 CONVERTTOBLOB Procedure Parameters

Parameter Description

dest_lob LOB locator of the destination LOB instance.

src_blob LOB locator of the source LOB instance.

amount Number of characters to convert from the source LOB.

If you want to copy the entire LOB, pass the constant DBMS_
LOB.LOBMAXSIZE. If you pass any other value, it must be less than or
equal to the size of the LOB.

dest_offset (IN)Offset in bytes in the destination LOB for the start of the write.
Specify a value of 1 to start at the beginning of the LOB.

(OUT)The new offset in bytes after the end of the write.

src_offset (IN)Offset in characters in the source LOB for the start of the read.

(OUT)Offset in characters in the source LOB right after the end of the
read.

blob_csid Desired character set ID of the converted data.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-25

Usage Notes

Preconditions
Before calling the CONVERTTOBLOB procedure, the following preconditions must be
met:

■ Both the source and destination LOB instances must exist.

■ If the destination LOB is a persistent LOB, the row must be locked. To lock the
row, select the LOB using the FOR UPDATE clause of the SELECT statement.

Constants and Defaults
All parameters are required. You must pass a variable for each OUT or IN OUT
parameter. You must pass either a variable or a value for each IN parameter.

Table 45–10 gives a summary of typical values for each parameter. The first column
lists the parameter, the second column lists the typical value, and the last column
describes the result of passing the value. Note that constants are used for some
values. These constants are defined in the dbmslob.sql package specification file.

lang_context (IN) Language context, such as shift status, for the current
conversion.

(OUT) The language context at the time when the current conversion
is done.

This information is returned so you can use it for subsequent
conversions without losing or misinterpreting any source data. For the
very first conversion, or if do not care, use the default value of zero.

warning (OUT) Warning message. This parameter indicates when something
abnormal happened during the conversion. You are responsible for
checking the warning message.

Currently, the only possible warning is — inconvertible character. This
occurs when the character in the source cannot be properly converted
to a character in destination. The default replacement character (for
example, ’?’) is used in place of the inconvertible character. The return
value of this error message is defined as the constant warn_
inconvertable_char in the DBMS_LOB package.

Table 45–9 (Cont.) CONVERTTOBLOB Procedure Parameters (Cont.)

Parameter Description

CONVERTTOBLOB Procedure

45-26 PL/SQL Packages and Types Reference

General Notes
You must specify the desired character set for the destination LOB in the blob_
csid parameter. You can pass a zero value for blob_csid. When you do so, the
database assumes that the desired character set is the same as the source LOB
character set, and performs a binary copy of the data—no character set conversion
is performed.

You must specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source LOB. The amount and src_offset
values are in characters and the dest_offset is in bytes. To convert the entire
LOB, you can specify LOBMAXSIZE for the amount parameter.

Exceptions
Table 45–11 gives possible exceptions this procedure can throw. The first column
lists the exception string and the second column describes the error conditions that
can cause the exception.

Table 45–10 DBMS_LOB.CONVERTTOBLOB Typical Values

Parameter Value Description

amount lobmaxsize (IN) convert the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

csid default_csid (IN) default csid, use same csid as
source LOB

lang_context default_lang_ctx (IN) default language context

warning no_warning (OUT)

warn_inconvertible_char
(OUT)

no warning message, success

character in source cannot be
properly converted

Table 45–11 CONVERTTOBLOB Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-27

INVALID_ARGVAL One or more of the following:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

See Also: Oracle Database Application Developer's Guide - Large
Objects for more information on using LOBs in application
development

Table 45–11 (Cont.) CONVERTTOBLOB Procedure Exceptions

Exception Description

CONVERTTOCLOB Procedure

45-28 PL/SQL Packages and Types Reference

 CONVERTTOCLOB Procedure

This procedure takes a source BLOB instance, converts the binary data in the source
instance to character data using the character set you specify, writes the character
data to a destination CLOB or NCLOB instance, and returns the new offsets. You can
use this interface with any combination of persistent or temporary LOB instances as
the source or destination.

Syntax
DBMS_LOB.CONVERTTOCLOB(
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_blob IN BLOB,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 45–12 CONVERTTOCLOB Procedure Parameters

Parameter Description

dest_lob LOB locator of the destination LOB instance.

src_blob LOB locator of the source LOB instance.

amount Number of bytes to convert from the source LOB.

If you want to copy the entire BLOB, pass the constant DBMS_
LOB.LOBMAXSIZE. If you pass any other value, it must be less than or
equal to the size of the BLOB.

dest_offset (IN) Offset in characters in the destination LOB for the start of the
write. Specify a value of 1 to start at the beginning of the LOB.

(OUT) The new offset in characters after the end of the write. This
offset always points to the beginning of the first complete character
after the end of the write.

src_offset (IN) Offset in bytes in the source LOB for the start of the read.

(OUT) Offset in bytes in the source LOB right after the end of the
read.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-29

Usage Notes

Preconditions
Before calling the CONVERTTOCLOB procedure, the following preconditions must be
met:

■ Both the source and destination LOB instances must exist.

■ If the destination LOB is a persistent LOB, the row must be locked before calling
the CONVERTTOCLOB procedure. To lock the row, select the LOB using the FOR
UPDATE clause of the SELECT statement.

Constants and Defaults
All parameters are required. You must pass a variable for each OUT or IN OUT
parameter. You must pass either a variable or a value for each IN parameter.

Table 45–13 gives a summary of typical values for each parameter. The first column
lists the parameter, the second column lists the typical value, and the last column
describes the result of passing the value. Note that constants are used for some
values. These constants are defined in the dbmslob.sql package specification file.

blob_csid Desired character set ID of the converted data.

lang_context (IN) Language context, such as shift status, for the current
conversion.

(OUT) The language context at the time when the current conversion
is done.

This information is returned so you can use it for subsequent
conversions without losing or misinterpreting any source data. For the
very first conversion, or if do not care, use the default value of zero.

warning Warning message. This parameter indicates when something
abnormal happened during the conversion. You are responsible for
checking the warning message.

Currently, the only possible warning is — inconvertible character. This
occurs when the character in the source cannot be properly converted
to a character in destination. The default replacement character (for
example, ’?’) is used in place of the inconvertible character. The return
value of this error message is defined as the constant warn_
inconvertable_char in the DBMS_LOB package.

Table 45–12 (Cont.) CONVERTTOCLOB Procedure Parameters (Cont.)

Parameter Description

CONVERTTOCLOB Procedure

45-30 PL/SQL Packages and Types Reference

General Notes
You must specify the desired character set for the destination LOB in the blob_
csid parameter. You can pass a zero value for blob_csid. When you do so, the
database assumes that the BLOB contains character data in the same character set as
the destination CLOB, and performs a binary copy of the data to the destination
LOB, no character set conversion being performed.

You must specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BLOB. The amount and src_offset
values are in bytes and the dest_offset is in characters. To convert the entire
BLOB, you can specify LOBMAXSIZE for the amount parameter.

Exceptions

Table 45–13 DBMS_LOB.CONVERTTOCLOB Typical Values

Parameter Value Description

amount lobmaxsize (IN) convert the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

csid default_csid (IN) default csid, use destination
csid

lang_context default_lang_ctx (IN) default language context

warning no_warning (OUT)

warn_inconvertible_char
(OUT)

no warning message, success

character in source cannot be
properly converted

Table 45–14 CONVERTTOCLOB Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

INVALID_ARGVAL One or more of the following:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-31

See Also: Oracle Database Application Developer's Guide - Large
Objects for more information on using LOBs in application
development

COPY Procedure

45-32 PL/SQL Packages and Types Reference

COPY Procedure

This procedure copies all, or a part of, a source internal LOB to a destination internal
LOB. You can specify the offsets for both the source and destination LOBs, and the
number of bytes or characters to copy.

Syntax
DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Table 45–15 COPY Procedure Parameters

Parameter Description

dest_lob LOB locator of the copy target.

src_lob LOB locator of source for the copy.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to copy.

dest_offset Offset in bytes or characters in the destination LOB (origin: 1) for the
start of the copy.

src_offset Offset in bytes or characters in the source LOB (origin: 1) for the start
of the copy.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-33

Exceptions

Usage Notes
If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
BLOB or CLOB respectively. If the offset is less than the current length of the
destination LOB, then existing data is overwritten.

It is not an error to specify an amount that exceeds the length of the data in the
source LOB. Thus, you can specify a large amount to copy from the source LOB,
which copies data from the src_offset to the end of the source LOB.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Table 45–16 COPY Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or invalid.

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1

- src_offset or dest_offset > LOBMAXSIZE

- amount < 1

- amount > LOBMAXSIZE

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

CREATETEMPORARY Procedure

45-34 PL/SQL Packages and Types Reference

CREATETEMPORARY Procedure

This procedure creates a temporary BLOB or CLOB and its corresponding index in
your default temporary tablespace.

Syntax
DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB,
 cache IN BOOLEAN,
 dur IN PLS_INTEGER := 10);

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 cache IN BOOLEAN,
 dur IN PLS_INTEGER := 10);

Parameters

Table 45–17 CREATETEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

cache Specifies if LOB should be read into buffer cache or not.

dur 1 of 2 predefined duration values (SESSION or CALL) which
specifies a hint as to whether the temporary LOB is cleaned up at
the end of the session or call.

If dur is omitted, then the session duration is used.

See Also:

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

■ PL/SQL User's Guide and Reference for more information about
NOCOPY and passing temporary lobs as parameters

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-35

ERASE Procedure

This procedure erases an entire internal LOB or part of an internal LOB.

Syntax
DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

Parameters

Usage Notes

When data is erased from the middle of a LOB, zero-byte fillers or spaces are written
for BLOBs or CLOBs respectively.

The actual number of bytes or characters erased can differ from the number you
specified in the amount parameter if the end of the LOB value is reached before

Table 45–18 ERASE Procedure Parameters

Parameter Description

lob_loc Locator for the LOB to be erased.For more information, see
Operational Notes.

amount Number of bytes (for BLOBs or BFILES) or characters (for CLOBs or
NCLOBs) to be erased.

offset Absolute offset (origin: 1) from the beginning of the LOB in bytes (for
BLOBs) or characters (CLOBs).

Note: The length of the LOB is not decreased when a section of the
LOB is erased. To decrease the length of the LOB value, see the
"TRIM Procedure" on page 45-77.

ERASE Procedure

45-36 PL/SQL Packages and Types Reference

erasing the specified number. The actual number of characters or bytes erased is
returned in the amount parameter.

Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Table 45–19 ERASE Procedure Exceptions

Exception Description

VALUE_ERROR Any input parameter is NULL.

INVALID_ARGVAL Either:

- amount < 1 or amount > LOBMAXSIZE

- offset < 1 or offset > LOBMAXSIZE

See Also:

■ "TRIM Procedure" on page 45-77

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-37

FILECLOSE Procedure

This procedure closes a BFILE that has already been opened through the input
locator.

Syntax
DBMS_LOB.FILECLOSE (
 file_loc IN OUT NOCOPY BFILE);

Parameters

Exceptions

Note: The database has only read-only access to BFILEs. This
means that BFILEs cannot be written through the database.

Table 45–20 FILECLOSE Procedure Parameter

Parameter Description

file_loc Locator for the BFILE to be closed.

Table 45–21 FILECLOSE Procedure Exceptions

Exception Description

VALUE_ERROR NULL input value for file_loc.

UNOPENED_FILE File was not opened with the input locator.

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

FILECLOSE Procedure

45-38 PL/SQL Packages and Types Reference

See Also:

■ "FILEOPEN Procedure" on page 45-45

■ "FILECLOSEALL Procedure" on page 45-39

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-39

FILECLOSEALL Procedure

This procedure closes all BFILEs opened in the session.

Syntax
DBMS_LOB.FILECLOSEALL;

Exceptions

Table 45–22 FILECLOSEALL Procedure Exception

Exception Description

UNOPENED_FILE No file has been opened in the session.

See Also:

■ "FILEOPEN Procedure" on page 45-45

■ "FILECLOSE Procedure" on page 45-37

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

FILEEXISTS Function

45-40 PL/SQL Packages and Types Reference

FILEEXISTS Function

This function finds out if a given BFILE locator points to a file that actually exists
on the server's file system.

Syntax
DBMS_LOB.FILEEXISTS (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas
pragma restrict_references(FILEEXISTS, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Exceptions

Table 45–23 FILEEXISTS Function Parameter

Parameter Description

file_loc Locator for the BFILE.

Table 45–24 FILEEXISTS Function Return Values

Return Description

0 Physical file does not exist.

1 Physical file exists.

Table 45–25 FILEEXISTS Function Exceptions

Exception Description

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-41

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

See Also:

■ "FILEISOPEN Function" on page 45-43.

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Table 45–25 FILEEXISTS Function Exceptions

Exception Description

FILEGETNAME Procedure

45-42 PL/SQL Packages and Types Reference

FILEGETNAME Procedure

This procedure determines the directory object and filename, given a BFILE locator.
This function only indicates the directory object name and filename assigned to the
locator, not if the physical file or directory actually exists.

The maximum constraint values for the dir_alias buffer is 30, and for the entire
path name, it is 2000.

Syntax
DBMS_LOB.FILEGETNAME (
 file_loc IN BFILE,
 dir_alias OUT VARCHAR2,
 filename OUT VARCHAR2);

Parameters

Exceptions

Table 45–26 FILEGETNAME Procedure Parameters

Parameter Description

file_loc Locator for the BFILE

dir_alias Directory object name

filename Name of the BFILE

Table 45–27 FILEGETNAME Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

INVALID_ARGVAL dir_alias or filename are NULL.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-43

FILEISOPEN Function

This function finds out whether a BFILE was opened with the given FILE locator.

Syntax
DBMS_LOB.FILEISOPEN (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas
pragma restrict_references(FILEISOPEN, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
INTEGER: 0 = file is not open, 1 = file is open

Usage Notes
If the input FILE locator was never passed to the FILEOPEN procedure, then the
file is considered not to be opened by this locator. However, a different locator may
have this file open. In other words, openness is associated with a specific locator.

Exceptions

Table 45–28 FILEISOPEN Function Parameter

Parameter Description

file_loc Locator for the BFILE.

Table 45–29 FILEISOPEN Function Exceptions

Exception Description

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

FILEISOPEN Function

45-44 PL/SQL Packages and Types Reference

See Also:

■ "FILEEXISTS Function" on page 45-40

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-45

FILEOPEN Procedure

This procedure opens a BFILE for read-only access. BFILE data may not be written
through the database.

Syntax
DBMS_LOB.FILEOPEN (
 file_loc IN OUT NOCOPY BFILE,
 open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Exceptions

Table 45–30 FILEOPEN Procedure Parameters

Parameter Description

file_loc Locator for the BFILE.

open_mode File access is read-only.

Table 45–31 FILEOPEN Procedure Exceptions

Exception Description

VALUE_ERROR file_loc or open_mode is NULL.

INVALID_ARGVAL open_mode is not equal to FILE_READONLY.

OPEN_TOOMANY Number of open files in the session exceeds session_max_open_
files.

NOEXIST_
DIRECTORY

Directory associated with file_loc does not exist.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

FILEOPEN Procedure

45-46 PL/SQL Packages and Types Reference

See Also:

■ "FILECLOSE Procedure" on page 45-37

■ "FILECLOSEALL Procedure" on page 45-39

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-47

FREETEMPORARY Procedure

This procedure frees the temporary BLOB or CLOB in your default temporary
tablespace.

Syntax
DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

Parameters

Usage Notes
After the call to FREETEMPORARY, the LOB locator that was freed is marked as
invalid.

If an invalid LOB locator is assigned to another LOB locator using
OCILobLocatorAssign in OCI or through an assignment operation in PL/SQL,
then the target of the assignment is also freed and marked as invalid.

Table 45–32 FREETEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.For more information, see Operational
Notes.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

GET_STORAGE_LIMIT

45-48 PL/SQL Packages and Types Reference

GET_STORAGE_LIMIT

The DBMS_LOB.GET_STORAGE_LIMIT function returns the LOB storage limit for
your database configuration. The DBMS_LOB package supports LOB instances up
to this storage limit in size.

Syntax
DBMS_LOB.GET_STORAGE_LIMIT
 RETURN INTEGER;

Return Value
The value returned from this function is the maximum allowable size for LOB
instances for your database configuration. The return value depends on your DB_
BLOCK_SIZE initialization parameter setting and is calculated as (4 gigabytes
minus 1) times the value of the DB_BLOCK_SIZE initialization parameter.

Usage
Note that BLOB instances are sized in bytes while CLOB and NCLOB instances are
sized in characters.

See Also: Oracle Database Application Developer's Guide - Large
Objects for details on LOB storage limits

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-49

GETCHUNKSIZE Function

When creating the table, you can specify the chunking factor, which can be a
multiple of database blocks. This corresponds to the chunk size used by the LOB
data layer when accessing or modifying the LOB value. Part of the chunk is used to
store system-related information, and the rest stores the LOB value.

This function returns the amount of space used in the LOB chunk to store the LOB
value.

Syntax
DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Pragmas
pragma restrict_references(GETCHUNKSIZE, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The value returned for BLOBs is in terms of bytes. The value returned for CLOBs is
in terms of characters.

Usage Notes
Performance is improved if you enter read/write requests using a multiple of this
chunk size. For writes, there is an added benefit, because LOB chunks are versioned,
and if all writes are done on a chunk basis, then no extra or excess versioning is
done or duplicated. You could batch up the WRITE until you have enough for a
chunk, instead of issuing several WRITE calls for the same chunk.

Table 45–33 GETCHUNKSIZE Function Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

GETCHUNKSIZE Function

45-50 PL/SQL Packages and Types Reference

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-51

GETLENGTH Function

This function gets the length of the specified LOB. The length in bytes or characters
is returned.

The length returned for a BFILE includes the EOF, if it exists. Any 0-byte or space
filler in the LOB caused by previous ERASE or WRITE operations is also included in
the length count. The length of an empty internal LOB is 0.

Syntax
DBMS_LOB.GETLENGTH (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETLENGTH (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.GETLENGTH (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas
pragma restrict_references(GETLENGTH, WNDS, WNPS, RNDS, RNPS);

Parameters

Return Values
The length of the LOB in bytes or characters as an INTEGER. NULL is returned if the
input LOB is NULL or if the input lob_loc is NULL. An error is returned in the
following cases for BFILEs:

■ lob_loc does not have the necessary directory and operating system
privileges

■ lob_loc cannot be read because of an operating system read error

Table 45–34 GETLENGTH Function Parameter

Parameter Description

file_loc The file locator for the LOB whose length is to be returned.

GETLENGTH Function

45-52 PL/SQL Packages and Types Reference

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-53

INSTR Function

This function returns the matching position of the nth occurrence of the pattern in
the LOB, starting from the offset you specify.

Syntax
DBMS_LOB.INSTR (
 lob_loc IN BLOB,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.INSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.INSTR (
 file_loc IN BFILE,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

Pragmas
pragma restrict_references(INSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 45–35 INSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB to be examined. For more information, see
Operational Notes.

file_loc The file locator for the LOB to be examined.

INSTR Function

45-54 PL/SQL Packages and Types Reference

Return Values

Usage Notes
The form of the VARCHAR2 buffer (the pattern parameter) must match the form of
the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB,
then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is
of type CLOB, then the buffer must contain CHAR data.

For BFILEs, the file must be already opened using a successful FILEOPEN
operation for this operation to succeed.

Operations that accept RAW or VARCHAR2 parameters for pattern matching, such as
INSTR, do not support regular expressions or special matching characters (as in the
case of SQL LIKE) in the pattern parameter or substrings.

pattern Pattern to be tested for. The pattern is a group of RAW bytes for BLOBs,
and a character string (VARCHAR2) for CLOBs.The maximum size of
the pattern is 16383 bytes.

offset Absolute offset in bytes (BLOBs) or characters (CLOBs) at which the
pattern matching is to start. (origin: 1)

nth Occurrence number, starting at 1.

Table 45–36 INSTR Function Return Values

Return Description

INTEGER Offset of the start of the matched pattern, in bytes or characters.

It returns 0 if the pattern is not found.

NULL Either:

-any one or more of the IN parameters was NULL or INVALID.

-offset < 1 or offset > LOBMAXSIZE.

-nth < 1.

-nth > LOBMAXSIZE.

Table 45–35 INSTR Function Parameters

Parameter Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-55

Exceptions

Table 45–37 INSTR Function Exceptions for BFILES

Exception Description

UNOPENED_FILE File was not opened using the input locator.

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

See Also:

■ "SUBSTR Function" on page 45-74

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

ISOPEN Function

45-56 PL/SQL Packages and Types Reference

ISOPEN Function

This function checks to see if the LOB was already opened using the input locator.
This subprogram is for internal and external LOBs.

Syntax
DBMS_LOB.ISOPEN (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISOPEN (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.ISOPEN (
 file_loc IN BFILE)
 RETURN INTEGER;

Pragmas
pragma restrict_references(ISOPEN, WNDS, RNDS, WNPS, RNPS);

Parameters

Usage Notes
For BFILES, openness is associated with the locator. If the input locator was never
passed to OPEN, the BFILE is not considered to be opened by this locator.
However, a different locator may have opened the BFILE. More than one OPEN can
be performed on the same BFILE using different locators.

For internal LOBs, openness is associated with the LOB, not with the locator. If
locator1 opened the LOB, then locator2 also sees the LOB as open. For internal LOBs,
ISOPEN requires a round-trip, because it checks the state on the server to see if the
LOB is indeed open.

Table 45–38 ISOPEN Function Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

file_loc File locator.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-57

For external LOBs (BFILEs), ISOPEN also requires a round-trip, because that's
where the state is kept.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

ISTEMPORARY Function

45-58 PL/SQL Packages and Types Reference

ISTEMPORARY Function

This function determines whether a LOB instance is temporary.

Syntax
DBMS_LOB.ISTEMPORARY (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Pragmas
PRAGMA RESTRICT_REFERENCES(istemporary, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
This function returns TRUE in temporary if the locator is pointing to a temporary
LOB. It returns FALSE otherwise.

Table 45–39 ISTEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-59

LOADFROMFILE Procedure

This procedure copies all, or a part of, a source external LOB (BFILE) to a
destination internal LOB.

Syntax
DBMS_LOB.LOADFROMFILE (
 dest_lob IN OUT NOCOPY BLOB,
 src_file IN BFILE,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Usage Notes
You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE. The amount and src_offset,
because they refer to the BFILE, are in terms of bytes, and the dest_offset is
either in bytes or characters for BLOBs and CLOBs respectively.

Table 45–40 LOADFROMFILE Procedure Parameters

Parameter Description

dest_lob LOB locator of the target for the load.

src_file BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE.

dest_offset Offset in bytes or characters in the destination LOB (origin: 1) for the
start of the load.

src_offset Offset in bytes in the source BFILE (origin: 1) for the start of the load.

Note: The input BFILE must have been opened prior to using this
procedure. No character set conversions are performed implicitly
when binary BFILE data is loaded into a CLOB. The BFILE data
must already be in the same character set as the CLOB in the
database. No error checking is performed to verify this.

LOADFROMFILE Procedure

45-60 PL/SQL Packages and Types Reference

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
BLOB or CLOB respectively. If the offset is less than the current length of the
destination LOB, then existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Exceptions

Note: If the character set is varying width, UTF-8 for example, the
LOB value is stored in the fixed-width UCS2 format. Therefore, if
you are using DBMS_LOB.LOADFROMFILE, the data in the BFILE
should be in the UCS2 character set instead of the UTF-8 character
set. However, you should use sql*loader instead of
LOADFROMFILE to load data into a CLOB or NCLOB because
sql*loader will provide the necessary character set conversions.

Table 45–41 LOADFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-61

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

LOADBLOBFROMFILE Procedure

45-62 PL/SQL Packages and Types Reference

LOADBLOBFROMFILE Procedure

This procedure loads data from BFILE to internal BLOB. This achieves the same
outcome as LOADFROMFILE, and returns the new offsets.

Syntax
DBMS_LOB.LOADBLOBFROMFILE (
 dest_lob IN OUT NOCOPY BLOB,
 src_bfile IN BFILE,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER);

Parameters

Usage Notes
You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE. The amount and src_offset,
because they refer to the BFILE, are in terms of bytes, and the dest_offset is in
bytes for BLOBs.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination

Table 45–42 LOADBLOBFROMFILE Procedure Parameters

Parameter Description

dest_lob BLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE. You can also use DBMS_
LOB.LOBMAXSIZE to load until the end of the BFILE.

dest_offset (IN) Offset in bytes in the destination BLOB (origin: 1) for the start of
the write. (OUT) New offset in bytes in the destination BLOB
right after the end of this write, which is also where the next
write should begin.

src_offset (IN) Offset in bytes in the source BFILE (origin: 1) for the start of
the read.(OUT) Offset in bytes in the source BFILE right after the
end of this read, which is also where the next read should begin.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-63

BLOB. If the offset is less than the current length of the destination LOB, then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZE which you can specify to
continue loading until the end of the BFILE is reached).

It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must close it
before you commit or rollback the transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional and
domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Constants and Defaults
There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or provide a default value for the IN parameter. Here is a
summary of the constants and the defaults that can be used.
.

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := 4294967295;

Table 45–43 Suggested Values of the Parameter

Parameter Default Value Description

amount DBMSLOB.LOBMAXSIZE
(IN)

Load the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

LOADBLOBFROMFILE Procedure

45-64 PL/SQL Packages and Types Reference

Exceptions

Table 45–44 LOADBLOBFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-65

LOADCLOBFROMFILE Procedure

This procedure loads data from a BFILE to an internal CLOB/NCLOB with necessary
character set conversion and returns the new offsets.

Syntax
DBMS_LOB.LOADCLOBFROMFILE (
 dest_lob IN OUT NOCOPY BLOB,
 src_bfile IN BFILE,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 src_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 45–45 LOADCLOBFROMFILE Procedure Parameters

Parameter Description

dest_lob CLOB/NCLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE. Use DBMS_
LOB.LOBMAXSIZE to load until the end of the BFILE.

dest_offset (IN) Offset in characters in the destination CLOB (origin: 1) for the
start of the write. (OUT) The new offset in characters right after the
end of this load, which is also where the next load should start. It
always points to the beginning of the first complete character after the
end of load. If the last character is not complete, offset goes back to the
beginning of the partial character.

src_offset (IN) Offset in bytes in the source BFILE (origin: 1) for the start of
the read.(OUT)Offset in bytes in the source BFILE right after the end
of this read, which is also where the next read should begin.

src_csid Character set id of the source (BFILE) file.

LOADCLOBFROMFILE Procedure

45-66 PL/SQL Packages and Types Reference

Usage Notes
You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE. The amount and src_offset,
because they refer to the BFILE, are in terms of bytes, and the dest_offset is in
characters for CLOBs.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
CLOB. If the offset is less than the current length of the destination LOB, then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZE which you can specify to
continue loading until the end of the BFILE is reached).

Note the following requirements:

■ The destination character set is always the same as the database character set in
the case of CLOB and national character set in the case of NCLOB.

lang_context (IN) Language context, such as shift status, for the current
load. (OUT) The language context at the time when the
current load stopped, and what the next load should be using if
continuing loading from the same source. This information is
returned to the user so that they can use it for the continuous
load without losing or misinterpreting any source data. For the
very first load or if do not care, simply use the default 0. The
details of this language context is hidden from the user. One
does not need to know what it is or what's in it in order to
make the call

warning (OUT) Warning message. This indicates something abnormal
happened during the loading. It may or may not be caused by the
user's mistake. The loading is completed as required, and it's up to the
user to check the warning message. Currently, the only possible
warning is the inconvertible character. This happens when the
character in the source cannot be properly converted to a character in
destination, and the default replacement character (for example, '?') is
used in place. The message is defined as warn_inconvertable_char in
DBMSLOB.

Table 45–45 LOADCLOBFROMFILE Procedure Parameters

Parameter Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-67

■ csid=0 indicates the default behavior that uses database csid for CLOB and
national csid for NCLOB in the place of source csid. Conversion is still
necessary if it is of varying width

■ It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must
close it before you commit or rollback the transaction. When an internal LOB is
closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose
write operations to the LOB within the OPEN or CLOSE statement.

Constants and Defaults
There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or give a default value for the IN parameter. Here is a summary
of the constants and the defaults that can be used.
.

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := 4294967295;
warn_inconvertible_char CONSTANT INTEGER := 1;
default_csid CONSTANT INTEGER := 0;
default_lang_ctx CONSTANT INTEGER := 0;
no_warning CONSTANT INTEGER := 0;

Table 45–46 Suggested Values of the Parameter

Parameter Default Value Description

amount DBMSLOB.LOBMAX
SIZE (IN)

Load the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

csid 0 (IN) default csid, use destination csid

lang_context 0 (IN) default language context

warning 0 (OUT) no warning message, everything is ok

LOADCLOBFROMFILE Procedure

45-68 PL/SQL Packages and Types Reference

Exceptions

Table 45–47 LOADCLOBFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID.

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-69

OPEN Procedure

This procedure opens a LOB, internal or external, in the indicated mode. Valid
modes include read-only, and read/write.

Syntax
DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY BLOB,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
 file_loc IN OUT NOCOPY BFILE,
 open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Usage Notes

OPEN requires a round-trip to the server for both internal and external LOBs. For
internal LOBs, OPEN triggers other code that relies on the OPEN call. For external

Table 45–48 OPEN Procedure Parameters

Parameter Description

lob_loc LOB locator. For more information, see Operational Notes.

open_mode Mode in which to open.

For BLOB and CLOB types, the mode can be either:
lob_readonly or lob_readwrite.

 For BFILE types, the mode must be file_readonly.

Note: If the LOB was opened in read-only mode, and if you try to
write to the LOB, then an error is returned. BFILE can only be
opened with read-only mode.

OPEN Procedure

45-70 PL/SQL Packages and Types Reference

LOBs (BFILEs), OPEN requires a round-trip because the actual operating system file
on the server side is being opened.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and nonLOB data in the transaction are committed, but
the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-71

READ Procedure

This procedure reads a piece of a LOB, and returns the specified amount into the
buffer parameter, starting from an absolute offset from the beginning of the LOB.

The number of bytes or characters actually read is returned in the amount
parameter. If the input offset points past the End of LOB, then amount is set to 0,
and a NO_DATA_FOUND exception is raised.

Syntax
DBMS_LOB.READ (
 lob_loc IN BLOB,
 amount IN OUT NOCOPY BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

DBMS_LOB.READ (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT VARCHAR2 CHARACTER SET lob_loc%CHARSET);

DBMS_LOB.READ (
 file_loc IN BFILE,
 amount IN OUT NOCOPY BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

Parameters

Table 45–49 READ Procedure Parameters

Parameter Description

lob_loc Locator for the LOB to be read. For more information, see Operational
Notes.

file_loc The file locator for the LOB to be examined.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to read, or
number that were read.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1).

READ Procedure

45-72 PL/SQL Packages and Types Reference

Exceptions
Table 45–50 lists exceptions that apply to any LOB instance. Table 45–51 lists
exceptions that apply only to BFILEs.

buffer Output buffer for the read operation.

Table 45–50 READ Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset parameters are NULL.

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE

- amount is greater, in bytes or characters, than the capacity of
buffer.

NO_DATA_FOUND End of the LOB is reached, and there are no more bytes or
characters to read from the LOB: amount has a value of 0.

Table 45–51 READ Procedure Exceptions for BFILEs

Exception Description

UNOPENED_FILE File is not opened using the input locator.

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

Table 45–49 READ Procedure Parameters

Parameter Description

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-73

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.READ from the client (for example, in a BEGIN/END block
from within SQL*Plus), the returned buffer contains data in the client's character
set. The database converts the LOB value from the server's character set to the
client's character set before it returns the buffer to the user.

See Also: Oracle Database Application Developer's Guide - Large
Objects for additional details on usage of this procedure

SUBSTR Function

45-74 PL/SQL Packages and Types Reference

SUBSTR Function

This function returns amount bytes or characters of a LOB, starting from an
absolute offset from the beginning of the LOB.

For fixed-width n-byte CLOBs, if the input amount for SUBSTR is greater than
(32767/n), then SUBSTR returns a character buffer of length (32767/n), or the length
of the CLOB, whichever is lesser. For CLOBs in a varying-width character set, n is
the maximum byte-width used for characters in the CLOB.

Syntax
DBMS_LOB.SUBSTR (
 lob_loc IN BLOB,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN RAW;

DBMS_LOB.SUBSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

DBMS_LOB.SUBSTR (
 file_loc IN BFILE,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN RAW;

Pragmas
pragma restrict_references(SUBSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 45–52 SUBSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB to be read. For more information, see
Operational Notes.

file_loc The file locator for the LOB to be examined.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-75

Return Values

Exceptions

amount Number of bytes (for BLOBs) or characters (for CLOBs) to be read.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1).

Table 45–53 SUBSTR Function Return Values

Return Description

RAW Function overloading that has a BLOB or BFILE in parameter.

VARCHAR2 CLOB version.

NULL Either:

- any input parameter is NULL

- amount < 1

- amount > 32767

- offset < 1

- offset > LOBMAXSIZE

Table 45–54 SUBSTR Function Exceptions for BFILE operations

Exception Description

UNOPENED_FILE File is not opened using the input locator.

NOEXIST_
DIRECTORY

Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_
DIRECTORY

Directory has been invalidated after the file was opened.

INVALID_
OPERATION

File does not exist, or you do not have access privileges on the file.

Table 45–52 SUBSTR Function Parameters

Parameter Description

SUBSTR Function

45-76 PL/SQL Packages and Types Reference

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.SUBSTR from the client (for example, in a BEGIN/END
block from within SQL*Plus), the returned buffer contains data in the client's
character set. The database converts the LOB value from the server's character set to
the client's character set before it returns the buffer to the user.

See Also:

■ "INSTR Function" on page 45-53

■ "READ Procedure" on page 45-71

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-77

TRIM Procedure

This procedure trims the value of the internal LOB to the length you specify in the
newlen parameter. Specify the length in bytes for BLOBs, and specify the length in
characters for CLOBs.

If you attempt to TRIM an empty LOB, then nothing occurs, and TRIM returns no
error. If the new length that you specify in newlen is greater than the size of the
LOB, then an exception is raised.

Syntax
DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY BLOB,
 newlen IN INTEGER);

DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 newlen IN INTEGER);

 Parameters

Note: The TRIM procedure decreases the length of the LOB to the
value specified in the newlen parameter.

Table 45–55 TRIM Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB whose length is to be trimmed. For more
information, see Operational Notes.

newlen New, trimmed length of the LOB value in bytes for BLOBs or
characters for CLOBs.

TRIM Procedure

45-78 PL/SQL Packages and Types Reference

Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Table 45–56 TRIM Procedure Exceptions

Exception Description

VALUE_ERROR lob_loc is NULL.

INVALID_ARGVAL Either:

- new_len < 0

- new_len > LOBMAXSIZE

See Also:

■ "ERASE Procedure" on page 45-35

■ "WRITEAPPEND Procedure" on page 45-82

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-79

WRITE Procedure

This procedure writes a specified amount of data into an internal LOB, starting from
an absolute offset from the beginning of the LOB. The data is written from the
buffer parameter.

WRITE replaces (overwrites) any data that already exists in the LOB at the offset, for
the length you specify.

Syntax
DBMS_LOB.WRITE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 45–57 WRITE Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB to be written to. For more information, see
Operational Notes.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to write, or
number that were written.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1) for the write operation.

buffer Input buffer for the write.

WRITE Procedure

45-80 PL/SQL Packages and Types Reference

Exceptions

Usage Notes
There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer is written to the LOB. If the offset you specify is beyond the end of
the data currently in the LOB, then zero-byte fillers or spaces are inserted in the
BLOB or CLOB respectively.

The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.WRITE from the client (for example, in a BEGIN/END block
from within SQL*Plus), the buffer must contain data in the client's character set. The
database converts the client-side buffer to the server's character set before it writes
the buffer data to the LOB.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Table 45–58 WRITE Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset parameters are NULL, out of
range, or INVALID.

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-81

See Also:

■ "APPEND Procedure" on page 45-17

■ "COPY Procedure" on page 45-32

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

WRITEAPPEND Procedure

45-82 PL/SQL Packages and Types Reference

WRITEAPPEND Procedure

This procedure writes a specified amount of data to the end of an internal LOB. The
data is written from the buffer parameter.

Syntax
DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN BINARY_INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN BINARY_INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Usage Notes
There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer are written to the end of the LOB.

Exceptions

Table 45–59 WRITEAPPEND Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB to be written to. For more information,
see Operational Notes.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to write, or
number that were written.

buffer Input buffer for the write.

Table 45–60 WRITEAPPEND Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset parameters are NULL, out of
range, or INVALID.

Summary of DBMS_LOB Subprograms

DBMS_LOB 45-83

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.WRITEAPPEND from the client (for example, in a
BEGIN/END block from within SQL*Plus), the buffer must contain data in the
client's character set. The database converts the client-side buffer to the server's
character set before it writes the buffer data to the LOB.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs. If
you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE

See Also:

■ "APPEND Procedure" on page 45-17

■ "COPY Procedure" on page 45-32

■ "WRITE Procedure" on page 45-79

■ Oracle Database Application Developer's Guide - Large Objects for
additional details on usage of this procedure

Table 45–60 WRITEAPPEND Procedure Exceptions

Exception Description

WRITEAPPEND Procedure

45-84 PL/SQL Packages and Types Reference

DBMS_LOCK 46-1

46
DBMS_LOCK

The DBMS_LOCK package provides an interface to Oracle Lock Management
services. You can request a lock of a specific mode, give it a unique name
recognizable in another procedure in the same or another instance, change the lock
mode, and release it.

This chapter contains the following topics:

■ Using DBMS_LOCK

■ Overview

■ Security Model

■ Constants

■ Rules and Limits

■ Operational Notes

■ Summary of DBMS_LOCK Subprograms

See Also: For more information, and an example of how to use
the DBMS_LOCK package, see About User Locks in Oracle Database
Application Developer's Guide - Fundamentals

Using DBMS_LOCK

46-2 PL/SQL Packages and Types Reference

Using DBMS_LOCK

■ Overview

■ Security Model

■ Constants

■ Rules and Limits

■ Operational Notes

Overview

Some uses of user locks:

■ Providing exclusive access to a device, such as a terminal

■ Providing application-level enforcement of read locks

■ Detecting when a lock is released and cleanup after the application

■ Synchronizing applications and enforcing sequential processing

Security Model

There might be operating system-specific limits on the maximum number of total
locks available. This must be considered when using locks or making this package
available to other users. Consider granting the EXECUTE privilege only to specific
users or roles.

A better alternative would be to create a cover package limiting the number of locks
used and grant EXECUTE privilege to specific users. An example of a cover package
is documented in the DBMS_LOCK.SQL package specification file. The abbreviations
for these locks as they appear in Enterprise Manager monitors are in parentheses.

Using DBMS_LOCK

DBMS_LOCK 46-3

Constants

These are the various lock modes (nl -> "NuLl", ss -> "Sub Shared", sx -> "Sub
eXclusive", s -> "Shared", ssx -> "Shared Sub eXclusive", x -> "eXclusive").

A sub-share lock can be used on an aggregate object to indicate that share locks are
being acquired on subparts of the object. Similarly, a sub-exclusive lock can be used
on an aggregate object to indicate that exclusive locks are being acquired on
sub-parts of the object. A share-sub-exclusive lock indicates that the entire
aggregate object has a share lock, but some of the sub-parts may additionally have
exclusive locks.

Rules and Limits

When another process holds "held", an attempt to get "get" does the following:

Table 46–1 Constants - Names and Oracle Enterprise Manager Abbreviations

Constant Name Alternate Name(s)

Oracle Enterprise
Manager
Abbreviation

nl_mode
(1)

NuLl

ss_mode
(2)

Sub Shared ULRS

sx_mode
(3)

Sub eXclusive Row Exclusive Mode, ULRX

s_mode (4) Sub eXclusive Row Exclusive Mode, Intended
Exclusive

ULRSX

ssx_mode
(5

Shared Share Row Exclusive Mode

x_mode (6) eXclusive ULX

Table 46–2 Lock Compatibility

HELD
MODE GET NL GET SS GET SX GET S GET SSX GET X

NL Success Success Success Success Success Success

SS Success Success Success Success Success Fail

Operational Notes

46-4 PL/SQL Packages and Types Reference

maxwait constant integer := 32767;

The constant maxwait waits forever.

Operational Notes

User locks never conflict with Oracle locks because they are identified with the
prefix "UL". You can view these locks using the Enterprise Manager lock monitor
screen or the appropriate fixed views. User locks are automatically released when a
session terminates.The lock identifier is a number in the range of 0 to 1073741823.

Because a reserved user lock is the same as an Oracle lock, it has all the
functionality of an Oracle lock, such as deadlock detection. Be certain that any user
locks used in distributed transactions are released upon COMMIT, or an undetected
deadlock may occur.

DBMS_LOCK is most efficient with a limit of a few hundred locks for each session.
Oracle strongly recommends that you develop a standard convention for using
these locks in order to avoid conflicts among procedures trying to use the same
locks. For example, include your company name as part of your lock names.

SX Success Success Success Fail Fail Fail

S Success Success Fail Success Fail Fail

SSX Success Success Fail Fail Fail Fail

X Success Fail Fail Fail Fail Fail

Table 46–2 Lock Compatibility

HELD
MODE GET NL GET SS GET SX GET S GET SSX GET X

Summary of DBMS_LOCK Subprograms

DBMS_LOCK 46-5

Summary of DBMS_LOCK Subprograms

Table 46–3 DBMS_LOCK Package Subprograms

Subprogram Description

ALLOCATE_UNIQUE
Procedure on page 46-6

Allocates a unique lock ID to a named lock.

CONVERT Function on
page 46-8

Converts a lock from one mode to another.

RELEASE Function on
page 46-10

Releases a lock.

REQUEST Function on
page 46-11

Requests a lock of a specific mode.

SLEEP Procedure on page 46-13 Puts a procedure to sleep for a specific time.

ALLOCATE_UNIQUE Procedure

46-6 PL/SQL Packages and Types Reference

ALLOCATE_UNIQUE Procedure

This procedure allocates a unique lock identifier (in the range of 1073741824 to
1999999999) given a lock name. Lock identifiers are used to enable applications to
coordinate their use of locks. This is provided because it may be easier for
applications to coordinate their use of locks based on lock names rather than lock
numbers.

Syntax
DBMS_LOCK.ALLOCATE_UNIQUE (
 lockname IN VARCHAR2,
 lockhandle OUT VARCHAR2,
 expiration_secs IN INTEGER DEFAULT 864000);

Parameters

Table 46–4 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description

lockname Name of the lock for which you want to generate a unique ID.

Do not use lock names beginning with ORA$; these are
reserved for products supplied by Oracle.

lockhandle Returns the handle to the lock ID generated by ALLOCATE_
UNIQUE.

You can use this handle in subsequent calls to REQUEST,
CONVERT, and RELEASE.

A handle is returned instead of the actual lock ID to reduce the
chance that a programming error accidentally creates an
incorrect, but valid, lock ID. This provides better isolation
between different applications that are using this package.

LOCKHANDLE can be up to VARCHAR2 (128).

All sessions using a lock handle returned by ALLOCATE_
UNIQUE with the same lock name are referring to the same
lock. Therefore, do not pass lock handles from one session to
another.

Summary of DBMS_LOCK Subprograms

DBMS_LOCK 46-7

Usage Notes
If you choose to identify locks by name, you can use ALLOCATE_UNIQUE to
generate a unique lock identification number for these named locks.

The first session to call ALLOCATE_UNIQUE with a new lock name causes a unique
lock ID to be generated and stored in the dbms_lock_allocated table.
Subsequent calls (usually by other sessions) return the lock ID previously
generated.

A lock name is associated with the returned lock ID for at least expiration_secs
(defaults to 10 days) past the last call to ALLOCATE_UNIQUE with the given lock
name. After this time, the row in the dbms_lock_allocated table for this lock
name may be deleted in order to recover space. ALLOCATE_UNIQUE performs a
commit.

Exceptions
ORA-20000, ORU-10003: Unable to find or insert lock <lockname> into catalog
dbms_lock_allocated.

expiration_specs Number of seconds to wait after the last ALLOCATE_UNIQUE
has been performed on a given lock, before permitting that
lock to be deleted from the DBMS_LOCK_ALLOCATED table.

The default waiting period is 10 days. You should not delete
locks from this table. Subsequent calls to ALLOCATE_UNIQUE
may delete expired locks to recover space.

Note: Named user locks may be less efficient, because Oracle
uses SQL to determine the lock associated with a given name.

Table 46–4 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description

CONVERT Function

46-8 PL/SQL Packages and Types Reference

CONVERT Function

This function converts a lock from one mode to another. CONVERT is an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUE procedure.

Syntax
DBMS_LOCK.CONVERT(
 id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT)
 RETURN INTEGER;

Parameters

Return Values

Table 46–5 CONVERT Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

lockmode New mode that you want to assign to the given lock.

For the available modes and their associated integer identifiers,
see Constants on page 46-3.

timeout Number of seconds to continue trying to change the lock
mode.

If the lock cannot be converted within this time period, then
the call returns a value of 1 (timeout).

Table 46–6 CONVERT Function Return Values

Return Value Description

0 Success

1 Timeout

2 Deadlock

Summary of DBMS_LOCK Subprograms

DBMS_LOCK 46-9

3 Parameter error

4 Don't own lock specified by id or lockhandle

5 Illegal lock handle

Table 46–6 CONVERT Function Return Values

Return Value Description

RELEASE Function

46-10 PL/SQL Packages and Types Reference

RELEASE Function

This function explicitly releases a lock previously acquired using the REQUEST
function. Locks are automatically released at the end of a session. RELEASE is an
overloaded function that accepts either a user-defined lock identifier, or the lock
handle returned by the ALLOCATE_UNIQUE procedure.

Syntax
DBMS_LOCK.RELEASE (
 id IN INTEGER)
 RETURN INTEGER;

DBMS_LOCK.RELEASE (
 lockhandle IN VARCHAR2)
 RETURN INTEGER;

Parameters

Return Values

Table 46–7 RELEASE Function Parameter

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

Table 46–8 RELEASE Function Return Values

Return Value Description

0 Success

3 Parameter error

4 Do not own lock specified by id or lockhandle

5 Illegal lock handle

Summary of DBMS_LOCK Subprograms

DBMS_LOCK 46-11

REQUEST Function

This function requests a lock with a given mode. REQUEST is an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUE procedure.

Syntax
DBMS_LOCK.REQUEST(
 id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER DEFAULT X_MODE,
 timeout IN INTEGER DEFAULT MAXWAIT,
 release_on_commit IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER;

The current default values, such as X_MODE and MAXWAIT, are defined in the DBMS_
LOCK package specification.

Parameters

Table 46–9 REQUEST Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

lockmode Mode that you are requesting for the lock.

For the available modes and their associated integer identifiers,
see Constants on page 46-3.

timeout Number of seconds to continue trying to grant the lock.

If the lock cannot be granted within this time period, then the
call returns a value of 1 (timeout).

release_on_commit Set this parameter to TRUE to release the lock on commit or
roll-back.

Otherwise, the lock is held until it is explicitly released or until
the end of the session.

REQUEST Function

46-12 PL/SQL Packages and Types Reference

Return Values

Table 46–10 REQUEST Function Return Values

Return Value Description

0 Success

1 Timeout

2 Deadlock

3 Parameter error

4 Already own lock specified by id or lockhandle

5 Illegal lock handle

Summary of DBMS_LOCK Subprograms

DBMS_LOCK 46-13

SLEEP Procedure

This procedure suspends the session for a given period of time.

Syntax
DBMS_LOCK.SLEEP (
 seconds IN NUMBER);

Parameters

Table 46–11 SLEEP Procedure Parameters

Parameter Description

seconds Amount of time, in seconds, to suspend the session.

The smallest increment can be entered in hundredths of a
second; for example, 1.95 is a legal time value.

SLEEP Procedure

46-14 PL/SQL Packages and Types Reference

DBMS_LOGMNR 47-1

47
DBMS_LOGMNR

The DBMS_LOGMNR package contains procedures used to initialize the LogMiner
tool and to begin and end a LogMiner session.

This chapter contains the following topics:

■ Using DBMS_LOGMNR

■ Security Model

■ Constants

■ Operational Notes

■ Summary of DBMS_LOGMNR Subprograms

See Also: Oracle Database Utilities for information about using
LogMiner and DBMS_LOGMNR_D for information on the package
subprograms that extract a LogMiner dictionary and re-create
LogMiner tables in alternate tablespaces

Using DBMS_LOGMNR

47-2 PL/SQL Packages and Types Reference

Using DBMS_LOGMNR

■ Security Model

■ Constants

■ Operational Notes

Security Model

You must have the role, EXECUTE_CATALOG_ROLE to use the DBMS_LOGMNR
package.

Constants

Table 47–1 describes the constants for the ADD_LOGFILE options flag in the DBMS_
LOGMNR package.

Table 47–1 Constants for ADD_LOGFILE Options Flag

Constant Description

NEW Implicitly calls the DBMS_LOGMNR.END_LOGMNR procedure to
end the current LogMiner session and then creates a new
session. The new session starts a new list of redo log files to be
analyzed, beginning with the redo log file you specify.

ADDFILE Adds the specified redo log file to the list of redo log files to be
analyzed. Any attempt to add a duplicate file raises an
exception (ORA-01289). This is the default if no options flag is
specified.

Using DBMS_LOGMNR

DBMS_LOGMNR 47-3

Table 47–2 describes the constants for the START_LOGMNR options flag in the DBMS_
LOGMNR package.

Table 47–2 Constants for START_LOGMNR Options Flag

Constant Description

COMMITTED_DATA_ONLY If set, DML statements corresponding to committed
transactions are returned. DML statements corresponding to a
committed transaction are grouped together. Transactions are
returned in their commit order. Transactions that are rolled
back or in-progress are filtered out, as are internal redo records
(those related to index operations, management, and so on).

If this option is not set, all rows for all transactions (committed,
rolled back, and in-progress) are returned in the order in which
they are found in the redo logs (in order of SCN values).

SKIP_CORRUPTION Directs a select operation on the V$LOGMNR_CONTENTS view
to skip any corruptions in the redo log file being analyzed and
continue processing. This option works only when a block in
the redo log file (and not the header of the redo log file) is
corrupt. You should check the INFO column in the V$LOGMNR_
CONTENTS view to determine the corrupt blocks skipped by
LogMiner. When a corruption in the redo log file is skipped,
the OPERATION column contains the value CORRUPTED_
BLOCKS, and the STATUS column contains the value 1343.

DDL_DICT_TRACKING If the LogMiner dictionary in use is a flat file or in the redo log
files, LogMiner updates its internal dictionary if a DDL event
occurs. This ensures that correct SQL_REDO and SQL_UNDO
information is maintained for objects that are modified after
the LogMiner internal dictionary is built. The database to
which LogMiner is connected must be open.

This option cannot be used in conjunction with the DICT_
FROM_ONLINE_CATALOG option and cannot be used when the
LogMiner dictionary being used is one that was extracted to a
flat file prior to Oracle9i.

Constants

47-4 PL/SQL Packages and Types Reference

DICT_FROM_ONLINE_
CATALOG

Directs LogMiner to use the current online database dictionary
rather than a LogMiner dictionary contained in a flat file or in
the redo log files being analyzed.

This option cannot be used in conjunction with the DDL_
DICT_TRACKING option. The database to which LogMiner is
connected must be the same one that generated the redo log
files.

Expect to see a value of 2 in the STATUS column of the
V$LOGMNR_CONTENTS view if the table definition in the
database does not match the table definition in the redo log
file.

DICT_FROM_REDO_LOGS If set, LogMiner expects to find a LogMiner dictionary in the
redo log files that were specified. The redo log files are
specified with the DBMS_LOGMNR.ADD_LOGFILE procedure or
with the DBMS_LOGMNR.START_LOGMNR procedure with the
CONTINUOUS_MINE option.

NO_SQL_DELIMITER If set, the SQL delimiter (a semicolon) is not placed at the end
of reconstructed SQL statements. This is helpful for
applications that open a cursor and then execute the
reconstructed statements.

NO_ROWID_IN_STMT If set, the ROWID clause is not included in the reconstructed
SQL statements. The redo log file may already contain logically
unique identifiers for modified rows if supplemental logging is
enabled.

When using this option, you must be sure that supplemental
logging was enabled in the source database at the appropriate
level and that no duplicate rows exist in the tables of interest.
LogMiner does not make any guarantee regarding the
uniqueness of logical row identifiers.

PRINT_PRETTY_SQL If set, LogMiner formats the reconstructed SQL statements for
ease of reading. These reconstructed SQL statements are not
executable.

CONTINUOUS_MINE Directs LogMiner to automatically add redo log files, as
needed, to find the data of interest. You only need to specify
the first log to start mining, or just the starting SCN or date to
indicate to LogMiner where to begin mining logs. You are not
required to specify any redo log files explicitly. LogMiner
automatically adds and mines the (archived and online) redo
log files for the data of interest. This option requires that
LogMiner is connected to the same database instance that is
generating the redo log files.

Table 47–2 (Cont.) Constants for START_LOGMNR Options Flag

Constant Description

Using DBMS_LOGMNR

DBMS_LOGMNR 47-5

Operational Notes

A LogMiner session begins with a call to DBMS_LOGMNR.ADD_LOGFILE or DBMS_
LOGMNR.START_LOGMNR (the former if you plan to specify log files explicitly; the
latter if you plan to use continuous mining). The session ends with a call to DBMS_
LOGMNR.END_LOGMNR. Within a LogMiner session, you can specify the redo log
files to be analyzed and the SCN or time range of interest; then you can issue SQL
SELECT statements against the V$LOGMNR_CONTENTS view to retrieve the data of
interest.

Summary of DBMS_LOGMNR Subprograms

47-6 PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms

Table 47–3 DBMS_LOGMNR Package Subprograms

Subprogram Description

ADD_LOGFILE Procedure
on page 47-7

Adds a redo log file to the existing or newly created list of redo
log files for LogMiner to process, so that if a new list is created,
this marks the beginning of a LogMiner session

COLUMN_PRESENT
Function on page 47-9

You can call this function for any row returned from the
V$LOGMNR_CONTENTS view to determine if undo or redo
column values exist for the column specified by the column_
name input parameter to this function

END_LOGMNR
Procedure on page 47-11

Finishes a LogMiner session

MINE_VALUE Function
on page 47-12

You can call this function for any row returned from the
V$LOGMNR_CONTENTS view to retrieve the undo or redo
column value of the column specified by the column_name
input parameter to this function

REMOVE_LOGFILE
Procedure on page 47-14

Removes a redo log file from the list of redo log files for
LogMiner to process

START_LOGMNR
Procedure on page 47-16

Initializes the LogMiner utility and starts LogMiner (unless the
session was already started with a call to DBMS_LOGMNR.ADD_
LOGFILE)

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-7

ADD_LOGFILE Procedure

This procedure adds a file to an existing or newly created list of log files for
LogMiner to process.

Syntax
DBMS_LOGMNR.ADD_LOGFILE(
 LogFileName IN VARCHAR2,
 options IN BINARY_INTEGER default ADDFILE);

Parameters

Usage Notes
■ Before querying the V$LOGMNR_CONTENTS view, you must make a successful

call to the DBMS_LOGMNR.START_LOGMNR procedure (within the current
LogMiner session).

■ Unless you specify the CONTINUOUS_MINE option, the LogMiner session must
be set up with a list of redo log files to be analyzed. Use the ADD_LOGFILE
procedure to specify the list of redo log files to analyze.

■ If you are not using the CONTINUOUS_MINE option and you want to analyze
more than one redo log file, you must call the ADD_LOGFILE procedure
separately for each redo log file. The redo log files do not need to be registered
in any particular order.

■ Both archived and online redo log files can be mined.

Table 47–4 ADD_LOGFILE Procedure Parameters

Parameter Description

LogFileName Specifies the name of the redo log file to add to the list of redo log
files to be analyzed during this session.

options Does one of the following:

■ Starts a new LogMiner session and a new list of redo log files
for analysis (DBMS_LOGMNR.NEW)

■ Adds a file to an existing list of redo log files for analysis
(DBMS_LOGMNR.ADDFILE)

See Table 47–1, " Constants for ADD_LOGFILE Options Flag".

ADD_LOGFILE Procedure

47-8 PL/SQL Packages and Types Reference

■ After you have added the first redo log file to the list, each additional redo log
file that you add to the list must be associated with the same database and
database RESETLOGS SCN as the first redo log file. (The database RESETLOGS
SCN uniquely identifies each execution of an ALTER DATABASE OPEN
RESETLOGS statement. When the online redo logs are reset, Oracle creates a
new and unique incarnation of the database.)

■ To analyze the redo log files from a different database (or a database incarnation
with a different database RESETLOGS SCN) than that with which the current
list of redo log files is associated, use the END_LOGMNR procedure to end the
current LogMiner session, and then build a new list using the ADD_LOGFILE
procedure.

■ LogMiner matches redo log files by the log sequence number. Thus, two redo
log files with different names but with the same log sequence number will
return the ORA-01289 exception. For instance, the online counterpart of an
archived redo log file has a different name from the archived redo log file, but
attempting to register it with LogMiner after registering the archived
counterpart will result in the ORA-01289 exception being returned.

Exceptions
■ ORA-01284: file <filename> cannot be opened.

■ ORA-01287: file <filename> is from a different database incarnation.

■ ORA-01289: cannot add duplicate log file <filename>.

■ ORA-01290: cannot remove unlisted log file <filename>.

■ ORA-01324: cannot add file <filename> due to DB_ID mismatch.

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-9

COLUMN_PRESENT Function

This function is designed to be used in conjunction with the MINE_VALUE function.

If the MINE_VALUE function returns a NULL value, it can mean either:

■ The specified column is not present in the redo or undo portion of the data.

■ The specified column is present and has a NULL value.

To distinguish between these two cases, use the COLUMN_PRESENT function, which
returns a 1 if the column is present in the redo or undo portion of the data.
Otherwise, it returns a 0.

Syntax
DBMS_LOGMNR.COLUMN_PRESENT(
 sql_redo_undo IN RAW,
 column_name IN VARCHAR2 default '') RETURN NUMBER;

Parameters

Return Values
Table 47–6 describes the return values for the COLUMN_PRESENT function. The
COLUMN_PRESENT function returns 1 if the self-describing record (the first parameter)
contains the column specified in the second parameter. This can be used to determine the
meaning of NULL values returned by the DBMS_LOGMNR.MINE_VALUE function.

Table 47–5 COLUMN_PRESENT Function Parameters

Parameter Description

sql_redo_undo Specifies either the REDO_VALUE or the UNDO_VALUE column
in the V$LOGMNR_CONTENTS view from which to extract data
values. See the Usage Notes for more information.

column_name Specifies the fully qualified name (schema.table.column)
of the column for which this function will return information.

Table 47–6 Return Values for COLUMN_PRESENT Function

Return Description

0 Specified column is not present in this row of V$LOGMNR_
CONTENTS.

COLUMN_PRESENT Function

47-10 PL/SQL Packages and Types Reference

Usage Notes
■ To use the COLUMN_PRESENT function, you must have successfully started

LogMiner.

■ The COLUMN_PRESENT function must be invoked in the context of a select
operation on the V$LOGMNR_CONTENTS view.

■ The COLUMN_PRESENT function does not support LONG, LOB, ADT, or
COLLECTION datatypes.

■ The value for the sql_redo_undo parameter depends on the operation
performed and the data of interest:

– If an update operation was performed and you want to know what the
value was prior to the update operation, specify UNDO_VALUE.

– If an update operation was performed and you want to know what the
value is after the update operation, specify REDO_VALUE.

– If an insert operation was performed, typically you would specify REDO_
VALUE (because the value of a column prior to an insert operation will
always be null).

– If a delete operation was performed, typically you would specify UNDO_
VALUE (because the value of a column after a delete operation will always
be null).

Exceptions
■ ORA-01323: invalid state.

Currently, a LogMiner dictionary is not associated with the LogMiner session.
You must specify a LogMiner dictionary for the LogMiner session.

■ ORA-00904: invalid identifier.

The value specified for the column_name parameter was not a fully qualified
column name.

1 Column is present in this row of V$LOGMNR_CONTENTS.

Table 47–6 (Cont.) Return Values for COLUMN_PRESENT Function

Return Description

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-11

END_LOGMNR Procedure

This procedure finishes a LogMiner session. Because this procedure performs
cleanup operations that may not otherwise be done, you must use it to properly end
a LogMiner session. This procedure is called automatically when you log out of a
database session or when you call DBMS_LOGMNR.ADD_LOGFILE and specify the
NEW option.

Syntax
DBMS_LOGMNR.END_LOGMNR;

Exceptions
■ ORA-01307: No LogMiner session is currently active.

The END_LOGMNR procedure was called without adding any log files or before
the START_LOGMNR procedure was called.

MINE_VALUE Function

47-12 PL/SQL Packages and Types Reference

MINE_VALUE Function

This function facilitates queries based on a column's data value. This function takes
two arguments. The first one specifies whether to mine the redo (REDO_VALUE) or
undo (UNDO_VALUE) portion of the data. The second argument is a string that
specifies the fully qualified name of the column to be mined. The MINE_VALUE
function always returns a string that can be converted back to the original datatype.

Syntax
DBMS_LOGMNR.MINE_VALUE(
 sql_redo_undo IN RAW,
 column_name IN VARCHAR2 default '') RETURN VARCHAR2;

Parameters

Return Values

Usage Notes
■ To use the MINE_VALUE function, you must have successfully started

LogMiner.

Table 47–7 MINE_VALUE Function Parameters

Parameter Description

sql_redo_undo Specifies either the REDO_VALUE or the UNDO_VALUE column
in the V$LOGMNR_CONTENTS view from which to extract data
values. See the Usage Notes for more information.

column_name Specifies the fully qualified name (schema.table.column)
of the column for which this function will return information.

Table 47–8 Return Values for MINE_VALUE Function

Return Description

NULL The column is not contained within the self-describing record,
or the column value is NULL. To distinguish between the two
different null possibilities, use the DBMS_LOGMNR.COLUMN_
PRESENT function.

NON-NULL The column is contained within the self-describing record; the
value is returned in string format.

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-13

■ The MINE_VALUE function must be invoked in the context of a select operation
from the V$LOGMNR_CONTENTS view.

■ The MINE_VALUE function does not support LONG, LOB, ADT, or COLLECTION
datatypes.

■ The value for the sql_redo_undo parameter depends on the operation
performed and the data of interest:

– If an update operation was performed and you want to know what the
value was prior to the update operation, specify UNDO_VALUE.

– If an update operation was performed and you want to know what the
value is after the update operation, specify REDO_VALUE.

– If an insert operation was performed, typically you would specify REDO_
VALUE (because the value of a column prior to an insert operation will
always be null).

– If a delete operation was performed, typically you would specify UNDO_
VALUE (because the value of a column after a delete operation will always
be null).

Exceptions
■ ORA-01323: invalid state.

Currently, a LogMiner dictionary is not associated with the LogMiner session.
You must specify a LogMiner dictionary for the LogMiner session.

■ ORA-00904: invalid identifier.

The value specified for the column_name parameter was not a fully qualified
column name.

REMOVE_LOGFILE Procedure

47-14 PL/SQL Packages and Types Reference

REMOVE_LOGFILE Procedure

This procedure removes a redo log file from an existing list of redo log files for
LogMiner to process.

Syntax
DBMS_LOGMNR.REMOVE_LOGFILE(
 LogFileName IN VARCHAR2);

Parameters

Usage Notes
■ Before querying the V$LOGMNR_CONTENTS view, you must make a successful

call to to the DBMS_LOGMNR.START_LOGMNR procedure (within the current
LogMiner session).

■ You can use this procedure to remove a redo log file from the list of redo log
files for LogMiner to process if you know that redo log file does not contain any
data of interest.

■ Multiple redo log files can be removed by calling this procedure repeatedly.

■ The redo log files do not need to be removed in any particular order.

■ To start a new list of redo log files for analysis, use the END_LOGMNR procedure
to end the current LogMiner session, and then build a new list using the ADD_
LOGFILE procedure.

■ Even if you remove all redo log files from the list, any subsequent calls you
make to the ADD_LOGFILE procedure must match the database ID and
RESETLOGS SCN of the removed redo log files. Therefore, to analyze the redo

Note: This procedure replaces the REMOVEFILE constant that was
an option on the ADD_LOGFILE procedure prior to Oracle Database
10g.

Table 47–9 REMOVE_LOGFILE Procedure Parameters

Parameter Description

LogFileName Specifies the name of the redo log file to be removed from the list
of redo log files to be analyzed during this session.

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-15

log files from a different database (or a database incarnation with a different
database RESETLOGS SCN) than that with which the current list of redo log files
is associated, use the END_LOGMNR procedure to end the current LogMiner
session, and then build a new list using the ADD_LOGFILE procedure.

Exceptions
■ ORA-01290: cannot remove unlisted log file <filename>.

START_LOGMNR Procedure

47-16 PL/SQL Packages and Types Reference

START_LOGMNR Procedure

This procedure starts LogMiner by loading the dictionary that LogMiner will use to
translate internal schema object identifiers to names.

Syntax
DBMS_LOGMNR.START_LOGMNR(
 startScn IN NUMBER default 0,
 endScn IN NUMBER default 0,
 startTime IN DATE default '01-jan-1988',
 endTime IN DATE default '31-dec-2110',
 DictFileName IN VARCHAR2 default '',
 Options IN BINARY_INTEGER default 0);

Parameters

Table 47–10 START_LOGMNR Procedure Parameters

Parameter Description

startScn Directs LogMiner to return only redo records with an SCN greater
than or equal to the startScn specified. This fails if there is no
redo log file containing the specified startScn value. (You can
query the FILENAME, LOW_SCN, and NEXT_SCN columns in the
V$LOGMNR_LOGS view for each redo log file to determine the
range of SCN values contained in each redo log file.)

endScn Directs LogMiner to return only redo records with an SCN less
than or equal to the endScn specified. If you specify an endScn
value that is beyond the value in any redo log file, then LogMiner
will use the greatest endScn value in the redo log file that contains
the most recent changes. (You can query the FILENAME, LOW_
SCN, and NEXT_SCN columns in the V$LOGMNR_LOGS view for
each redo log file to determine the range of SCN values contained
in each redo log file.)

startTime Directs LogMiner to return only redo records with a timestamp
greater than or equal to the startTime specified. This fails if
there is no redo log file containing the specified startTime
value. (You can query the FILENAME, LOW_TIME, and HIGH_
TIME columns in the V$LOGMNR_LOGS view for each redo log file
to determine the range of time covered in each redo log file.)

This parameter is ignored if startScn is specified. See the Usage
Notes for additional information.

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-17

Usage Notes
■ LogMiner can use a dictionary that you previously extracted to the redo log

files or to a flat file, or you can specify that LogMiner use the online catalog if
LogMiner is mining data from the source system. See Oracle Database Utilities
and Chapter 48 in this manual for more information about the LogMiner
dictionary.

■ After executing the START_LOGMNR procedure, you can query the following
views:

– V$LOGMNR_CONTENTS - contains history of information in redo log files

– V$LOGMNR_DICTIONARY - contains current information about the
LogMiner dictionary file extracted to a flat file

– V$LOGMNR_PARAMETERS - contains information about the LogMiner
session

(You can query the V$LOGMNR_LOGS view after a redo log file list has been
added to the list of files that LogMiner is to mine.)

endTime Directs LogMiner to return only redo records with a timestamp
less than or equal to the endTime specified. If you specify an
endTime value that is beyond the value in any redo log file, then
LogMiner will use the greatest endTime in the redo log file that
contains the most recent changes. You can query the FILENAME,
LOW_TIME, and HIGH_TIME columns in the V$LOGMNR_LOGS
view for each redo log file to determine the range of time covered
in each redo log file.)

This parameter is ignored if endScn is specified. See the Usage
Notes for additional information.

DictFileName Specifies the flat file that contains the LogMiner dictionary. It is
used to reconstruct SQL_REDO and SQL_UNDO columns in
V$LOGMNR_CONTENTS, as well as to fully translate SEG_NAME,
SEG_OWNER, SEG_TYPE_NAME, TABLE_NAME, and TABLE_
SPACE columns. The fully qualified path name for the LogMiner
dictionary file must be specified. (This file must have been created
previously through the DBMS_LOGMNR_D.BUILD procedure.)

You need to specify this parameter only if neither DICT_FROM_
REDO_LOGS nor DICT_FROM_ONLINE_CATALOG is specified.

options See Table 47–2, " Constants for START_LOGMNR Options Flag".

Table 47–10 (Cont.) START_LOGMNR Procedure Parameters

Parameter Description

START_LOGMNR Procedure

47-18 PL/SQL Packages and Types Reference

■ Parameters and options are not persistent across calls to DBMS_
LOGMNR.START_LOGMNR. You must specify all desired parameters and options
(including SCN and time ranges) each time you call DBMS_LOGMNR.START_
LOGMNR

■ Be aware that specifying redo log files using a timestamp is not precise.

■ The CONTINUOUS_MINE option directs LogMiner to automatically add redo log
files, as needed, to find the data of interest. You need to specify only the first log
to start mining, or just the starting SCN or date to indicate to LogMiner where
to begin mining logs. Keep the following in mind when using the
CONTINUOUS_MINE option:

– The database control file will hold information about a limited number of
archived redo log files, although the number of entries can be quite large.
Query the V$ARCHIVED_LOGS view to determine which redo log file
entries will be found by LogMiner.

Even if an entry is listed in the database control file (and the V$ARCHIVED_
LOGS view), the archived redo log file may not be accessible by LogMiner
for various reasons. For example, the archived redo log file may have been
deleted or moved from its location (maybe because of a backup operation to
tape), or the directory where it resides may not be not available.

– If you specify the CONTINUOUS_MINE option and an ending time or SCN
that will occur in the future (or you do not specify an end time or SCN), a
query of the V$LOGMNR_CONTENTS view will not finish until the database
has generated redo log files beyond the specified time or SCN. In this
scenario, LogMiner will automatically add archived redo log files to the
LogMiner redo log file list as they are generated. In addition, in this
scenario only, LogMiner may automatically remove redo log files from the
list to keep it at 50 processed redo files. This is to save PGA memory as
LogMiner automatically adds redo log files to the list. If LogMiner did not
perform automated removal, memory could eventually be exhausted.

– LogMiner can mine online redo logs. However, if the CONTINUOUS_MINE
option is not specified, it is possible that the database is writing to the
online redo log file at the same time that LogMiner is reading the online
redo log file. If a log switch occurs while LogMiner is reading an online
redo log file, the database will overwrite what LogMiner is attempting to
read. The data that LogMiner returns if the file it is trying to read gets
overwritten by the database is unpredictable.

■ Keep the following in mind regarding starting and ending times or SCN ranges:

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-19

– If you specify neither a startTime nor a startScn parameter, LogMiner
will set the startScn parameter to use the lowest SCN value from the
redo log file that contains the oldest changes.

– If you specify both time and SCN values, LogMiner uses the SCN value or
values and ignores the time values.

– If you specify starting and ending time or SCN values and they are found in
the LogMiner redo log file list, then LogMiner mines the logs indicated by
those values.

– If you specify starting and ending times or SCN values that are not in the
LogMiner redo log file list, and you specify DBMS_LOGMNR.START_
LOGMNR without the CONTINUOUS_MINE option, and you specify:

* 0 for the startTime or startScn value, then the lowest SCN in the
LogMiner redo log file list will be used as the startScn

* A nonzero number for the startTime or startScn value, then an
error is returned

* 0 or a nonzero number for the endTime or endScn value, then the
highest SCN in the LogMiner redo log file list will be used as the
endScn

– If you specify starting and ending times or SCN values and they are not
found in the LogMiner redo log file list, and you specify DBMS_
LOGMNR.START_LOGMNR with the CONTINUOUS_MINE option, and you
specify:

* 0 for the startTime or startScn value, then an error is returned.

* A startTime or startScn value that is greater than any value in the
database's archived redo log files, then LogMiner starts mining in the
online redo log file. LogMiner will continue to process the online redo
log file until it finds a change at, or beyond, the requested starting point
before it returns rows from the V$LOGMNR_CONTENTS view.

* An endTime or endScn parameter value that indicates a time or SCN
in the future, then LogMiner includes the online redo log files when it
mines. When you query the V$LOGMNR_CONTENTS view, rows will be
returned from this view as changes are made to the database, and will
not stop until LogMiner sees a change beyond the requested ending
point.

* 0 for the endTime or endScn parameter value, then LogMiner
includes the online redo log files when it mines. When you query the

START_LOGMNR Procedure

47-20 PL/SQL Packages and Types Reference

V$LOGMNR_CONTENTS view, rows will be returned from this view as
changes are made to the database, and will not stop until you enter
CTL+C or you terminate the PL/SQL cursor.

Exceptions
■ ORA-01280: fatal LogMiner error.

The procedure fails with this exception if LogMiner encounters an internal
error.

■ ORA-01281: SCN range specified is invalid.

The startScn or endScn parameter value is not a valid SCN, or endScn is
less than startScn.

■ ORA-01282: date range specified is invalid.

The value for the startTime parameter was greater than the value specified
for the endTime parameter, or there was no redo log file that was compatible
with the date range specified with the startTime and endTime parameters.

■ ORA-01283: options parameter specified is invalid.

■ ORA-01284: file <filename> cannot be opened.

The LogMiner dictionary file specified in the DictFileName parameter has a
full path length greater than 256 characters, or the file cannot be opened.

■ ORA-01285: error reading file <filename>.

■ ORA-01291: missing log file.

Redo log files that are needed to satisfy the user's requested SCN or time range
are missing.

■ ORA-01292: no log file has been specified for the current LogMiner session.

■ ORA-01293: mounted database required for specified LogMiner options.

■ ORA-01294: error occurred while processing information in dictionary file
<filename>, possible corruption.

■ ORA-01295: DB_ID mismatch between dictionary <filename> and log files.

The specified LogMiner dictionary does not correspond to the database that
produced the log files being analyzed.

■ ORA-01296: character set mismatch between dictionary <filename> and log
files.

Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 47-21

■ ORA-01297: redo version mismatch between dictionary <filename> and log
files.

■ ORA-01299: dictionary <filename> corresponds to a different database
incarnation.

■ ORA-01300: writable database required for specified LogMiner options.

START_LOGMNR Procedure

47-22 PL/SQL Packages and Types Reference

DBMS_LOGMNR_D 48-1

48
DBMS_LOGMNR_D

The DBMS_LOGMNR_D package contains two procedures:

■ The BUILD procedure extracts the LogMiner data dictionary to either the redo
log files or to a flat file. This information is saved in preparation for future
analysis of redo log files using the LogMiner tool.

■ The SET_TABLESPACE procedure re-creates all LogMiner tables in an alternate
tablespace.

This chapter contains the following topic:

■ Using DBMS_LOGMNR_D

■ Overview

■ Security Model

■ Summary of DBMS_LOGMNR_D Subprograms

See Also: Oracle Database Utilities for information about using LogMiner
and DBMS_LOGMNR for information on the package subprograms used
in running a LogMiner session.

Using DBMS_LOGMNR_D

48-2 PL/SQL Packages and Types Reference

Using DBMS_LOGMNR_D

■ Overview

■ Security Model

Overview

Security Model

You must have the role, EXECUTE_CATALOG_ROLE to use the DBMS_LOGMNR_D
package.

Note: The LogMiner data dictionary consists of the memory data
structures and the database tables that are used to store and
retrieve information about objects and their versions. It is referred
to as the LogMiner dictionary throughout the LogMiner
documentation.

Summary of DBMS_LOGMNR_D Subprograms

DBMS_LOGMNR_D 48-3

Summary of DBMS_LOGMNR_D Subprograms

Table 48–1 DBMS_LOGMNR_D Package Subprograms

Procedure Description

BUILD Procedure on
page 48-4

Extracts the LogMiner dictionary to either a flat file or one or
more redo log files

SET_TABLESPACE
Procedure on page 48-8

Re-creates all LogMiner tables in an alternate tablespace

BUILD Procedure

48-4 PL/SQL Packages and Types Reference

BUILD Procedure

This procedure extracts the LogMiner data dictionary to either the redo log files or
to a flat file.

Syntax
DBMS_LOGMNR_D.BUILD (
 dictionary_filename IN VARCHAR2,
 dictionary_location IN VARCHAR2,
 options IN NUMBER);

Parameters
Table 48–2 describes the parameters for the BUILD procedure.

To extract the LogMiner dictionary to a flat file, you must supply a filename and
location.

To extract the LogMiner dictionary to the redo log files, specify only the STORE_
IN_REDO_LOGS option. The size of the LogMiner dictionary may cause it to be
contained in multiple redo log files.

The combinations of parameters used result in the following behavior:

■ If you do not specify any parameters, an error is returned.

■ If you specify a filename and location, without any options, the LogMiner
dictionary is extracted to a flat file with that name.

■ If you specify a filename and location, as well as the STORE_IN_FLAT_FILE
option, the LogMiner dictionary is extracted to a flat file with the specified
name.

Table 48–2 BUILD Procedure Parameters

Parameter Description

dictionary_filename Specifies the name of the LogMiner dictionary file.

dictionary_location Specifies the path to the LogMiner dictionary file directory.

options Specifies that the LogMiner dictionary is written to either a flat
file (STORE_IN_FLAT_FILE) or the redo log files (STORE_IN_
REDO_LOGS).

Summary of DBMS_LOGMNR_D Subprograms

DBMS_LOGMNR_D 48-5

■ If you do not specify a filename and location, but do specify the STORE_IN_
REDO_LOGS option, the LogMiner dictionary is extracted to the redo log files.

■ If you specify a filename and location, as well as the STORE_IN_REDO_LOGS
option, an error is returned.

■ If you do not specify a filename and location, but do specify the STORE_IN_
FLAT_FILE option, an error is returned.

Exceptions
■ ORA-01302: dictionary build options missing or incorrect.

This error is returned under the following conditions:

– If the value of the OPTIONS parameter is not one of the supported values
(STORE_IN_REDO_LOGS, STORE_IN_FLAT_FILE) or is not specified

– If the STORE_IN_REDO_LOGS option is not specified and neither the
dictionary_filename nor the dictionary_location parameter is
specified

– If the STORE_IN_REDO_LOGS option is specified and either the
dictionary_filename or the dictionary_location parameter is
specified

■ ORA-01308: initialization parameter UTL_FILE_DIR is not set.

■ ORA-01336: specified dictionary file cannot be opened.

This error is returned under the following conditions:

– The specified value for the dictionary_location does not exist.

– The UTL_FILE_DIR initialization parameter is not set to have access to
the dictionary_location.

– The dictionary file is read-only.

Usage Notes
■ Ideally, the LogMiner dictionary file will be created after all database dictionary

changes have been made and prior to the creation of any redo log files that are
to be analyzed. As of Oracle9i release 1 (9.0.1), you can use LogMiner to dump
the LogMiner dictionary to the redo log files or a flat file, perform DDL
operations, and dynamically apply the DDL changes to the LogMiner
dictionary.

BUILD Procedure

48-6 PL/SQL Packages and Types Reference

■ Do not run the DBMS_LOGMNR_D.BUILD procedure if there are any ongoing
DDL operations.

■ The database must be open when you run the DBMS_LOGMNR_D.BUILD
procedure.

■ When extracting a LogMiner dictionary to a flat file, the procedure queries the
dictionary tables of the current database and creates a text-based file containing
the contents of the tables. To extract a LogMiner dictionary to a flat file, the
following conditions must be met:

– You must specify a directory for use by the PL/SQL procedure. To do so, set
the initialization parameter UTL_FILE_DIR in the initialization parameter
file. For example:

UTL_FILE_DIR = /oracle/dictionary

After setting the parameter, you must shut down and restart the database
for this parameter to take effect. If you do not set this parameter, the
procedure will fail.

– You must ensure that no DDL operations occur while the LogMiner
dictionary build is running. Otherwise, the LogMiner dictionary file may
not contain a consistent snapshot of the database dictionary.

Be aware that the DDL_DICT_TRACKING option to the DBMS_LOGMNR.START_
LOGMNR procedure is not supported for flat file dictionaries created prior to
Oracle9i. If you attempt to use the DDL_DICT_TRACKING option with a
LogMiner database extracted to a flat file prior to Oracle9i, the ORA-01330 error
(problem loading a required build table) is returned.

■ To extract a LogMiner dictionary file to the redo log files, the following
conditions must be met:

– The DBMS_LOGMNR_D.BUILD procedure must be run on a system that is
running Oracle9i or later.

– Archivelog mode must be enabled in order to generate usable redo log files.

– The COMPATIBLE parameter in the initialization parameter file must be set
to 9.2.0 or higher.

– The database to which LogMiner is attached must be Oracle9i or later.

In addition, supplemental logging (at least the minimum level) should be
enabled to ensure that you can take advantage of all the features that LogMiner

Summary of DBMS_LOGMNR_D Subprograms

DBMS_LOGMNR_D 48-7

offers. See Oracle Database Utilities for information about using supplemental
logging with LogMiner.

Examples

Example 1: Extracting the LogMiner Dictionary to a Flat File
The following example extracts the LogMiner dictionary file to a flat file named
dictionary.ora in a specified path (/oracle/database).

SQL> EXECUTE dbms_logmnr_d.build('dictionary.ora', -
 '/oracle/database/', -
 options => dbms_logmnr_d.store_in_flat_file);

Example 2: Extracting the LogMiner Dictionary to the Redo Log Files
The following example extracts the LogMiner dictionary to the redo log files.

SQL> EXECUTE dbms_logmnr_d.build(-
 options => dbms_logmnr_d.store_in_redo_logs);

SET_TABLESPACE Procedure

48-8 PL/SQL Packages and Types Reference

SET_TABLESPACE Procedure

By default, all LogMiner tables are created to use the SYSAUX tablespace. However,
it may be desirable to have LogMiner tables use an alternate tablespace. Use this
procedure to move LogMiner tables to an alternate tablespace.

Syntax
DBMS_LOGMNR_D.SET_TABLESPACE(
 new_tablespace IN VARCHAR2);

Parameters

Usage Notes
■ Users upgrading from earlier versions of Oracle Database may find LogMiner

tables in the SYSTEM tablespace. Oracle encourages such users to consider
using the SET_TABLESPACE procedure to move the tables to the SYSAUX
tablespace once they are confident that they will not be downgrading to an
earlier version of Oracle Database.

■ Users of this routine must supply an existing tablespace.

Example: Using the DBMS_LOGMNR_D.SET_TABLESPACE Procedure
The following example shows the creation of an alternate tablespace and execution
of the DBMS_LOGMNR_D.SET_TABLESPACE procedure.

SQL> CREATE TABLESPACE logmnrts$ datafile '/usr/oracle/dbs/logmnrts.f'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

SQL> EXECUTE dbms_logmnr_d.set_tablespace('logmnrts$');

Table 48–3 SET_TABLESPACE Parameter

Parameter Description

new_tablespace A string naming a preexisting tablespace. To move all
LogMiner tables to employ this tablespace, supply this
parameter.

See Also: Oracle Database Concepts and Oracle Database SQL
Reference for information about tablespaces and how to create them

DBMS_LOGSTDBY 49-1

49
DBMS_LOGSTDBY

The DBMS_LOGSTDBY package provides procedures for configuring and managing
the logical standby database environment.

This chapter contains the following topics:

■ Using DBMS_LOGSTBY

■ Overview

■ Operational Notes

■ Summary of DBMS_LOGSTDBY Subprograms

See Also: Oracle Data Guard Concepts and Administration for more
information about logical standby databases

Using DBMS_LOGSTBY

49-2 PL/SQL Packages and Types Reference

Using DBMS_LOGSTBY

■ Overview

■ Operational Notes

Overview

The DBMS_LOGSTDBY package helps you manage the SQL Apply (logical standby
database) environment. The procedures in the DBMS_LOGSTDBY package help you
to accomplish the following main objectives:

■ Allow controlled access to tables in the standby database that may require
maintenance

■ Control how transactions are applied to the logical standby database

■ Provide a way to skip applying archived redo log files to selected tables or
entire schemas in the standby database, and describe how exceptions should be
handled

■ Manage initialization parameters used by log apply services

■ Ensure supplemental logging is enabled properly and build the LogMiner
dictionary

Operational Notes

Ensure you use the correct case when supplying schema and table names to the
DBMS_LOGSTDBY package. For example, the following statements show incorrect
and correct syntax for a SKIP procedure that skips changes to OE.TEST.

Incorrect statement:

EXECUTE DBMS_LOGSTDBY.SKIP ('DML', 'oe', 'test', null);

Because the names are specified with lowercase characters, the transactions that
update these columns will still be applied to the logical standby database.

Correct statement:

EXECUTE DBMS_LOGSTDBY.SKIP ('DML', 'OE', 'TEST', null);

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-3

Summary of DBMS_LOGSTDBY Subprograms

Table 49–1 DBMS_LOGSTDBY Package Subprograms

Subprogram Description

APPLY_SET Procedure on page 49-4 Sets the values of specific initialization
parameters that configure and maintain log
apply services

APPLY_UNSET Procedure on page 49-8 Resets the value of specific initialization
parameters to the system default values

BUILD Procedure on page 49-12 Ensures supplemental logging is enabled
properly and builds the LogMiner dictionary

INSTANTIATE_TABLE Procedure on
page 49-13

Creates and populates a table in the standby
database from a corresponding table in the
primary database

SKIP Procedure on page 49-15 Specifies which database operations that are
performed on the primary database should not
be applied to the logical standby database

SKIP_ERROR Procedure on page 49-22 Specifies criteria to follow if an error is
encountered, with the result that you can choose
to stop log apply services or ignore the error

SKIP_TRANSACTION Procedure on
page 49-25

Specifies transaction identification information
to skip (ignore) applying specific transactions to
the logical standby database

UNSKIP Procedure on page 49-27 Modifies the options set in the SKIP procedure

UNSKIP_ERROR Procedure on
page 49-30

Modifies the options set in the SKIP_ERROR
procedure

UNSKIP_TRANSACTION Procedure on
page 49-31

Modifies the options set in the SKIP_
TRANSACTION procedure

APPLY_SET Procedure

49-4 PL/SQL Packages and Types Reference

APPLY_SET Procedure

Use this procedure to set and modify the values of initialization parameters that
configure and manage log apply services in a logical standby database
environment. SQL apply cannot be running when you use this procedure.

Syntax
DBMS_LOGSTDBY.APPLY_SET (
 parameter IN VARCHAR,
 value IN VARCHAR);

Parameters

Table 49–2 APPLY_SET Procedure Parameters

Parameter Description

MAX_SGA Number of megabytes for the system global area (SGA)
that SQL Apply will use to cache change records. The
default value is 30 megabytes or less if the SHARED_POOL_
SIZE initialization parameter is set to a small value. In
most cases 30 megabytes is sufficient.

Note: In Oracle9i, the parameter default was one quarter of
the value set for the SHARED_POOL_SIZE initialization
parameter.

MAX_SERVERS Number of parallel query servers that SQL Apply uses to
read and apply redo. It defaults to the value of the
PARALLEL_MAX_SERVERS initialization parameter or 9,
whichever is lower. Because the correct value for this
parameter is really a function of the workload, it is best to
explicitly set the parameter, using a reasonable value that
will work in most cases.

Note: In Oracle9i, the MAX_SERVERS parameter defaulted
to the value of the PARALLEL_MAX_SERVERS initialization
parameter.

MAX_EVENTS_RECORDED Number of events that will be stored in the DBA_
LOGSTDBY_EVENTS table, which stores logical standby
event information.

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-5

TRANSACTION_CONSISTENCY Level of transaction consistency maintained between the
primary and standby databases. Specify one of the
following values:

FULL: Transactions are applied to the logical standby
database in the exact order in which they were committed
on the primary database. (Transactions are applied in
commit SCN order.) This is the default parameter setting.

READ_ONLY: Transactions are committed out of order
(which provides better performance), but SQL SELECT
statements executed on the standby database always return
consistent results based on the last consistent SCN known
to SQL apply.

NONE: Transactions are applied out of order from how they
were committed on the primary database, and no attempt
is made to provide read-consistent results.

Regardless of the level chosen, modifications done to the
same row are always applied in the same order as they
happened in the primary database. See the Usage Notes for
details and recommendations.

RECORD_SKIP_ERRORS Controls whether skipped errors (as described by the
SKIP_ERROR procedure) are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Skipped errors are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Skipped errors are not recorded in the DBA_
LOGSTDBY_EVENTS table.

RECORD_SKIP_DDL Controls whether skipped DDL statements are recorded in
the DBA_LOGSTDBY_EVENTS table. Specify one of the
following values:

TRUE: Skipped DDL statements are recorded in the DBA_
LOGSTDBY_EVENTS table. This is the default parameter
setting.

FALSE: Skipped DDL statements are not recorded in the
DBA_LOGSTDBY_EVENTS table.

Table 49–2 (Cont.) APPLY_SET Procedure Parameters

Parameter Description

APPLY_SET Procedure

49-6 PL/SQL Packages and Types Reference

Usage Notes
■ Although the default values provided by the system for initialization

parameters are adequate for most applications, you might want to use the
APPLY_SET procedure when you need to perform tuning and maintenance
tasks. For example, use the APPLY_SET procedure when you want to override
default initialization parameter values to tune log apply services.

■ Log apply services must not be applying archived redo log data to the standby
database when you modify initialization parameters with the APPLY_SET
procedure. The initialization parameter values that you set using this procedure
do not become active until you start log apply services.

■ Use the APPLY_UNSET Procedure to reverse (undo) the actions of the
APPLY_SET procedure.

■ For the TRANSACTION_CONSISTENCY parameter:

– The FULL option (the default) is recommended when the logical standby
database is used for generic reporting applications. This option results in
the lowest performance.

– The READ_ONLY option is recommended when the logical standby database
is used for read-only reporting.

RECORD_APPLIED_DDL Controls whether DDL statements that have been applied
to the logical standby database are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Indicates that DDL statements applied to the logical
standby database are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Indicates that applied DDL statements are not
recorded.

APPLY_SERVERS Controls the number of parallel execution servers used to
apply changes. See Oracle Data Guard Concepts and
Administration for an explanation of the logical standby
processes.

PREPARE_SERVERS Controls the number of parallel execution servers used to
prepare changes. See Oracle Data Guard Concepts and
Administration for an explanation of the logical standby
processes.

Table 49–2 (Cont.) APPLY_SET Procedure Parameters

Parameter Description

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-7

SQL Apply periodically refreshes an SCN maintained in SGA that
represents a consistent state. Queries executed on the standby database,
automatically use Oracle Flashback to the maintained SCN. This is
beneficial when the logical standby database is being used to generate
reports. Any Oracle Flashback restrictions apply to this option.

– The NONE option works well as long as applications that are reading the
logical standby database make no assumptions about transaction order. The
NONE option is also useful when the logical standby database is in catch-up
mode.

The NONE option results in the best performance of the three options for the
TRANSACTION_CONSISTENCY parameter. However, this setting might give
you inconsistent results on the standby database. If applications that are
reading the logical standby database make no assumptions about
transaction order, this option works well. For example:

* On the primary database, one transaction added a new customer and a
second transaction added a new order for that customer.

* On the standby database, those transactions may be reversed. The order
for the new customer might be added first. If you then run a reporting
application on the standby database that expects to find a customer for
the new order, the reporting application might fail because constraints
are not checked and triggers are not fired.

Examples
If parallel queries are routinely being performed by applications, a certain number
of parallel query servers should be reserved for those queries. To allocate 30 parallel
query servers for logical standby log apply services, enter the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('MAX_SERVERS', 30);

Thus, if the PARALLEL_MAX_SERVERS parameter is set to 50, 30 servers will be
available for logical standby processing and 20 parallel query servers will be
allocated for parallel query processing.

Note: If log apply services cannot allocate the parallel query
server it requires because parallel queries are currently being
processed, log apply services may stop. If this happens, start log
apply services again.

APPLY_UNSET Procedure

49-8 PL/SQL Packages and Types Reference

APPLY_UNSET Procedure

Use the APPLY_UNSET procedure to reverse or undo the settings that you made
with the APPLY_SET procedure. The APPLY_UNSET procedure resets the specified
initialization parameter value to the system default value. The initialization
parameter default value does not become active until log apply services are started.

Syntax
DBMS_LOGSTDBY.APPLY_UNSET (
 parameter IN VARCHAR);

Parameters

Table 49–3 APPLY_UNSET Procedure Parameters

Parameter Description

MAX_SGA Number of megabytes for the system global area (SGA)
allocation for log apply services cache. The default value is
one quarter of the value set for the SHARED_POOL_SIZE
initialization parameter.

MAX_SERVERS Number of parallel query servers specifically reserved for
log apply services. By default, log apply services use all
available parallel query servers to read the log files and
apply changes. See Oracle Database Reference for more
information about parallel query servers.

MAX_EVENTS_RECORDED Number of events that will be stored in the DBA_
LOGSTDBY_EVENTS table, which stores logical standby
event information.

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-9

TRANSACTION_CONSISTENCY Level of transaction consistency maintained between the
primary and standby databases. Specify one of the
following values:

FULL: Transactions are applied to the logical standby
database in the exact order in which they were committed
on the primary database. (Transactions are applied in
commit SCN order.) This is the default parameter setting.

READ_ONLY: Transactions are committed out of order
(which provides better performance), but SQL SELECT
statements executed on the standby database always return
consistent results based on the last consistent SCN known
to SQL apply.

NONE: Transactions are applied out of order from how they
were committed on the primary database, and no attempt
is made to provide read-consistent results.

Regardless of the level chosen, modifications done to the
same row are always applied in the same order as they
happened in the primary database. See the Usage Notes for
details and recommendations.

RECORD_SKIP_ERRORS Controls whether skipped errors (as described by the
SKIP_ERROR procedure) are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Skipped errors are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Skipped errors are not recorded in the DBA_
LOGSTDBY_EVENTS table.

RECORD_SKIP_DDL Controls whether skipped DDL statements are recorded in
the DBA_LOGSTDBY_EVENTS table. Specify one of the
following values:

TRUE: Skipped DDL statements are recorded in the DBA_
LOGSTDBY_EVENTS table. This is the default parameter
setting.

FALSE: Skipped DDL statements are not recorded in the
DBA_LOGSTDBY_EVENTS table.

Table 49–3 (Cont.) APPLY_UNSET Procedure Parameters

Parameter Description

APPLY_UNSET Procedure

49-10 PL/SQL Packages and Types Reference

Usage Notes
■ Log apply services must not be applying archived redo log data to the standby

database when you modify initialization parameters with the APPLY_UNSET
procedure.

■ Use the APPLY_SET procedure to set the values of initialization parameters.

Examples
To unset the number of parallel query servers for log apply services, enter the
following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('MAX_SERVERS');

Assuming that the PARALLEL_MAX_SERVERS initialization parameter is set to 50,
this statement will result in 50 parallel query servers being available for parallel
query processing. This is because, by default, log apply services use all available
parallel query servers to read the log files and apply changes.

RECORD_APPLIED_DDL Controls whether DDL statements that have been applied
to the logical standby database are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Indicates that DDL statements applied to the logical
standby database are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Indicates that applied DDL statements are not
recorded.

APPLY_SERVERS Controls the number of parallel execution servers used to
apply changes. See Oracle Data Guard Concepts and
Administration for an explanation of the logical standby
processes.

PREPARE_SERVERS Controls the number of parallel execution servers used to
prepare changes. See Oracle Data Guard Concepts and
Administration for an explanation of the logical standby
processes.

Table 49–3 (Cont.) APPLY_UNSET Procedure Parameters

Parameter Description

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-11

Note: If log apply services cannot allocate the parallel query
server it requires because parallel queries are currently being
processed, log apply services may stop. If this happens, start log
apply services again.

BUILD Procedure

49-12 PL/SQL Packages and Types Reference

BUILD Procedure

Use this procedure on the primary database to preserve important metadata
(LogMiner dictionary) information in the redo logs. If supplemental logging has not
been set correctly, this procedure sets it up and enables it automatically.

Syntax
DBMS_LOGSTDBY.BUILD;

Usage Notes
■ Supplemental log information includes extra information in the archived redo

logs that helps log apply services to uniquely identify and correctly maintain
tables in a logical standby database.

■ LogMiner dictionary information allows log apply services to interpret data in
the redo logs.

■ The ALTER DATABASE CREATE LOGICAL STANDBY CONTROLFILE
statement also performs this functionality.

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-13

INSTANTIATE_TABLE Procedure

This procedure creates and populates a table in the standby database from a
corresponding table in the primary database. The table requires the name of the
database link (dblink) as an input parameter.

Use the INSTANTIATE_TABLE procedure to:

■ Add a table to a standby database

■ Re-create a table in a standby database

Syntax
DBMS_LOGSTDBY.INSTANTIATE_TABLE (
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 dblink IN VARCHAR2);

Parameters

Usage Notes
■ Use this procedure to create and populate a table in a way that keeps the data

on the standby database transactionally consistent with the primary database.

■ This procedure assumes that the metadata has been maintained correctly.

■ This table is not safe until the redo log that was current on the primary database
at the time of execution is applied to the standby database.

Examples
Enter this statement to create and populate a new table on the standby database.

Table 49–4 INSTANTIATE_TABLE Procedure Parameters

Parameter Description

schema_name Name of the schema.

table_name Name of the table to be created or re-created in the standby
database.

dblink Name of the database link account that has privileges to read and
lock the table in the primary database.

INSTANTIATE_TABLE Procedure

49-14 PL/SQL Packages and Types Reference

SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE (
 'myschema', 'mytable', 'mydblink');

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-15

SKIP Procedure

Use the SKIP procedure to define filters that prevent the application of SQL
statements on the logical standby database.

By default, all SQL statements executed on a primary database are applied to a
logical standby database. If only a subset of activity on a primary database is of
interest for application to the standby database, you can use the SKIP procedure to
define filters that prevent the application of SQL statements on the logical standby
database. While skipping (ignoring) SQL statements is the primary goal of filters, it
is also possible to associate a stored procedure with a DDL filter so that runtime
determinations can be made whether to skip the statement, execute this statement,
or execute a replacement statement.

Syntax
DBMS_LOGSTDBY.SKIP (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 proc_name IN VARCHAR2,
 use_like IN BOOLEAN,
 esc IN CHAR1);

Parameters

Table 49–5 SKIP Procedure Parameters

Parameter Description

stmt Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 49–6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the stmt
parameter. If not applicable, this value must be set to NULL.

object_name The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the stmt. If not
applicable, this value must be set to NULL.

SKIP Procedure

49-16 PL/SQL Packages and Types Reference

proc_name Name of a stored procedure to call when log apply services
determines that a particular statement matches the filter defined
by the stmt, schema_name, and object_name parameters.
Specify the procedure in the following format:

'"schema"."package"."procedure"'

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services calls the stored procedure with the following
call signature:

■ IN STATEMENT VARCHAR2 -- The SQL statement that
matches the filter

■ IN STATEMENT_TYPE VARCHAR2 -- The stmt of the filter

■ IN SCHEMA VARCHAR2 -- The schema_name of the filter, if
applicable

■ IN NAME VARCHAR2 -- The object_name of the filter, if
applicable

■ IN XIDUSN NUMBER -- Transaction ID part 1

■ IN XIDSLT NUMBER -- Transaction ID part 2

■ IN XIDSQN NUMBER -- Transaction ID part 3

■ OUT SKIP_ACTION NUMBER -- Action to be taken by log
apply services upon completion of this routine. Valid values
are:

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_SKIP -- Skip the statement

SKIP_ACTION_REPLACE -- Execute the replacement
statement supplied in the NEW_STATEMENT output parameter

■ OUT NEW_STATEMENT VARCHAR2 -- The statement to
execute in place of the original statement. Use of this option
requires that SKIP_ACTION be set to SKIP_ACTION_
REPLACE. Otherwise, set this option to NULL.

Table 49–5 (Cont.) SKIP Procedure Parameters

Parameter Description

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-17

Usage Notes

■ Use the SKIP procedure with caution, particularly when skipping DDL
statements. If a CREATE TABLE statement is skipped, for example, you must
also specify other DDL statements that refer to that table in the SKIP procedure.
Otherwise, the statements will fail and cause an exception. When this happens,
log apply services stop running.

■ Before calling the SKIP procedure, log apply services must be halted. Do this by
issuing an ALTER DATABASE STOP LOGICAL STANDBY APPLY statement.
Once all desired filters have been specified, issue an ALTER DATABASE START
LOGICAL STANDBY APPLY statement to start log apply services using the new
filter settings.

use_like Allows pattern matching to isolate the tables that you want to
skip on the logical standby database. The use_like parameter
matches a portion of one character value to another by searching
the first value for the pattern specified by the second, and
calculates strings using characters as defined by the input
character set. This parameter follows the same rules for pattern
matching described in the Oracle Database SQL Reference.

esc Identifies an escape character (such as the character "/") that you
can use for pattern matching. If the escape character appears in
the pattern before the character "%" or "_" then Oracle interprets
this character literally in the pattern, rather than as a special
pattern matching character. See Oracle Database SQL Reference for
more information about pattern matching.

Caution: Atomic execution cannot be guaranteed if hardware or
software failures stop log apply services. In a failure situation, a
statement maybe executed more than once.

These stored procedures are not supported with DBMS_
LOGSTDBY.SKIP('DML'...). If multiple wildcards match a
given database statement object defined by the stmt parameter,
only one of the matching stored procedures will be called
(alphabetically, by procedure).

Table 49–5 (Cont.) SKIP Procedure Parameters

Parameter Description

SKIP Procedure

49-18 PL/SQL Packages and Types Reference

■ See the UNSKIP Procedure for information about reversing (undoing) the
settings of the SKIP procedure.

Skip Statement Options
Table 49–6 lists the supported values for the stmt parameter of the SKIP
procedure. The left column of the table lists the keywords that may be used to
identify the set of SQL statements to the right of the keyword. Any of the SQL
statements in the right column, however, are also valid values. Note that keywords
are generally defined by database object.

Table 49–6 Supported Values for stmt Parameter

Keyword Associated SQL Statements

NON_SCHEMA_DDL All DDL that does not pertain to a particular schema

SCHEMA_DLL All DDL that pertains to a particular schema

DML Sequence operations such as sequence.nextval

CLUSTER CREATE CLUSTER
AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT
DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DIMENSION CREATE DIMENSION
ALTER DIMENSION
DROP DIMENSION

DIRECTORY CREATE DIRECTORY
DROP DIRECTORY

INDEX CREATE INDEX
ALTER INDEX
DROP INDEX

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-19

PROCEDURE1 CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK STATEMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Log-ons

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT SQL_statements
NOAUDIT SQL_statements

SYSTEM GRANT GRANT system_privileges_and_roles
REVOKE system_privileges_and_roles

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

Table 49–6 (Cont.) Supported Values for stmt Parameter

Keyword Associated SQL Statements

SKIP Procedure

49-20 PL/SQL Packages and Types Reference

Exceptions

Examples
The following example shows how to use the SKIP procedure to skip (ignore) a
schema on the logical standby database.

TABLESPACE CREATE TABLESPACE
DROP TABLESPACE
TRUNCATE TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER with ENABLE and DISABLE clauses
DROP TRIGGER
ALTER TABLE with ENABLE ALL TRIGGERS clause
ALTER TABLE with DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE
DROP TYPE
DROP TYPE BODY

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

1 Java schema objects (sources, classes, and resources) are considered the same as procedure for
purposes of skipping (ignoring) SQL statements.

Table 49–7 DBMS_LOGSTDBY.SKIP Procedure Exceptions

Exception Description

ORA-16203 "Unable to interpret skip procedure return values."

Indicates that a SKIP procedure has either generated an exception
or has returned ambiguous values. You can identify the offending
procedure by examining the DBA_LOGSTDBY_EVENTS view.

Table 49–6 (Cont.) Supported Values for stmt Parameter

Keyword Associated SQL Statements

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-21

Example 1 Skip a Schema
To skip changes for a given schema, you must prevent log apply services from
creating new objects in the schema and from modifying existing objects in the
schema. In addition, the tablespace that supports the schema must not change. The
following example demonstrates this using the SKIP procedure in a situation where
schema smith has some number of tables defined in tablespace bones that we wish to
ignore.

BEGIN
DBMS_LOGSTDBY.SKIP('SCHEMA_DDL', 'SMITH', '%', null);
DBMS_LOGSTDBY.SKIP('DML', 'SMITH', '%', null);
DBMS_LOGSTDBY.SKIP('TABLESPACE', null, null, 'SMITH.PROTECT_BONES');

END;

In the previous example, wildcards were used for the object_name parameter to
indicate that the filter applies to all objects. In the last call to the SKIP procedure,
the PROTECT_BONES procedure was supplied so that TABLESPACE could prevent
tablespace operations on BONES. The following example is the definition for the
PROTECT_BONES procedure:

CREATE OR REPLACE PROCEDURE PROTECT_BONES (statement IN VARCHAR2,
 statement_type IN VARCHAR2,
 schema IN VARCHAR2,
 name IN VARCHAR2,
 xidusn IN NUMBER,
 xidslt IN NUMBER,
 xidsqn IN NUMBER,
 skip_action OUT NUMBER,
 new_statement OUT VARCHAR2) AS
 BEGIN
 -- Init
 new_statement := NULL;

 -- Guaranteed to be either CREATE, DROP, or TRUNCATE TABLESPACE
 IF statement LIKE '%TABLESPACE BONES%'
 THEN
 -- Skip the statement
 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;
 ELSE
 -- Apply the statement
 skip_action := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;
 END IF;
 END protect_bones;

SKIP_ERROR Procedure

49-22 PL/SQL Packages and Types Reference

SKIP_ERROR Procedure

Upon encountering an error, the logical standby feature uses the criteria contained
in this procedure to determine if the error should cause log apply services to stop.
All errors to be skipped are stored in system tables that describe how exceptions
should be handled.

Syntax
DBMS_LOGSTDBY.SKIP_ERROR (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 proc_name IN VARCHAR2,
 use_like IN BOOLEAN,
 esc IN CHAR1);

Parameters

Table 49–8 SKIP_ERROR Procedure Parameters

Parameter Description

stmt Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 49–6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the stmt
parameter. If not applicable, this value must be set to NULL.

object_name The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the stmt. If not
applicable, this value must be set to NULL.

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-23

proc_name Name of a stored procedure to call when log apply services
determines a particular statement matches the filter defined by
the stmt, schema_name, and object_name parameters. Specify
the procedure in the following format:

'"schema"."package"."procedure"'

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services call the stored procedure with the following
call signature:

■ IN STATEMENT VARCHAR(4000) -- The first 4K of the
statement

■ IN STATEMENT_TYPE VARCHAR2 -- The stmt of the filter

■ IN SCHEMA VARCHAR2 -- The schema_name of the filter, if
applicable

■ IN NAME VARCHAR2 -- The object_name of the filter, if
applicable

■ IN XIDUSN NUMBER -- Transaction ID part 1

■ IN XIDSLT NUMBER -- Transaction ID part 2

■ IN XIDSQN NUMBER -- Transaction ID part 3

■ IN ERROR VARCHAR(4000) -- Text of error to be recorded
(optional)

■ OUT NEW_ERROR VARCHAR(4000) -- Null or modified error
text

use_like Allows pattern matching to isolate the tables that you want to
skip on the logical standby database. The use_like parameter
matches a portion of one character value to another by searching
the first value for the pattern specified by the second, and
calculates strings using characters as defined by the input
character set. This parameter follows the same rules for pattern
matching described in the Oracle Database SQL Reference.

esc Identifies an escape character (such as the characters "%" or "_")
that you can use for pattern matching. If the escape character
appears in the pattern before the character "%" or "_" then Oracle
interprets this character literally in the pattern, rather than as a
special pattern matching character. See Oracle Database SQL
Reference for more information about pattern matching.

Table 49–8 (Cont.) SKIP_ERROR Procedure Parameters

Parameter Description

SKIP_ERROR Procedure

49-24 PL/SQL Packages and Types Reference

Usage Notes
■ A stored procedure provided to the SKIP_ERROR procedure is called when log

apply services encounter an error that could shut down the application of redo
logs to the standby database.

Running this stored procedure affects the error being written in the STATUS
column of the DBA_LOGSTDBY_EVENTS table. The STATUS_CODE column
remains unchanged. If the stored procedure is to have no effect, that is, apply
will be stopped, then the NEW_ERROR is written to the events table. To truly
have no effect, set NEW_ERROR to ERROR in the procedure.

If the stored procedure requires that a shutdown be avoided, then you must set
NEW_ERROR to NULL.

Example
DBMS_LOGSTDBY.SKIP_ERROR('DDL', 'joe', 'apptemp', null);

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-25

SKIP_TRANSACTION Procedure

This procedure provides a way to skip (ignore) applying transactions to the logical
standby database. You can skip specific transactions by specifying transaction
identification information.

You may want to use the SKIP_TRANSACTION procedure to:

■ Skip a DDL transaction that has already failed and that might otherwise cause
log apply services to stop.

■ Skip a DDL transaction that may logically corrupt data.

Syntax
DBMS_LOGSTDBY.SKIP_TRANSACTION (
 XIDUSN IN NUMBER,
 XIDSLT NUMBER IN NUMBER,
 XIDSQN NUMBER IN NUMBER);

Parameters
Table 49–9 describes the parameters for the SKIP_TRANSACTION procedure.

Usage Notes
If log apply services stop due to a particular transaction (for example, a DDL
transaction), you can specify that transaction ID and then continue to apply. You can
call this procedure multiple times for as many transactions as you want log apply
services to ignore.

Table 49–9 SKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER Transaction ID sequence number of the transaction being skipped.

SKIP_TRANSACTION Procedure

49-26 PL/SQL Packages and Types Reference

■ View the last statement in DBA_LOGSTDBY_EVENTS to determine the reason
that log apply services stopped processing transactions to the logical standby
database. Examine the statement and error condition provided.

■ Use the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that
are going to be skipped by log apply services.

■ Also, see the ALTER DATABASE START LOGICAL STANDBY SKIP FAILED
TRANSACTION statement in Oracle Database SQL Reference.

CAUTION: To skip a DML failure, use a SKIP procedure, such as
SKIP('DML','MySchema','MyFailed Table'). Using the
SKIP_TRANSACTION procedure for DML transactions may skip
changes for other tables, thus logically corrupting them.

Note: Do not let the primary and logical standby databases
diverge when skipping transactions. If possible, you should
manually execute a compensating transaction in place of the
skipped transaction.

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-27

UNSKIP Procedure

This procedure reverses the actions of the SKIP procedure by finding the record,
matching all the parameters, and removing the record from the system table. The
match must be exact, and multiple skip actions can be undone only by a matching
number of unskip actions. You cannot undo multiple skip actions using wildcard
characters.

Syntax
DBMS_LOGSTDBY.UNSKIP (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2);

Parameters

Table 49–10 UNSKIP Procedure Parameters

Parameter Description

stmt Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 49–6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the stmt
parameter. If not applicable, this value must be set to NULL.

object_name The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the stmt. If not
applicable, this value must be set to NULL.

UNSKIP Procedure

49-28 PL/SQL Packages and Types Reference

proc_name Name of a stored procedure to call when log apply services
determines that a particular statement matches the filter defined
by the stmt, schema_name, and object_name parameters.
Specify the procedure in the following format:

'"schema"."package"."procedure"'

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services calls the stored procedure with the following
call signature:

■ IN STATEMENT VARCHAR2 -- The SQL statement that
matches the filter

■ IN STATEMENT_TYPE VARCHAR2 -- The stmt of the filter

■ IN SCHEMA VARCHAR2 -- The schema_name of the filter, if
applicable

■ IN NAME VARCHAR2 -- The object_name of the filter, if
applicable

■ IN XIDUSN NUMBER -- Transaction ID part 1

■ IN XIDSLT NUMBER -- Transaction ID part 2

■ IN XIDSQN NUMBER -- Transaction ID part 3

■ OUT SKIP_ACTION NUMBER -- Action to be taken by log
apply services upon completion of this routine. Valid values
are:

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_SKIP -- Skip the statement

SKIP_ACTION_REPLACE -- Execute the replacement
statement supplied in the NEW_STATEMENT output parameter

■ OUT NEW_STATEMENT VARCHAR2 -- The statement to
execute in place of the original statement. Use of this option
requires that SKIP_ACTION be set to SKIP_ACTION_
REPLACE. Otherwise, set this option to NULL.

Table 49–10 (Cont.) UNSKIP Procedure Parameters

Parameter Description

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-29

Usage Notes

use_like Allows pattern matching to isolate the tables that you want to
skip on the logical standby database. The use_like parameter
matches a portion of one character value to another by searching
the first value for the pattern specified by the second, and
calculates strings using characters as defined by the input
character set. This parameter follows the same rules for pattern
matching described in the Oracle Database SQL Reference.

esc Identifies an escape character (such as the character "/") that you
can use for pattern matching. If the escape character appears in
the pattern before the character "%" or "_" then Oracle interprets
this character literally in the pattern, rather than as a special
pattern matching character. See Oracle Database SQL Reference for
more information about pattern matching.

CAUTION: If DML changes for a table have been skipped, you
must follow the call to the UNSKIP procedure with a call to a
procedure that will import the affected table.

Table 49–10 (Cont.) UNSKIP Procedure Parameters

Parameter Description

UNSKIP_ERROR Procedure

49-30 PL/SQL Packages and Types Reference

UNSKIP_ERROR Procedure

This procedure reverses or undoes the actions of the SKIP_ERROR procedure by
finding the record, matching all the parameters, and removing the record from the
system table. The match must be exact, and multiple skip actions can be undone
only by a matching number of unskip actions. You cannot undo multiple skip
actions with just one unskip procedure call.

Syntax
DBMS_LOGSTDBY.UNSKIP_ERROR (
 stmt IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2);

Parameters
The parameter information for the UNSKIP_ERROR procedure is the same as that
described for the SKIP_ERROR procedure. See Table 49–8 for complete parameter
information.

Example
DBMS_LOGSTDBY.UNSKIP_ERROR;

Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 49-31

UNSKIP_TRANSACTION Procedure

This procedure reverses the actions of the SKIP_TRANSACTION procedure. The
match must be exact, and multiple skip transaction actions can be undone only by a
matching number of unskip transaction actions. You cannot undo multiple skip
transaction actions using wildcard characters.

Syntax
DBMS_LOGSTDBY.UNSKIP_TRANSACTION (
 XIDUSN NUMBER STRING,
 XIDSLT NUMBER STRING,
 XIDSQN NUMBER STRING);

Parameters
Table 49–11 describes the parameters for the UNSKIP_TRANSACTION procedure.

Usage Notes
■ Use the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that

are going to be skipped by log apply services.

Table 49–11 DBMS_LOGSTDBY.UNSKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER Transaction ID sequence number of the transaction being
skipped.

UNSKIP_TRANSACTION Procedure

49-32 PL/SQL Packages and Types Reference

DBMS_METADATA 50-1

50
DBMS_METADATA

The DBMS_METADATA package provides a way for you to retrieve metadata from
the database dictionary as XML or creation DDL and to submit the XML to re-create
the object.

This chapter contains the following topics:

■ Using DBMS_METADATA

■ Overview

■ Security Model

■ Types

■ Rules and Limits

■ Organization of Subprograms

– Subprograms for Retrieval of Multiple Objects from the Database

– Subprograms for Submission of XML to the Database

■ Summary of DBMS_METADATA Subprograms

See Also: Oracle Database Utilities for more information and for
examples of using the Metadata API

Using DBMS_METADATA

50-2 PL/SQL Packages and Types Reference

Using DBMS_METADATA

■ Overview

■ Security Model

■ Types

■ Rules and Limits

■ Organization of Subprograms

Overview

You can use the DBMS_METADATA package to retrieve metadata and also to submit
XML.

■ Retrieving Metadata

■ Submitting XML

Retrieving Metadata
If you are retrieving metadata, you can specify:

■ The kind of object to be retrieved. This can be either a particular object type
(such as a table, index, or procedure) or a heterogeneous collection of object
types that form a logical unit (such as a database export or schema export).

■ Optional selection criteria, such as owner or name.

■ Parse items (attributes of the returned objects to be parsed and returned
separately).

■ Optional transformations on the output, implemented by XSLT scripts. By
default the output is represented in XML, but you can specify transformations
(into SQL DDL, for example), which are implemented by XSLT (Extensible
Stylesheet Language Transformation) stylesheets stored in the database or
externally.

DBMS_METADATA provides the following retrieval interfaces:

■ For programmatic use: OPEN, SET_FILTER, SET_COUNT, GET_QUERY, SET_
PARSE_ITEM, ADD_TRANSFORM, SET_TRANSFORM_PARAM,SET_REMAP_
PARAM, FETCH_xxx, and CLOSE retrieve multiple objects.

Using DBMS_METADATA

DBMS_METADATA 50-3

■ For use in SQL queries and for browsing: GET_XML and GET_DDL return
metadata for a single named object. The GET_DEPENDENT_XML, GET_
DEPENDENT_DDL, GET_GRANTED_XML, and GET_GRANTED_DDL interfaces
return metadata for one or more dependent or granted objects. These
procedures do not support heterogeneous object types.

Submitting XML
If you are submitting XML, you specify:

■ The type of object

■ Optional transform parameters to modify the object (for example, changing the
object's owner)

■ Parse items (attributes of the submitted objects to be parsed and submitted
separately)

■ Whether to execute the operation or simply return the generated DDL

DBMS_METADATA provides a programmatic interfaces for submission of XML. It is
comprised of the following procedures: OPENW, ADD_TRANSFORM, SET_
TRANSFORM_PARAM, SET_REMAP_PARAM, SET_PARSE_ITEM, CONVERT, PUT, and
CLOSE.

Security Model

The object views of the Oracle metadata model implement security as follows:

■ Nonprivileged users can see the metadata of only their own objects.

■ SYS and users with SELECT_CATALOG_ROLE can see all objects.

■ Nonprivileged users can also retrieve public synonyms, system privileges
granted to them, and object privileges granted to them or by them to others.
This also includes privileges granted to PUBLIC.

■ If callers request objects they are not privileged to retrieve, no exception is
raised; the object is simply not retrieved.

■ If nonprivileged users are granted some form of access to an object in someone
else's schema, they will be able to retrieve the grant specification through the
Metadata API, but not the object's actual metadata.

■ In stored procedures, functions, and definers-rights packages, roles (such as
SELECT_CATALOG_ROLE) are disabled. Therefore, such a PL/SQL program can

Types

50-4 PL/SQL Packages and Types Reference

only fetch metadata for objects in its own schema. If you want to write a
PL/SQL program that fetches metadata for objects in a different schema (based
on the invoker's possession of SELECT_CATALOG_ROLE), you must make the
program invokers-rights.

Types

The following types, used by the DBMS_METADATA package, are defined in the SYS
schema.

CREATE TYPE sys.ku$_parsed_item AS OBJECT (
item VARCHAR2(30),
value VARCHAR2(4000),
object_row NUMBER)
/

CREATE PUBLIC SYNONYM ku$_parsed_item FOR sys.ku$_parsed_item;

CREATE TYPE sys.ku$_parsed_items IS TABLE OF sys.ku$_parsed_item
/

CREATE PUBLIC SYNONYM ku$_parsed_items FOR sys.ku$_parsed_items;

CREATE TYPE sys.ku$_ddl AS OBJECT (
ddlText CLOB,
parsedItem sys.ku$_parsed_items)
/

CREATE PUBLIC SYNONYM ku$_ddl FOR sys.ku$_ddl;

CREATE TYPE sys.ku$_ddls IS TABLE OF sys.ku$_ddl
/

CREATE PUBLIC SYNONYM ku$_ddls FOR sys.ku$_ddls;

CREATE TYPE sys.ku$_multi_ddl AS OBJECT (
 object_row NUMBER,
 ddls sys.ku$_ddls)
/

CREATE OR REPLACE PUBLIC SYNONYM ku$_multi_ddl FOR sys.ku$_multi_ddl;

CREATE TYPE sys.ku$_multi_ddls IS TABLE OF sys.ku$_multi_ddl;
/

Using DBMS_METADATA

DBMS_METADATA 50-5

CREATE OR REPLACE PUBLIC SYNONYM ku$_multi_ddls FOR
 sys.ku$_multi_ddls;

CREATE TYPE sys.ku$_ErrorLine IS OBJECT (
errorNumber NUMBER,
errorText VARCHAR2(2000))
/

CREATE PUBLIC SYNONYM ku$_ErrorLine FOR sys.ku$_ErrorLine;

CREATE TYPE sys.ku$_ErrorLines IS TABLE OF sys.ku$_ErrorLine
/
CREATE PUBLIC SYNONYM ku$ErrorLines FOR sys.ku$_ErrorLines;

CREATE TYPE sys.ku$_SubmitResult AS OBJECT (
ddl sys.ku$_ddl,
errorLines sys.ku$_ErrorLines);
/

CREATE TYPE sys.ku$_SubmitResults IS TABLE OF sys.ku$_SubmitResult
/

CREATE PUBLIC SYNONYM ku$_SubmitResults FOR sys.ku$_SubmitResults;

Rules and Limits

In an Oracle Shared Server (OSS) environment, the DBMS_METADATA package must
disable session migration and connection pooling. This results in any shared server
process that is serving a session running the package to effectively become a
default, dedicated server for the life of the session. You should ensure that sufficient
shared servers are configured when the package is used and that the number of
servers is not artificially limited by too small a value for the MAX_SHARED_
SERVERS initialization parameter.

Organization of Subprograms

50-6 PL/SQL Packages and Types Reference

Organization of Subprograms

The DBMS_METADATA subprograms are used to retrieve objects from, and submit
XML to, a database. Some subprograms are used for both activities, while others are
used only for retrieval or only for submission.

■ Table 50–3 provides a summary of DBMS_METADATA subprograms used to
retrieve multiple objects from a database.

■ Table 50–2 provides a summary of DBMS_METADATA subprograms used to
submit XML metadata to a database.

Subprograms for Retrieval of Multiple Objects from the Database

Table 50–1 DBMS_METADATA Subprograms For Retrieving Multiple Objects

Subprogram Description

OPEN Procedure on page 50-26 Specifies the type of object to be retrieved, the version of
its metadata, and the object model

SET_FILTER Procedure on
page 50-41

Specifies restrictions on the objects to be retrieved, for
example, the object name or schema

SET_COUNT Procedure on
page 50-39

Specifies the maximum number of objects to be retrieved
in a single FETCH_xxx call

GET_QUERY Procedure on
page 50-25

Returns the text of the queries that are used by FETCH_
xxx

SET_PARSE_ITEM Procedure
on page 50-55

Enables output parsing by specifying an object attribute to
be parsed and returned

ADD_TRANSFORM Function
on page 50-9

Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects

SET_TRANSFORM_PARAM
and SET_REMAP_PARAM
Procedures on page 50-59

Specifies parameters to the XSLT stylesheet identified by
transform_handle

FETCH_xxx Functions on
page 50-16

Returns metadata for objects meeting the criteria
established by OPEN, SET_FILTER, SET_COUNT, ADD_
TRANSFORM, and so on

CLOSE Procedure on
page 50-13

Invalidates the handle returned by OPEN and cleans up the
associated state

The GET_xxx Functions on
page 50-20

Fetches the metadata for a specified object as XML or
DDL, using only a single call

Using DBMS_METADATA

DBMS_METADATA 50-7

Subprograms for Submission of XML to the Database

Table 50–2 DBMS_METADATA Subprograms For Submitting XML

Subprogram Description

OPENW Procedure on
page 50-35

Opens a write context

ADD_TRANSFORM Function
on page 50-9

Specifies a transform for the XML documents

SET_TRANSFORM_PARAM
and SET_REMAP_PARAM
Procedures on page 50-59

SET_TRANSFORM_PARAM specifies a parameter to a
transform

SET_REMAP_PARAM specifies a remapping for a transform

SET_PARSE_ITEM Procedure
on page 50-55

Specifies an object attribute to be parsed

CONVERT Function on
page 50-14

Converts an XML document to DDL

PUT Function on page 50-37 Submits an XML document to the database

CLOSE Procedure on
page 50-13

Closes the context opened with OPENW

Summary of DBMS_METADATA Subprograms

50-8 PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Table 50–3 DBMS_METADATA Package Subprograms

Subprogram Description

ADD_TRANSFORM Function
on page 50-9

Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects

CLOSE Procedure on
page 50-13

Invalidates the handle returned by OPEN and cleans up the
associated state

CONVERT Function on
page 50-14

Converts an XML document to DDL.

FETCH_xxx Functions on
page 50-16

Returns metadata for objects meeting the criteria
established by OPEN, SET_FILTER, SET_COUNT, ADD_
TRANSFORM, and so on

The GET_xxx Functions on
page 50-20

Fetches the metadata for a specified object as XML or
DDL, using only a single call

GET_QUERY Procedure on
page 50-25

Returns the text of the queries that are used by FETCH_
xxx

OPEN Procedure on page 50-26 Specifies the type of object to be retrieved, the version of
its metadata, and the object model

OPENW Procedure on
page 50-35

Opens a write context

PUT Function on page 50-37 Submits an XML document to the database

SET_COUNT Procedure on
page 50-39

Specifies the maximum number of objects to be retrieved
in a single FETCH_xxx call

SET_FILTER Procedure on
page 50-41

Specifies restrictions on the objects to be retrieved, for
example, the object name or schema

SET_PARSE_ITEM Procedure
on page 50-55

Enables output parsing by specifying an object attribute to
be parsed and returned

SET_TRANSFORM_PARAM
and SET_REMAP_PARAM
Procedures on page 50-59

Specifies parameters to the XSLT stylesheet identified by
transform_handle

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-9

ADD_TRANSFORM Function

This function is used for both retrieval and submission:

■ When this procedure is used to retrieve objects, it specifies a transform that
FETCH_xxx applies to the XML representation of the retrieved objects.

■ When used to submit objects, it specifies a transform that CONVERT or PUT
applies to the XML representation of the submitted objects. It is possible to add
more than one transform.

Syntax
DBMS_METADATA.ADD_TRANSFORM (
 handle IN NUMBER,
 name IN VARCHAR2,
 encoding IN VARCHAR2 DEFAULT NULL,
 object_type IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

Parameters

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

■ Subprograms for Submission of XML to the Database

Table 50–4 ADD_TRANSFORM Parameters

Parameters Description

handle The handle returned from OPEN when this transform is used to
retrieve objects. Or the handle returned from OPENW when this
transform is used in the submission of XML metadata.

ADD_TRANSFORM Function

50-10 PL/SQL Packages and Types Reference

name The name of the transform. If name contains a period, colon, or
forward slash, it is interpreted as the URL of a user-supplied
XSLT script. See Oracle XML DB Developer's Guide.

Otherwise, name designates a transform implemented by this
project. The following transforms are defined:

■ DDL - the document is transformed to DDL that creates
the object. The output of this transform is not an XML
document.

■ MODIFY - The document is modified as directed by
transform and remap parameters. The output of this
transform is an XML document. If no transform or remap
parameters are specified, the document is unchanged.

encoding The name of the Globalization Support character set in which
the stylesheet pointed to by name is encoded. This is only valid
if name is a URL. If left NULL and the URL is external to the
database, UTF-8 encoding is assumed. If left NULL and the
URL is internal to the database (that is, it begins with
/oradb/), then the encoding is assumed to be the database
character set.

Table 50–4 (Cont.) ADD_TRANSFORM Parameters

Parameters Description

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-11

Return Values
The opaque handle that is returned is used as input to SET_TRANSFORM_PARAM
and SET_REMAP_PARAM. Note that this handle is different from the handle
returned by OPEN or OPENW; it refers to the transform, not the set of objects to be
retrieved.

Usage Notes
■ With no transforms added, objects are returned by default as XML documents.

You call ADD_TRANSFORM to specify an XSLT stylesheet to transform the
returned documents.

■ You can call ADD_TRANSFORM more than once to apply multiple transforms to
XML documents. Transforms are applied in the order in which they were

object_type The definition of this parameter depends upon whether you
are retrieving objects or submitting XML metadata.

1. When you use ADD_TRANFORM to retrieve objects, the
following definition of object_type applies:

Designates the object type to which the transform applies.
(Note that this is an object type name, not a path name.)
By default the transform applies to the object type of the
OPEN handle. When the OPEN handle designates a
heterogeneous object type, the following behavior can
occur:

■ if object_type is omitted, the transform applies to all
object types within the heterogeneous collection

■ if object_type is specified, the transform only applies to
that specific object type within the collection

If you omit this parameter you can add the DDL transform
to all objects in a heterogeneous collection with a single
call. If you supply this parameter, you can add a transform
for a specific object type.

2. When you use ADD_TRANSFORM in the submission of
XML metadata, this parameter is the object type to which
the transform applies. By default, it is the object type of
the OPENW handle. Because the OPENW handle cannot
designate a heterogeneous object type, this caller should
leave this parameter NULL.

Table 50–4 (Cont.) ADD_TRANSFORM Parameters

Parameters Description

ADD_TRANSFORM Function

50-12 PL/SQL Packages and Types Reference

specified, the output of the first transform being used as input to the second,
and so on.

■ The output of the DDL transform is not an XML document. Therefore, no
transform should be added after the DDL transform.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OPERATION. ADD_TRANSFORM was called after the first call to
FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no
further calls to ADD_TRANSFORM for the current OPEN context are permitted.

■ INCONSISTENT_ARGS. The arguments are inconsistent. Possible
inconsistencies include the following:

– encoding is specified even though name is not a URL

– object_type is not part of the collection designated by handle

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-13

CLOSE Procedure

This procedure invalidates the handle returned by OPEN (or OPENW) and cleans up
the associated state.

Syntax
DBMS_METADATA.CLOSE (
 handle IN NUMBER);

Parameters

Usage Notes

You can prematurely terminate the stream of objects established by OPEN or
(OPENW).

■ If a call to FETCH_xxx returns NULL, indicating no more objects, a call to
CLOSE is made transparently. In this case, you can still call CLOSE on the handle
and not get an exception. (The call to CLOSE is not required.)

■ If you know that only one specific object will be returned, you should explicitly
call CLOSE after the single FETCH_xxx call to free resources held by the handle.

Exceptions
■ INVALID_ARGVAL. The value for the handle parameter is NULL or invalid.

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

■ Subprograms for Submission of XML to the Database

Table 50–5 CLOSE Parameters

Parameter Description

handle The handle returned from OPEN (or OPENW).

Note: The following notes apply only to object retrieval

CONVERT Function

50-14 PL/SQL Packages and Types Reference

CONVERT Function

This function transforms an input XML document into creation DDL.

Syntax
DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN sys.XMLType)
 RETURN sys.ku$_multi_ddls;

DBMS_METADATA.CONVERT (
 handle IN NUMBER,
 document IN CLOB)
 RETURN sys.ku$_multi_ddls;

Parameters

Return Values
DDL to create the object(s).

Usage Notes
You can think of CONVERT as the second half of FETCH_xxx. The difference is that
FETCH_xxx gets its XML document from the database, but CONVERT gets its XML
document from the caller. The transforms specified with ADD_TRANSFORM are
applied in turn, and the result is returned to the caller in a sys.ku$_multi_ddls
nested table. The DDL transform must be specified. If parse items were specified,
they are returned in the parsedItems column.

See Also: For more information about related subprograms:

■ Subprograms for Submission of XML to the Database

Table 50–6 CONVERT Function Parameters

Parameter Description

handle The handle returned from OPENW.

document The XML document containing object metadata of the type of
the OPENW handle.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-15

The encoding of the XML document is embedded in its CLOB or XMLType
representation. The version of the metadata is embedded in the XML. The
generated DDL is valid for the current database compatibility level.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INCONSISTENT_OPERATION. The DDL transform was not specified.

■ INCOMPATIBLE_DOCUMENT. The version of the XML document is not
compatible with this version of the software.

FETCH_xxx Functions

50-16 PL/SQL Packages and Types Reference

FETCH_xxx Functions

These functions return metadata for objects meeting the criteria established by
OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on. See "Usage Notes"
on page 50-17 for the variants.

Syntax
DBMS_METADATA.FETCH_XML (

handle IN NUMBER)
RETURN sys.XMLType;

DBMS_METADATA.FETCH_DDL (
 handle IN NUMBER)
RETURN sys.ku$_ddls;

DBMS_METADATA.FETCH_CLOB (
 handle IN NUMBER)
RETURN CLOB;

The FETCH procedures are as follows:

DBMS_METADATA.FETCH_CLOB (
 handle IN NUMBER,
 doc IN OUT NOCOPY CLOB);

DBMS_METADATA.FETCH_XML_CLOB (
 handle IN NUMBER,
 doc IN OUT NOCOPY CLOB,
 parsed_items OUT sys.ku$_parsed_items,
 object_type_path OUT VARCHAR2);

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

See Also: Oracle XML DB Developer's Guide for a description of
XMLType

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-17

Parameters

Return Values
The metadata for the objects or NULL if all objects have been returned.

Usage Notes
These functions and procedures return metadata for objects meeting the criteria
established by the call to OPEN that returned the handle, and subsequent calls to
SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on. Each call to FETCH_xxx
returns the number of objects specified by SET_COUNT (or less, if fewer objects
remain in the underlying cursor) until all objects have been returned. After the last
object is returned, subsequent calls to FETCH_xxx return NULL and cause the
stream created by OPEN to be transparently closed.

There are several different FETCH_xxx functions and procedures:

■ The FETCH_XML function returns the XML metadata for an object as an
XMLType. It assumes that if any transform has been specified, that transform
will produce an XML document. In particular, it assumes that the DDL
transform has not been specified.

■ The FETCH_DDL function returns the DDL (to create the object) in a sys.ku$_
ddls nested table. It assumes that the DDL transform has been specified. Each
row of the sys.ku$_ddls nested table contains a single DDL statement in the
ddlText column; if requested, parsed items for the DDL statement will be
returned in the parsedItems column. Multiple DDL statements may be
returned under the following circumstances:

Table 50–7 FETCH_xxx Function Parameters

Parameters Description

handle The handle returned from OPEN.

doc The metadata for the objects, or NULL if all objects have been
returned.

parsed_items A nested table containing the items specified by SET_PARSE_
ITEM. If SET_PARSE_ITEM was not called, a NULL is
returned.

object_type_path For heterogeneous object types, this is the full path name of the
object type for the objects returned by the call to FETCH_XXX.
If handle designates a homogeneous object type, a NULL is
returned.

FETCH_xxx Functions

50-18 PL/SQL Packages and Types Reference

– When you call SET_COUNT to specify a count greater than 1

– When an object is transformed into multiple DDL statements. For example,
A TYPE object that has a DDL transform applied to it can be transformed
into both CREATE TYPE and CREATE TYPE BODY statements. A TABLE
object can be transformed into a CREATE TABLE, and one or more ALTER
TABLE statements

■ The FETCH_CLOB function simply returns the object, transformed or not, as a
CLOB.

■ The FETCH_CLOB procedure returns the objects by reference in an IN OUT
NOCOPY parameter. This is faster than the function variant, which returns LOBs
by value.

■ The FETCH_XML_CLOB procedure returns the XML metadata for the objects as a
CLOB in an IN OUT NOCOPY parameter. This helps to avoid LOB copies, which
can consume a lot of resources. It also returns a nested table of parse items and
the full path name of the object type of the returned objects.

■ All LOBs returned by FETCH_xxx are temporary LOBs. You must free the LOB.
If the LOB is supplied as an IN OUT NOCOPY parameter, you must also create
the LOB.

■ If SET_PARSE_ITEM was called, FETCH_DDL and FETCH_XML_CLOB return
attributes of the object's metadata (or the DDL statement) in a sys.ku$_
parsed_items nested table. For FETCH_XML_CLOB, the nested table is an OUT
parameter. For FETCH_DDL, it is a column in the returned sys.ku$_ddls
nested table. Each row of the nested table corresponds to an item specified by
SET_PARSE_ITEM and contains the following columns:

– item—the name of the attribute as specified in the name parameter to
SET_PARSE_ITEM.

– value—the attribute value, or NULL if the attribute is not present in the
DDL statement.

– object-row—a positive integer indicating the object to which the parse
item applies. If multiple objects are returned by FETCH_xxx, (because SET_
COUNT specified a count greater than 1) then object_row=1 for all items
for the first object, 2 for the second, and so on.

■ The rows of the sys.ku$_parsed_items nested table are ordered by
ascending object_row, but otherwise the row order is undetermined. To find
a particular parse item within an object row the caller must search the table for
a match on item.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-19

■ In general there is no guarantee that a requested parse item will be returned.
For example, the parse item may not apply to the object type or to the particular
line of DDL, or the item's value may be NULL.

■ If SET_PARSE_ITEM was not called, NULL is returned as the value of the
parsed items nested table.

■ It is expected that the same variant of FETCH_xxx will be called for all objects
selected by OPEN. That is, programs will not intermix calls to FETCH_XML,
FETCH_DDL, FETCH_CLOB, and so on using the same OPEN handle. The effect
of calling different variants is undefined; it might do what you expect, but there
are no guarantees.

■ Every object fetched will be internally consistent with respect to on-going DDL
(and the subsequent recursive DML) operations against the dictionary. In some
cases, multiple queries may be issued, either because the object type is
heterogeneous or for performance reasons (for example, one query for heap
tables, one for index-organized tables). Consequently the FETCH_xxx calls may
in fact be fetches from different underlying cursors (meaning that read
consistency is not guaranteed).

Exceptions
Most exceptions raised during execution of the query are propagated to the caller.
Also, the following exceptions may be raised:

■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input
parameter. The error message text identifies the parameter.

■ INCONSISTENT_OPERATION. Either FETCH_XML was called when the DDL
transform had been specified, or FETCH_DDL was called when the DDL
transform had not been specified.

The GET_xxx Functions

50-20 PL/SQL Packages and Types Reference

The GET_xxx Functions

The following GET_xxx functions let you fetch metadata for objects with a single
call:

■ GET_XML

■ GET_DDL

■ GET_DEPENDENT_XML

■ GET_DEPENDENT_DDL

■ GET_GRANTED_XML

■ GET_GRANTED_DDL

Syntax
DBMS_METADATA.GET_XML (
object_type IN VARCHAR2,
name IN VARCHAR2 DEFAULT NULL,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL)
RETURN CLOB;

DBMS_METADATA.GET_DDL (
object_type IN VARCHAR2,
name IN VARCHAR2 DEFAULT NULL,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL')
RETURN CLOB;

DBMS_METADATA.GET_DEPENDENT_XML (
object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-21

version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_DEPENDENT_DDL (
object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL',
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_GRANTED_XML (
object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET_GRANTED_DDL (
object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT 'COMPATIBLE',
model IN VARCHAR2 DEFAULT 'ORACLE',
transform IN VARCHAR2 DEFAULT 'DDL',
object_count IN NUMBER DEFAULT 10000)
RETURN CLOB;

Parameters

Table 50–8 GET_xxx Function Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter, except
that it cannot be a heterogeneous object type. The attributes of
the object type must be appropriate to the function. That is, for
GET_xxx it must be a named object.

The GET_xxx Functions

50-22 PL/SQL Packages and Types Reference

Return Values
The metadata for the specified object as XML or DDL.

Usage Notes
■ These functions allow you to fetch metadata for objects with a single call. They

encapsulate calls to OPEN, SET_FILTER, and so on. The function you use
depends on the characteristics of the object type and on whether you want XML
or DDL.

– GET_xxx is used to fetch named objects, especially schema objects (tables,
views). They can also be used with nameless objects, such as RESOURCE_
COST.

– GET_DEPENDENT_xxx is used to fetch dependent objects (audits, object
grants).

name The object name. It is used internally in a NAME filter. (If the
name is longer than 30 characters, it will be used in a
LONGNAME filter.) If this parameter is NULL, then no NAME or
LONGNAME filter is specified. See Table 50–17 for a list of filters.

schema The object schema. It is used internally in a SCHEMA filter. The
default is the current user.

version The version of metadata to be extracted. This parameter takes
the same values as the OPEN version parameter.

model The object model to use. This parameter takes the same values
as the OPEN model parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORM name
parameter. For GET_XML this must not be DDL.

base_object_name The base object name. It is used internally in a BASE_OBJECT_
NAME filter.

base_object_schema The base object schema. It is used internally in a BASE_
OBJECT_SCHEMA filter. The default is the current user.

grantee The grantee. It is used internally in a GRANTEE filter. The
default is the current user.

object_count The maximum number of objects to return. See SET_COUNT
Procedure on page 50-39.

Table 50–8 (Cont.) GET_xxx Function Parameters

Parameter Description

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-23

– GET_GRANTED_xxx is used to fetch granted objects (system grants, role
grants).

■ For some object types you can use more than one function. For example, you
can use GET_xxx to fetch an index by name, or GET_DEPENDENT_xxx to fetch
the same index by specifying the table on which it is defined.

■ GET_xxx only returns a single named object.

■ For GET_DEPENDENT_xxx and GET_GRANTED_xxx, an arbitrary number of
dependent or granted objects can match the input criteria. You can specify an
object count when fetching these objects. (The default count of 10000 should be
adequate in most cases.)

■ If the DDL transform is specified, session-level transform parameters are
inherited.

■ If you invoke these functions from SQL*Plus, you should set the PAGESIZE to 0
and set LONG to some large number to get complete, uninterrupted output.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ OBJECT_NOT_FOUND. The specified object was not found in the database.

Examples

Example: Fetch the XML Representation of SCOTT.EMP
To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to
some large number, as shown, before executing your query.

SET LONG 2000000
SET PAGESIZE 0
SELECT DBMS_METADATA.GET_XML('TABLE','EMP','SCOTT')
FROM DUAL;

Example: Fetch the DDL for all Complete Tables in the Current Schema, Filter
Out Nested Tables and Overflow Segments
This example fetches the DDL for all "complete" tables in the current schema,
filtering out nested tables and overflow segments. The example uses SET_
TRANSFORM_PARAM (with the handle value = DBMS_METADATA.SESSION_
TRANSFORM meaning "for the current session") to specify that storage clauses are

The GET_xxx Functions

50-24 PL/SQL Packages and Types Reference

not to be returned in the SQL DDL. Afterwards, the example resets the session-level
parameters to their defaults.

To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to
some large number, as shown, before executing your query.

SET LONG 2000000
SET PAGESIZE 0
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_
TRANSFORM,'STORAGE',false);
SELECT DBMS_METADATA.GET_DDL('TABLE',u.table_name)
 FROM USER_ALL_TABLES u
 WHERE u.nested='NO'
 AND (u.iot_type is null or u.iot_type='IOT');
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_
TRANSFORM,'DEFAULT');

Example: Fetch the DDL For All Object Grants On HR.EMPLOYEES
SELECT DBMS_METADATA.GET_DEPENDENT_DDL('OBJECT_GRANT',
 'EMPLOYEES','HR') FROM DUAL;

Example: Fetch the DDL For All System Grants Granted To SCOTT
SELECT DBMS_METADATA.GET_GRANTED_DDL('SYSTEM_GRANT','SCOTT')
 FROM DUAL;

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-25

GET_QUERY Procedure

This procedure returns the text of the queries that are used by FETCH_xxx. This
function assists in debugging.

Syntax
DBMS_METADATA.GET_QUERY (
 handle IN NUMBER)
 RETURN VARCHAR2;

Parameters

Return Values
The text of the queries that will be used by FETCH_xxx.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for the handle

parameter.

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

Table 50–9 GET_QUERY Procedure Parameters

Parameter Description

handle The handle returned from OPEN. It cannot be the handle for a
heterogeneous object type.

OPEN Procedure

50-26 PL/SQL Packages and Types Reference

OPEN Procedure

This procedure specifies the type of object to be retrieved, the version of its
metadata, and the object model. The return value is an opaque context handle for
the set of objects to be used in subsequent calls.

Syntax
DBMS_METADATA.OPEN (
 object_type IN VARCHAR2,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE',
 model IN VARCHAR2 DEFAULT 'ORACLE',
 network_link IN VARCHAR2 DEFAULT NULL)
 RETURN NUMBER;

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-27

Parameters

Table 50–11 provides the name, meaning, attributes, and notes for the DBMS_
METADATA package object types. In the attributes column, S represents a schema

Table 50–10 Open Procedure Parameters

Parameter Description

object_type The type of object to be retrieved. Table 50–11 lists the valid
type names and their meanings. These object types will be
supported for the ORACLE model of metadata (see model in
this table).

 The Attributes column in Table 50–11 specifies some object
type attributes:

■ Schema objects, such as tables, belong to schemas.

■ Named objects have unique names (if they are schema
objects, the name is unique to the schema).

■ Dependent objects, such as indexes, are defined with
reference to a base schema object.

■ Granted objects are granted or assigned to a user or role
and therefore have a named grantee.

■ Heterogeneous object types denote a collection of related
objects of different types. See Table 50–12 for a listing of
object types returned for the heterogeneous object type.

These attributes are relevant when choosing object selection
criteria. See "SET_FILTER Procedure" on page 50-41 for more
information.

version The version of metadata to be extracted. Database objects or
attributes that are incompatible with the version will not be
extracted. Legal values for this parameter are as follows:

COMPATIBLE (default)—the version of the metadata
corresponds to the database compatibility level.

LATEST—the version of the metadata corresponds to the
database version.

A specific database version, for example, 9.2.0. As of Oracle
Database 10g, this value cannot be lower than 9.2.0.

model Specifies which view to use, because the API can support
multiple views on the metadata. Only the ORACLE model is
supported as of Oracle Database 10g.

network_link Reserved.

OPEN Procedure

50-28 PL/SQL Packages and Types Reference

object, N represents a named object, D represents a dependent object, G represents a
granted object, and H represents a heterogeneous object.

Table 50–11 DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

AQ_QUEUE queues SND Dependent on table

AQ_QUEUE_TABLE additional metadata for
queue tables

ND Dependent on table

AQ_TRANSFORM transforms SN None

ASSOCIATION associate statistics D None

AUDIT audits of SQL statements DG Modeled as dependent, granted object. The
base object name is the statement audit
option name (for example, ALTER SYSTEM).
There is no base object schema. The grantee
is the user or proxy whose statements are
audited.

AUDIT_OBJ audits of schema objects D None

CLUSTER clusters SN None

COMMENT comments D None

CONSTRAINT constraints SND Does not include:

■ primary key constraint for IOT

■ column NOT NULL constraints

■ certain REF SCOPE and WITH ROWID
constraints for tables with REF
columns

CONTEXT application contexts N None

DATABASE_EXPORT all metadata objects in a
database

H Corresponds to a full database export

DB_LINK database links SN Modeled as schema objects because they
have owners. For public links, the owner is
PUBLIC. For private links, the creator is the
owner.

DEFAULT_ROLE default roles G Granted to a user by ALTER USER

DIMENSION dimensions SN None

DIRECTORY directories N None

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-29

FGA_POLICY fine-grained audit policies D Not modeled as named object because
policy names are not unique.

FUNCTION stored functions SN None

INDEX_STATISTICS precomputed statistics on
indexes

D The base object is the index's table. See
information on filters such as BASE_
INDEX_NAME.

INDEX indexes SND None

INDEXTYPE indextypes SN None

JAVA_SOURCE Java sources SN None

JOB jobs S None

LIBRARY external procedure
libraries

SN None

MATERIALIZED_VIEW materialized views SN None

MATERIALIZED_
VIEW_LOG

materialized view logs D None

OBJECT_GRANT object grants DG None

OPERATOR operators SN None

OUTLINE stored outlines N This type is being deprecated.

PACKAGE stored packages SN By default, both package specification and
package body are retrieved. See "SET_
FILTER Procedure" on page 50-41.

PACKAGE_SPEC package specifications SN None

PACKAGE_BODY package bodies SN None

PROCEDURE stored procedures SN None

PROFILE profiles N None

PROXY proxy authentications G Granted to a user by ALTER USER

REF_CONSTRAINT referential constraint SND None

REFRESH_GROUP refresh groups SN None

RESOURCE_COST resource cost info None

Table 50–11 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

OPEN Procedure

50-30 PL/SQL Packages and Types Reference

RLS_CONTEXT driving contexts for
enforcement of
fine-grained access-control
policies

D Corresponds to the DBMS_RLS.ADD_
POLICY_CONTENT procedure

RLS_GROUP fine-grained access-control
policy groups

D Corresponds to the DBMS_RLS.CREATE_
GROUP procedure

RLS_POLICY fine-grained access-control
policies

D Corresponds to DBMS_RLS.ADD_
GROUPED_POLICY. Not modeled as
named objects because policy names are
not unique.

RMGR_CONSUMER_
GROUP

resource consumer groups SN Data Pump does not use these object types.
Instead, it exports resource manager objects
as procedural objects (PROCOBJ, for
example).

RMGR_INTITIAL_
CONSUMER_GROUP

assign initial consumer
groups to users

G None

RMGR_PLAN resource plans SN None

RMGR_PLAN_
DIRECTIVE

resource plan directives D Dependent on resource plan

ROLE roles N None

ROLE_GRANT role grants G None

ROLLBACK_SEGMENT rollback segments N None

SCHEMA_EXPORT all metadata objects in a
schema

H Corresponds to user-mode export.

SEQUENCE sequences SN None

SYNONYM synonyms See
notes.

Private synonyms are schema objects.
Public synonyms are not, but for the
purposes of this API, their schema name is
PUBLIC. The name of a synonym is
considered to be the synonym itself. For
example, in CREATE PUBLIC SYNONYM
FOO FOR BAR, the resultant object is
considered to have name FOO and schema
PUBLIC.

SYSTEM_GRANT system privilege grants G None

TABLE tables SN None

Table 50–11 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-31

Table 50–12 lists the types of objects returned for the major heterogeneous object
types. For SCHEMA_EXPORT, certain object types are only returned if the INCLUDE_

TABLE_DATA metadata describing row
data for a table, nested
table, or partition

SND For partitions, the object name is the
partition name.

For nested tables, the object name is the
storage table name. The base object is the
top-level table to which the table data
belongs. For nested tables and partitioning,
this is the top-level table (not the parent
table or partition). For nonpartitioned
tables and non-nested tables this is the table
itself.

TABLE_EXPORT metadata for a table and
its associated objects

H Corresponds to table-mode export

TABLE_STATISTICS precomputed statistics on
tables

D None

TABLESPACE tablespaces N None

TABLESPACE_QUOTA tablespace quotas G Granted with ALTER USER

TRANSPORTABLE_
EXPORT

metadata for objects in a
transportable tablespace
set

H Corresponds to transportable tablespace
export

TRIGGER triggers SND None

TRUSTED_DB_LINK trusted links N None

TYPE user-defined types SN By default, both type and type body are
retrieved. See "SET_FILTER Procedure" on
page 50-41.

TYPE_SPEC type specifications SN None

TYPE_BODY type bodies SN None

USER users N None

VIEW views SN None

XMLSCHEMA XML schema SN The object's name is its URL (which may be
longer than 30 characters). Its schema is the
user who registered it.

Table 50–11 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

OPEN Procedure

50-32 PL/SQL Packages and Types Reference

USER filter is specified at TRUE. In the table, such object types are marked
INCLUDE_USER.

Table 50–12 Object Types Returned for the Heterogeneous Object Type

Object Type
DATABASE_
EXPORT

SCHEMA_
EXPORT

TABLE_
EXPORT

TRANSPORTABLE_
EXPORT

ASSOCIATION Yes No No No

AUDIT Yes No No No

AUDIT_OBJ Yes Yes Yes Yes

CLUSTER Yes Yes No Yes

COMMENT Yes Yes Yes Yes

CONSTRAINT Yes Yes Yes Yes

CONTEXT Yes No No No

DB_LINK Yes Yes No No

DEFAULT_ROLE Yes INCLUDE_USER No No

DIMENSION Yes Yes No No

DIRECTORY Yes No No No

FGA_POLICY Yes No No Yes

FUNCTION Yes Yes No No

INDEX_STATISTICS Yes Yes Yes Yes

INDEX Yes Yes Yes Yes

INDEXTYPE Yes Yes No No

JAVA_SOURCE Yes Yes No No

JOB Yes Yes No No

LIBRARY Yes Yes No No

MATERIALIED_VIEW Yes Yes No No

MATERIALIZED_VIEW_LOG Yes Yes No No

OBJECT_GRANT Yes Yes Yes Yes

OPERATOR Yes Yes No No

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-33

OUTLINE If OUTLN user's
objects are
returned

if user is OUTLN No No

PACKAGE Yes Yes No No

PACKAGE_SPEC Yes Yes No No

PACKAGE_BODY Yes Yes No No

PASSWORD_HISTORY Yes INCLUDE_USER No No

PASSWORD_VERIFY_FUNCTION Yes No No No

PROCEDURE Yes Yes No No

PROFILE Yes No No No

PROXY Yes No No No

REF_CONSTRAINT Yes Yes Yes Yes

REFRESH_GROUP Yes Yes No No

RESOURCE_COST Yes No No No

RLS_CONTEXT Yes No No Yes

RLS_GROUP Yes No No Yes

RLS_POLICY Yes Table data is
retrieved
according to
policy

Table data is
retrieved
according to
policy

Yes

ROLE Yes No No No

ROLE_GRANT Yes No No No

ROLLBACK_SEGMENT Yes No No No

SEQUENCE Yes Yes No No

SYNONYM Yes Yes No No

SYSTEM_GRANT Yes INCLUDE_USER No No

TABLE Yes Yes Yes Yes

TABLE_DATA Yes Yes Yes Yes

Table 50–12 (Cont.) Object Types Returned for the Heterogeneous Object Type

Object Type
DATABASE_
EXPORT

SCHEMA_
EXPORT

TABLE_
EXPORT

TRANSPORTABLE_
EXPORT

OPEN Procedure

50-34 PL/SQL Packages and Types Reference

Return Values
An opaque handle to the class of objects. This handle is used as input to SET_
FILTER, SET_COUNT, ADD_TRANSFORM, GET_QUERY, SET_PARSE_ITEM,
FETCH_xxx, and CLOSE.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OBJECT_PARAM. The version or model parameter was not valid
for the object_type.

TABLE_STATISTICS Yes Yes Yes Yes

TABLESPACE Yes No No No

TABLESPACE_QUOTA Yes INCLUDE_USER No No

TRIGGER Yes Yes Yes Yes

TRUSTED_DB_LINK Yes No No No

TYPE Yes Yes No Yes, if the types are
used by tables in the
transportable set

TYPE_SPEC Yes Yes No Yes, if the types are
used by tables in the
transportable set

TYPE_BODY Yes Yes No Yes, if the types are
used by tables in the
transportable set

USER Yes INCLUDE_USER No No

VIEW Yes Yes No No

XMLSCHEMA Yes Yes No No

Table 50–12 (Cont.) Object Types Returned for the Heterogeneous Object Type

Object Type
DATABASE_
EXPORT

SCHEMA_
EXPORT

TABLE_
EXPORT

TRANSPORTABLE_
EXPORT

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-35

OPENW Procedure

This procedure specifies the type of object to be submitted and the object model.
The return value is an opaque context handle.

Syntax
DBMS_METADATA.OPENW
 (object_type IN VARCHAR2,
 version IN VARCHAR2 DEFAULT 'COMPATIBLE',
 model IN VARCHAR2 DEFAULT 'ORACLE')
 RETURN NUMBER;

Parameters

Return Values
An opaque handle to write context. This handle is used as input to the ADD_
TRANSFORM, CONVERT, PUT, and CLOSE procedures.

See Also: For more information about related subprograms:

■ Subprograms for Submission of XML to the Database

Table 50–13 OPENW Function Parameters

Parameter Description

object_type The type of object to be submitted. Valid types names and their
meanings are listed in Table 50–11. The type cannot be a
heterogeneous object type.

version The version of DDL to be generated by the CONVERT function.
DDL clauses that are incompatible with the version will not be
generated. The legal values for this parameter are as follows:

■ COMPATIBLE - This is the default. The version of the DDL
corresponds to the database compatibility level. Database
compatibility must be set to 9.2.0 or higher.

■ LATEST - The version of the DDL corresponds to the
database version.

■ A specific database version. As of Oracle Database 10g,
this value cannot be lower than 9.2.0.

model Specifies which view to use. Only the Oracle proprietary
(ORACLE) view is supported by DBMS_METADATA.

OPENW Procedure

50-36 PL/SQL Packages and Types Reference

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OBJECT_PARAM. The model parameter was not valid for the
object_type.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-37

PUT Function

This function submits an XML document containing object metadata to the
database to create the objects.

Syntax
DBMS_METADATA.PUT (
 handle IN NUMBER,
 document IN sys.XMLType,
 flags IN NUMBER,
 results IN OUT NOCOPY sys.ku$_SubmitResults)
 RETURN BOOLEAN;

DBMS_METADATA.PUT (
 handle IN NUMBER,
 document IN CLOB,
 flags IN NUMBER,
 results IN OUT NOCOPY sys.ku$_SubmitResults)
RETURN BOOLEAN;

Parameters

Return Values
TRUE if all SQL operations succeeded; FALSE if there were any errors.

See Also: For more information about related subprograms:

■ Subprograms for Submission of XML to the Database

Table 50–14 PUT Function Parameters

Parameter Description

handle The handle returned from OPENW.

document The XML document containing object metadata for the type of
the OPENW handle.

flags Reserved for future use

results Detailed results of the operation.

PUT Function

50-38 PL/SQL Packages and Types Reference

Usage Notes
The PUT function converts the XML document to DDL just as CONVERT does
(applying the specified transforms in turn) and then submits each resultant DDL
statement to the database. As with CONVERT, the DDL transform must be specified.
The DDL statements and associated parse items are returned in the sys.ku$_
SubmitResults nested table. With each DDL statement is a nested table of error
lines containing any errors or exceptions raised by the statement.

The encoding of the XML document is embedded in its CLOB or XMLType
representation. The version of the metadata is embedded in the XML. The
generated DDL is valid for the current database compatibility level.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INCONSISTENT_OPERATION. The DDL transform was not specified.

■ INCOMPATIBLE_DOCUMENT. The version of the XML document is not
compatible with this version of the software.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-39

SET_COUNT Procedure

This procedure specifies the maximum number of objects to be retrieved in a single
FETCH_xxx call. By default, each call to FETCH_xxx returns one object. You can use
the SET_COUNT procedure to override this default. If FETCH_xxx is called from a
client, specifying a count value greater than 1 can result in fewer server round trips
and, therefore, improved performance.

For heterogeneous object types, a single FETCH_xxx operation only returns objects
of a single object type.

Syntax
DBMS_METADATA.SET_COUNT (
 handle IN NUMBER,
 value IN NUMBER,
 object_type_path IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

Table 50–15 SET_COUNT Procedure Parameters

Parameter Description

handle The handle returned from OPEN.

value The maximum number of objects to retrieve.

object_type_path A path name designating the object types to which the count
value applies. By default, the count value applies to the object
type of the OPEN handle. When the OPEN handle designates a
heterogeneous object type, behavior can be either of the
following:

■ if object_type_path is omitted, the count applies to all
object types within the heterogeneous collection

■ if object_type_path is specified, the count only applies
to the specific node (or set of nodes) within the tree of
object types forming the heterogeneous collection

SET_COUNT Procedure

50-40 PL/SQL Packages and Types Reference

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OPERATION. SET_COUNT was called after the first call to FETCH_
xxx for the OPEN context. After the first call to FETCH_xxx is made, no further
calls to SET_COUNT for the current OPEN context are permitted.

■ INCONSISTENT_ARGS. object_type parameter is not consistent with handle.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-41

SET_FILTER Procedure

This procedure specifies restrictions on the objects to be retrieved, for example, the
object name or schema.

Syntax
DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2,
 object_type_path IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN BOOLEAN DEFAULT TRUE,
 object_type_path IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_FILTER (
 handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 object_type_path IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

Table 50–16 SET_FILTER Procedure Parameters

Parameter Description

handle The handle returned from OPEN.

SET_FILTER Procedure

50-42 PL/SQL Packages and Types Reference

name The name of the filter. For each filter, Table 50–17 lists the
object_type it applies to, its name, its datatype (text or
Boolean) and its meaning or effect (including its default value,
if any).

The Datatype column of Table 50–17 also indicates whether a
text filter is an expression filter. An expression filter is the
right-hand side of a SQL comparison (that is, a SQL
comparison operator (=, !=, and so on.)) and the value
compared against. The value must contain parentheses and
quotation marks where appropriate. Note that in PL/SQL and
SQL*Plus, two single quotes (not a double quote) are needed to
represent an apostrophe. For example, an example of a NAME_
EXPR filter in PL/SQL is as follows:

'IN (''DEPT'',''EMP'')'

The filter value is combined with a particular object attribute to
produce a WHERE condition in the query that fetches the
objects. In the preceding example, the filter is combined with
the attribute corresponding to an object name; objects named
'DEPT' and 'EMP' are selected.

value The value of the filter. Text, Boolean, and Numeric filters are
supported.

object_type_path A path name designating the object types to which the filter
applies. By default, the filter applies to the object type of the
OPEN handle. When the OPEN handle designates a
heterogeneous object type, you can use this parameter to
specify a filter for a specific node or set of nodes within the tree
of object types that form the heterogeneous collection. See
Table 50–18 for a listing of some of the values for this
parameter.

Table 50–16 (Cont.) SET_FILTER Procedure Parameters

Parameter Description

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-43

Table 50–17 describes the object type, name, datatype, and meaning of the filters
available with the SET_FILTER procedure.

Table 50–17 SET_FILTER: Filters

Object Type Name Datatype Meaning

Named objects NAME text Objects with this exact name are selected.

Named objects NAME_EXPR text
expression

The filter value is combined with the object attribute
corresponding to the object name to produce a
WHERE condition in the query that fetches the
objects. In the preceding example, objects named
DEPT and EMP are retrieved.

By default, all named objects of object_type are
selected.

Named objects EXCLUDE_NAME_
EXPR

text
expression

The filter value is combined with the attribute
corresponding to the object name to specify objects
that are to be excluded from the set of objects
fetched.

By default, all named objects of the object type are
selected.

Schema objects SCHEMA text Objects in this schema are selected. If the object type
is SYNONYM, specify PUBLIC to select public
synonyms.

Schema objects SCHEMA_EXPR text
expression

The filter value is combined with the attribute
corresponding to the object's schema.

The default is determined as follows:

 - if BASE_OBJECT_SCHEMA is specified, then
objects in that schema are selected;

 - otherwise, objects in the current schema are
selected.

PACKAGE, TYPE SPECIFICATION Boolean If TRUE, retrieve the package or type specification.
Defaults to TRUE.

PACKAGE, TYPE BODY Boolean If TRUE, retrieve the package or type body. Defaults
to TRUE.

SET_FILTER Procedure

50-44 PL/SQL Packages and Types Reference

TABLE, CLUSTER,
INDEX, TABLE_
DATA, TABLE_
EXPORT,
TRANSPORTABLE_
EXPORT

TABLESPACE text Objects in this tablespace (or having a partition in
this tablespace) are selected.

TABLE, CLUSTER,
INDEX,TABLE_DATA,
TABLE_EXPORT,
TRANSPORTABLE_
EXPORT

TABLESPACE_
EXPR

text
expression

The filter value is combined with the attribute
corresponding to the object's tablespace (or in the
case of a partitioned table or index, the partition's
tablespaces). By default, objects in all tablespaces are
selected.

TABLE, objects
dependent on tables

PRIMARY Boolean If TRUE, retrieve primary tables (that is, tables for
which the secondary object bit in obj$ is clear.

Defaults to TRUE.

TABLE, objects
dependent on tables

SECONDARY Boolean If TRUE, retrieve secondary tables (that is, tables for
which the secondary object bit in obj$ is set).

Defaults to TRUE.

Dependent Objects BASE_OBJECT_
NAME

text Objects are selected that are defined or granted on
objects with this name. Specify SCHEMA for triggers
on schemas. Specify DATABASE for database
triggers. Column-level comments cannot be selected
by column name; the base object name must be the
name of the table, view, or materialized view
containing the column.

Dependent Objects BASE_OBJECT_
SCHEMA

text Objects are selected that are defined or granted on
objects in this schema. If BASE_OBJECT_NAME is
specified with a value other than SCHEMA or
DATABASE, this defaults to the current schema.

Dependent Objects BASE_OBJECT_
NAME_EXPR

text
expression

The filter value is combined with the attribute
corresponding to the name of the base object.

Not valid for schema and database triggers.

Dependent Objects EXCLUDE_BASE_
OBJECT_NAME_
EXPR

text
expression

The filter value is combined with the attribute
corresponding to the name of the base object to
specify objects that are to be excluded from the set of
objects fetched.

Not valid for schema and database triggers.

Dependent Objects BASE_OBJECT_
SCHEMA_EXPR

text
expression

The filter value is combined with the attribute
corresponding to the schema of the base object.

Table 50–17 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-45

Dependent Objects BASE_OBJECT_
TYPE

text The object type of the base object.

Dependent Objects BASE_OBJECT_
TYPE_EXPR

text
expression

The filter value is combined with the attribute
corresponding to the object type of the base object.

By default no filtering is done on object type.

Dependent Objects BASE_OBJECT_
TABLESPACE

text The tablespace of the base object.

Dependent Objects BASE_OBJECT_
TABLESPACE_
EXPR

text
expression

The filter value is combined with the attribute
corresponding to the tablespaces of the base object.
By default, no filtering is done on the tablespace.

INDEX, TRIGGER SYSTEM_
GENERATED

Boolean If TRUE, select indexes or triggers even if they are
system-generated. If FALSE, omit system-generated
indexes or triggers. Defaults to TRUE.

Granted Objects GRANTEE text Objects are selected that are granted to this user or
role. Specify PUBLIC for grants to PUBLIC.

Granted Objects PRIVNAME text The name of the privilege or role to be granted. For
TABLESPACE_QUOTA, only UNLIMITED can be
specified.

Granted Objects PRIVNAME_EXPR text
expression

The filter value is combined with the attribute
corresponding to the privilege or role name. By
default, all privileges/roles are returned.

Granted Objects GRANTEE_EXPR text
expression

The filter value is combined with the attribute
corresponding to the grantee name.

Granted Objects EXCLUDE_
GRANTEE_EXPR

text
expression

The filter value is combined with the attribute
corresponding to the grantee name to specify objects
that are to be excluded from the set of objects
fetched.

OBJECT_GRANT GRANTOR text Object grants are selected that are granted by this
user.

SYNONYM, JAVA_
SOURCE, XMLSCHEMA

LONGNAME text A name longer than 30 characters. Objects with this
exact name are selected. If the object name is 30
characters or less, the NAME filter must be used.

SYNONYM, JAVA_
SOURCE, XMLSCHEMA

LONGNAME_EXPR text The filter value is combined with the attribute
corresponding to the object's long name. By default,
no filtering is done on the long name of an object.

Table 50–17 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning

SET_FILTER Procedure

50-46 PL/SQL Packages and Types Reference

All objects CUSTOM_FILTER text The text of a WHERE condition. The condition is
appended to the query that fetches the objects. By
default, no custom filter is used.

The other filters are intended to meet the needs of
the majority of users. Use CUSTOM_FILTER when
no defined filters exists for your purpose. Of
necessity such a filter depends on the detailed
structure of the UDTs and views used in the query.
Because filters may change from version to version,
upward compatibility is not guaranteed.

SCHEMA_EXPORT SCHEMA text The schema whose objects are selected.

SCHEMA_EXPORT SCHEMA_EXPR text
expression

The filter value is either:

■ combined with the attribute corresponding to a
schema name to produce a WHERE condition in
the query that fetches schema objects,

■ combined with the attribute corresponding to a
base schema name to produce a WHERE
condition in the query that fetches dependent
objects.

By default the current user's objects are selected.

SCHEMA_EXPORT INCLUDE_USER Boolean If TRUE, retrieve objects containing privileged
information about the user. For example, USER,
PASSWORD_HISTORY, TABLESPACE_QUOTA.

Defaults to FALSE.

TABLE_EXPORT SCHEMA text Objects (tables and their dependent objects) in this
schema are selected.

TABLE_EXPORT SCHEMA_EXPR text
expression

The filter value is either:

■ combined with the attribute corresponding to a
schema name to produce a WHERE condition in
the query that fetches the tables,

■ combined with the attribute corresponding to a
base schema name to produce a WHERE
condition in the query that fetches the tables'
dependent objects.

By default the current user's objects are selected.

TABLE_EXPORT NAME text The table with this exact name is selected along with
its dependent objects.

Table 50–17 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-47

TABLE_EXPORT NAME_EXPR text
expression

The filter value is combined with the attribute
corresponding to a table name in the queries that
fetch tables and their dependent objects.

By default all tables in the selected schemas are
selected, along with their dependent objects.

Heterogeneous objects BEGIN_WITH text The fully qualified path name of the first object type
in the heterogeneous collection to be retrieved.
Objects normally fetched prior to this object type
will not be retrieved.

Heterogeneous objects BEGIN_AFTER text The fully qualified path name of an object type after
which the heterogeneous retrieval should begin.
Objects of this type will not be retrieved, nor will
objects normally fetched prior to this object type.

Heterogeneous objects END_BEFORE text The fully qualified path name of an object type
where the heterogeneous retrieval should end.
Objects of this type will not be retrieved, nor will
objects normally fetched after this object type.

Heterogeneous objects END_WITH text The fully qualified path name of the last object type
in the heterogeneous collection to be retrieved.
Objects normally fetched after this object type will
not be retrieved.

Heterogeneous objects INCLUDE_PATH_
EXPR, EXCLUDE_
PATH_EXPR

text
expression

For these two filters, the filter value is combined
with the attribute corresponding to an object type
path name to produce a WHERE condition in the
query that fetches the object types belonging to the
heterogeneous collection. Objects of types satisfying
this condition are included (INCLUDE_PATH_EXPR)
or excluded (EXCLUDE_PATH_EXPR) from the set of
object types fetched. Path names in the filter value
do not have to be fully qualified. See Table 50–18 for
valid path names that can be used with these filters.

BEGIN_WITH, BEGIN_AFTER, END_BEFORE, END_
WITH, INCLUDE_PATH_EXPR, and EXCLUDE_PATH_
EXPR all restrict the set of object types in the
heterogeneous collection. By default, objects of all
object types in the heterogeneous collection are
retrieved.

Table 50–17 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning

SET_FILTER Procedure

50-48 PL/SQL Packages and Types Reference

Usage Notes
■ Each call to SET_FILTER causes a WHERE condition to be added to the

underlying query that fetches the set of objects. The WHERE conditions are
ANDed together, so you can use multiple SET_FILTER calls to refine the set of
objects to be returned. For example to specify that you want the object named
EMP in schema SCOTT, do the following:

SET_FILTER(handle,'SCHEMA','SCOTT');
SET_FILTER(handle,'NAME','EMP');

■ You can use the same text expression filter multiple times with different values.
All the filter conditions will be applied to the query. For example, to get objects
with names between Felix and Oscar, do the following:

SET_FILTER(handle,'NAME_EXPR','>=''FELIX''');
SET_FILTER(handle,'NAME_EXPR','<=''OSCAR''');

■ With SET_FILTER, you can specify the schema of objects to be retrieved, but
security considerations may override this specification. If the caller is SYS or
has SELECT_CATALOG_ROLE, then any object can be retrieved; otherwise, only
the following can be retrieved:

– Schema objects owned by the current user

– Public synonyms

– System privileges granted to the current user or to PUBLIC

– Grants on objects for which the current user is owner, grantor, or grantee
(either explicitly or as PUBLIC).

– SCHEMA_EXPORT where the name is the current user

– TABLE_EXPORT where SCHEMA is the current user

If you request objects that you are not privileged to retrieve, no exception is
raised; the object is not retrieved, as if it did not exist.

In stored procedures, functions, and definers-rights packages, roles (such as
SELECT_CATALOG_ROLE) are disabled. Therefore, such a PL/SQL program can
only fetch metadata for objects in its own schema. If you want to write a
PL/SQL program that fetches metadata for objects in a different schema (based
on the invoker's possession of SELECT_CATALOG_ROLE), you must make the
program invokers-rights.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-49

■ For heterogeneous object types, the BEGIN_WITH and BEGIN_AFTER filters
allow restart on an object type boundary. Appropriate filter values are returned
by the FETCH_XML_CLOB procedure.

Filters on heterogeneous objects provide default values for filters on object
types within the collection. You can override this default for a particular object
type by specifying the appropriate filter for the specific object type path. For
example, for SCHEMA_EXPORT the NAME filter specifies the schema to be fetched
including all the tables in the schema, but you can further restrict this set of
tables by supplying a NAME_EXPR filter explicitly for the TABLE object type
path. Table 50–18 lists valid object type path names for the major heterogeneous
object types along with an explanation of the scope of each path name. (See
Table 50–17 for filters defined for each path name.) These path names are valid
in the INCLUDE_PATH_EXPR and EXCLUDE_PATH_EXPR filters. Path names
marked with an asterisk (*) are only valid in those filters; they cannot be used as
values of the SET_FILTER object_type_path parameter.

Table 50–18 Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

TABLE_EXPORT AUDIT_OBJ Object audits on the selected tables

TABLE_EXPORT COMMENT Table and column comments for the selected tables

TABLE_EXPORT CONSTRAINT Constraints (including referential constraints) on the selected
tables

TABLE_EXPORT *GRANT Object grants on the selected tables

TABLE_EXPORT INDEX Indexes (including domain indexes) on the selected tables

TABLE_EXPORT OBJECT_GRANT Object grants on the selected tables

TABLE_EXPORT REF_CONSTRAINT Referential (foreign key) constraints on the selected tables

TABLE_EXPORT STATISTICS Statistics on the selected tables

TABLE_EXPORT TABLE_DATA Row data for the selected tables

TABLE_EXPORT TRIGGER Triggers on the selected tables

SCHEMA_EXPORT ASSOCIATION Statistics type associations for objects in the selected schemas

SCHEMA_EXPORT AUDIT_OBJ Audits on all objects in the selected schemas

SCHEMA_EXPORT CLUSTER Clusters in the selected schemas and their indexes

SCHEMA_EXPORT COMMENT Comments on all objects in the selected schemas

SET_FILTER Procedure

50-50 PL/SQL Packages and Types Reference

SCHEMA_EXPORT CONSTRAINT Constraints (including referential constraints) on all objects in
the selected schemas

SCHEMA_EXPORT DB_LINK Private database links in the selected schemas

SCHEMA_EXPORT DEFAULT_ROLE Default roles granted to users associated with the selected
schemas

SCHEMA_EXPORT DIMENSION Dimensions in the selected schemas

SCHEMA_EXPORT FUNCTION Functions in the selected schemas and their dependent grants
and audits

SCHEMA_EXPORT *GRANT Grants on objects in the selected schemas

SCHEMA_EXPORT INDEX Indexes (including domain indexes) on tables and clusters in
the selected schemas

SCHEMA_EXPORT INDEXTYPE Indextypes in the selected schemas and their dependent
grants and audits

SCHEMA_EXPORT JAVA_SOURCE Java sources in the selected schemas and their dependent
grants and audits

SCHEMA_EXPORT JOB Jobs in the selected schemas

SCHEMA_EXPORT LIBRARY External procedure libraries in the selected schemas

SCHEMA_EXPORT MATERIALIZED_
VIEW

Materialized views in the selected schemas

SCHEMA_EXPORT MATERIALIZED_
VIEW_LOG

Materialized view logs on tables in the selected schemas

SCHEMA_EXPORT OBJECT_GRANT Grants on objects in the selected schemas

SCHEMA_EXPORT OPERATOR Operators in the selected schemas and their dependent grants
and audits

SCHEMA_EXPORT PACKAGE Packages (both specification and body) in the selected
schemas, and their dependent grants and audits

SCHEMA_EXPORT PACKAGE_BODY Package bodies in the selected schemas

SCHEMA_EXPORT PACKAGE_SPEC Package specifications in the selected schemas

SCHEMA_EXPORT PASSWORD_HISTORY The password history for users associated with the selected
schemas

Table 50–18 (Cont.) Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-51

SCHEMA_EXPORT PROCEDURE Procedures in the selected schemas and their dependent
grants and audits

SCHEMA_EXPORT REF_CONSTRAINT Referential (foreign key) constraints on tables in the selected
schemas

SCHEMA_EXPORT REFRESH_GROUP Refresh groups in the selected schemas

SCHEMA_EXPORT SEQUENCE Sequences in the selected schemas and their dependent
grants and audits

SCHEMA_EXPORT STATISTICS Statistics on tables and indexes in the selected schemas

SCHEMA_EXPORT SYNONYM Private synonyms in the selected schemas

SCHEMA_EXPORT TABLE Tables in the selected schemas and their dependent objects
(indexes, constraints, triggers, grants, audits, comments, table
data, and so on)

SCHEMA_EXPORT TABLE_DATA Row data for tables in the selected schemas

SCHEMA_EXPORT TABLESPACE_QUOTA Tablespace quota granted to users associated with the
selected schemas

SCHEMA_EXPORT TRIGGER Triggers on tables in the selected schemas

SCHEMA_EXPORT TYPE Types (both specification and body) in the selected schemas,
and their dependent grants and audits

SCHEMA_EXPORT TYPE_BODY Type bodies in the selected schemas

SCHEMA_EXPORT TYPE_SPEC Type specifications in the selected schemas

SCHEMA_EXPORT USER User definitions for users associated with the selected
schemas

SCHEMA_EXPORT VIEW Views in the selected schemas and their dependent objects
(grants, constraints, comments, audits)

DATABASE_EXPORT ASSOCIATION Statistics type associations for objects in the database

DATABASE_EXPORT AUDIT Audits of SQL statements

DATABASE_EXPORT AUDIT_OBJ Audits on all objects in the database

DATABASE_EXPORT CLUSTER Clusters and their indexes

DATABASE_EXPORT COMMENT Comments on all objects

DATABASE_EXPORT CONSTRAINT Constraints (including referential constraints)

Table 50–18 (Cont.) Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

SET_FILTER Procedure

50-52 PL/SQL Packages and Types Reference

DATABASE_EXPORT CONTEXT Application contexts

DATABASE_EXPORT DB_LINK Private and public database links

DATABASE_EXPORT DEFAULT_ROLE Default roles granted to users in the database

DATABASE_EXPORT DIMENSION Dimensions in the database

DATABASE_EXPORT DIRECTORY Directory objects in the database

DATABASE_EXPORT FGA_POLICY Fine-grained audit policies

DATABASE_EXPORT FUNCTION Functions

DATABASE_EXPORT * GRANT Object and system grants

DATABASE_EXPORT INDEX Indexes (including domain indexes) on tables and clusters

DATABASE_EXPORT INDEXTYPE Indextypes and their dependent grants and audits

DATABASE_EXPORT JAVA_SOURCE Java sources and their dependent grants and audits

DATABASE_EXPORT JOB Jobs

DATABASE_EXPORT LIBRARY External procedure libraries

DATABASE_EXPORT MATERIALIZED_
VIEW

Materialized views

DATABASE_EXPORT MATERIALIZED_
VIEW_LOG

Materialized view logs

DATABASE_EXPORT OBJECT_GRANT All object grants in the database

DATABASE_EXPORT OPERATOR Operators and their dependent grants and audits

DATABASE_EXPORT PACKAGE Packages (both specification and body) and their dependent
grants and audits

DATABASE_EXPORT PACKAGE_BODY Package bodies

DATABASE_EXPORT PACKAGE_SPEC Package specifications

DATABASE_EXPORT PASSWORD_HISTORY Password histories for database users

DATABASE_EXPORT *PASSWORD_
VERIFY_FUNCTION

The password complexity verification function

DATABASE_EXPORT PROCEDURE Procedures and their dependent grants and objects

DATABASE_EXPORT PROFILE Profiles

Table 50–18 (Cont.) Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-53

DATABASE_EXPORT PROXY Proxy authentications

DATABASE_EXPORT REF_CONSTRAINT Referential (foreign key) constraints on tables in the database

DATABASE_EXPORT REFRESH_GROUP Refresh groups

DATABASE_EXPORT *RESOURCE_ COST Resource cost information

DATABASE_EXPORT RLS_CONTEXT Fine-grained access-control driving contexts

DATABASE_EXPORT RLS_GROUP Fine-grained access-control policy groups

DATABASE_EXPORT RLS_POLICY Fine-grained access-control policies

DATABASE_EXPORT ROLE Roles

DATABASE_EXPORT ROLE_GRANT Role grants to users in the database

DATABASE_EXPORT ROLLBACK_SEGMENT Rollback segments

DATABASE_EXPORT *SCHEMA (named
object)

Database schemas including for each schema all related and
dependent objects: user definitions and their attributes
(default roles, role grants, tablespace quotas, and so on),
objects in the schema (tables, view, packages, types, and so
on), and their dependent objects (grants, audits, indexes,
constraints, and so on). The NAME and NAME_EXPR filters can
be used with this object type path name to designate the
database schemas to be fetched.

DATABASE_EXPORT SEQUENCE Sequences

DATABASE_EXPORT STATISTICS Statistics on tables and indexes

DATABASE_EXPORT SYNONYM Public and private synonyms

DATABASE_EXPORT SYSTEM_GRANT System privilege grants

DATABASE_EXPORT TABLE Tables and their dependent objects (indexes, constraints,
triggers, grants, audits, comments, table data, and so on)

DATABASE_EXPORT TABLE_DATA Row data for all tables

DATABASE_EXPORT TABLESPACE Tablespace definitions

DATABASE_EXPORT TABLESPACE_QUOTA Tablespace quota granted to users in the database

DATABASE_EXPORT TRIGGER Triggers on the database, on schemas, and on schema objects

DATABASE_EXPORT TRUSTED_DB_LINK Trusted links

Table 50–18 (Cont.) Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

SET_FILTER Procedure

50-54 PL/SQL Packages and Types Reference

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OPERATION. SET_FILTER was called after the first call to FETCH_
xxx for the OPEN context. After the first call to FETCH_xxx is made, no further
calls to SET_FILTER are permitted.

■ INCONSISTENT_ARGS. The arguments are inconsistent. Possible
inconsistencies include the following:

– filter name not valid for the object type associated with the OPEN context

– filter name not valid for the object_type_path

– object_type_path not part of the collection designated by handle

– filter value is the wrong datatype

DATABASE_EXPORT TYPE Types (both specification and body) and their dependent
grants and audits

DATABASE_EXPORT TYPE_BODY Type bodies

DATABASE_EXPORT TYPE_SPEC Type specifications

DATABASE_EXPORT USER User definitions

DATABASE_EXPORT VIEW Views

Table 50–18 (Cont.) Object Type Path Names for Heterogeneous Object Types

Heterogeneous Type

Path Name (*=valid
only in xxx_PATH_
EXPR) Scope

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-55

SET_PARSE_ITEM Procedure

This procedure enables output parsing and specifies an object attribute to be parsed
and returned.

Syntax
The following syntax applies when SET_PARSE_ITEM is used for object retrieval:

DBMS_METADATA.SET_PARSE_ITEM (
 handle IN NUMBER,
 name IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

The following syntax applies when SET_PARSE_ITEM is used for XML submission:

DBMS_METADATA.SET_PARSE_ITEM (
 handle IN NUMBER,
 name IN VARCHAR2);

Parameters

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

■ Subprograms for Submission of XML to the Database

Table 50–19 SET_PARSE_ITEM Procedure Parameters

Parameter Description

handle The handle returned from OPEN (or OPENW).

name The name of the object attribute to be parsed and returned. See
Table 50–20 for the attribute object type, name, and meaning.

SET_PARSE_ITEM Procedure

50-56 PL/SQL Packages and Types Reference

Table 50–20 describes the object type, name, and meaning of the items available in
the SET_PARSE_ITEM procedure.

object_type Designates the object type to which the parse item applies (this
is an object type name, not a path name). By default, the parse
item applies to the object type of the OPEN handle. When the
OPEN handle designates a heterogeneous object type, behavior
can be either of the following:

■ if object_type is omitted, the parse item applies to all
object types within the heterogeneous collection

■ if object_type is specified, the parse item only applies to
that specific object type within the collection

This parameter only applies when SET_PARSE_ITEM is used
for object retrieval.

Table 50–20 SET_PARSE_ITEM: Parse Items

Object Type Name Meaning

All objects VERB If FETCH_XML_CLOB is called, no value is returned.

If FETCH_DDL is called, then for every row in the sys.ku$_ddls
nested table returned by FETCH_DDL the verb in the
corresponding ddlText is returned. If the ddlText is a SQL
DDL statement, then the SQL verb (for example, CREATE, GRANT,
AUDIT) is returned. If the ddlText is a procedure call (for
example, DBMS_AQADM.CREATE_QUEUE_TABLE()) then the
package.procedure-name is returned.

All objects OBJECT_TYPE If FETCH_XML_CLOB is called, an object type name from
Table 50–11 is returned.

If FETCH_DDL is called and the ddlText is a SQL DDL statement
whose verb is CREATE or ALTER, the object type as used in the
DDL statement is returned (for example, TABLE, PACKAGE_BODY,
and so on). Otherwise, an object type name from Table 50–11 is
returned.

Schema objects SCHEMA The object schema is returned. If the object is not a schema object,
no value is returned.

Named objects NAME The object name is returned. If the object is not a named object, no
value is returned.

Table 50–19 (Cont.) SET_PARSE_ITEM Procedure Parameters

Parameter Description

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-57

Usage Notes
These notes apply when using SET_PARSE_ITEM to retrieve objects.

By default, the FETCH_xxx routines return an object's metadata as XML or creation
DDL. By calling SET_PARSE_ITEM you can request that individual attributes of the
object be returned as well.

TABLE,
TABLE_DATA,
INDEX

TABLESPACE The name of the object's tablespace or, if the object is a partitioned
table, the default tablespace is returned. For a TABLE_DATA
object, this is always the tablespace where the rows are stored.

TRIGGER ENABLE If the trigger is enabled, ENABLE is returned. If the trigger is
disabled, DISABLE is returned.

OBJECT_
GRANT,
TABLESPACE_
QUOTA

GRANTOR The grantor is returned.

Dependent
objects
(including
domain index
secondary
tables)

BASE_OBJECT_NAME The name of the base object is returned. If the object is not a
dependent object, no value is returned.

Dependent
objects
(including
domain index
secondary
tables)

BASE_OBJECT_SCHEMA The schema of the base object is returned. If the object is not a
dependent object, no value is returned.

Dependent
objects
(including
domain index
secondary
tables)

BASE_OBJECT_TYPE The object type of the base object is returned. If the object is not a
dependent object, no value is returned.

Granted objects GRANTEE The grantee is returned. If the object is not a granted object, no
value is returned.

Table 50–20 (Cont.) SET_PARSE_ITEM: Parse Items

Object Type Name Meaning

SET_PARSE_ITEM Procedure

50-58 PL/SQL Packages and Types Reference

You can call SET_PARSE_ITEM multiple times to ask for multiple items to be
parsed and returned. Parsed items are returned in the sys.ku$_parsed_items
nested table.

For TABLE_DATA objects, the following parse item return values are of interest:

Tables are not usually thought of as dependent objects. However, secondary tables
for domain indexes are dependent on the domain indexes. Consequently, the BASE_
OBJECT_NAME, BASE_OBJECT_SCHEMA and BASE_OBJECT_TYPE parse items for
secondary TABLE objects return the name, schema, and type of the domain index.

By default, the CONVERT and PUT procedures simply transform an object's XML
metadata to DDL. By calling SET_PARSE_ITEM you can request that individual
attributes of the object be returned as well.

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OPERATION. SET_PARSE_ITEM was called after the first call to
FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no
further calls to SET_PARSE_ITEM are permitted.

■ INCONSISTENT_ARGS. The attribute name is not valid for the object type
associated with the OPEN context.

If Object Is NAME, SCHEMA
BASE_OBJECT_NAME,
BASE_OBJECT_SCHEMA

nonpartitioned table table name, schema table name, schema

table partition partition name, schema table name, schema

nested table storage table name, schema name and schema of
top-level table (not the
parent nested table)

See Also:

■ "FETCH_xxx Functions" on page 50-16

■ Oracle Database Utilities for information about using the
Metadata API

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-59

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

SET_TRANSFORM_PARAM and SET_REMAP_PARAM specify parameters to the XSLT
stylesheet identified by transform_handle.Use them to modify or customize the
output of the transform.

Syntax
DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN VARCHAR2),
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN BOOLEAN DEFAULT TRUE),
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_TRANSFORM_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 value IN NUMBER,
 object_type IN VARCHAR2 DEFAULT NULL);

DBMS_METADATA.SET_REMAP_PARAM (
 transform_handle IN NUMBER,
 name IN VARCHAR2,
 old_value IN VARCHAR2,
 new_value IN VARCHAR2,
 object_type IN VARCHAR2 DEFAULT NULL);

Parameters
Table 50–21 describes the parameters for the SET_TRANSFORM_PARAM and SET_
REMAP_PARAM procedures.

See Also: For more information about related subprograms:

■ Subprograms for Retrieval of Multiple Objects from the
Database

■ Subprograms for Submission of XML to the Database

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

50-60 PL/SQL Packages and Types Reference

Table 50–21 SET_TRANSFORM_PARAM and SET_REMAP_PARAM Parameters

Parameters Description

transform_handle Either (1) the handle returned from ADD_TRANSFORM, or (2)
the enumerated constant SESSION_TRANSFORM that
designates the DDL transform for the whole session.

Note that the handle returned by OPEN is not a valid transform
handle.

For SET_REMAP_PARAM, the transform handle must designate
the MODIFY transform.

name The name of the parameter. Table 50–22 lists the transform
parameters defined for the DDL transform, specifying the
object_type it applies to, its datatype, and its meaning or
effect. This includes its default value, if any, and whether the
parameter is additive.

Table 50–23 describes the parameters for the MODIFY
transform in the SET_TRANSFORM_PARAM procedure.

Table 50–24 describes the parameters for the MODIFY
transform in the SET_REMAP_PARAM procedure.

value The value of the transform. This parameter is valid only for
SET_TRANSFORM_PARAM.

old_value The old value for the remapping. This parameter is valid only
for SET_REMAP_PARAM.

new_value The new value for the remapping. This parameter is valid only
for SET_REMAP_PARAM.

object_type Designates the object type to which the transform or remap
parameter applies. By default, it applies to the same object type
as the transform. In cases where the transform applies to all
object types within a heterogeneous collection, the following
apply:

■ If object_type is omitted, the parameter applies to all
applicable object types within the heterogeneous
collection.

■ If object_type is specified, the parameter only applies
to that object type.

This allows a caller who has added a transform to a
heterogeneous collection to specify different transform
parameters for different object types within the collection.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-61

Table 50–22 describes the object type, name, datatype, and meaning of the
parameters for the DDL transform in the SET_TRANSFORM_PARAM procedure.

Table 50–22 SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning

All objects PRETTY Boolean If TRUE, format the output with indentation and
line feeds. Defaults to TRUE.

All objects SQLTERMINATOR Boolean If TRUE, append a SQL terminator (; or /) to
each DDL statement. Defaults to FALSE.

TABLE SEGMENT_ATTRIBUTES Boolean If TRUE, emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE.

TABLE STORAGE Boolean If TRUE, emit storage clause. (Ignored if
SEGMENT_ATTRIBUTES is FALSE.) Defaults to
TRUE.

TABLE TABLESPACE Boolean If TRUE, emit tablespace. (Ignored if SEGMENT_
ATTRIBUTES is FALSE.) Defaults to TRUE.

TABLE CONSTRAINTS Boolean If TRUE, emit all non-referential table
constraints. Defaults to TRUE.

TABLE REF_CONSTRAINTS Boolean If TRUE, emit all referential constraints (foreign
keys). Defaults to TRUE.

TABLE CONSTRAINTS_AS_ALTER Boolean If TRUE, emit table constraints as separate
ALTER TABLE (and, if necessary, CREATE
INDEX) statements. If FALSE, specify table
constraints as part of the CREATE TABLE
statement. Defaults to FALSE. Requires that
CONSTRAINTS be TRUE.

TABLE OID Boolean If TRUE, emit the OID clause for object tables.
Defaults to FALSE.

TABLE SIZE_BYTE_KEYWORD Boolean If TRUE, emit the BYTE keyword as part of the
size specification of CHAR and VARCHAR2
columns that use byte semantics. If FALSE, omit
the keyword. Defaults to FALSE.

INDEX SEGMENT_ATTRIBUTES Boolean If TRUE, emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE.

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

50-62 PL/SQL Packages and Types Reference

INDEX STORAGE Boolean If TRUE, emit storage clause. (Ignored if
SEGMENT_ATTRIBUTES is FALSE.) Defaults to
TRUE.

INDEX TABLESPACE Boolean If TRUE, emit tablespace. (Ignored if SEGMENT_
ATTRIBUTES is FALSE.) Defaults to TRUE.

TYPE SPECIFICATION Boolean If TRUE, emit the type specification. Defaults to
TRUE.

TYPE BODY Boolean If TRUE, emit the type body. Defaults to TRUE.

TYPE OID Boolean If TRUE, emit the OID clause. Defaults to FALSE.

PACKAGE SPECIFICATION Boolean If TRUE, emit the package specification. Defaults
to TRUE.

PACKAGE BODY Boolean If TRUE, emit the package body. Defaults to
TRUE.

VIEW FORCE Boolean If TRUE, use the FORCE keyword in the CREATE
VIEW statement. Defaults to TRUE.

OUTLINE INSERT Boolean If TRUE, emit the INSERT statements into the
OL$ dictionary tables that will create the outline
and its hints. If FALSE, emit a CREATE OUTLINE
statement. Defaults to FALSE.

Note: This object type is being deprecated.

All objects DEFAULT Boolean Calling SET_TRANSFORM_PARAM with this
parameter set to TRUE has the effect of resetting
all parameters for the transform to their default
values. Setting this FALSE has no effect. There is
no default.

Table 50–22 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-63

Table 50–23 describes the object type, name, datatype, and meaning of the
parameters for the MODIFY transform in the SET_TRANSFORM_PARAM procedure.

All objects INHERIT Boolean If TRUE, inherits session-level parameters.
Defaults to FALSE. If an application calls ADD_
TRANSFORM to add the DDL transform, then by
default the only transform parameters that apply
are those explicitly set for that transform handle.
This has no effect if the transform handle is the
session transform handle.

ROLE REVOKE_FROM Text The name of a user from whom the role must be
revoked. If this is a non-null string and if the
CREATE ROLE statement grants you the role, a
REVOKE statement is emitted after the CREATE
ROLE.

Note: When you issue a CREATE ROLE
statement, Oracle may grant you the role. You
can use this transform parameter to undo the
grant.

Defaults to null string.

TABLESPACE REUSE Boolean If TRUE, include the REUSE parameter for
datafiles in a tablespace to indicate that existing
files can be reused.

Defaults to FALSE.

Table 50–23 SET_TRANSFORM_PARAM: Transform Parameters for the MODIFY Transform

Object Type Name Datatype Meaning

All objects OBJECT_ROW Number A number designating the object row for an
object. The object in the document that
corresponds to this number will be copied to the
output document.

This parameter is additive.

By default, all objects are copied to the output
document.

Table 50–22 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

50-64 PL/SQL Packages and Types Reference

Table 50–24 describes the object type, name, datatype, and meaning of the
parameters for the MODIFY transform in the SET_REMAP_PARAM procedure.

Table 50–24 SET_REMAP_PARAM: Transform Parameters for the MODIFY Transform

Object Type Name Datatype Meaning

LIBRARY,
TABLESPACE,
DIRECTORY

REMAP_DATAFILE Text Objects in the document will have their filespecs
renamed as follows: any filespec matching old_
value will be changed to new_value. Filespecs
should not be enclosed in quotes.

This parameter is additive.

By default, filespecs are not renamed.

Schema Objects,
Dependent
Objects, Granted
Objects, USER

REMAP_SCHEMA Text Any schema object in the document whose name
matches old_value will have its schema name
changed to new_value.

Any dependent object whose base object schema
name matches old_value will have its base
object schema name changed to new_value.

Any granted object whose grantee name
matches old_value will have its grantee name
changed to new_value.

Any user whose name matches old_value will
have its name changed to new_value.

This parameter is additive.

By default, schemas are not remapped.

TABLE,
CLUSTER,
CONSTRAINT,
INDEX,
ROLLBACK_
SEGMENT,
MATERIALIZED
_VIEW,
MATERIALIZED
_VIEW_LOG,
TABLESPACE_
QUOTA

REMAP_TABLESPACE Text Objects in the document will have their
tablespaces renamed as follows: any tablespace
name matching old_value will be changed to
new_value.

This parameter is additive.

By default, tablespaces are not remapped.

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 50-65

Exceptions
■ INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

■ INVALID_OPERATION. Either SET_TRANSFORM_PARAM or SET_REMAP_
PARAM was called after the first call to FETCH_xxx for the OPEN context. After
the first call to FETCH_xxx is made, no further calls to SET_TRANSFORM_
PARAM or SET_REMAP_PARAM are permitted.

■ INCONSISTENT_ARGS. The arguments are inconsistent. This can mean the
following:

– The transform parameter name is not valid for the object type associated
with the OPEN context or for the transform associated with the transform
handle.

– The transform applies to all object types in a heterogeneous collection, but
object_type is not part of the collection.

Usage Notes
XSLT allows parameters to be passed to stylesheets. You call SET_TRANSFORM_
PARAM or SET_REMAP_PARAM to specify the value of a parameter to be passed to
the stylesheet identified by transform_handle.

Normally, if you call SET_TRANSFORM_PARAMETER multiple times for the same
parameter name, each call overrides the prior call. For example, the following
sequence simply sets the STORAGE transform parameter to TRUE.

SET_TRANSFORM_PARAM(tr_handle,'STORAGE',false);
SET_TRANSFORM_PARAM(tr_handle,'STORAGE',true);

However, some transform parameters are additive which means that all specified
parameter values are applied to the document, not just the last one. For example,
the OBJECT_ROW parameter to the MODIFY transform is additive. If you specify the
following, then both specified rows are copied to the output document.

SET_TRANSFORM_PARAM(tr_handle,'OBJECT_ROW',5);
SET_TRANSFORM_PARAM(tr_handle,'OBJECT_ROW',8);

The REMAP_TABLESPACE parameter is also additive. If you specify the following,
then tablespaces TBS1 and TBS3 are changed to TBS2 and TBS4, respectively.

SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS1','TBS2');
SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS3','TBS4');

SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

50-66 PL/SQL Packages and Types Reference

The order in which the transformations are performed is undefined. For example, if
you specify the following, the result is undefined.

SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS1','TBS2');
SET_REMAP_PARAM(tr_handle,'REMAP_TABLESPACE','TBS2','TBS3');

The GET_DDL, GET_DEPENDENT_DDL, and GET_GRANTED_DDL functions allow the
casual browser to extract the creation DDL for an object. So that you can specify
transform parameters, this package defines an enumerated constant SESSION_
TRANSFORM as the handle of the DDL transform at the session level. You can call
SET_TRANSFORM_PARAM using DBMS_METADATA.SESSION_TRANSFORM as the
transform handle to set transform parameters for the whole session. GET_DDL,
GET_DEPENDENT_DDL, and GET GRANTED_DDL inherit these parameters when
they invoke the DDL transform.

Note: The enumerated constant must be prefixed with the
package name DBMS_METADATA.SESSION_TRANSFORM.

DBMS_MGWADM 51-1

51
DBMS_MGWADM

DBMS_MGWADM defines the Messaging Gateway administrative interface. The
package and object types are owned by SYS.

This chapter contains the following topics:

■ Using DBMS_MGWADM

■ Constants

■ Types

■ Properties

■ Database Views

■ Summary of DBMS_MGWADM Subprograms

Note: You must run the catmgw.sql script to load the Messaging
Gateway packages and types into the database.

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference contains information on loading database objects and
using DBMS_MGWADM

Using DBMS_MGWADM

51-2 PL/SQL Packages and Types Reference

Using DBMS_MGWADM

■ Constants

■ Types

■ Properties

■ Database Views

Constants

Table 51–1 DBMS_MGWADM Constants—Propagation Types

Name Type Description

OUTBOUND_PROPAGATION CONSTANT BINARY_INTEGER Represents the propagation type for Oracle
Streams AQ to non-Oracle propagation. The
propagation source is a local Oracle Streams
AQ queue and the destination is a queue in
a foreign (non-Oracle) messaging system.

INBOUND_PROPAGATION CONSTANT BINARY_INTEGER Represents the propagation type for
non-Oracle to Oracle Streams AQ
propagation. The propagation source is a
queue in a foreign (non-Oracle) messaging
system and the destination is a local Oracle
Streams AQ queue.

Table 51–2 DBMS_MGWADM Constants—Queue Domain Types

Name Type Description

DOMAIN_QUEUE CONSTANT BINARY_INTEGER Represents a queue destination. A JMS
queue (point-to-point model) is classified as
a queue.

DOMAIN_TOPIC CONSTANT BINARY_INTEGER Represents a topic destination. A JMS topic
(publish-subscribe model) is classified as a
topic.

Using DBMS_MGWADM

DBMS_MGWADM 51-3

Table 51–3 DBMS_MGWADM Constants—Force Values

Name Type Description

NO_FORCE CONSTANT BINARY_INTEGER Represents a normal, nonforced action

FORCE CONSTANT BINARY_INTEGER Represents a forced action

Table 51–4 DBMS_MGWADM Constants—Shutdown Modes

Name Type Description

SHUTDOWN_NORMAL CONSTANT BINARY_INTEGER Represents the normal shutdown mode

SHUTDOWN_IMMEDIATE CONSTANT BINARY_INTEGER Represents the immediate shutdown mode

Table 51–5 DBMS_MGWADM Constants—Cleanup Actions

Name Type Description

CLEAN_STARTUP_STATE CONSTANT BINARY_INTEGER Sets the Messaging Gateway agent to a
known state so that it can be started

CLEAN_LOG_QUEUES CONSTANT BINARY_INTEGER Messaging Gateway agent will clean log
queues for all configured messaging system
links.

RESET_SUB_MISSING_LOG_
REC

CONSTANT BINARY_INTEGER Messaging Gateway agent recovers a
Messaging Gateway subscriber that has
failed due to a missing log record.

RESET_SUB_MISSING_
MESSAGE

CONSTANT BINARY_INTEGER Messaging Gateway agent recovers a
Messaging Gateway subscriber that has
failed due to a missing persistent source
message.

Table 51–6 DBMS_MGWADM Constants—Logging Levels

Name Type Description

BASIC_LOGGING CONSTANT BINARY_INTEGER Represents the detail of logging information
written to the log file. The logging level
ranges from BASIC_LOGGING for standard
(the least) information to TRACE_DEBUG_
LOGGING for the greatest information.

TRACE_LITE_LOGGING CONSTANT BINARY_INTEGER

TRACE_HIGH_LOGGING CONSTANT BINARY_INTEGER

TRACE_DEBUG_LOGGING CONSTANT BINARY_INTEGER

Constants

51-4 PL/SQL Packages and Types Reference

Table 51–7 DBMS_MGWADM Constants—WebSphere MQ Interface Types

Name Type Description

MQSERIES_BASE_JAVA_
INTERFACE

CONSTANT BINARY_INTEGER Represents the Base Java interface for the
WebSphere MQ messaging system

Table 51–8 DBMS_MGWADM Constants—Named Property Constants

Name Type Description

MGWPROP_PREFIX CONSTANT VARCHAR2 A constant (MGWPROP$_) for the reserved
property name prefix

MGWPROP_REMOVE CONSTANT VARCHAR2 A constant (MGWPROP$_REMOVE) for the
reserved property name used to remove an
existing property

MGWPROP_REMOVE_ALL CONSTANT VARCHAR2 A constant (MGWPROP$_REMOVE_ALL) for
the reserved property name used to remove
all properties

Table 51–9 DBMS_MGWADM Constants—Other Constants

Name Type Description

NO_CHANGE CONSTANT VARCHAR2 Indicates that an existing value should be
preserved (not changed). This is used for
certain APIs where the desire is to change
one or more parameters but leave others
unchanged.

JMS_QUEUE_CONNECTION CONSTANT BINARY_INTEGER Used to indicate that JMS queue
connections will be used to access JMS
destinations.

JMS_TOPIC_CONNECTION CONSTANT BINARY_INTEGER Used to indicate that JMS topic connections
will be used to access JMS destinations.

Using DBMS_MGWADM

DBMS_MGWADM 51-5

Types

■ SYS.MGW_PROPERTY Type

■ SYS.MGW_PROPERTIES Type

■ SYS.MGW_MQSERIES_PROPERTIES Type

■ SYS.MGW_TIBRV_PROPERTIES Type

SYS.MGW_PROPERTY Type
This type specifies a named property. SYS.MGW_PROPERTY is used to specify
optional properties for messaging links, foreign queues, and subscribers.

Syntax
TYPE SYS.MGW_PROPERTY IS OBJECT(
 name VARCHAR2(100),
 value VARCHAR2(1000),

-- Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_PROPERTY,

STATIC FUNCTION CONSTRUCT(
 p_name IN VARCHAR2,
 p_value IN VARCHAR2)
RETURN SYS.MGW_PROPERTY);

Attributes

CONSTRUCT Method
This method constructs a new MGW_PROPERTY instance. All attributes are assigned
a value of NULL.

Table 51–10 SYS.MGW_PROPERTY Attributes

Attribute Description

name Property name

value Property value

Types

51-6 PL/SQL Packages and Types Reference

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_PROPERTY;

CONSTRUCT Method, Initialized With Given Parameters
This method constructs a new MGW_PROPERTY instance initialized using the given
parameters.

Syntax
STATIC FUNCTION CONSTRUCT(
 p_name IN VARCHAR2,
 p_value IN VARCHAR2)
RETURN SYS.MGW_PROPERTY;

Parameters

SYS.MGW_PROPERTIES Type
This type specifies an array of properties.

Syntax
TYPE SYS.MGW_PROPERTIES AS VARRAY (100) OF SYS.MGW_PROPERTY;

Usage Notes
Unless noted otherwise, Messaging Gateway uses named properties as follows:

■ Names with the MGWPROP$_ prefix are reserved. They are used for special
purposes and are invalid when used as a normal property name.

■ A property name can exist only once in a property list; that is, a list can contain
only one value for a given name. The name is case-insensitive.

■ In general, a property list is order-independent, and the property names may
appear in any order. An alter property list is an exception.

Table 51–11 SYS.MGW_PROPERTY.CONSTRUCT Initialization Parameters

Parameter Description

p_name Property name

p_value Property value

Using DBMS_MGWADM

DBMS_MGWADM 51-7

■ You can use a new property list to alter an existing property list. Each new
property modifies the original list in one of the following ways: adds a new
property, modifies a property, removes a property, or removes all properties.

The alter list is processed in order, from the first element to the last element. Thus
the order in which the elements appear in the alter list is meaningful, especially
when the alter list is used to remove properties from an existing list.

The property name and value are used to determine how that element affects the
original list. The following rules apply:

■ Add or modify property

MGW_PROPERTY.NAME = property_name
MGW_PROPERTY.VALUE = property_value

If a property of the given name already exists, then the current value is replaced
with the new value; otherwise the new property is added to the end of the list.

■ Remove property

MGW_PROPERTY.NAME = 'MGWPROP$_REMOVE'
MGW_PROPERTY.VALUE = name_of_property_to_remove

No action is taken if the property name does not exist in the original list.

■ Remove all properties

MGW_PROPERTY.NAME = 'MGWPROP$_REMOVE_ALL'
MGW_PROPERTY.VALUE = not used

The DBMS_MGWADM package defines constants to represent the reserved property
names. See "WebSphere MQ System Properties" on page 51-12 for more
information.

SYS.MGW_MQSERIES_PROPERTIES Type
This type specifies basic properties for a WebSphere MQ messaging system link.

Syntax
TYPE SYS.MGW_MQSERIES_PROPERTIES IS OBJECT (
 queue_manager VARCHAR2(64),
 hostname VARCHAR2(64),
 port INTEGER,
 channel VARCHAR2(64),
 interface_type INTEGER,

Types

51-8 PL/SQL Packages and Types Reference

 max_connections INTEGER,
 username VARCHAR2(64),
 password VARCHAR2(64),
 inbound_log_queue VARCHAR2(64),
 outbound_log_queue VARCHAR2(64),

-- Methods
STATIC FUNCTION construct
RETURN SYS.MGW_MQSERIES_PROPERTIES,

STATIC FUNCTION alter_construct
RETURN SYS.MGW_MQSERIES_PROPERTIES);

Attributes

Table 51–12 SYS.MGW_MQSERIES_PROPERTIES Attributes

Attribute Description

queue_manager The name of the WebSphere MQ queue manager

hostname The host on which the WebSphere MQ messaging system
resides. If hostname is NULL, then a WebSphere MQ bindings
connection is used. If not NULL, then a client connection is used
and requires that a port and channel be specified.

port The port number. This is used only for client connections; that
is, when hostname is not NULL.

channel The channel used when establishing a connection to the queue
manager. This is used only for client connections; that is, when
hostname is not NULL.

interface_type The type of messaging interface to use. Values:

■ DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE if
the WebSphere MQ Base Java interface should be used.

■ DBMS_MGWADM.JMS_QUEUE_CONNECTION if the link is to
be used for accessing JMS queues

■ DBMS_MGWADM.JMS_TOPIC_CONNECTION if the link is to
be used for accessing JMS topics.

max_connections The maximum number of messaging connections to the
WebSphere MQ messaging system

username The username used for authentication to the WebSphere MQ
messaging system

Using DBMS_MGWADM

DBMS_MGWADM 51-9

CONSTRUCT Method
This method constructs a new SYS.MGW_MQSERIES_PROPERTIES instance. All
attributes are assigned a value of NULL.

password The password used for authentication to the WebSphere MQ
messaging system

inbound_log_queue The name of the WebSphere MQ queue used for propagation
recovery purposes when this messaging link is used for
inbound propagation; that is, when queues associated with this
link serve as a propagation source:

■ For MQSERIES_BASE_JAVA_INTERFACE, this is the name
of a physical WebSphere MQ queue created using
WebSphere MQ administration tools.

■ For JMS_QUEUE_CONNECTION interface, this is the name
of a physical WebSphere MQ queue created using
WebSphere MQ administration tools.

■ For JMS_TOPIC_CONNECTION interface, this specifies the
name of a WebSphere MQ JMS topic. The physical
WebSphere MQ queue used by subscribers of that topic
must be created using WebSphere MQ administration
tools. By default, the physical queue used is
SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

outbound_log_queue The name of the WebSphere MQ queue used for propagation
recovery purposes when this messaging link is used for
outbound propagation; that is, when queues associated with
this link serve as a propagation destination:

■ For MQSERIES_BASE_JAVA_INTERFACE, this is the name
of a physical WebSphere MQ queue created using
WebSphere MQ administration tools.

■ For JMS_QUEUE_CONNECTION interface, this is the name
of a physical WebSphere MQ queue created using
WebSphere MQ administration tools.

■ For JMS_TOPIC_CONNECTION interface, this specifies the
name of a WebSphere MQ JMS topic. The physical
WebSphere MQ queue used by subscribers of that topic
must be created using WebSphere MQ administration
tools. By default, the physical queue used is
SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

Table 51–12 (Cont.) SYS.MGW_MQSERIES_PROPERTIES Attributes

Attribute Description

Types

51-10 PL/SQL Packages and Types Reference

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_MQSERIES_PROPERTIES;

ALTER_CONSTRUCT Method
This method constructs a new SYS.MGW_MQSERIES_PROPERTIES instance for
altering the properties of an existing messaging link. All attributes having a
VARCHAR2 data type are assigned a value of DBMS_MGWADM.NO_CHANGE.
Attributes of other data types are assigned a value of NULL.

Syntax
STATIC FUNCTION ALTER_CONSTRUCT
RETURN SYS.MGW_MQSERIES_PROPERTIES;

SYS.MGW_TIBRV_PROPERTIES Type
A type that specifies basic properties for a TIB/Rendezvous messaging system link.
The Messaging Gateway agent creates a TIB/Rendezvous transport of type
TibrvRvdTransport for each Messaging Gateway link.

Syntax
TYPE SYS.MGW_TIBRV_PROPERTIES IS OBJECT(
 service VARCHAR2(128),
 daemon VARCHAR2(128),
 network VARCHAR2(256),
 cm_name VARCHAR2(256),
 cm_ledger VARCHAR2(256),

-- Methods
STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_PROPERTIES,

STATIC FUNCTION alter_construct
RETURN SYS.MGW_TIBRV_PROPERTIES);

Using DBMS_MGWADM

DBMS_MGWADM 51-11

Attributes

CONSTRUCT Function
Constructs a new SYS.MGW_TIBRV_PROPERTIES instance. All attributes will be
assigned a value of NULL.

Syntax
STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_PROPERTIES;

ALTER_CONSTRUCT Function
Constructs a new SYS.MGW_TIBRV_PROPERTIES instance. This function is useful
for altering the properties of an existing messaging link. All attributes having a
VARCHAR2 data type will be assigned a value of DBMS_MGWADM.NO_CHANGE.
Attributes of other data types will be assigned a value of NULL.

Syntax
STATIC FUNCTION alter_construct
RETURN SYS.MGW_TIBRV_PROPERTIES;

Table 51–13 SYS.MGW_TIBRV_PROPERTIES Attributes

Attribute Description

service The service parameter for the rvd transport

daemon The daemon parameter for the rvd transport

network The network parameter for the rvd transport

cm_name The CM correspondent name. Reserved for future use.

cm_ledger The CM ledger file name. Reserved for future use.

Properties

51-12 PL/SQL Packages and Types Reference

Properties

■ WebSphere MQ System Properties

■ TIB/Rendezvous System Properties

■ Optional Link Configuration Properties

■ Optional Foreign Queue Configuration Properties

■ Optional Subscriber Configuration Properties

WebSphere MQ System Properties
This section summarizes basic and optional properties of WebSphere MQ related to
Messaging Gateway links, foreign queues, and subscribers.

Table 51–14 summarizes the basic configuration properties for a WebSphere MQ
messaging link. The table indicates which properties of SYS.MGW_MQSERIES_
PROPERTIES are optional (NULL allowed), which can be altered, and if alterable,
which values can be dynamically changed.

See Also: Your WebSphere MQ (MQSeries) documentation for
more information

See Also: "SYS.MGW_MQSERIES_PROPERTIES Type" on
page 51-7

Table 51–14 WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

queue_manager no no no

hostname yes (1) no no

port yes (1) no no

channel yes (1) no no

interface_type yes (2) no no

max_connections yes (3) yes yes

username yes yes yes

password yes yes yes

Using DBMS_MGWADM

DBMS_MGWADM 51-13

Notes on Table 51–14
1. If hostname is NULL, then the port and channel must be NULL. If the hostname

is not NULL, then the port and channel must be not NULL. If the hostname is
NULL, then a WebSphere MQ bindings connection is used; otherwise a client
connection is used.

2. If interface_type is NULL, then a default value of DBMS_
MGWADM.MQSERIES_BASE_JAVA_INTERFACE is used.

3. If max_connections is NULL, then a default value of 1 is used.

4. Attribute inbound_log_queue can be NULL if the link is not used for inbound
propagation. The log queue can be altered only when no inbound propagation
subscriber references the link.

5. Attribute outbound_log_queue can be NULL if the link is not used for
outbound propagation. The log queue can be altered only when no outbound
propagation subscriber references the link.

Table 51–15 summarizes the optional configuration properties supported when a
WebSphere MQ Base Java interface is used to access the WebSphere MQ messaging
system. Table 51–16 summarizes the optional configuration properties supported
when a WebSphere MQ JMS interface is used. Each table lists the property name,
where that property applies, whether the property can be altered, and if alterable,
whether the value can be dynamically changed. Only the properties listed in the
tables are supported, and any extra properties will be ignored.

inbound_log_queue yes (4) yes(4) yes

outbound_log_queue yes (5) yes(5) yes

See Also: For more information on optional configuration
properties:

■ "Optional Link Configuration Properties" on page 51-16

■ "Optional Foreign Queue Configuration Properties" on
page 51-18

■ "Optional Subscriber Configuration Properties" on page 51-19

Table 51–14 (Cont.) WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

Properties

51-14 PL/SQL Packages and Types Reference

Table 51–15 Optional Configuration Properties for WebSphere MQ Base Java

Property Name Used For Alter Value? Dynamic?

MQ_ccsid link yes no

MQ_ReceiveExit link yes no

MQ_SendExit link yes no

MQ_SecurityExit link yes no

MQ_openOptions foreign queue no no

MsgBatchSize subscriber yes yes

Table 51–16 Optional Configuration Properties for WebSphere MQ JMS

Property Name Used For Alter Value? Dynamic?

MQ_ccsid link yes no

MQ_ReceiveExit link yes no

MQ_SendExit link yes no

MQ_SecurityExit link yes no

MQ_ReceiveExitInit link yes no

MQ_SendExitInit link yes no

MQ_SecurityExitInit link yes no

MQ_BrokerControlQueue link yes no

MQ_BrokerPubQueue link yes no

MQ_BrokerQueueManager link yes no

MQ_BrokerVersion link yes no

MQ_PubAckInterval link yes no

MQ_JmsDurSubQueue link no no

MQ_JmsTargetClient foreign queue no no

MQ_JmsDurSubQueue foreign queue no no

MsgBatchSize subscriber yes yes

JMS_NoLocal subscriber no no

JMS_DeliveryMode subscriber yes yes

Using DBMS_MGWADM

DBMS_MGWADM 51-15

TIB/Rendezvous System Properties
This section summarizes basic and optional configuration properties of
TIB/Rendezvous related to Messaging Gateway links, foreign queues and
subscribers.

Table 51–17 summarizes the basic configuration properties for a TIB/Rendezvous
messaging link. It indicates which properties of SYS.MGW_TIBRV_PROPERTIES are
optional (NULL allowed), which can be altered, and if alterable, which values can be
dynamically changed.

Notes on Table 51–17:
1. System default values will be used if service, daemon, or network are NULL.

2. The cm_name and cm_ledger attributes are reserved for future use when
TIB/Rendezvous certified messages are supported. At present, a NULL must be
specified for these parameters when a TIB/Rendezvous link is configured.

Table 51–18 summarizes the optional configuration properties supported when a
TIB/Rendezvous messaging system is used. The table lists the property name,
where that property applies, whether the property can be altered, and if alterable,
whether the value can be dynamically changed. Only the properties listed in the
table are supported, and any extra properties will be ignored.

See Also: Your TIB/Rendezvous documentation for more
information

See Also: "SYS.MGW_TIBRV_PROPERTIES Type" on page 51-10

Table 51–17 TIB/Rendezvous Link Properties

Attribute NULL allowed? Alter value? Dynamic?

service yes(1) no no

daemon yes(1) no no

network yes(1) no no

cm_name yes(2) no no

cm_ledger yes(2) no no

Properties

51-16 PL/SQL Packages and Types Reference

Registering a TIB/Rendezvous subject
DBMS_MGWADM.register_foreign_queue procedure is used to register a
TIB/Rendezvous subject with the Messaging Gateway. The provider_queue
parameter specifies a TIB/Rendezvous subject name. Wildcards are allowed in the
subject name.

Optional Link Configuration Properties
This section describes optional link properties you can specify using the options
parameter of DBMS_MGWADM.create_msgsystem_link and DBMS_
MGWADM.alter_msgsystem_link. Each listing also indicates which messaging
system might use that property.

MQ_BrokerControlQueue
Used by: WebSphere MQ JMS.

This property specifies the name of the broker control queue. It corresponds to
WebSphere MQ JMS administration tool property BROKERCONQ. The default used
by WebSphere MQ is SYSTEM.BROKER.CONTROL.QUEUE.

MQ_BrokerPubQueue
Used by: WebSphere MQ JMS

Table 51–18 Optional Properties for TIB/Rendezvous

Property Name Used For Alter Value? Dynamic?

RV_discardAmount subscriber yes no

RV_limitPolicy subscriber yes no

RV_maxEvents subscriber yes no

AQ_MsgProperties subscriber yes yes

MsgBatchSize subscriber yes yes

See Also: For more information on optional configuration
properties:

■ "Optional Link Configuration Properties" on page 51-16

■ "Optional Foreign Queue Configuration Properties" on
page 51-18

■ "Optional Subscriber Configuration Properties" on page 51-19

Using DBMS_MGWADM

DBMS_MGWADM 51-17

This property specifies the name of the broker publish queue. It corresponds to
WebSphere MQ JMS administration tool property BROKERPUBQ. The default used
by WebSphere MQ is SYSTEM.BROKER.DEFAULT.STREAM.

MQ_BrokerQueueManager
Used by: WebSphere MQ JMS

This property specifies the name of the broker queue manager. It corresponds to
WebSphere MQ administration tool property BROKERQMGR. If not set, then no
default will be used.

MQ_BrokerVersion
Used by: WebSphere MQ JMS

This property specifies the broker version number. It corresponds to WebSphere
MQ JMS administration tool property BROKERVER. The default used by WebSphere
MQ is 0.

MQ_ccsid
Used by: WebSphere MQ Base Java and WebSphere MQ JMS

This property specifies the character set identifier to be used. This should be the
integer value of the character set (for example, 819) rather than a descriptive string.
If it is not set, then the WebSphere MQ default character set 819 is used.

MQ_JmsDurSubQueue
Used by: WebSphere MQ JMS

This property applies to WebSphere MQ JMS topic links only. The SYS.MGW_
MQSERIES_PROPERITES attributes, inbound_log_queue and outbound_log_
queue, specify the names of WebSphere MQ JMS topics used for propagation
logging. This property specifies the name of the WebSphere MQ queue from which
durable subscription messages are retrieved by the log topic subscribers. The
default queue used by WebSphere MQ is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_PubAckInterval
Used by: WebSphere MQ JMS

This property specifies the interval, in number of messages, between publish
requests that require acknowledgment from the broker. It corresponds to
WebSphere MQ JMS administration tool property PUBACKINT. The default used by
WebSphere MQ is 25.

MQ_ReceiveExit
Used by: WebSphere MQ Base Java and WebSphere MQ JMS

Properties

51-18 PL/SQL Packages and Types Reference

This property specifies the fully qualified Java classname of a class implementing
the MQReceiveExit interface. This class must be in the CLASSPATH of the
Messaging Gateway agent. There is no default.

MQ_ReceiveExitInit
Used by: WebSphere MQ JMS

Initialization string that is passed by WebSphere MQ JMS to the constructor of the
class specified by MQ_ReceiveExit. Corresponds to WebSphere MQ JMS
administration tool property RECEXITINIT. There is no default.

MQ_SecurityExit
Used by: WebSphere MQ Base Java and WebSphere MQ JMS

This property specifies the fully qualified Java classname of a class implementing
the MQSecurityExit interface. This class must be in the CLASSPATH of the
Messaging Gateway agent. There is no default.

MQ_SecurityExitInit
Used by: WebSphere MQ JMS

Initialization string that is passed by WebSphere MQ JMS to the constructor of the
class specified by MQ_SecurityExit. It corresponds to WebSphere MQ JMS
administration tool property SECEXITINIT. There is no default.

MQ_SendExit
Used by: WebSphere MQ Base Java and WebSphere MQ JMS

This property specifies the fully qualified Java classname of a class implementing
the MQSendExit interface. This class must be in the CLASSPATH of the Messaging
Gateway agent. There is no default.

MQ_SendExitInit
Used by: WebSphere MQ JMS

Initialization string that is passed by WebSphere MQ JMS to the constructor of the
class specified by MQ_SendExit. It corresponds to WebSphere MQ JMS
administration tool property SENDEXITINIT. There is no default.

Optional Foreign Queue Configuration Properties
This section describes optional foreign queue properties that you can specify using
the options parameter of DBMS_MGWADM.register_foreign_queue. Each
listing also indicates which messaging system might use that property.

Using DBMS_MGWADM

DBMS_MGWADM 51-19

MQ_JmsDurSubQueue
Used by: WebSphere MQ JMS

A string representing the name of the WebSphere MQ queue from which durable
subscription messages are retrieved by subscribers on this topic. It applies only to
WebSphere MQ JMS topics. The default queue used by WebSphere MQ is
SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_JmsTargetClient
Used by: WebSphere MQ JMS

Supported values are TRUE and FALSE. This property is only used for outbound
propagation to a JMS queue or topic. TRUE indicates that WebSphere MQ should
store the message as a JMS message. FALSE indicates that WebSphere MQ should
store the message in non-JMS format so that non-JMS applications can access it.
Default is TRUE.

MQ_openOptions
Used by: WebSphere MQ Base Java

This property specifies the value used for the openOptions argument of the
WebSphere MQ Base Java MQQueueManager.accessQueue method. No value is
required. But if one is given, then the Messaging Gateway agent adds MQOO_
OUTPUT to the specified value for an enqueue (put) operation. MQOO_INPUT_
SHARED is added for a dequeue (get) operation. The default is MQOO_OUTPUT for
an enqueue/put operation; MQOO_INPUT_SHARED for a dequeue/get operation.

Optional Subscriber Configuration Properties
This section describes optional subscriber properties that you can specify using the
options parameter of DBMS_MGWADM.add_subscriber and DBMS_
MGWADM.alter_subscriber. Each listing also indicates which messaging system
might use that property

AQ_MsgProperties
Used by: TIB/Rendezvous

This property specifies how Oracle Streams AQ message properties will be used
during message propagation. Supported values are TRUE and FALSE. The default
value is FALSE.

For an outbound propagation subscriber, if the value is TRUE (case insensitive), then
the Messaging Gateway agent will add a field for most Oracle Streams AQ message
properties to the message propagated to the TIB/Rendezvous subject.

Properties

51-20 PL/SQL Packages and Types Reference

For an inbound propagation subscriber, if the value is TRUE (case insensitive), then
the Messaging Gateway agent will search the source message for a field with a
reserved name, and if it exists, use its value to set the corresponding Oracle Streams
AQ message property. A default value will be used if the field does not exist or does
not have an expected datatype.

JMS_DeliveryMode
Used by: WebSphere MQ JMS and Oracle JMS.

You can use this property when the propagation destination is a JMS messaging
system. It sets the delivery mode of messages enqueued to the propagation
destination queue by a JMS MessageProducer. Supported values are
PERSISTENT, NON_PERSISTENT and PRESERVE_MSG. The default is PRESERVE_
MSG.

■ If its value is PERSISTENT, then the delivery mode will be
DeliveryMode.PERSISTENT.

■ If its value is NON_PERSISTENT, then the delivery mode will be
DeliveryMode.NON_PERSISTENT.

■ If its value is PRESERVE_MSG, then the delivery mode of the source JMS
message will be used when the message is propagated to the destination queue.

JMS_NoLocal
Used by: WebSphere MQ JMS and Oracle JMS

You can use this property when the propagation source is a JMS messaging system.
It sets the noLocal parameter of a JMS TopicSubscriber. Supported values are
TRUE and FALSE. The default is FALSE.

■ TRUE indicates that messages that have been published to this topic through the
same Messaging Gateway link will not be propagated.

■ FALSE indicates that such messages will be propagated from the topic.

MsgBatchSize
Used by: any

This property specifies the maximum number of messages, if available, to be
propagated in one transaction. The default is 30.

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference for the message conversion details

Using DBMS_MGWADM

DBMS_MGWADM 51-21

RV_discardAmount
Used by: TIB/Rendezvous

This property specifies the discard amount of a queue. It is meaningful only for an
inbound propagation subscriber. The default is 0.

RV_limitPolicy
Used by: TIB/Rendezvous

This property specifies the limit policy for resolving overflow of a queue limit. It is
meaningful only for an inbound propagation subscriber. Supported values are
DISCARD_NONE, DISCARD_FIRST, DISCARD_LAST and DISCARD_NEW. The
default is DISCARD_NONE.

■ If its value is DISCARD_NONE, then the limit policy is set to
TibrvQueue.DISCARD_NONE.

■ If its value is DISCARD_FIRST, then the limit policy is set to
TibrvQueue.DISCARD_FIRST.

■ If its value is DISCARD_LAST, then the limit policy is set to
TibrvQueue.DISCARD_LAST.

■ If its value is DISCARD_NEW, then the limit policy is set to
TibrvQueue.DISCARD_NEW.

RV_maxEvents
Used by: TIB/Rendezvous

This property specifies the maximum event limit of a queue. It is meaningful only
for an inbound propagation subscriber. The default is 0.

Database Views

51-22 PL/SQL Packages and Types Reference

Database Views

The views listed in Table 51–19 provide Messaging Gateway configuration, status,
and statistical information. Unless otherwise indicated, the SELECT privilege is
granted to MGW_ADMINISTRATOR_ROLE so that only Messaging Gateway
administrators have access to the views. All views are owned by SYS.

Table 51–19 Database Views

Name Description

MGW_GATEWAY View Configuration and status information for Messaging Gateway

MGW_LINKS View Names and types of messaging system links currently created

MGW_MQSERIES_LINKS View Messaging system properties for WebSphere MQ links

MGW_TIBRV_LINKS View Messaging system properties for TIB/Rendezvous links

MGW_FOREIGN_QUEUES View Queue properties of registered queues

MGW_SUBSCRIBERS View Subscriber properties, status, and statistical information

MGW_SCHEDULES View Schedule properties and status

Using DBMS_MGWADM

DBMS_MGWADM 51-23

MGW_GATEWAY View
This view lists configuration and status information for Messaging Gateway, as
shown in Table 51–20.

Table 51–20 MGW_GATEWAY View Properties

Name Type Description

AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:

■ NOT_STARTED means the Messaging Gateway agent has not
been started.

■ START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started
using DBMS_MGWADM.STARTUP, but the queued job used to start
the Messaging Gateway agent has not yet run.

■ STARTING means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using DBMS_
MGWADM.STARTUP, the queued job has run, and the Messaging
Gateway agent is starting up.

■ INITIALIZING means the Messaging Gateway agent has
started and is initializing.

■ RUNNING means the Messaging Gateway agent is running.

■ SHUTTING_DOWN means the Messaging Gateway agent is
shutting down.

■ BROKEN means an unexpected condition has been encountered
that prevents the Messaging Gateway agent from starting.
DBMS_MGWADM.CLEANUP_GATEWAY must be called before the
agent can be started.

AGENT_PING VARCHAR2 Gateway agent ping status. Values:

■ NULL means no ping attempt was made.

■ REACHABLE means ping attempt was successful.

■ UNREACHABLE means ping attempt failed.

AGENT_PING attempts to contact the Messaging Gateway agent.
There is a short delay (up to 5 seconds) if the ping attempt fails. No
ping is attempted if the AGENT_STATUS is NOT_STARTED or START_
SCHEDULED.

AGENT_JOB NUMBER Job number of the queued job used to start the Messaging Gateway
agent process. The job number is set when Messaging Gateway is
started and cleared when it shuts down.

AGENT_USER VARCHAR2 Database username used by the Messaging Gateway agent to connect
to the database

Database Views

51-24 PL/SQL Packages and Types Reference

MGW_LINKS View
This view lists the names and types of messaging system links currently defined.
Table 51–21 lists the MGW_LINKS view properties.

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent.
NULL indicates that a local connection is used.

LAST_ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error
information is cleared when Messaging Gateway is started. It is set if
the Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER Maximum number of messaging connections to Oracle Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

MAX_THREADS NUMBER Maximum number of messaging threads created by the Messaging
Gateway agent

AGENT_INSTANCE NUMBER The database instance on which the Messaging Gateway agent is
currently running. This should be NULL if the agent is not running.

AGENT_START_TIME TIMESTAMP The time when the Messaging Gateway agent job currently running
was started. This should be NULL if the agent is not running.

Table 51–21 MGW_LINKS View Properties

Name Type Description

LINK_NAME VARCHAR2 Name of the messaging system link

LINK_TYPE VARCHAR2 Type of messaging system link. MQSERIES is for WebSphere MQ
links. TIBRV is for TIB/Rendezvous links.

LINK_COMMENT VARCHAR2 User comment for the link

Table 51–20 (Cont.) MGW_GATEWAY View Properties

Name Type Description

Using DBMS_MGWADM

DBMS_MGWADM 51-25

MGW_MQSERIES_LINKS View
This view lists information for the WebSphere MQ messaging system links. The
view includes most of the messaging system properties specified when the link is
created. Table 51–22 lists the MGW_MQSERIES_LINKS view properties.

Table 51–22 MGW_MQSERIES_LINKS View Properties

Name Type Description

LINK_NAME VARCHAR2 Name of the messaging system link

QUEUE_MANAGER VARCHAR2 Name of the WebSphere MQ queue manager

HOSTNAME VARCHAR2 Name of the WebSphere MQ host

PORT NUMBER Port number

CHANNEL VARCHAR2 Connection channel

INTERFACE_TYPE VARCHAR2 Messaging interface type. BASE_JAVA is for WebSphere MQ
Base Java interface. JMS_QUEUE_CONNECTION is for
WebSphere MQ JMS queue connections. JMS_TOPIC_
CONNECTION is for WebSphere MQ JMS topic connections.

MAX_CONNECTIONS NUMBER Maximum number of messaging connections

INBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

OUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue

OPTIONS SYS.MGW_
PROPERTIES

Link options

LINK_COMMENT VARCHAR2 User comment for the link

Database Views

51-26 PL/SQL Packages and Types Reference

MGW_TIBRV_LINKS View
This view lists information for TIB/Rendezvous messaging system links. The view
includes most of the messaging system properties specified when the link was
created. Table 51–23 lists the MGW_TIBRV_LINKS view properties.

MGW_FOREIGN_QUEUES View
This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered. Table 51–24 lists the MGW_
FOREIGN_QUEUES view properties.

Table 51–23 MGW_TIBRV_LINKS View Properties

Property Name Type Description

LINK_NAME VARCHAR2 Name of the messaging system link

SERVICE VARCHAR2 TIB/Rendezvous service parameter for rvd transport

DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for rvd transport

NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport

CM_NAME VARCHAR2 TIB/Rendezvous CM correspondent name

CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name

OPTIONS SYS.MGW_
PROPERTIES

Link options

LINK_COMMENT VARCHAR2 User comment for the link

Table 51–24 MGW_FOREIGN_QUEUES View Properties

Name Type Description

NAME VARCHAR2 Name of the registered queue

LINK_NAME VARCHAR2 Name of the messaging system link

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name

DOMAIN VARCHAR2 Queue domain type. NULL means the queue domain type is
automatically determined by the messaging system. QUEUE is for a
queue (point-to-point) model. TOPIC is for a topic
(publish-subscribe) model.

OPTIONS SYS.MGW_
PROPERTIES

Optional queue properties

QUEUE_COMMENT VARCHAR2 User comment for the foreign queue

Using DBMS_MGWADM

DBMS_MGWADM 51-27

MGW_SUBSCRIBERS View
This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information. Table 51–25
lists the MGW_SUBSCRIBERS view properties.

Table 51–25 MGW_SUBSCRIBERS View Properties

Name Type Description

SUBSCRIBER_ID VARCHAR2 Propagation subscriber identifier

PROPAGATION_TYPE VARCHAR2 Propagation type. OUTBOUND is for Oracle Streams AQ to
non-Oracle propagation. INBOUND is for non-Oracle to Oracle
Streams AQ propagation.

QUEUE_NAME VARCHAR2 Subscriber source queue

DESTINATION VARCHAR2 Destination queue to which messages are propagated

RULE VARCHAR2 Subscription rule

TRANSFORMATION VARCHAR2 Transformation used for message conversion

EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes

STATUS VARCHAR2 Subscriber status. ENABLED means the subscriber is enabled.
DELETE_PENDING means subscriber removal is pending, usually
because DBMS_MGWADM.REMOVE_SUBSCRIBER has been called but
certain cleanup tasks pertaining to this subscriber are still
outstanding.

FAILURES NUMBER Number of propagation failures

LAST_ERROR_DATE DATE Date of last propagation error

LAST_ERROR_TIME VARCHAR2 Time of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

PROPAGATED_MSGS NUMBER Number of messages propagated to the destination queue since the
last time the agent was started

EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation exception queue
since the last time the agent was started

PROP_STYLE VARCHAR2 Message propagation style. NATIVE is for native message
propagation. JMS is for JMS message propagation.

OPTIONS SYS.MGW_
PROPERTIES

Subscriber options

Database Views

51-28 PL/SQL Packages and Types Reference

MGW_SCHEDULES View

Table 51–26 MGW_SCHEDULES View Properties

Name Type Description

SCHEDULE_ID VARCHAR2 Propagation schedule identifier

PROPAGATION_TYPE VARCHAR2 Propagation type. OUTBOUND is for Oracle Streams AQ to
non-Oracle propagation. INBOUND is for non-Oracle to Oracle
Streams AQ propagation.

SOURCE VARCHAR2 Propagation source

DESTINATION VARCHAR2 Propagation destination

START_DATE DATE Reserved for future use

START_TIME VARCHAR2 Reserved for future use

PROPAGATION_WINDOW NUMBER Reserved for future use

NEXT_TIME VARCHAR2 Reserved for future use

LATENCY NUMBER Propagation window latency (in seconds)

SCHEDULE_DISABLED VARCHAR2 Indicates whether the schedule is disabled. Y means the schedule
is disabled. N means the schedule is enabled.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-29

Summary of DBMS_MGWADM Subprograms

Table 51–27 DBMS_MGWADM Package Subprograms

Subprogram Description

ADD_SUBSCRIBER Procedure on
page 51-31

Adds a subscriber used to consume messages from a
source queue for propagation to a destination

ALTER_AGENT Procedure on
page 51-35

Alters Messaging Gateway agent parameters

ALTER_MSGSYSTEM_LINK
Procedure for TIB/Rendezvous
on page 51-36

Alters the properties of a TIB/Rendezvous messaging
system link

ALTER_MSGSYSTEM_LINK
Procedure for WebSphere MQ on
page 51-38

Alters the properties of a WebSphere MQ messaging
system link

ALTER_PROPAGATION_
SCHEDULE Procedure on
page 51-40

Alters a propagation schedule

ALTER_SUBSCRIBER Procedure
on page 51-41

Alters the parameters of a subscriber used to consume
messages from a source queue for propagation to a
destination

CLEANUP_GATEWAY Procedure
on page 51-44

Cleans up Messaging Gateway

CREATE_MSGSYSTEM_LINK
Procedure for TIB/Rendezvous
on page 51-47

Creates a messaging system link to a TIB/Rendezvous
messaging system

CREATE_MSGSYSTEM_LINK
Procedure for WebSphere MQ on
page 51-48

Creates a messaging system link to a WebSphere MQ
messaging system

DB_CONNECT_INFO Procedure
on page 51-49

Configures connection information used by the
Messaging Gateway agent for connections to Oracle
Database

DISABLE_PROPAGATION_
SCHEDULE Procedure on
page 51-50

Disables a propagation schedule

ENABLE_PROPAGATION_
SCHEDULE Procedure on
page 51-51

Enables a propagation schedule

Summary of DBMS_MGWADM Subprograms

51-30 PL/SQL Packages and Types Reference

REGISTER_FOREIGN_QUEUE
Procedure on page 51-52

Registers a non-Oracle queue entity in Messaging
Gateway

REMOVE_MSGSYSTEM_LINK
Procedure on page 51-54

Removes a messaging system link for a non-Oracle
messaging system

REMOVE_SUBSCRIBER
Procedure on page 51-55

Removes a subscriber used to consume messages from
a source queue for propagation to a destination

RESET_SUBSCRIBER Procedure
on page 51-56

Resets the propagation error state for a subscriber

SET_LOG_LEVEL Procedure on
page 51-57

Dynamically alters the Messaging Gateway agent
logging level

SCHEDULE_PROPAGATION
Procedure on page 51-58

Schedules message propagation from a source to a
destination

SHUTDOWN Procedure on
page 51-60

Shuts down the Messaging Gateway agent

STARTUP Procedure on
page 51-61

Starts the Messaging Gateway agent

UNREGISTER_FOREIGN_
QUEUE Procedure on page 51-62

Removes a non-Oracle queue entity in Messaging
Gateway

UNSCHEDULE_PROPAGATION
Procedure on page 51-63

Removes a propagation schedule

Table 51–27 (Cont.) DBMS_MGWADM Package Subprograms

Subprogram Description

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-31

ADD_SUBSCRIBER Procedure

This procedure adds a subscriber used to consume messages from a source queue
for propagation to a destination.

Syntax
DBMS_MGWADM.ADD_SUBSCRIBER(
 subscriber_id IN VARCHAR2,
 propagation_type IN BINARY_INTEGER,
 queue_name IN VARCHAR2,
 destination IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 exception_queue IN VARCHAR2 DEFAULT NULL
 options IN SYS.MGW_PROPERTIES DEFAULT NULL);

Parameters

Table 51–28 ADD_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Specifies a user-defined name that identifies this subscriber

propagation_type Specifies the type of message propagation. DBMS_
MGWADM.OUTBOUND_PROPAGATION is for Oracle Streams AQ
to non-Oracle propagation. DBMS_MGWADM.INBOUND_
PROPAGATION is for non-Oracle to Oracle Streams AQ
propagation

queue_name Specifies the source queue to which this subscriber is being
added. The syntax and interpretation of this parameter depend
on the value specified for propagation_type.

destination Specifies the destination queue to which messages consumed
by this subscriber are propagated. The syntax and
interpretation of this parameter depend on the value specified
for propagation_type.

rule Specifies an optional subscription rule used by the subscriber
to dequeue messages from the source queue. This is NULL if no
rule is needed. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

ADD_SUBSCRIBER Procedure

51-32 PL/SQL Packages and Types Reference

Usage Notes

If the non-Oracle messaging link being accessed for the subscriber uses a JMS
interface, then the Messaging Gateway agent will use the Oracle JMS interface to
access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ
interface will be used. Parameters are interpreted differently when the Messaging
Gateway agent uses Oracle JMS for JMS connections.

Transformations are not currently supported if the Oracle JMS interface is used for
propagation. The transformation parameter must be NULL.

transformation Specifies the transformation needed to convert between the
Oracle Streams AQ payload and an ADT defined by Messaging
Gateway. The type of transformation needed depends on the
value specified for propagation_type.

If NULL, then the Oracle Streams AQ payload type must be
supported by Messaging Gateway.

exception_queue Specifies a queue used for exception message logging
purposes. This queue must be on the same messaging system
as the propagation source. If NULL, then an exception queue is
not used and propagation stops if a problem occurs. The
syntax and interpretation of this parameter depend on the
value specified for propagation_type.

The source queue and exception queue cannot be the same
queue.

options Optional subscriber properties. NULL if there are none.
Typically these are lesser used configuration properties
supported by the messaging system.

See Also: "Messaging Gateway Message Transformation", in
Oracle Streams Advanced Queuing User's Guide and Reference for more
information regarding message conversion and transformation

See Also: For additional information regarding subscriber
options

■ "WebSphere MQ System Properties" on page 51-12

■ "TIB/Rendezvous System Properties" on page 51-15

Table 51–28 (Cont.) ADD_SUBSCRIBER Procedure Parameters

Parameter Description

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-33

OUTBOUND_PROPAGATION Subscribers
The parameters for a subscriber used for outbound propagation are interpreted as
follows:

■ queue_name specifies the local Oracle Streams AQ queue that is the
propagation source. This must have a syntax of schema.queue.

■ destination specifies the foreign queue to which messages are propagated.
This must have a syntax of registered_queue@message_link.

■ rule specifies an optional Oracle Streams AQ subscriber rule if the native
Oracle Streams AQ interface is used, or a JMS selector if the Oracle JMS
interface is used. If NULL, then no rule or selector is used.

■ transformation specifies the transformation used to convert the Oracle
Streams AQ payload to an ADT defined by Messaging Gateway.

Messaging Gateway propagation dequeues messages from the Oracle Streams
AQ queue using the transformation to convert the Oracle Streams AQ payload
to a known ADT defined by Messaging Gateway. The message is then
enqueued in the foreign messaging system based on the Messaging Gateway
ADT.

■ exception_queue specifies the name of a local Oracle Streams AQ queue to
which messages are moved if an exception occurs. This must have a syntax of
schema.queue.

If the native Oracle Streams AQ interface is used, then a subscriber will be added to
the Oracle Streams AQ queue when this procedure is called, whether or not
Messaging Gateway is running. The local subscriber will be of the form sys.aq$_
agent('MGW_subscriber_id', NULL, NULL).

If the Oracle JMS interface is used, then the Messaging Gateway agent will create a
JMS durable subscriber with the name of MGW_subscriber_id. If the agent is not
running when this procedure is called, then the durable subscriber will be created
the next time the agent starts.

The exception queue has the following caveats:

■ The user is responsible for creating the Oracle Streams AQ queue to be used as
the exception queue.

■ The payload type of the source and exception queue must match.

■ The exception queue must be created as a queue type of DBMS_
AQADM.NORMAL_QUEUE rather than DBMS_AQADM.EXCEPTION_QUEUE.
Enqueue restrictions prevent Messaging Gateway propagation from using an

ADD_SUBSCRIBER Procedure

51-34 PL/SQL Packages and Types Reference

Oracle Streams AQ queue of type EXCEPTION_QUEUE as a Messaging Gateway
exception queue.

INBOUND_PROPAGATION Subscribers
The parameters for a subscriber used for inbound propagation are interpreted as
follows:

■ queue_name specifies the foreign queue that is the propagation source. This
must have a syntax of registered_queue@message_link.

■ destination specifies the local Oracle Streams AQ queue to which messages
are propagated. This must have a syntax of schema.queue.

■ rule specifies an optional subscriber rule that is valid for the foreign
messaging system. This is NULL if no rule is needed.

■ transformation specifies the transformation used to convert an ADT defined
by Messaging Gateway to the Oracle Streams AQ payload type.

Messaging Gateway propagation dequeues messages from the foreign
messaging system and converts the message body to a known ADT defined by
Messaging Gateway. The transformation is used to convert the Messaging
Gateway ADT to an Oracle Streams AQ payload type when the message is
enqueued to the Oracle Streams AQ queue.

■ exception_queue specifies the name of a foreign queue to which messages
are moved if an exception occurs. This must have a syntax of registered_
queue@message_link.

Whether or not a subscriber is needed depends on the requirements of the
non-Oracle messaging system. If a durable subscriber is necessary, then it will be
created by the Messaging Gateway agent. If the agent is not running at the time this
procedure is called, then the creation of the subscriber on the non-Oracle messaging
system will occur when the agent next starts.

The exception queue has the following caveats:

■ The exception queue must be a registered non-Oracle queue.

■ The source and exception queues must use the same messaging system link.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-35

ALTER_AGENT Procedure

This procedure configures Messaging Gateway agent parameters.

Syntax
DBMS_MGWADM.ALTER_AGENT (
 max_connections IN BINARY_INTEGER DEFAULT NULL,
 max_memory IN BINARY_INTEGER DEFAULT NULL,
 max_threads IN BINARY_INTEGER DEFAULT NULL);

Parameters

Usage Notes
Default values for these configuration parameters are set when the Messaging
Gateway agent is installed.

Changes to the max_memory and max_threads parameters take effect the next
time the Messaging Gateway agent is active. If the Messaging Gateway agent is
currently active, then it must be shut down and restarted for the changes to take
effect.

Table 51–29 ALTER_AGENT Procedure Parameters

Parameter Description

max_connections The maximum number of messaging connections to Oracle
Database used by the Messaging Gateway agent. If it is NULL,
then the current value is unchanged.

max_memory The maximum heap size, in MB, used by the Messaging
Gateway agent. If it is NULL, then the current value is
unchanged.

max_threads The number of messaging threads that the Messaging Gateway
agent creates. If it is NULL, then the current value is
unchanged.

ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous

51-36 PL/SQL Packages and Types Reference

ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous

Alters the properties of a TIB/Rendezvous messaging system link.

Syntax
DBMS_MGWADM.ALTER_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_TIBRV_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Usage Notes
To retain an existing value for a messaging link property with a VARCHAR2 data
type, specify DBMS_MGWADM.NO_CHANGE for that particular property. To preserve
an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current
optional properties. Each property affects the current property list in a particular
manner: add a new property, replace an existing property, remove an existing
property, or remove all properties.

Table 51–30 ALTER_MSGSYSTEM_LINK Procedure Parameters for TIB/Rendezvous

Parameters Description

linkname The messaging system link name

properties Basic properties for a TIB/Rendezvous messaging system link.
If NULL, then no link properties will be changed.

options Optional link properties. If NULL, then no options will be
changed. If not NULL, then the properties specified in this list
are combined with the current options properties to form a
new set of link options.

comment A user-specified description, or NULL if one is not desired. If
DBMS_MGWADM.NO_CHANGE, then the current value will not be
changed.

See Also: "SYS.MGW_PROPERTIES Type" on page 51-6

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-37

Some properties cannot be modified, and this procedure will fail if an attempt is
made to alter such a property. For properties and options that can be changed, a few
are dynamic, and Messaging Gateway uses the new values immediately. Others
require the Messaging Gateway agent to be shut down and restarted before they
take effect.

See Also: "TIB/Rendezvous System Properties" on page 51-15 for
more information about the messaging system properties and
options

ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ

51-38 PL/SQL Packages and Types Reference

ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ

This procedure alters the properties of a WebSphere MQ messaging system link.

Syntax
DBMS_MGWADM.ALTER_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_MQSERIES_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Parameters

Usage Notes
To retain an existing value for a messaging link property with a VARCHAR2 data
type, specify DBMS_MGWADM.NO_CHANGE for that particular property. To preserve
an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current
optional properties. Each property affects the current property list in a particular
manner: add a new property, replace an existing property, remove an existing
property, or remove all properties.

Table 51–31 ALTER_MSGSYSTEM_LINK Procedure Parameters for WebSphere MQ

Parameters Description

linkname The messaging system link name

properties Basic properties for a WebSphere MQ messaging system link.
If it is NULL, then no link properties are changed.

options Optional link properties. NULL if no options are changed. If not
NULL, then the properties specified in this list are combined
with the current options properties to form a new set of link
options.

comment An optional description or NULL if not desired. If DBMS_
MGWADM.NO_CHANGE is specified, then the current value is not
changed.

See Also: "SYS.MGW_PROPERTIES Type" on page 51-6

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-39

Some properties cannot be modified, and this procedure will fail if an attempt is
made to alter such a property. For properties and options that can be changed, a few
are dynamic, and Messaging Gateway uses the new values immediately. Others
require the Messaging Gateway agent to be shut down and restarted before they
take effect.

See Also: "WebSphere MQ System Properties" on page 51-12 for
more information about the messaging system properties and
options

ALTER_PROPAGATION_SCHEDULE Procedure

51-40 PL/SQL Packages and Types Reference

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters a propagation schedule.

Syntax
DBMS_MGWADM.ALTER_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT NULL);

Parameters

Usage Notes
This procedure always overwrites the existing value for each parameter. If a given
parameter is not specified, then the existing values are overwritten with the default
value.

Table 51–32 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be altered

duration Reserved for future use

next_time Reserved for future use

latency Specifies the polling interval, in seconds, used by the Messaging Gateway
agent when checking for messages in the source queue. If no messages are
available in the source queue, then the agent will not poll again until the
polling interval has passed. Once the agent detects a message it will
continue propagating messages as long as any are available.

Values: NULL or value > 0. If latency is NULL, then the Messaging
Gateway agent default polling interval will be used. The default polling
interval is 5 seconds, but it can be overridden by the Messaging Gateway
initialization file.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-41

ALTER_SUBSCRIBER Procedure

This procedure alters the parameters of a subscriber used to consume messages
from a source queue for propagation to a destination.

Syntax
DBMS_MGWADM.ALTER_SUBSCRIBER (
 subscriber_id IN VARCHAR2,
 rule IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 transformation IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
 exception_queue IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE
 options IN SYS.MGW_PROPERTIES DEFAULT NULL);

Parameters

Table 51–33 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber to be altered

rule Specifies an optional subscription rule used by the subscriber
to dequeue messages from the source queue. The syntax and
interpretation of this parameter depend on the subscriber
propagation type.

A NULL value indicates that no subscription rule is needed. If
DBMS_MGWADM.NO_CHANGE, then the current value is
unchanged.

transformation Specifies the transformation needed to convert between the
Oracle Streams AQ payload and an ADT defined by Messaging
Gateway. The type of transformation needed depends on the
subscriber propagation type.

A NULL value indicates that no transformation is needed. If
DBMS_MGWADM.NO_CHANGE, then the current value is
unchanged.

ALTER_SUBSCRIBER Procedure

51-42 PL/SQL Packages and Types Reference

Usage Notes
If the non-Oracle messaging link being accessed for the subscriber uses a JMS
interface, then the Messaging Gateway agent will use the Oracle JMS interface to
access the Oracle Streams AQ queues. Otherwise the native Oracle Streams AQ
interface will be used. Parameters are interpreted differently when the Messaging
Gateway agent uses Oracle JMS for JMS connections.

When propagating from a JMS source, the subscriber rule cannot be altered. Instead,
the subscriber must be removed and added with the new rule. For JMS, changing
the message selector on a durable subscription is equivalent to deleting and
re-creating the subscription.

Transformations are not currently supported if the Oracle JMS interface is used for
propagation. The transformation parameter must be DBMS_MGWADM.NO_CHANGE
(the default value).

The options parameter specifies a set of properties used to alter the current
optional properties. Each property affects the current property list in a particular
manner: add a new property, replace an existing property, remove an existing
property, or remove all properties.

exception_queue Specifies a queue used for exception message logging. This
queue must be on the same messaging system as the
propagation source. If no exception queue is associated with
the subscriber, then propagation stops if a problem occurs. The
syntax and interpretation of this parameter depend on the
subscriber propagation type.

A NULL value indicates that no exception queue is used. If
DBMS_MGWADM.NO_CHANGE, then the current value is
unchanged.

The source queue and exception queue cannot be the same
queue.

options Optional subscriber properties. If NULL, then no options will be
changed. If not NULL, then the properties specified in this list
are combined with the current optional properties to form a
new set of subscriber options.

Table 51–33 (Cont.) ALTER_SUBSCRIBER Procedure Parameters

Parameter Description

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-43

See Also:

■ "SYS.MGW_PROPERTIES Type" on page 51-6 for more
information on the options parameter

■ "WebSphere MQ System Properties" on page 51-12 for more
information on WebSphere MQ subscriber options

■ "TIB/Rendezvous System Properties" on page 51-15 for more
information on TIB/Rendezvous subscriber options

■ "OUTBOUND_PROPAGATION Subscribers" on page 51-33 for
outbound propagation parameter interpretation

■ "INBOUND_PROPAGATION Subscribers" on page 51-34 for
inbound propagation parameter interpretation

CLEANUP_GATEWAY Procedure

51-44 PL/SQL Packages and Types Reference

CLEANUP_GATEWAY Procedure

This procedure cleans up Messaging Gateway. The procedure performs cleanup or
recovery actions that may be needed when Messaging Gateway is left in some
abnormal or unexpected condition. The MGW_GATEWAY view lists Messaging
Gateway status and configuration information that pertains to the cleanup actions.

Syntax
DBMS_MGWADM.CLEANUP_GATEWAY(
 action IN BINARY_INTEGER
 sarg IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes

CLEAN_STARTUP_STATE
sarg is not used and must be NULL.

The CLEAN_STARTUP_STATE action recovers Messaging Gateway to a known state
when the Messaging Gateway agent has crashed or some other abnormal event
occurs, and Messaging Gateway cannot be restarted. This should be done only
when the Messaging Gateway agent has been started but appears to have crashed
or has been nonresponsive for an extended period of time.

Table 51–34 CLEANUP_GATEWAY Procedure Parameters

Parameter Description

action The cleanup action to be performed. Values:

■ CLEAN_STARTUP_STATE for Messaging Gateway start up
state recovery.

■ CLEAN_LOG_QUEUES for log queue cleanup.

■ RESET_SUB_MISSING_LOG_REC for subscriber recovery
due to missing log record.

■ RESET_SUB_MISSING_MESSAGE for subscriber recovery
due to missing message.

sarg Optional argument whose meaning depends on the value
specified for action. This should be NULL if it is not used for
the specified action.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-45

The CLEAN_STARTUP_STATE action may be needed when the MGW_GATEWAY view
shows that the AGENT_STATUS value is something other than NOT_STARTED or
START_SCHEDULED, and the AGENT_PING value is UNREACHABLE for an extended
period of time.

If the AGENT_STATUS value is BROKEN, then the Messaging Gateway agent cannot
be started until the problem has been resolved and the CLEAN_STARTUP_STATE
action used to reset the agent status. A BROKEN status can indicate that the
Messaging Gateway start job detected a Messaging Gateway agent already running.
This condition that should never occur under normal use.

Cleanup tasks include:

■ Removing the queued job used to start the external Messaging Gateway agent
process.

■ Setting certain configuration information to a known state. For example, setting
the agent status to NOT_STARTED.

Execution of this command fails if:

■ The agent status is NOT_STARTED or START_SCHEDULED.

■ No shutdown attempt has been made prior to calling this procedure, except if
the agent status is STARTING.

■ The Messaging Gateway agent is successfully contacted.

The assumption is that the agent is active, and this procedure fails. If the agent
does not respond after several attempts have been made, then the cleanup tasks
are performed. This procedure takes at least several seconds and possibly up to
one minute. This is expected behavior under conditions where this particular
cleanup action is appropriate and necessary.

CLEAN_LOG_QUEUES
sarg is not used and must be NULL.

The Messaging Gateway agent will clean log queues for all configured messaging
system links. The agent will temporarily stop all propagation activity and then
remove all obsolete and bad log records from the log queues for all links. The
procedure will fail if the Messaging Gateway agent is not running.

This cleanup action is automatically performed each time the Messaging Gateway
agent is started.

CLEANUP_GATEWAY Procedure

51-46 PL/SQL Packages and Types Reference

RESET_SUB_MISSING_LOG_REC
sarg specifies a Messaging Gateway subscriber ID to be reset. It must be not NULL.

The Messaging Gateway agent recovers a Messaging Gateway subscriber that has
failed due to a missing log record. The agent will reset the source and destination
log records. The procedure will fail if the Messaging Gateway agent is not running.

RESET_SUB_MISSING_MESSAGE
sarg specifies a Messaging Gateway subscriber ID to be reset. It must be not NULL.

The Messaging Gateway agent recovers a Messaging Gateway subscriber that has
failed due to a missing persistent source message. The agent will treat the message
as a non-persistent message and continue processing that subscriber. The procedure
will fail if the Messaging Gateway agent is not running.

Note: For Oracle Database 10g, the CLEAN_LOG_QUEUES action is
performed only on agent startup. If this procedure is called when
the agent is running, then the Messaging Gateway agent ignores it.

Caution: If the messages in the source queue had already been
propagated to the destination queue, then this action may result in
duplicate messages.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-47

CREATE_MSGSYSTEM_LINK Procedure for TIB/Rendezvous

Creates a link to a TIB/Rendezvous messaging system.

Syntax
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK (
 linkname IN VARCHAR2,
 properties IN SYS.MGW_TIBRV_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes

Table 51–35 CREATE_MSGSYSTEM_LINK Procedure Parameters for TIB/Rendezvous

Parameter Description

linkname A user-defined name to identify this messaging system link

properties Basic properties of a TIB/Rendezvous messaging system link.

options Optional link properties. NULL if there are none. These are less
frequently used configuration properties supported by the
messaging system

comment A user-specified description. NULL if one is not desired.

See Also: "TIB/Rendezvous System Properties" on page 51-15 for
more information about the messaging system properties and
options

CREATE_MSGSYSTEM_LINK Procedure for WebSphere MQ

51-48 PL/SQL Packages and Types Reference

CREATE_MSGSYSTEM_LINK Procedure for WebSphere MQ

This procedure creates a messaging system link to a WebSphere MQ messaging
system.

Syntax
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname IN VARCHAR2,
 properties IN SYS.MGW_MQSERIES_PROPERTIES,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes

Table 51–36 CREATE_MSGSYSTEM_LINK Procedure Parameters for WebSphere MQ

Parameter Description

linkname A user-defined name to identify the messaging system link

properties Basic properties of a WebSphere MQ messaging system link

options Optional link properties. NULL if there are none. These are less
frequently used configuration properties supported by the
messaging system.

comment A user-specified description. NULL if one is not desired

See Also: "WebSphere MQ System Properties" on page 51-12 for
more information about the messaging system properties and
options

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-49

DB_CONNECT_INFO Procedure

This procedure configures connection information used by the Messaging Gateway
agent for connections to Oracle Database.

Syntax
DBMS_MGWADM.DB_CONNECT_INFO (
 username IN VARCHAR2,
 password IN VARCHAR2,
 database IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
The Messaging Gateway agent connects to Oracle Database as the user configured
by this procedure. An Oracle administrator should create the user, grant it the role
MGW_AGENT_ROLE, and then call this procedure to configure Messaging Gateway.
Role MGW_AGENT_ROLE is used to grant this user special privileges needed to
access Messaging Gateway configuration information stored in the database,
enqueue or dequeue messages to and from Oracle Streams AQ queues, and perform
certain Oracle Streams AQ administration tasks.

Table 51–37 DB_CONNECT_INFO Procedure Parameters

Parameter Description

username The username used for connections to Oracle Database. NULL
is not allowed

password The password used for connections to Oracle Database. NULL
is not allowed

database The database connect string used by the Messaging Gateway
agent. NULL indicates that a local connection should be used.

Oracle strongly recommends that a not NULL value be
specified. Usually it will be a net service name from
tnsnames.ora.

DISABLE_PROPAGATION_SCHEDULE Procedure

51-50 PL/SQL Packages and Types Reference

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax
DBMS_MGWADM.DISABLE_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2);

Parameters

Table 51–38 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be disabled

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-51

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a propagation schedule.

Syntax
DBMS_MGWADM.ENABLE_PROPAGATION_SCHEDULE (
 schedule_id IN VARCHAR2);

Parameters

Table 51–39 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be enabled

REGISTER_FOREIGN_QUEUE Procedure

51-52 PL/SQL Packages and Types Reference

REGISTER_FOREIGN_QUEUE Procedure

This procedure registers a non-Oracle queue entity in Messaging Gateway.

Syntax
DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(
 name IN VARCHAR2,
 linkname IN VARCHAR2,
 provider_queue IN VARCHAR2 DEFAULT NULL,
 domain IN INTEGER DEFAULT NULL,
 options IN SYS.MGW_PROPERTIES DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
This procedure does not create the physical queue in the non-Oracle messaging
system. The non-Oracle queue must be created using the administration tools for
that messaging system.

Table 51–40 REGISTER_FOREIGN_QUEUE Procedure Parameters

Parameters Description

name The registered queue name. This name identifies the foreign
queue within Messaging Gateway and need not match the
name of the queue in the foreign messaging system.

linkname The link name for the messaging system on which this queue
exists

provider_queue The message provider (native) queue name. If NULL, then the
value provided for the name parameter is used as the provider
queue name.

domain The domain type of the queue. NULL means the domain type is
automatically determined based on the messaging system of
the queue. DOMAIN_QUEUE is for a queue (point-to-point
model). DOMAIN_TOPIC is for a topic (publish-subscribe
model)

options Optional queue properties

comment A user-specified description. Can be NULL.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-53

See Also:

■ "WebSphere MQ System Properties" on page 51-12 for more
information when registering queues for the WebSphere MQ
messaging system

■ "TIB/Rendezvous System Properties" on page 51-15 for more
information when registering queues for the TIB/Rendezvous
messaging system

REMOVE_MSGSYSTEM_LINK Procedure

51-54 PL/SQL Packages and Types Reference

REMOVE_MSGSYSTEM_LINK Procedure

This procedure removes a messaging system link for a non-Oracle messaging
system.

Syntax
DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK(
 linkname IN VARCHAR2);

Parameters

Usage Notes
All registered queues associated with this link must be removed before the
messaging system link can be removed. This procedure fails if there is a registered
foreign (non-Oracle) queue that references this link.

Table 51–41 REMOVE_MSGSYSTEM_LINK Procedure Parameters

Parameters Description

linkname The messaging system link name

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-55

REMOVE_SUBSCRIBER Procedure

This procedure removes a subscriber used to consume messages from a source
queue for propagation to a destination.

Syntax
DBMS_MGWADM.REMOVE_SUBSCRIBER (
 subscriber_id IN VARCHAR2,
 force IN BINARY_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

Parameters

Usage Notes
For outbound propagation, a local subscriber is removed from the Oracle Streams
AQ queue.

Table 51–42 REMOVE_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber to be removed

force Specifies whether this procedure should succeed even if
Messaging Gateway is not able to perform all cleanup actions
pertaining to this subscriber. NO_FORCE (0) means the
subscriber is not removed if Messaging Gateway is unable to
clean up successfully. FORCE (1) means the subscriber is
removed, even though all cleanup actions may not be done.

The Messaging Gateway agent uses various resources of
Oracle Database and the non-Oracle messaging system for its
propagation work. These resources are typically associated
with each subscriber and need to be released when the
subscriber is no longer needed. Therefore, this procedure
should only be called when the Messaging Gateway agent is
running and able to access the non-Oracle messaging system
associated with this subscriber.

RESET_SUBSCRIBER Procedure

51-56 PL/SQL Packages and Types Reference

RESET_SUBSCRIBER Procedure

This procedure resets the propagation error state for a subscriber.

Syntax
DBMS_MGWADM.RESET_SUBSCRIBER (
 subscriber_id IN VARCHAR2);

Parameters

Table 51–43 RESET_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-57

SET_LOG_LEVEL Procedure

This procedure dynamically alters the Messaging Gateway agent logging level. The
Messaging Gateway agent must be running.

Syntax
DBMS_MGWADM.SET_LOG_LEVEL (
 log_level IN BINARY_INTEGER);

Parameters

Table 51–44 SET_LOG_LEVEL Procedure Parameters

Parameter Description

log_level Level at which the Messaging Gateway agent logs information.
BASIC_LOGGING generates the least information while
TRACE_DEBUG_LOGGING generates the most information.

See Also: Table 51–6, " DBMS_MGWADM Constants—Logging Levels"
on page 51-3 for details on the log_level parameter

SCHEDULE_PROPAGATION Procedure

51-58 PL/SQL Packages and Types Reference

SCHEDULE_PROPAGATION Procedure

This procedure schedules message propagation from a source to a destination. The
schedule must be enabled and Messaging Gateway started in order for messages to
be propagated.

Syntax
DBMS_MGWADM.SCHEDULE_PROPAGATION (
 schedule_id IN VARCHAR2,
 propagation_type IN BINARY_INTEGER,
 source IN VARCHAR2,
 destination IN VARCHAR2,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT NULL);

Parameters

Table 51–45 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

schedule_id Specifies a user-defined name that identifies the schedule

propagation_type Specifies the type of message propagation. DBMS_
MGWADM.OUTBOUND_PROPAGATION is for Oracle Streams AQ
to non-Oracle propagation. DBMS_MGWADM.INBOUND_
PROPAGATION is for non-Oracle to Oracle Streams AQ
propagation.

source Specifies the source queue whose messages are to be
propagated. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

destination Specifies the destination queue to which messages are
propagated. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

start_time Reserved for future use

duration Reserved for future use

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-59

Usage Notes
For outbound propagation, parameters are interpreted as follows:

■ source specifies the local Oracle Streams AQ queue from which messages are
propagated. This must have a syntax of schema.queue.

■ destination specifies the foreign queue to which messages are propagated.
This must have a syntax of registered_queue@message_link.

For inbound propagation, parameters are interpreted as follows:

■ source specifies the foreign queue from which messages are propagated. This
must have a syntax of registered_queue@message_link.

■ destination specifies the local Oracle Streams AQ queue to which messages
are propagated. This must have a syntax of schema.queue.

The schedule is set to an enabled state when it is created.

next_time Reserved for future use

latency Specifies the polling interval, in seconds, used by the
Messaging Gateway agent when checking for messages in the
source queue. If no messages are available in the source queue,
then the agent will not poll again until the polling interval has
passed. Once the agent detects a message it will continue
propagating messages as long as any are available.

Values: NULL or value > 0. If latency is NULL, then the
Messaging Gateway agent default polling interval will be used.
The default polling interval is 5 seconds but it can be
overridden by the Messaging Gateway initialization file.

Table 51–45 (Cont.) SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

SHUTDOWN Procedure

51-60 PL/SQL Packages and Types Reference

SHUTDOWN Procedure

This procedure shuts down the Messaging Gateway agent. No propagation activity
occurs until Messaging Gateway is restarted.

Syntax
DBMS_MGWADM.SHUTDOWN (
 sdmode IN BINARY_INTEGER DEFAULT DBMS_MGWADM.SHUTDOWN_NORMAL);

Parameters

Table 51–46 SHUTDOWN Procedure Parameters

Parameter Description

sdmode The shutdown mode. The only value currently supported is
SHUTDOWN_NORMAL for normal shutdown. The Messaging
Gateway agent may attempt to complete any propagation
work currently in progress.

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-61

STARTUP Procedure

This procedure starts the Messaging Gateway agent. It must be called before any
propagation activity can take place.

Syntax
DBMS_MGWADM.STARTUP(
 instance IN BINARY_INTEGER DEFAULT 0,
 force IN BINARY_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

Parameters

Usage Notes
The Messaging Gateway agent cannot be started until an agent user has been
configured using DB_CONNECT_INFO.

This procedure submits a job queue job, which starts the Messaging Gateway agent
when it runs. The instance and force parameters are used for job queue affinity,
which you use to indicate whether a particular instance or any instance can run a
submitted job.

Table 51–47 STARTUP Procedure Parameters

Parameter Description

instance Specifies which instance can run the job queue job used to start
the Messaging Gateway agent. If this is zero, then the job can
be run by any instance.

force If this is DBMS_MGWADM.FORCE, then any positive integer is
acceptable as the job instance. If this is DBMS_MGWADM.NO_
FORCE (the default), then the specified instance must be
running; otherwise the routine raises an exception.

UNREGISTER_FOREIGN_QUEUE Procedure

51-62 PL/SQL Packages and Types Reference

UNREGISTER_FOREIGN_QUEUE Procedure

This procedure removes a non-Oracle queue entity in Messaging Gateway.

Syntax
DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE(
 name IN VARCHAR2,
 linkname IN VARCHAR2);

Parameters

Usage Notes
This procedure does not remove the physical queue in the non-Oracle messaging
system.

All subscribers and schedules referencing this queue must be removed before it can
be unregistered. This procedure fails if a subscriber or propagation schedule
references the non-Oracle queue.

Table 51–48 UNREGISTER_FOREIGN_QUEUE Procedure Parameters

Parameter Description

name The queue name

linkname The link name for the messaging system on which the queue
exists

Summary of DBMS_MGWADM Subprograms

DBMS_MGWADM 51-63

UNSCHEDULE_PROPAGATION Procedure

This procedure removes a propagation schedule.

Syntax
DBMS_MGWADM.UNSCHEDULE_PROPAGATION (
 schedule_id IN VARCHAR2);

Parameters

Table 51–49 UNSCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be removed

UNSCHEDULE_PROPAGATION Procedure

51-64 PL/SQL Packages and Types Reference

DBMS_MGWMSG 52-1

52
DBMS_MGWMSG

DBMS_MGWMSG provides:

■ Object types used by the canonical message types to convert message bodies.

■ Methods, constants, and subprograms for working with Messaging Gateway
message types.

This chapter contains the following topics:

■ Using DBMS_MGWMSG

■ Security Model

■ Constants

■ Types

■ Summary of DBMS_MGWMSG Subprograms

See Also: Chapter 51, "DBMS_MGWADM" which describes the
Messaging Gateway administrative interface, DBMS_MGWADM

Using DBMS_MGWMSG

52-2 PL/SQL Packages and Types Reference

Using DBMS_MGWMSG

■ Security Model

■ Constants

■ Types

Security Model

The DBMS_MGWMSG packages and object types are owned by SYS.

Constants

Note: You must run the catmgw.sql script to load the Messaging
Gateway packages and object types into the database. Refer to the
Oracle Streams Advanced Queuing User's Guide and Reference for
information on loading database objects and using DBMS_MGWMSG.

Table 52–1 DBMS_MGWMSG Constants: Value Types and Constants Representing
the Type of Value for a SYS.MGW_NAME_VALUE_T Object

Value Constant

TEXT_VALUE CONSTANT BINARY_INTEGER := 1

RAW_VALUE CONSTANT BINARY_INTEGER := 2

BOOLEAN_VALUE CONSTANT BINARY_INTEGER := 3

BYTE_VALUE CONSTANT BINARY_INTEGER := 4

SHORT_VALUE CONSTANT BINARY_INTEGER := 5

INTEGER_VALUE CONSTANT BINARY_INTEGER := 6

LONG_VALUE CONSTANT BINARY_INTEGER := 7

FLOAT_VALUE CONSTANT BINARY_INTEGER := 8

DOUBLE_VALUE CONSTANT BINARY_INTEGER := 9

DATE_VALUE CONSTANT BINARY_INTEGER := 10

Using DBMS_MGWMSG

DBMS_MGWMSG 52-3

Table 52–2 DBMS_MGWMSG Constants: Boolean Values—Constants Representing a
Boolean as a Numeric Value

Value Constant

BOOLEAN_FALSE CONSTANT BINARY_INTEGER := 0

BOOLEAN_TRUE CONSTANT BINARY_INTEGER := 1

Table 52–3 DBMS_MGWMSG Constants: Case Comparisons

Value Constant

CASE_SENSITIVE CONSTANT BINARY_INTEGER := 0

CASE_INSENSITIVE CONSTANT BINARY_INTEGER := 1

Table 52–4 Constants for the TIB/Rendezvous field type

Value Constant

TIBRVMSG_BOOL CONSTANT INTEGER := 1

TIBRVMSG_F32 CONSTANT INTEGER := 2

TIBRVMSG_F64 CONSTANT INTEGER := 3

TIBRVMSG_I8 CONSTANT INTEGER := 4

TIBRVMSG_I16 CONSTANT INTEGER := 5

TIBRVMSG_I32 CONSTANT INTEGER := 6

TIBRVMSG_I64 CONSTANT INTEGER := 7

TIBRVMSG_IPADDR32 CONSTANT INTEGER := 8

TIBRVMSG_IPPORT16 CONSTANT INTEGER := 9

TIBRVMSG_DATETIME CONSTANT INTEGER := 10

TIBRVMSG_F32ARRAY CONSTANT INTEGER := 11

TIBRVMSG_F64ARRAY CONSTANT INTEGER := 12

TIBRVMSG_I8ARRAY CONSTANT INTEGER := 13

TIBRVMSG_I16ARRAY CONSTANT INTEGER := 14

TIBRVMSG_I32ARRAY CONSTANT INTEGER := 15

TIBRVMSG_I64ARRAY CONSTANT INTEGER := 16

Types

52-4 PL/SQL Packages and Types Reference

Types

■ SYS.MGW_NAME_VALUE_T Type

■ SYS.MGW_NAME_VALUE_T Type-Attribute Mapping

■ SYS.MGW_NAME_TYPE_ARRAY_T Type

■ SYS.MGW_TEXT_VALUE_T Type

■ SYS.MGW_RAW_VALUE_T Type

■ SYS.MGW_BASIC_MSG_T Type

■ SYS.MGW_NUMBER_ARRAY_T Type

■ SYS.MGW_TIBRV_FIELD_T Type

■ SYS.MGW_TIBRV_MSG_T Type

SYS.MGW_NAME_VALUE_T Type
This type specifies a named value. The name attribute, type attribute, and one of
the <>_value attributes are typically not NULL.

Syntax
TYPE SYS.MGW_NAME_VALUE_T IS OBJECT(
 name VARCHAR2(250),
 type INTEGER,
 integer_value INTEGER,
 number_value NUMBER,
 text_value VARCHAR2(4000),
 raw_value RAW(2000),
 date_value DATE,

-- Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_NAME_VALUE_T,

TIBRVMSG_OPAQUE CONSTANT INTEGER := 17

TIBRVMSG_STRING CONSTANT INTEGER := 18

TIBRVMSG_XML CONSTANT INTEGER := 19

Table 52–4 (Cont.) Constants for the TIB/Rendezvous field type

Value Constant

Using DBMS_MGWMSG

DBMS_MGWMSG 52-5

STATIC FUNCTION CONSTRUCT_BOOLEAN (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_BYTE (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_SHORT (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_INTEGER (
 name IN VARCHAR2,
 value IN INTEGER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_LONG (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_FLOAT (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_DOUBLE (
 name IN VARCHAR2,
 value IN NUMBER)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_TEXT (
 name IN VARCHAR2,
 value IN VARCHAR2)
RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_RAW (
 name IN VARCHAR2,
 value IN RAW)
RETURN SYS.MGW_NAME_VALUE_T,

Types

52-6 PL/SQL Packages and Types Reference

STATIC FUNCTION CONSTRUCT_DATE (
 name IN VARCHAR2,
 value IN DATE)
RETURN SYS.MGW_NAME_VALUE_T);

Attributes

SYS.MGW_NAME_VALUE_T Type-Attribute Mapping
Table 52–6 shows the mapping between the value type and the attribute used to
store the value.

Table 52–5 SYS.MGW_NAME_VALUE_T Attributes

Attribute Description

name Name associated with the value

type Value type. Refer to the DBMS_MGWMSG.<>_VALUE constants
in Table 52–1. This indicates which Java datatype and class are
associated with the value. It also indicates which attribute
stores the value.

integer_value Stores a numeric integer value

number_value Stores a numeric float or large integer value

text_value Stores a text value

raw_value Stores a RAW (bytes) value

date_value Stores a date value

Table 52–6 SYS.MGW_NAME_VALUE_T Type Attribute Mapping

Type Value Stored in Attribute

DBMS_MGWMSG.TEXT_VALUE text_value

DBMS_MGWMSG.RAW_VALUE raw_value

DBMS_MGWMSG.BOOLEAN_VALUE integer_value

DBMS_MGWMSG.BYTE_VALUE integer_value

DBMS_MGWMSG.SHORT_VALUE integer_value

DBMS_MGWMSG.INTEGER_VALUE integer_value

DBMS_MGWMSG.LONG_VALUE number_value

Using DBMS_MGWMSG

DBMS_MGWMSG 52-7

CONSTRUCT Method
This method constructs a new SYS.MGW_NAME_VALUE_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_NAME_VALUE_T;

CONSTRUCT_TYPE Methods
These methods construct a new SYS.MGW_NAME_VALUE_T instance initialized with
the value of a specific type. Each method sets the name and type attributes and one
of the <>_value attributes, as shown in the mappings in Table 52–6.

Syntax
STATIC FUNCTION CONSTRUCT_<> (
 name IN VARCHAR2,
 value IN datatype)
RETURN SYS.MGW_NAME_VALUE_T;

Usage Notes
The construct_boolean method sets the value to either DBMS_
MGWMSG.BOOLEAN_TRUE or DBMS_MGWMSG.BOOLEAN_FALSE.

SYS.MGW_NAME_TYPE_ARRAY_T Type
This type specifies an array of name-value pairs. An object of SYS.MGW_NAME_
VALUE_ARRAY_T type can have up to 1024 elements.

Syntax
TYPE SYS.MGW_NAME_VALUE_ARRAY_T
 AS VARRAY (1024) OF SYS.MGW_NAME_VALUE_T;

DBMS_MGWMSG.FLOAT_VALUE number_value

DBMS_MGWMSG.DOUBLE_VALUE number_value

DBMS_MGWMSG.DATE_VALUE date_value

Table 52–6 (Cont.) SYS.MGW_NAME_VALUE_T Type Attribute Mapping

Type Value Stored in Attribute

Types

52-8 PL/SQL Packages and Types Reference

SYS.MGW_TEXT_VALUE_T Type
This type specifies a TEXT value. It can store a large value as a CLOB or a smaller
value (size <= 4000) as VARCHAR2. Only one of the < >_ value attributes should
be set.

Syntax
TYPE SYS.MGW_TEXT_VALUE_T IS OBJECT(
 small_value VARCHAR2(4000),
 large_value CLOB,

-- Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_TEXT_VALUE_T);

Attributes

CONSTRUCT Method
This method constructs a new SYS.MGW_TEXT_VALUE_T instance. All attributes
are assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_TEXT_VALUE_T;

SYS.MGW_RAW_VALUE_T Type
This type specifies a RAW value. This type can store a large value as a BLOB or a
smaller value (size <= 2000) as RAW. You must set no more than one of the < >_
value attributes.

Syntax
TYPE SYS.MGW_RAW_VALUE_T IS OBJECT(

Table 52–7 SYS.MGW_TEXT_VALUE_T Attributes

Attribute Description

small_value Small TEXT value. Used for values <= 4000.

large_value Large TEXT value. Used when the value is too large for the
small_value attribute.

Using DBMS_MGWMSG

DBMS_MGWMSG 52-9

 small_value RAW(2000),
 large_value BLOB,

--Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_RAW_VALUE_T);

Attributes

CONSTRUCT Method
This method constructs a new SYS.MGW_RAW_VALUE_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_RAW_VALUE_T;

SYS.MGW_BASIC_MSG_T Type
This is a canonical type for a basic TEXT or RAW message. Only a single TEXT or RAW
value is typically set. An object of this type must not have both TEXT and RAW set to
a not NULL value at the same time.

Syntax
TYPE SYS.MGW_BASIC_MSG_T IS OBJECT(
 header SYS.MGW_NAME_VALUE_ARRAY_T,
 text_body SYS.MGW_TEXT_VALUE_T,
 raw_body SYS.MGW_RAW_VALUE_T,

--Methods
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_BASIC_MSG_T);

Table 52–8 SYS.MGW_RAW_VALUE_T Attributes

Attribute Description

small_value Small RAW (bytes) value <= 2000

large_value Large RAW value. Used when the value is too large for the
small_value attribute.

Types

52-10 PL/SQL Packages and Types Reference

Attributes

CONSTRUCT Method
This method constructs a new SYS.MGW_BASIC_MSG_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_BASIC_MSG_T;

SYS.MGW_NUMBER_ARRAY_T Type
A type that specifies an array of numbers.

Syntax
TYPE SYS.MGW_NUMBER_ARRAY_T AS VARRAY(1024) OF NUMBER;

SYS.MGW_TIBRV_FIELD_T Type
A type representing a TIB/Rendezvous message field, typically used in a read-only
fashion to retrieve field information from a SYS.MGW_TIBRV_MSG_T instance.

Syntax
TYPE SYS.MGW_TIBRV_FIELD_T IS OBJECT(
 field_name VARCHAR2(256),
 field_id INTEGER,
 field_type INTEGER,
 number_value NUMBER,
 number_array_value SYS.MGW_NUMBER_ARRAY_T,
 text_value VARCHAR2(4000),
 raw_value RAW(2000),
 date_value DATE,
 clob_value CLOB,

Table 52–9 SYS.MGW_BASIC_MSG_T Attributes

Attribute Description

header Message header information as an array of name-value pairs

text_body Message body for a TEXT message

raw_body Message body for a RAW (bytes) message

Using DBMS_MGWMSG

DBMS_MGWMSG 52-11

 blob_value BLOB);

Attributes

SYS.MGW_TIBRV_FIELD_T Type and Attribute Mapping
Table 52–11 describes the mapping in type SYS.MGW_TIBRV_FIELD_T between the
field type and attribute used to store the value.

Table 52–10 SYS.MGW_TIBRV_FIELD_T Attributes

Attribute Description

field_name Field name. This will be NULL if the field has no name.

field_id Field identifier. If the field identifier is zero (0), then that field is
considered not to have a field identifier. Otherwise the field
identifier is a nonzero value that is unique for all fields of that
message.

field_type Field wire format datatype. The DBMS_MGWMSG.TIBRVMSG_<>
constants represent valid values for this attribute. The value of
this field discriminates which value attribute is used to store the
field data.

number_value Used to store a numeric value

number_array_value Used to store a numeric array value

text_value Used to store a small text value

raw_value Used to store a small raw value

date_value Used to store a date value

clob_value Used to store a large text value. This is used when the text data
will not fit in text_value, that is, when size is larger than 4000.

blob_value Used to store a large raw value. This is used when the raw data
will not fit in raw_value; that is, when size is larger than 2000.

Table 52–11 SYS.MGW_TIBRV_FIELD_T Type and Attribute Mapping

Field Type (DBMS_
MGWMSG constant) Value Stored in Attribute

TIBRVMSG_BOOL number_value

TIBRVMSG_F32 number_value

TIBRVMSG_F64 number_value

Types

52-12 PL/SQL Packages and Types Reference

SYS.MGW_TIBRV_MSG_T Type
A type representing a TIB/Rendezvous message. You must never directly reference
the attributes of this type. Instead use the type methods.

Syntax
TYPE SYS.MGW_TIBRV_MSG_T IS OBJECT(
 send_subject VARCHAR2(256),
 reply_subject VARCHAR2(256),
 cm_time_limit NUMBER,
 cm_sender_name VARCHAR2(256),
 cm_sequence_num NUMBER,
 fields SYS.MGW_TIBRV_IFIELDS_T,
 clob_data1 CLOB,
 clob_data2 CLOB,

TIBRVMSG_I8 number_value

TIBRVMSG_I16 number_value

TIBRVMSG_I32 number_value

TIBRVMSG_I64 number_value

TIBRVMSG_IPADDR32 text_value

TIBRVMSG_IPPORT16 number_value

TIBRVMSG_DATETIME date_value

TIBRVMSG_F32ARRAY number_array_value

TIBRVMSG_F64ARRAY number_array_value

TIBRVMSG_I8ARRAY number_array_value

TIBRVMSG_I16ARRAY number_array_value

TIBRVMSG_I32ARRAY number_array_value

TIBRVMSG_I64ARRAY number_array_value

TIBRVMSG_OPAQUE raw_value or blob_value

TIBRVMSG_STRING text_value or clob_value

TIBRVMSG_XML raw_value or blob_value

Table 52–11 (Cont.) SYS.MGW_TIBRV_FIELD_T Type and Attribute Mapping

Field Type (DBMS_
MGWMSG constant) Value Stored in Attribute

Using DBMS_MGWMSG

DBMS_MGWMSG 52-13

 clob_data3 CLOB,
 blob_data1 BLOB,
 blob_data2 BLOB,
 blob_data3 BLOB,

STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_MSG_T,

MEMBER PROCEDURE add_bool (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_f32 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN FLOAT),

MEMBER PROCEDURE add _f64 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN DOUBLE),

MEMBER PROCEDURE add_i8 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i16 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i32 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_i64 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN NUMBER),

MEMBER PROCEDURE add_ipaddr32 (
 name IN VARCHAR2,

Types

52-14 PL/SQL Packages and Types Reference

 id IN INTEGER,
 value IN VARCHAR2),

MEMBER PROCEDURE add_ipport16 (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN INTEGER),

MEMBER PROCEDURE add_datetime (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN DATE),

MEMBER PROCEDURE add_f32array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_f64array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i8array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i16array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i32array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_i64array (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN SYS.MGW_NUMBER_ARRAY_T),

MEMBER PROCEDURE add_string (
 name IN VARCHAR2,

Using DBMS_MGWMSG

DBMS_MGWMSG 52-15

 id IN INTEGER,
 value IN VARCHAR2),

MEMBER PROCEDURE add_string (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN CLOB),

MEMBER PROCEDURE add_opaque (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN RAW),

MEMBER PROCEDURE add_opaque (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN BLOB),

MEMBER PROCEDURE add_xml (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN RAW),

MEMBER PROCEDURE add_xml (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN BLOB),

MEMBER PROCEDURE set_send_subject (
 value IN VARCHAR2),

MEMBER PROCEDURE set_reply_subject (
 value IN VARCHAR2),

MEMBER PROCEDURE set_cm_time_limit (
 value IN NUMBER),

MEMBER PROCEDURE set_cm_sender_name (
 value IN VARCHAR2),

MEMBER PROCEDURE set_cm_sequence_num (
 value IN NUMBER),

MEMBER FUNCTION get_send_subject
RETURN VARCHAR2,

Types

52-16 PL/SQL Packages and Types Reference

MEMBER FUNCTION get_reply_subject
RETURN VARCHAR2,

MEMBER FUNCTION get_cm_time_limit
RETURN NUMBER,

MEMBER FUNCTION get_cm_sender_name
RETURN VARCHAR2,

MEMBER FUNCTION get_cm_sequence_num
RETURN NUMBER,

MEMBER FUNCTION get_field_count
RETURN INTEGER,

MEMBER FUNCTION get_field (
 idx IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION get_field_by_name (
 name IN VARCHAR2)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION get_field_by_id (
 id IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T,

MEMBER FUNCTION find_field_name (
 name IN VARCHAR2,
 start_idx IN INTEGER)
RETURN INTEGER,

MEMBER FUNCTION find_field_id (
 id IN INTEGER,
 start_idx IN INTEGER)
RETURN INTEGER
);

Using DBMS_MGWMSG

DBMS_MGWMSG 52-17

Attributes

Construct Method
Constructs a new SYS.MGW_TIBRV_MSG_T instance. All attributes are set to NULL.

Syntax
STATIC FUNCTION construct
RETURN SYS.MGW_TIBRV_MSG_T;

ADD_<> Procedures
Adds a new field to the message.

Syntax
MEMBER PROCEDURE ADD_<> (
 name IN VARCHAR2,
 id IN INTEGER,
 value IN datatype);

Table 52–12 SYS.MGW_TIBRV_MSG_T Type Attributes

Attribute Description

send_subject Send subject name

reply_subject Reply subject name

cm_time_limit Time limit for a certified message

cm_sender_name Sender name of a certified message

cm_sequence_num Sequence number of a certified message

fields Collection of message fields

clob_data1 Used to store a large text value

clob_data2 Used to store a large text value

clob_data3 Used to store a large text value

blob_data1 Used to store a large raw value

blob_data2 Used to store a large raw value

blob_data3 Used to store a large raw value

Types

52-18 PL/SQL Packages and Types Reference

Parameters

Table 52–14 shows, for each add method, the field type that will be assigned and
valid values for the field data.

Table 52–13 SYS.MGW_TIBRV_MSG_T ADD_<> Method Parameters

Parameter Description

name Field name

id Field identifier

value Field data

Table 52–14 MGW_TIBRV_MSG_T Add Method Field Types

Method Name Field Type Assigned Comment

add_bool TIBRVMSG_BOOL Valid values: 0 (false), 1 (true)

add_f32 TIBRVMSG_F32 n/a

add_f64 TIBRVMSG_F64 n/a

add_i8 TIBRVMSG_I8 Valid range: -128...127

add_i16 TIBRVMSG_I16 Valid range: -32768...32767

add_i32 TIBRVMSG_I32 Valid range: -2147483648...
2147483647

add_i64 TIBRVMSG_I64 n/a

add_ipaddr32 TIBRVMSG_IPADDR32 n/a

add_ipport16 TIBRVMSG_IPPORT16 n/a

add_datetime TIBRVMSG_DATETIME n/a

add_f32array TIBRVMSG_F32ARRAY n/a

add_f64array TIBRVMSG_F64ARRAY n/a

add_i8array TIBRVMSG_I8ARRAY Valid range: -128...127

add_i16array TIBRVMSG_I16ARRAY Valid range: -32768...32767

add_i32array TIBRVMSG_I32ARRAY Valid range: -2147483648...
2147483647

add_i64array TIBRVMSG_I64ARRAY n/a

Using DBMS_MGWMSG

DBMS_MGWMSG 52-19

SET_<> Methods
Accessor methods to set an instance attribute to a specific value.

Syntax
MEMBER PROCEDURE SET_<> (
 value IN datatype);

Parameters

GET_<> Methods
Accessor methods to retrieve the value for an instance attribute.

Syntax
MEMBER PROCEDURE GET_<>
RETURN datatype;

Parameters
None

Return Values
Returns the attribute value.

add_opaque TIBRVMSG_OPAQUE Value stored as RAW if size < 2000;
otherwise value stored in BLOB

add_string TIBRVMSG_STRING Value stored as VARCHAR2 if size
< 4000; otherwise value stored in
CLOB

add_xml TIBRVMSG_XML Value stored as RAW if size < 2000;
otherwise value stored in BLOB

Table 52–15 SYS.MGW_TIBRV_MSG_T SET_<> Method Parameters

Parameter Description

value Value to be assigned

Table 52–14 (Cont.) MGW_TIBRV_MSG_T Add Method Field Types

Method Name Field Type Assigned Comment

Types

52-20 PL/SQL Packages and Types Reference

GET_FIELD_COUNT Procedure
Gets the number of message fields.

Syntax
MEMBER PROCEDURE get_field_count
RETURN INTEGER;

Parameters
None

Return Values
Returns the number of fields, or zero (0) if there are none.

GET_FIELD Procedure
Retrieves field information for the field having a given field collection index. This
method should only be called if get_field_count() returns a nonzero value and
idx must specify a valid collection index; that is, 1<=idx<=get_field_count().

Syntax
MEMBER PROCEDURE get_field (
 idx IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T;

Parameters

Return Values
Returns the field information.

Table 52–16 SYS.MGW_TIBRV_MSG_T GET_FIELD Procedure Parameters

Parameter Description

idx Specifies the 1-based field collection index of the field to
retrieve

Note: A 1-based index begins at one (1) instead of zero (0).

Using DBMS_MGWMSG

DBMS_MGWMSG 52-21

GET_FIELD_BY_NAME Procedure
Retrieves field information for the first field that has a given field name. The name
comparison is case-sensitive.

Syntax
MEMBER PROCEDURE get_field_by_name (
 name IN VARCHAR2)
RETURN SYS.MGW_TIBRV_FIELD_T;

Parameters

Return Values
Returns the field information, or NULL if no match was found.

GET_FIELD_BY_ID Procedure
Retrieves field information for the first field that has a given field identifier.

A field can have either a unique identifier or no identifier. If the field identifier
value is zero (0) or NULL, then the field is considered to have no identifier.
Otherwise, the identifier is a nonzero value that is unique for all the fields of this
message.

Syntax
MEMBER PROCEDURE get_field_by_id (
 id IN INTEGER)
RETURN SYS.MGW_TIBRV_FIELD_T;

Table 52–17 SYS.MGW_TIBRV_MSG_T GET_FIELD_BY_NAME Procedure Parameters

Parameter Description

name Specifies the field name to search for. This can be NULL to find
the first field that does not have a field name.

Types

52-22 PL/SQL Packages and Types Reference

Parameters

Return Values
Returns the field information, or NULL if no match was found.

FIND_FIELD_NAME Procedure
Searches for a field with a given field name, starting from a given index of the field
collection. It returns the index of that field. The name comparison is case-sensitive.
This function is useful for finding all the fields that have the same name.

Syntax
MEMBER PROCEDURE find_field_name (
 name IN VARCHAR2,
 start_idx IN INTEGER)
RETURN INTEGER;

Parameters

Return Values
Returns the field index (> 0) if a match was found, or zero (0) if no match was
found.

Table 52–18 SYS.MGW_TIBRV_MSG_T GET_FIELD_BY_ID Procedure Parameters

Parameter Description

id Specifies the field identifier to search for. This can be zero (0)
or NULL to find the first field that does not have an identifier.

Table 52–19 SYS.MGW_TIBRV_MSG_T FIND_FIELD_NAME Procedure Parameters

Parameter Description

name Specifies the field name to search for. This can be NULL to
search for a field that does not have a field name.

start_idx Specifies the 1-based field collection index from which the
search should start.

Using DBMS_MGWMSG

DBMS_MGWMSG 52-23

FIND_FIELD_ID Procedure
Searches for a field with a given field identifier, starting from a given index of the
field collection. It returns the index of that field.

Syntax
MEMBER PROCEDURE find_field_id (
 id IN INTEGER,
 start_idx IN INTEGER)
RETURN INTEGER;

Parameters

Return Values
Returns the field index (> 0) if a match was found, or zero (0) if no match was
found.

Table 52–20 SYS.MGW_TIBRV_MSG_T FIND_FIELD_ID Procedure Parameters

Parameter Description

id Specifies the field identifier to search for. This can be zero
(0) or NULL to find a field that does not have an
identifier.

start_idx Specifies the 1-based field collection index from which the
search should start.

Summary of DBMS_MGWMSG Subprograms

52-24 PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms

Table 52–21 DBMS_MGWMSG Package Subprograms

Subprogram Description

NVARRAY_ADD Procedure
on page 52-25

Appends a name-value element to the end of a name-value
array

NVARRAY_GET Function
on page 52-26

Gets the name-value element of the name you specify in p_
name from a name-value array

NVARRAY_GET_BOOLEAN
Function on page 52-27

Gets the value of the name-value array element that you
specify in p_name and with the BOOLEAN_VALUE value type

NVARRAY_GET_BYTE
Function on page 52-28

Gets the value of the name-value array element that you
specify in p_name and with the BYTE_VALUE value type

NVARRAY_GET_SHORT
Function on page 52-29

Gets the value of the name-value array element that you
specify in p_name and with the SHORT_VALUE value type

NVARRAY_GET_INTEGER
Function on page 52-30

Gets the value of the name-value array element that you
specify in p_name and with the INTEGER_VALUE value type

NVARRAY_GET_LONG
Function on page 52-31

Gets the value of the name-value array element that you
specify in p_name and with the LONG_VALUE value type

NVARRAY_GET_FLOAT
Function on page 52-32

Gets the value of the name-value array element that you
specify in p_name and with the FLOAT_VALUE value type

NVARRAY_GET_DOUBLE
Function on page 52-33

Gets the value of the name-value array element that you
specify in p_name and with the DOUBLE_VALUE value type

NVARRAY_GET_TEXT
Function on page 52-34

Gets the value of the name-value array element that you
specify in p_name and with the TEXT_VALUE value type

NVARRAY_GET_RAW
Function on page 52-35

Gets the value of the name-value array element that you
specify in p_name and with the RAW_VALUE value type

NVARRAY_GET_DATE
Function on page 52-36

Gets the value of the name-value array element that you
specify in p_name and with the DATE_VALUE value type

NVARRAY_FIND_NAME
Function on page 52-37

Searches a name-value array for the element with the name
you specify in p_name

NVARRAY_FIND_NAME_
TYPE Function on
page 52-38

Searches a name-value array for an element with the name
and value type you specify

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-25

NVARRAY_ADD Procedure

This procedure appends a name-value element to the end of a name-value array.

Syntax
DBMS_MGWMSG.NVARRAY_ADD (
 p_array IN OUT SYS.MGW_NAME_VALUE_ARRAY_T,
 p_value IN SYS.MGW_NAME_VALUE_T);

Parameters

Table 52–22 NVARRAY_ADD Procedure Parameters

Parameter Description

p_array On input, the name-value array instance to modify. If NULL,
then a new array is created. On output, the modified
name-value array instance.

p_value The value to add. If NULL, then p_array is not changed.

NVARRAY_GET Function

52-26 PL/SQL Packages and Types Reference

NVARRAY_GET Function

This function gets the name-value element of the name you specify in p_name from
a name-value array.

Syntax
DBMS_MGWMSG.NVARRAY_GET (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN SYS.MGW_NAME_VALUE_T;

Parameters

Return Values
Returns the matching element, or NULL if the specified name is not found.

Table 52–23 NVARRAY_GET Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-27

NVARRAY_GET_BOOLEAN Function

This function gets the value of the name-value array element that you specify in p_
name and with the BOOLEAN_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_BOOLEAN (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–24 NVARRAY_GET_BOOLEAN Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_GET_BYTE Function

52-28 PL/SQL Packages and Types Reference

NVARRAY_GET_BYTE Function

This function gets the value of the name-value array element that you specify in p_
name and with the BYTE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_BYTE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–25 NVARRAY_GET_BYTE Function

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-29

NVARRAY_GET_SHORT Function

This function gets the value of the name-value array element that you specify in p_
name and with the SHORT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_SHORT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–26 NVARRAY_GET_SHORT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_GET_INTEGER Function

52-30 PL/SQL Packages and Types Reference

NVARRAY_GET_INTEGER Function

This function gets the value of the name-value array element that you specify in p_
name and with the INTEGER_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_INTEGER (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN INTEGER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–27 NVARRAY_GET_INTEGER Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-31

NVARRAY_GET_LONG Function

This function gets the value of the name-value array element that you specify in p_
name and with the LONG_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_LONG (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–28 NVARRAY_GET_LONG Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_GET_FLOAT Function

52-32 PL/SQL Packages and Types Reference

NVARRAY_GET_FLOAT Function

This function gets the value of the name-value array element that you specify in p_
name and with the FLOAT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_FLOAT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–29 NVARRAY_GET_FLOAT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-33

NVARRAY_GET_DOUBLE Function

This function gets the value of the name-value array element that you specify in p_
name and with the DOUBLE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_DOUBLE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN NUMBER;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–30 NVARRAY_GET_DOUBLE Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_GET_TEXT Function

52-34 PL/SQL Packages and Types Reference

NVARRAY_GET_TEXT Function

This function gets the value of the name-value array element that you specify in p_
name and with the TEXT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_TEXT (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN VARCHAR2;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–31 NVARRAY_GET_TEXT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-35

NVARRAY_GET_RAW Function

This function gets the value of the name-value array element that you specify in p_
name and with the RAW_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_RAW (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN RAW;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–32 NVARRAY_GET_RAW Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_GET_DATE Function

52-36 PL/SQL Packages and Types Reference

NVARRAY_GET_DATE Function

This function gets the value of the name-value array element that you specify in p_
name and with the DATE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_DATE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN DATE;

Parameters

Return Values
Returns the value, or NULL if either the specified name is not found or a type
mismatch exists.

Table 52–33 NVARRAY_GET_DATE Function Parameters

Parameters Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

Summary of DBMS_MGWMSG Subprograms

DBMS_MGWMSG 52-37

NVARRAY_FIND_NAME Function

This function searches a name-value array for the element with the name you
specify in p_name.

Syntax
DBMS_MGWMSG.NVARRAY_FIND_NAME (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN BINARY_INTEGER;

Parameters

Return Values
Returns a positive integer that is the array index of the matching element or zero
(0) if the specified name is not found.

Table 52–34 NVARRAY_FIND_NAME Function Parameters

Parameters Description

p_array The name-value array to search

p_name The name to find

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

NVARRAY_FIND_NAME_TYPE Function

52-38 PL/SQL Packages and Types Reference

NVARRAY_FIND_NAME_TYPE Function

This function searches a name-value array for an element with the name and value
type you specify.

Syntax
DBMS_MGWMSG.NVARRAY_FIND_NAME_TYPE (
 p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
 p_name IN VARCHAR2,
 p_type IN BINARY_INTEGER
 p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)
RETURN BINARY_INTEGER;

Parameters

Return Values
Returns a positive integer that is the array index of the matching element, zero (0)
if the specified name is not found, or negative one (-1) if the specified name is found
but a type mismatch exists.

Table 52–35 NVARRAY_FIND_NAME_TYPE Function Parameters

Parameter Description

p_array The name-value array to search

p_name The name to find

p_type The value type. Refer to the value type constants in Table 52–1
on page 52-2.

p_compare Name comparison method. Values are CASE_SENSITIVE and
CASE_INSENSITIVE.

DBMS_MONITOR 53-1

53
DBMS_MONITOR

The DBMS_MONITOR package let you use PL/SQL for controlling additional
tracing and statistics gathering.

The chapter contains the following topics:

■ Summary of DBMS_MONITOR Subprograms

Summary of DBMS_MONITOR Subprograms

53-2 PL/SQL Packages and Types Reference

Summary of DBMS_MONITOR Subprograms

Table 53–1 DBMS_MONITOR Package Subprograms

Subprogram Description

CLIENT_ID_STAT_DISABLE
Procedure on page 53-3

Disables statistic gathering previously enabled for a
given Client Identifier

CLIENT_ID_STAT_ENABLE
Procedure on page 53-4

Enables statistic gathering for a given Client Identifier

CLIENT_ID_TRACE_DISABLE
Procedure on page 53-5

Disables the trace previously enabled for a given Client
Identifier globally for the database

CLIENT_ID_TRACE_ENABLE
Procedure on page 53-6

Enables the trace for a given Client Identifier globally for
the database

SERV_MOD_ACT_STAT_
DISABLE Procedure on
page 53-7

Disables statistic gathering enabled for a given
combination of Service Name, MODULE and ACTION

SERV_MOD_ACT_STAT_
ENABLE Procedure on
page 53-8

Enables statistic gathering for a given combination of
Service Name, MODULE and ACTION

SERV_MOD_ACT_TRACE_
DISABLE Procedure on
page 53-10

Disables the trace for ALL enabled instances for a or a
given combination of Service Name, MODULE and
ACTION name globally

SERV_MOD_ACT_TRACE_
ENABLE Procedure on
page 53-12

Enables SQL tracing for a given combination of Service
Name, MODULE and ACTION globally unless an
instance_name is specified

SESSION_TRACE_DISABLE
Procedure on page 53-14

Disables the previously enabled trace for a given
database session identifier (SID) on the local instance

SESSION_TRACE_ENABLE
Procedure on page 53-15

Enables the trace for a given database session identifier
(SID) on the local instance

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-3

CLIENT_ID_STAT_DISABLE Procedure

This procedure will disable statistics accumulation for all instances and remove the
accumulated results from V$CLIENT_STATS view enabled by the CLIENT_ID_
STAT_ENABLE Procedure.

Syntax
DBMS_MONITOR.CLIENT_ID_STAT_DISABLE(
 client_id IN VARCHAR2);

Parameters

Examples
To disable accumulation:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_DISABLE('janedoe');

Table 53–2 CLIENT_ID_STAT_DISABLE Procedure Parameters

Parameter Description

client_id The Client Identifier for which statistic aggregation is disabled.

CLIENT_ID_STAT_ENABLE Procedure

53-4 PL/SQL Packages and Types Reference

CLIENT_ID_STAT_ENABLE Procedure

This procedure enables statistic gathering for a given Client Identifier. Statistics
gathering is global for the database and persistent across instance starts and
restarts. That is, statistics are enabled for all instances of the same database,
including restarts. Statistics are viewable through V$CLIENT_STATS views.

Syntax
DBMS_MONITOR.CLIENT_ID_STAT_ENABLE(
 client_id IN VARCHAR2);

Parameters

Examples
To enable statistic accumulation for a client with a given client ID:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_ENABLE('janedoe');

Table 53–3 CLIENT_ID_STAT_ENABLE Procedure Parameters

Parameter Description

client_id The Client Identifier for which statistic aggregation is enabled.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-5

CLIENT_ID_TRACE_DISABLE Procedure

This procedure will disable tracing enabled by the CLIENT_ID_TRACE_ENABLE
Procedure.

Syntax
DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE(
 client_id IN VARCHAR2);

Parameters

Examples
EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE ('janedoe');

Table 53–4 CLIENT_ID_TRACE_DISABLE Procedure Parameters

Parameter Description

client_id The Client Identifier for which SQL tracing is disabled.

CLIENT_ID_TRACE_ENABLE Procedure

53-6 PL/SQL Packages and Types Reference

CLIENT_ID_TRACE_ENABLE Procedure

This procedure will enable the trace for a given client identifier globally for the
database.

Syntax
DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE(
 client_id IN VARCHAR2,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
■ The trace will be written to multiple trace files because more than one Oracle

shadow process can work on behalf of a given client identifier.

■ The tracing is enabled for all instances and persistent across restarts.

Examples
EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('janedoe', TRUE,
FALSE);

Table 53–5 CLIENT_ID_TRACE_ENABLE Procedure Parameters

Parameter Description

client_id Database Session Identifier for which SQL tracing is enabled.

waits If TRUE, wait information is present in the trace.

binds If TRUE, bind information is present in the trace.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-7

SERV_MOD_ACT_STAT_DISABLE Procedure

This procedure will disable statistics accumulation and remove the accumulated
results from V$SERV_MOD_ACT_STATS view. Statistics disabling is persistent for
the database. That is, service statistics are disabled for instances of the same
database (plus dblinks that have been activated as a result of the enable).

Syntax
DBMS_MONITOR.SERV_MOD_ACT_STAT_DISABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS);

Parameters

Table 53–6 SERV_MOD_ACT_STAT_DISABLE Procedure Parameters

Parameter Description

service_name Name of the service for which statistic aggregation is disabled.

module_name Name of the MODULE. An additional qualifier for the service. It
is a required parameter.

action_name Name of the ACTION. An additional qualifier for the Service
and MODULE name. Omitting the parameter (or supplying
ALL_ACTIONS constant) means enabling aggregation for all
Actions for a given Server/Module combination. In this case,
statistics are aggregated on the module level.

SERV_MOD_ACT_STAT_ENABLE Procedure

53-8 PL/SQL Packages and Types Reference

SERV_MOD_ACT_STAT_ENABLE Procedure

This procedure enables statistic gathering for a given combination of Service Name,
MODULE and ACTION. Calling this procedure enables statistic gathering for a
hierarchical combination of Service name, MODULE name, and ACTION name on all
instances for the same database. Statistics are accessible by means of the V$SERV_
MOD_ACT_STATS view.

Syntax
DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS);

Parameters

Usage Notes
Enabling statistic aggregation for the given combination of Service/Module/Action
names is slightly complicated by the fact that the Module/Action values can be
empty strings which are indistinguishable from NULLs. For this reason, we adopt
the following conventions:

A special constant (unlikely to be a real action names) is defined:

ALL_ACTIONS constant VARCHAR2 := '###ALL_ACTIONS';

Table 53–7 SERV_MOD_ACT_STAT_ENABLE Procedure Parameters

Parameter Description

service_name Name of the service for which statistic aggregation is enabled.

module_name Name of the MODULE. An additional qualifier for the service. It
is a required parameter.

action_name Name of the ACTION. An additional qualifier for the Service
and MODULE name. Omitting the parameter (or supplying
ALL_ACTIONS constant) means enabling aggregation for all
Actions for a given Server/Module combination. In this case,
statistics are aggregated on the module level.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-9

Using ALL_ACTIONS for a module specification means that aggregation is enabled
for all actions with a given module name, while using NULL (or empty string)
means that aggregation is enabled for an action whose name is an empty string.

Examples
To enable statistic accumulation for a given combination of Service name and
MODULE:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE('APPS1','PAYROLL');

To enable statistic accumulation for a given combination of Service name, MODULE
and ACTION:

EXECUTE
DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE('APPS1','GLEDGER','DEBIT_ENTRY');

If both of the preceding commands are issued, statistics are accumulated as follows:

■ For the APPS1 service, because accumulation for each Service Name is the
default.

■ For all actions in the PAYROLL Module.

■ For the DEBIT_ENTRY Action within the GLEDGER Module.

SERV_MOD_ACT_TRACE_DISABLE Procedure

53-10 PL/SQL Packages and Types Reference

SERV_MOD_ACT_TRACE_DISABLE Procedure

This procedure will disable the trace at ALL enabled instances for a given
combination of Service Name, MODULE, and ACTION name globally.

Syntax
DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2,
 action_name IN VARCHAR2 DEFAULT ALL_ACTIONS,
 instance_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
Specifying NULL for the module_name parameter means that statistics will no
longer be accumulated for the sessions which do not set the MODULE attribute.

Examples
To enable tracing for a Service named APPS1:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1',
 DBMS_MONITOR.ALL_MODULES, DBMS_MONITOR.ALL_ACTIONS,TRUE,
FALSE,NULL);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE('APPS1');

To enable tracing for a given combination of Service and MODULE (all ACTIONs):

Table 53–8 SERV_MOD_ACT_TRACE_DISABLE Procedure Parameters

Parameter Description

service_name Name of the service for which tracing is disabled.

module_name Name of the MODULE. An additional qualifier for the service.

action_name Name of the ACTION. An additional qualifier for the Service
and MODULE name.

instance_name If set, this restricts tracing to the named instance_name.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-11

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1','PAYROLL',
 DBMS_MONITOR.ALL_ACTIONS,TRUE,FALSE,NULL);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE('APPS1','PAYROLL');

SERV_MOD_ACT_TRACE_ENABLE Procedure

53-12 PL/SQL Packages and Types Reference

SERV_MOD_ACT_TRACE_ENABLE Procedure

This procedure will enable SQL tracing for a given combination of Service Name,
MODULE and ACTION globally unless an instance_name is specified.

Syntax
DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(
 service_name IN VARCHAR2,
 module_name IN VARCHAR2 DEFAULT ANY_MODULE,
 action_name IN VARCHAR2 DEFAULT ANY_ACTION,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE,
 instance_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
■ The procedure enables a trace for a given combination of Service, MODULE and

ACTION name. The specification is strictly hierarchical: Service Name or Service
Name/MODULE, or Service Name, MODULE, and ACTION name must be
specified. Omitting a qualifier behaves like a wild-card, so that not specifying
an ACTION means all ACTIONs. Using the ALL_ACTIONS constant achieves the
same purpose.

■ This tracing is useful when an application MODULE and optionally known
ACTION is experiencing poor service levels.

Table 53–9 SERV_MOD_ACT_TRACE_ENABLE Procedure Parameters

Parameter Description

service_name Name of the service for which tracing is enabled.

module_name Name of the MODULE. An optional additional qualifier for the
service.

action_name Name of the ACTION. An optional additional qualifier for the
Service and MODULE name.

waits If TRUE, wait information is present in the trace.

binds If TRUE, bind information is present in the trace.

instance_name If set, this restricts tracing to the named instance_name.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-13

■ By default, tracing is enabled globally for the database. The instance_name
parameter is provided to restrict tracing to named instances that are known, for
example, to exhibit poor service levels.

■ Tracing information is present in multiple trace files and you must use the
trcsess tool to collect it into a single file.

■ Specifying NULL for the module_name parameter means that statistics will be
accumulated for the sessions which do not set the MODULE attribute.

Examples
To enable tracing for a Service named APPS1:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1',
 DBMS_MONITOR.ALL_MODULES, DBMS_MONITOR.ALL_ACTIONS,TRUE,
FALSE,NULL);

To enable tracing for a given combination of Service and MODULE (all ACTIONs):

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE('APPS1','PAYROLL',
 DBMS_MONITOR.ALL_ACTIONS,TRUE,FALSE,NULL);

SESSION_TRACE_DISABLE Procedure

53-14 PL/SQL Packages and Types Reference

SESSION_TRACE_DISABLE Procedure

This procedure will disable the trace for a given database session at the local
instance.

Syntax
DBMS_MONITOR.SESSION_TRACE_DISABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL,
 serial_num IN BINARY_INTEGER DEFAULT NULL);

Parameters

Usage Notes
If serial_num is NULL but session_id is specified, a session with a given
session_id is no longer traced irrespective of its serial number. If both session_id
and serial_num are NULL, the current user session is no longer traced. It is illegal
to specify NULL session_id and non-NULL serial_num. In addition, the NULL
values are default and can be omitted.

Examples
To enable tracing for a client with a given client session ID:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(7,4634, TRUE, FALSE);

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(7,4634);;

Table 53–10 SESSION_TRACE_DISABLE Procedure Parameters

Parameter Description

session_id Name of the service for which SQL trace is disabled.

serial_num Serial number for this session.

Summary of DBMS_MONITOR Subprograms

DBMS_MONITOR 53-15

SESSION_TRACE_ENABLE Procedure

This procedure enables a SQL trace for the given Session ID on the local instance

Syntax
DBMS_MONITOR.SESSION_TRACE_ENABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL,
 serial_num IN BINARY_INTEGER DEFAULT NULL,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE)

Parameters

Usage Notes
The procedure enables a trace for a given database session, and is still useful for
client/server applications. The trace is enabled only on the instance to which the
caller is connected, since database sessions do not span instances. This tracing is
strictly local to an instance.

If serial_num is NULL but session_id is specified, a session with a given
session_id is traced irrespective of its serial number. If both session_id and
serial_num are NULL, the current user session is traced. It is illegal to specify
NULL session_id and non-NULL serial_num. In addition, the NULL values are
default and can be omitted.

Examples
To enable tracing for a client with a given client session ID:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(7,4634, TRUE, FALSE);

Table 53–11 SESSION_TRACE_ENABLE Procedure Parameters

Parameter Description

session_id Database Session Identifier for which SQL tracing is enabled.

serial_num Serial number for this session.

waits If TRUE, wait information is present in the trace.

binds If TRUE, bind information is present in the trace.

SESSION_TRACE_ENABLE Procedure

53-16 PL/SQL Packages and Types Reference

To disable tracing specified in the previous step:

EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(7,4634);

Either

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(5);

or

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(5, NULL);

traces the session with session ID of 5, while either

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE();

or

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(NULL, NULL);

traces the current user session. Also,

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(NULL, NULL, TRUE, TRUE);

traces the current user session including waits and binds. The same can be also
expressed using keyword syntax:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(binds=>TRUE);

DBMS_MVIEW 54-1

54
DBMS_MVIEW

DBMS_MVIEW enables you to understand capabilities for materialized views and
potential materialized views, including their rewrite availability. It also enables you
to refresh materialized views that are not part of the same refresh group and purge
logs.

This chapter contains the following topics:

■ Using DBMS_MVIEW

■ Operational Notes

■ Rules and Limits

■ Summary of DBMS_MVIEW Subprograms

Note: DBMS_SNAPSHOT is a synonym for DBMS_MVIEW.

See Also:

■ Oracle Database Advanced Replication for more information about
using materialized views in a replication environment

■ Oracle Data Warehousing Guide for more information about
using materialized views in a data warehousing environment

Using DBMS_MVIEW

54-2 PL/SQL Packages and Types Reference

Using DBMS_MVIEW

■ Operational Notes

■ Rules and Limits

Operational Notes

If a query is less than 256 characters long, you can invoke EXPLAIN_REWRITE
using the EXECUTE command from SQL*PLUS. Otherwise, the recommended
method is to use a PL/SQL BEGIN..END block, as shown in the examples in
/rdbms/demo/smxrw.sql.

Rules and Limits

The EXPLAIN_REWRITE procedure cannot accept queries longer than 32627
characters. These restrictions also apply when passing the defining query of a
materialized view to the EXPLAIN_MVIEW procedure.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-3

Summary of DBMS_MVIEW Subprograms

Table 54–1 DBMS_MVIEW Package Subprograms

Subprogram Description

BEGIN_TABLE_
REORGANIZATION
Procedure on page 54-5

Performs a process to preserve materialized view data
needed for refresh

END_TABLE_
REORGANIZATION
Procedure on page 54-6

Ensures that the materialized view data for the master
table is valid and that the master table is in the proper
state

ESTIMATE_MVIEW_SIZE
Procedure on page 54-7

Estimates the size of a materialized view that you might
create, in bytes and rows

EXPLAIN_MVIEW Procedure
on page 54-8

Explains what is possible with a materialized view or
potential materialized view

EXPLAIN_REWRITE
Procedures on page 54-10

Explains why a query failed to rewrite or why the
optimizer chose to rewrite a query with a particular
materialized view

I_AM_A_REFRESH Function
on page 54-12

Returns the value of the I_AM_REFRESH package state

PMARKER Function on
page 54-13

Returns a partition marker from a rowid, and is used for
Partition Change Tracking (PCT)

PURGE_DIRECT_LOAD_LOG
Procedure on page 54-14

Purges rows from the direct loader log after they are no
longer needed by any materialized views (used with data
warehousing)

PURGE_LOG Procedure on
page 54-15

Purges rows from the materialized view log

PURGE_MVIEW_FROM_LOG
Procedure on page 54-16

Purges rows from the materialized view log

REFRESH Procedure on
page 54-18

Refreshes one or more materialized views that are not
members of the same refresh group

REFRESH_ALL_MVIEWS
Procedure on page 54-21

Refreshes all materialized views that do not reflect
changes to their master table or master materialized view

REFRESH_DEPENDENT
Procedure on page 54-23

Refreshes all table-based materialized views that depend
on a specified master table or master materialized view, or
list of master tables or master materialized views

Summary of DBMS_MVIEW Subprograms

54-4 PL/SQL Packages and Types Reference

REGISTER_MVIEW Procedure
on page 54-26

Enables the administration of individual materialized
views

UNREGISTER_MVIEW
Procedure on page 54-29

Enables the administration of individual materialized
views once invoked at a master site or master materialized
view site to unregister a materialized view

Table 54–1 (Cont.) DBMS_MVIEW Package Subprograms (Cont.)

Subprogram Description

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-5

BEGIN_TABLE_REORGANIZATION Procedure

This procedure performs a process to preserve materialized view data needed for
refresh. It must be called before a master table is reorganized.

Syntax
DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

Parameters

Table 54–2 BEGIN_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.

END_TABLE_REORGANIZATION Procedure

54-6 PL/SQL Packages and Types Reference

END_TABLE_REORGANIZATION Procedure

This procedure ensures that the materialized view data for the master table is valid
and that the master table is in the proper state. It must be called after a master table
is reorganized.

Syntax
DBMS_MVIEW.END_TABLE_REORGANIZATION (
 tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

Parameters

Table 54–3 END_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-7

ESTIMATE_MVIEW_SIZE Procedure

This procedure estimates the size of a materialized view that you might create, in
bytes and number of rows.

Syntax
DBMS_MVIEW.ESTIMATE_MVIEW_SIZE (
 stmt_id IN VARCHAR2,
 select_clause IN VARCHAR2,
 num_rows OUT NUMBER,
 num_bytes OUT NUMBER);

Parameters

Table 54–4 ESTIMATE_MVIEW_SIZE Procedure Parameters

Parameter Datatype Description

stmt_id NUMBER Arbitrary string used to identify the statement in
an EXPLAIN PLAN.

select_
clause

STRING The SELECT statement to be analyzed.

num_rows NUMBER Estimated cardinality.

num_bytes NUMBER Estimated number of bytes.

EXPLAIN_MVIEW Procedure

54-8 PL/SQL Packages and Types Reference

EXPLAIN_MVIEW Procedure

This procedure enables you to learn what is possible with a materialized view or
potential materialized view. For example, you can determine if a materialized view
is fast refreshable and what types of query rewrite you can perform with a
particular materialized view.

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as parameters the schema and materialized view name for an
existing materialized view. Alternatively, you can specify the SELECT string or
CREATE MATERIALIZED VIEW statement for a potential materialized view. The
materialized view or potential materialized view is then analyzed and the results
are written into either a table called MV_CAPABILITIES_TABLE, which is the
default, or to an array called MSG_ARRAY.

The procedure is overloaded:

■ The first version is for explaining an existing or potential materialized view
with output to MV_CAPABILITIES_TABLE.

■ The second version is for explaining an existing or potential materialized view
with output to a VARRAY:

Syntax
DBMS_MVIEW.EXPLAIN_MVIEW (
 mv IN VARCHAR2,
 statement_id IN VARCHAR2:= NULL);

DBMS_MVIEW.EXPLAIN_MVIEW (
 mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Parameters

Table 54–5 EXPLAIN_MVIEW Procedure Parameters

Parameter Description

mv The name of an existing materialized view (optionally qualified
with the owner name separated by a ".") or a SELECT statement or
a CREATE MATERIALIZED VIEW statement for a potential
materialized view.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-9

Usage Notes
You must run the utlxmv.sql script to create MV_CAPABILITIES_TABLE in the
current schema prior to calling EXPLAIN_MVIEW except when you direct output to
a VARRAY. The script is found in the admin directory.

statement_id A client-supplied unique identifier to associate output rows with
specific invocations of EXPLAIN_MVIEW.

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_MVIEW's output to a PL/SQL VARRAY rather
than MV_CAPABILITIES_TABLE.

Table 54–5 EXPLAIN_MVIEW Procedure Parameters

Parameter Description

EXPLAIN_REWRITE Procedures

54-10 PL/SQL Packages and Types Reference

EXPLAIN_REWRITE Procedures

This procedure enables you to learn why a query failed to rewrite, or, if it rewrites,
which materialized views will be used. Using the results from the procedure, you
can take the appropriate action needed to make a query rewrite if at all possible.
The query specified in the EXPLAIN_REWRITE statement is never actually executed.

Syntax
You can obtain the output from EXPLAIN_REWRITE in two ways. The first is to use
a table, while the second is to create a VARRAY. The following shows the basic
syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query IN [VARCHAR2 | CLOB],
 mv IN VARCHAR2,
 statement_id IN VARCHAR2;

If you want to direct the output of EXPLAIN_REWRITE to a VARRAY, instead of a
table, then the procedure should be called as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query IN [VARCHAR2 | CLOB],
 mv IN VARCHAR2,
 msg_array IN OUT SYS.RewriteArrayType);

Parameters

Table 54–6 EXPLAIN_REWRITE Procedure Parameters

Parameter Description

query SQL SELECT statement to be explained.

mv The fully qualified name of an existing materialized view in the form
of SCHEMA.MV.

statement_id A client-supplied unique identifier to distinguish output messages.

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_REWRITE's output to a PL/SQL VARRAY.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-11

Usage Notes
To obtain the output into a table, you must run the utlxrw.sql script before calling
EXPLAIN_REWRITE. This script creates a table named REWRITE_TABLE in the
current schema.

I_AM_A_REFRESH Function

54-12 PL/SQL Packages and Types Reference

I_AM_A_REFRESH Function

This function returns the value of the I_AM_REFRESH package state.

Syntax
DBMS_MVIEW.I_AM_A_REFRESH
 RETURN BOOLEAN;

Return Values
A return value of true indicates that all local replication triggers for materialized
views are effectively disabled in this session because each replication trigger first
checks this state. A return value of false indicates that these triggers are enabled.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-13

PMARKER Function

This function returns a partition marker from a rowid. It is used for Partition
Change Tracking (PCT).

Syntax
DBMS_MVIEW.PMARKER(
 rid IN ROWID)
 RETURN NUMBER;

Parameters

Table 54–7 PMARKER Procedure Parameters

Parameter Description

rid The rowid of a row entry in a master table.

PURGE_DIRECT_LOAD_LOG Procedure

54-14 PL/SQL Packages and Types Reference

PURGE_DIRECT_LOAD_LOG Procedure

This procedure removes entries from the direct loader log after they are no longer
needed for any known materialized view. This procedure usually is used in
environments using Oracle's data warehousing technology.

Syntax
DBMS_MVIEW.PURGE_DIRECT_LOAD_LOG();

See Also: Oracle Data Warehousing Guide for more information

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-15

PURGE_LOG Procedure

This procedure purges rows from the materialized view log.

Syntax
DBMS_MVIEW.PURGE_LOG (
 master IN VARCHAR2,
 num IN BINARY_INTEGER := 1,
 flag IN VARCHAR2 := 'NOP');

Parameters

Table 54–8 PURGE_LOG Procedure Parameters

Parameter Description

master Name of the master table or master materialized view.

num Number of least recently refreshed materialized views whose rows you
want to remove from materialized view log. For example, the following
statement deletes rows needed to refresh the two least recently
refreshed materialized views:

DBMS_MVIEW.PURGE_LOG('master_table', 2);

To delete all rows in the materialized view log, indicate a high number
of materialized views to disregard, as in this example:

DBMS_MVIEW.PURGE_LOG('master_table',9999);

This statement completely purges the materialized view log that
corresponds to master_table if fewer than 9999 materialized views
are based on master_table. A simple materialized view whose rows
have been purged from the materialized view log must be completely
refreshed the next time it is refreshed.

flag Specify delete to guarantee that rows are deleted from the
materialized view log for at least one materialized view. This parameter
can override the setting for the parameter num. For example, the
following statement deletes rows from the materialized view log that
has dependency rows in the least recently refreshed materialized view:

DBMS_MVIEW.PURGE_LOG('master_table',1,'delete');

PURGE_MVIEW_FROM_LOG Procedure

54-16 PL/SQL Packages and Types Reference

PURGE_MVIEW_FROM_LOG Procedure

This procedure is called on the master site or master materialized view site to delete
the rows in materialized view refresh related data dictionary tables maintained at
the master for the specified materialized view identified by its mview_id or the
combination of the mviewowner, mviewname, and the mviewsite. If the
materialized view specified is the oldest materialized view to have refreshed from
any of the master tables or master materialized views, then the materialized view
log is also purged. This procedure does not unregister the materialized view.

Syntax
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mview_id IN BINARY_INTEGER |
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

Note: This procedure is overloaded. The mview_id parameter is
mutually exclusive with the three remaining parameters:
mviewowner, mviewname, and mviewsite.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-17

Parameters

Usage Notes
If there is an error while purging one of the materialized view logs, the successful
purge operations of the previous materialized view logs are not rolled back. This is
to minimize the size of the materialized view logs. In case of an error, this procedure
can be invoked again until all the materialized view logs are purged.

Table 54–9 PURGE_MVIEW_FROM_LOG Procedure Parameters

Parameter Description

mview_id If you want to execute this procedure based on the identification of
the target materialized view, specify the materialized view
identification using the mview_id parameter. Query the DBA_
BASE_TABLE_MVIEWS view at the materialized view log site for a
listing of materialized view IDs.

Executing this procedure based on the materialized view
identification is useful if the target materialized view is not listed in
the list of registered materialized views (DBA_REGISTERED_
MVIEWS).

mviewowner If you do not specify a mview_id, enter the owner of the target
materialized view using the mviewowner parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view owners.

mviewname If you do not specify a mview_id, enter the name of the target
materialized view using the mviewname parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view names.

mviewsite If you do not specify a mview_id, enter the site of the target
materialized view using the mviewsite parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view sites.

REFRESH Procedure

54-18 PL/SQL Packages and Types Reference

REFRESH Procedure

This procedure refreshes a list of materialized views.

Syntax
DBMS_MVIEW.REFRESH (
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := true,
 refresh_after_errors IN BOOLEAN := false,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 atomic_refresh IN BOOLEAN := true,
 nested IN BOOLEAN := false);

Parameters

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 54–10 REFRESH Procedure Parameters

Parameter Description

list | tab Comma-delimited list of materialized views that you want to refresh.
(Synonyms are not supported.) These materialized views can be
located in different schemas and have different master tables or
master materialized views. However, all of the listed materialized
views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a
materialized view.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-19

method A string of refresh methods indicating how to refresh the listed
materialized views. An f indicates fast refresh, ? indicates force
refresh, C or c indicates complete refresh, and A or a indicates always
refresh. A and C are equivalent. P or p refreshes by recomputing the
rows in the materialized view affected by changed partitions in the
detail tables.

If a materialized view does not have a corresponding refresh method
(that is, if more materialized views are specified than refresh
methods), then that materialized view is refreshed according to its
default refresh method. For example, consider the following
EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH
 ('countries_mv,regions_mv,hr.employees_mv','cf');

This statement performs a complete refresh of the countries_mv
materialized view, a fast refresh of the regions_mv materialized
view, and a default refresh of the hr.employees materialized view.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

push_deferred_
rpc

Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to its
associated master tables or master materialized views before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

refresh_after_
errors

If this parameter is true, an updatable materialized view continues
to refresh even if there are outstanding conflicts logged in the
DEFERROR view for the materialized view's master table or master
materialized view. If this parameter is true and atomic_refresh
is false, this procedure continues to refresh other materialized
views if it fails while refreshing a materialized view.

purge_option If you are using the parallel propagation mechanism (in other words,
parallelism is set to 1 or greater), 0 means do not purge, 1 means lazy
purge, and 2 means aggressive purge. In most cases, lazy purge is the
optimal setting. Set purge to aggressive to trim the queue if multiple
master replication groups are pushed to different target sites, and
updates to one or more replication groups are infrequent and
infrequently pushed. If all replication groups are infrequently
updated and pushed, then set this parameter to 0 and occasionally
execute PUSH with this parameter set to 2 to reduce the queue.

Table 54–10 (Cont.) REFRESH Procedure Parameters

Parameter Description

REFRESH Procedure

54-20 PL/SQL Packages and Types Reference

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously for
parallel propagation scheduling. Oracle automatically calculates the
default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

atomic_refresh If this parameter is set to true, then the list of materialized views is
refreshed in a single transaction. All of the refreshed materialized
views are updated to a single point in time. If the refresh fails for any
of the materialized views, none of the materialized views are
updated.

If this parameter is set to false, then each of the materialized views
is refreshed in a separate transaction.

nested If true, then perform nested refresh operations for the specified set
of materialized views. Nested refresh operations refresh all the
depending materialized views and the specified set of materialized
views based on a dependency order to ensure the nested
materialized views are truly fresh with respect to the underlying
base tables.

Table 54–10 (Cont.) REFRESH Procedure Parameters

Parameter Description

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-21

REFRESH_ALL_MVIEWS Procedure

This procedure refreshes all materialized views that have the following properties:

■ The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

■ The materialized view and all of the master tables or master materialized views
on which it depends are local.

■ The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_ALL_MVIEWS (
 number_of_failures OUT BINARY_INTEGER,
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true);

Parameters

Table 54–11 REFRESH_ALL_MVIEWS Procedure Parameters

Parameter Description

number_of_
failures

Returns the number of failures that occurred during processing.

method A single refresh method indicating the type of refresh to perform
for each materialized view that is refreshed. F or f indicates fast
refresh, ? indicates force refresh, C or c indicates complete refresh,
and A or a indicates always refresh. A and C are equivalent. If no
method is specified, a materialized view is refreshed according to
its default refresh method. P or p refreshes by recomputing the
rows in the materialized view affected by changed partitions in
the detail tables.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

REFRESH_ALL_MVIEWS Procedure

54-22 PL/SQL Packages and Types Reference

refresh_after_
errors

If this parameter is true, an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false, this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

atomic_refresh If this parameter is set to true, then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false, then each of the refreshed
materialized views is refreshed in a separate transaction.

Table 54–11 (Cont.) REFRESH_ALL_MVIEWS Procedure Parameters

Parameter Description

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-23

REFRESH_DEPENDENT Procedure

This procedure refreshes all materialized views that have the following properties:

■ The materialized view depends on a master table or master materialized view
in the list of specified masters.

■ The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

■ The materialized view and all of the master tables or master materialized views
on which it depends are local.

■ The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures OUT BINARY_INTEGER,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 refresh_after_errors IN BOOLEAN := false,
 atomic_refresh IN BOOLEAN := true,
 nested IN BOOLEAN := false);

Parameters

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 54–12 REFRESH_DEPENDENT Procedure Parameters

Parameter Description

number_of_
failures

Returns the number of failures that occurred during processing.

REFRESH_DEPENDENT Procedure

54-24 PL/SQL Packages and Types Reference

list | tab Comma-delimited list of master tables or master materialized views on
which materialized views can depend. (Synonyms are not supported.)
These tables and the materialized views that depend on them can be
located in different schemas. However, all of the tables and
materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a
table.

method A string of refresh methods indicating how to refresh the dependent
materialized views. All of the materialized views that depend on a
particular table are refreshed according to the refresh method
associated with that table. F or f indicates fast refresh, ? indicates force
refresh, C or c indicates complete refresh, and A or a indicates always
refresh. A and C are equivalent. P or p refreshes by recomputing the
rows in the materialized view affected by changed partitions in the
detail tables.

If a table does not have a corresponding refresh method (that is, if
more tables are specified than refresh methods), then any materialized
view that depends on that table is refreshed according to its default
refresh method. For example, the following EXECUTE statement within
SQL*Plus:

DBMS_MVIEW.REFRESH_DEPENDENT
 ('employees,deptartments,hr.regions','cf');

performs a complete refresh of the materialized views that depend on
the employees table, a fast refresh of the materialized views that
depend on the departments table, and a default refresh of the
materialized views that depend on the hr.regions table.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_
errors

If this parameter is true, an updatable materialized view continues to
refresh even if there are outstanding conflicts logged in the DEFERROR
view for the materialized view's master table or master materialized
view. If this parameter is true and atomic_refresh is false, this
procedure continues to refresh other materialized views if it fails while
refreshing a materialized view.

Table 54–12 (Cont.) REFRESH_DEPENDENT Procedure Parameters

Parameter Description

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-25

atomic_refresh If this parameter is set to true, then the refreshed materialized views
are refreshed in a single transaction. All of the refreshed materialized
views are updated to a single point in time. If the refresh fails for any
of the materialized views, none of the materialized views are updated.

If this parameter is set to false, then each of the refreshed
materialized views is refreshed in a separate transaction.

nested If true, then perform nested refresh operations for the specified set of
tables. Nested refresh operations refresh all the depending
materialized views of the specified set of tables based on a
dependency order to ensure the nested materialized views are truly
fresh with respect to the underlying base tables.

Table 54–12 (Cont.) REFRESH_DEPENDENT Procedure Parameters

Parameter Description

REGISTER_MVIEW Procedure

54-26 PL/SQL Packages and Types Reference

REGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to register a materialized
view.

Note that, typically, a materialized view is registered automatically during
materialized view creation. You should only run this procedure to manually register
a materialized view if the automatic registration failed or if the registration
information was deleted.

Syntax
DBMS_MVIEW.REGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 mview_id IN DATE | BINARY_INTEGER,
 flag IN BINARY_INTEGER,
 qry_txt IN VARCHAR2,
 rep_type IN BINARY_INTEGER := DBMS_MVIEW.REG_UNKNOWN);

Parameters

Table 54–13 REGISTER_MVIEW Procedure Parameters

Parameter Description

mviewowner Owner of the materialized view.

mviewname Name of the materialized view.

mviewsite Name of the materialized view site for a materialized view registering at an
Oracle database version 8.x and higher master site or master materialized
view site. This name should not contain any double quotes.

mview_id The identification number of the materialized view. Specify an Oracle
database version 8.x and higher materialized view as a BINARY_INTEGER.
Specify an Oracle database version 7 materialized view registering at an
Oracle database version 8.x and higher master sites or master materialized
view sites as a DATE.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-27

Usage Notes
This procedure is invoked at the master site or master materialized view site by a
remote materialized view site using a remote procedure call. If REGISTER_MVIEW is
called multiple times with the same mviewowner, mviewname, and mviewsite,
then the most recent values for mview_id, flag, and qry_txt are stored. If a
query exceeds the maximum VARCHAR2 size, then qry_txt contains the first 32000
characters of the query and the remainder is truncated. When invoked manually,

flag A constant that describes the properties of the materialized view being
registered. Valid constants that can be assigned include the following:

DBMS_MVIEW.REG_ROWID_MVIEW for a rowid materialized view

DBMS_MVIEW.REG_PRIMARY_KEY_MVIEW for a primary key materialized
view

DBMS_MVIEW.REG_OBJECT_ID_MVIEW for an object id materialized view

DBMS_MVIEW.REG_FAST_REFRESHABLE_MVIEW for a materialized view
that can be fast refreshed

DBMS_MVIEW.REG_UPDATABLE_MVIEW for a materialized view that is
updatable

A materialized view can have more than one of these properties. In this case,
use the plus sign (+) to specify more than one property. For example, if a
primary key materialized view can be fast refreshed, you can enter the
following for this parameter:

DBMS_MVIEW.REG_PRIMARY_KEY_MVIEW + DBMS_MVIEW.REG_
FAST_REFRESHABLE_MVIEW

You can determine the properties of a materialized view by querying the
ALL_MVIEWS data dictionary view.

qry_txt The first 32,000 bytes of the materialized view definition query.

rep_type Version of the materialized view. Valid constants that can be assigned
include the following:

DBMS_MVIEW.REG_V7_SNAPSHOT if the materialized view is at an Oracle
database version 7 site

DBMS_MVIEW.REG_V8_SNAPSHOT if the materialized view is at an Oracle
database version 8.x or higher site

DBMS_MVIEW.REG_UNKNOWN (the default) if you do not know whether the
materialized view is at an Oracle database version 7 site or an Oracle
database version 8.x (or higher) site

Table 54–13 REGISTER_MVIEW Procedure Parameters

Parameter Description

REGISTER_MVIEW Procedure

54-28 PL/SQL Packages and Types Reference

the value of mview_id must be looked up in the materialized view data dictionary
views by the person who calls the procedure.

Summary of DBMS_MVIEW Subprograms

DBMS_MVIEW 54-29

UNREGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to unregister a
materialized view.

Syntax
DBMS_MVIEW.UNREGISTER_MVIEW (
 mviewowner IN VARCHAR2,
 mviewname IN VARCHAR2,
 mviewsite IN VARCHAR2);

Parameters

Table 54–14 UNREGISTER_MVIEW Procedure Parameters

Parameters Description

mviewowner Owner of the materialized view.

mviewname Name of the materialized view.

mviewsite Name of the materialized view site.

UNREGISTER_MVIEW Procedure

54-30 PL/SQL Packages and Types Reference

DBMS_OBFUSCATION_TOOLKIT 55-1

55
DBMS_OBFUSCATION_TOOLKIT

DBMS_OBFUSCATION_TOOLKIT enables an application to encrypt data using either
the Data Encryption Standard (DES) or the Triple DES algorithms.

This chapter contains the following topics:

■ Using DBMS_OBFUSCATION_TOOLKIT

■ Overview

■ Security Model

■ Operational Notes

■ Summary of DBMS_OBFUSCATION Subprograms

Using DBMS_OBFUSCATION_TOOLKIT

55-2 PL/SQL Packages and Types Reference

Using DBMS_OBFUSCATION_TOOLKIT

■ Overview

■ Security Model

■ Operational Notes

Overview

The Data Encryption Standard (DES), also known as the Data Encryption Algorithm
(DEA) by the American National Standards Institute (ANSI) and DEA-1 by the
International Standards Organization (ISO), has been a worldwide encryption
standard for over 20 years. The banking industry has also adopted DES-based
standards for transactions between private financial institutions, and between
financial institutions and private individuals. DES will eventually be replaced by a
new Advanced Encryption Standard (AES).

DES is a symmetric key cipher; that is, the same key is used to encrypt data as well
as decrypt data. DES encrypts data in 64-bit blocks using a 56-bit key. The DES
algorithm ignores 8 bits of the 64-bit key that is supplied; however, you must
supply a 64-bit key to the algorithm.

Triple DES (3DES) is a far stronger cipher than DES; the resulting ciphertext
(encrypted data) is much harder to break using an exhaustive search: 2**112 or
2**168 attempts instead of 2**56 attempts. Triple DES is also not as vulnerable to
certain types of cryptanalysis as is DES.

Security Model

Oracle installs this package in the SYS schema. You can then grant package access
to existing users and roles as needed. The package also grants access to the PUBLIC
role so no explicit grant needs to be done.

Using DBMS_OBFUSCATION_TOOLKIT

DBMS_OBFUSCATION_TOOLKIT 55-3

 Operational Notes

■ Key Management

■ Storing the Key in the Database

■ Storing the Key in the Operating System

■ User-Supplied Keys

Key Management
Key management, including both generation and secure storage of cryptographic
keys, is one of the most important aspects of encryption. If keys are poorly chosen
or stored improperly, then it is far easier for a malefactor to break the encryption.
Rather than using an exhaustive key search attack (that is, cycling through all the
possible keys in hopes of finding the correct decryption key), cryptanalysts typically
seek weaknesses in the choice of keys, or the way in which keys are stored.

Key generation is an important aspect of encryption. Typically, keys are generated
automatically through a random-number generator. Provided that the random
number generation is cryptographically secure, this can be an acceptable form of
key generation. However, if random numbers are not cryptographically secure, but
have elements of predictability, the security of the encryption may be easily
compromised.

The DBMS_OBFUSCATION_TOOLKIT package includes tools for generating random
material that can be used for encryption keys, but it does not provide a mechanism
for maintaining them. Care must be taken by the application developer to ensure
the secure generation and storage of encryption keys used with this package.
Furthermore, the encryption and decryption done by the DBMS_OBFUSCATION_
TOOLKIT takes place on the server, not the client. If the key is passed over the
connection between the client and the server, the connection must be protected by
using network encryption. Otherwise, the key is vulnerable to capture over the
wire. See Oracle Advanced Security Administrator's Guide for information about
configuring and using network encryption for Oracle Net.

Key storage is one of the most important, yet difficult aspects of encryption and one
of the hardest to manage properly. To recover data encrypted with a symmetric key,
the key must be accessible to the application or user seeking to decrypt data. The
key needs to be easy enough to retrieve that users can access encrypted data when
they need to without significant performance degradation. The key also needs to be
secure enough that it is not easily recoverable by unauthorized users trying to
access encrypted data that they are not supposed to see.

Operational Notes

55-4 PL/SQL Packages and Types Reference

The three options available are:

■ Store the key in the database

■ Store the key in the operating system

■ Have the user manage the key

Storing the Key in the Database
Storing the keys in the database cannot always provide bullet-proof security if you
are trying to protect data against the DBA accessing encrypted data (since an
all-privileged DBA can access tables containing encryption keys), but it can provide
security against the casual snooper, or against someone compromising the database
files on the operating system. Furthermore, the security you can obtain by storing
keys in the database does not have to be bullet-proof in order to be extremely
useful.

For example, suppose you want to encrypt an employee's social security number,
one of the columns in table EMP. You could encrypt each employee's SSN using a
key which is stored in a separate column in EMP. However, anyone with SELECT
access on the EMP table could retrieve the encryption key and decrypt the matching
social security number. Alternatively, you could store the encryption keys in
another table, and use a package to retrieve the correct key for the encrypted data
item, based on a primary key-foreign key relationship between the tables.

You can envelope both the DBMS_OBFUSCATION_TOOLKIT package and the
procedure to retrieve the encryption keys supplied to the package. Furthermore, the
encryption key itself could be transformed in some way (for example, XORed with
the foreign key to the EMP table) so that the key itself is not stored in easily
recoverable form.

Oracle recommends using the wrap utility of PL/SQL to obfuscate the code within
a PL/SQL package itself that does the encryption. That prevents people from
breaking the encryption by looking at the PL/SQL code that handles keys, calls
encrypting routines, and so on. In other words, use the wrap utility to obfuscate the
PL/SQL packages themselves. This scheme is secure enough to prevent users with
SELECT access to EMP from reading unencrypted sensitive data, and a DBA from
easily retrieving encryption keys and using them to decrypt data in the EMP table. It
can be made more secure by changing encryption keys regularly, or having a better
key storage algorithm (so the keys themselves are encrypted, for example).

Using DBMS_OBFUSCATION_TOOLKIT

DBMS_OBFUSCATION_TOOLKIT 55-5

Storing the Key in the Operating System
Storing keys in a flat file in the operating system is another option. You can make
callouts from PL/SQL, which you can use to retrieve encryption keys. If you store
keys in a file and make callouts to retrieve the keys, the security of your encrypted
data is only as secure as the protection of the key file on the operating system. Of
course, a user retrieving keys from the operating system would have to be able to
either access the Oracle database files (to decrypt encrypted data), or be able to gain
access to the table in which the encrypted data is stored as a legitimate user.

User-Supplied Keys
If you ask a user to supply the key, it is crucial that you use network encryption,
such as that provided by Oracle Advanced Security, so the key is not passed from
client to server in the clear. The user must remember the key, or your data is not
recoverable.

Summary of DBMS_OBFUSCATION Subprograms

55-6 PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms

Table 55–1 DBMS_OBFUSCATION Package Subprograms

Subprogram Description

DES3DECRYPT
Procedures and Functions
on page 55-7

Generates the decrypted form of the input data

DES3ENCRYPT
Procedures and Functions
on page 55-10

Generates the encrypted form of the input data by passing it
through the Triple DES encryption algorithm

DES3GETKEY Procedures
and Functions on
page 55-13

Takes a random value and uses it to generate an encryption
key, using Triple DES

DESDECRYPT Procedures
and Functions on
page 55-14

Generates the decrypted form of the input data

DESENCRYPT Procedures
and Functions on
page 55-16

Generates the encrypted form of the input data

DESGETKEY Procedures
and Functions on
page 55-18

Takes a random value and uses it to generate an encryption
key

MD5 Procedures and
Functions on page 55-19

Generates MD5 hashes of data

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-7

DES3DECRYPT Procedures and Functions

These subprograms generate the decrypted form of the input data.

For a discussion of the initialization vector that you can use with this procedure, see
the section, "DES3ENCRYPT Procedures and Functions" on page 55-10.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DES3Decrypt(
 input IN RAW,
 key IN RAW,
 decrypted_data OUT RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Decrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 decrypted_string OUT VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAUTL NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Decrypt(
 input IN RAW,
 key IN RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3Decrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table 55–2 DES3DECRYPT Parameters for Raw Data

Parameter Description

input Data to be decrypted

DES3DECRYPT Procedures and Functions

55-8 PL/SQL Packages and Types Reference

Usage Notes
If the input data or key given to the DES3DECRYPT procedure is empty, then the
procedure raises the error ORA-28231 "Invalid input to Obfuscation
toolkit."

If the input data given to the DES3DECRYPT procedure is not a multiple of 8 bytes,
the procedure raises the error ORA-28232 "Invalid input size for
Obfuscation toolkit." ORA-28233 is NOT applicable for the DES3DECRYPT
function.

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra
bytes are ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the WHICH parameter, ORA-28236 "Invalid
Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1
(ThreeKeyMode) are valid.

Restrictions
You must supply a single key of either 128 bits for a 2-key implementation (of
which only 112 are used), or a single key of 192 bits for a 3-key implementation (of
which 168 bits are used). Oracle automatically truncates the supplied key into 56-bit
lengths for decryption. This key length is fixed and cannot be altered.

key Decryption key

decrypted_data Decrypted data

which If = 0, (default), then TwoKeyMode is used. If = 1, then
ThreeKeyMode is used.

iv Initialization vector

input_string String to be decrypted

key_string Decryption key string

decrypted_
string

Decrypted string

iv_string Initialization vector

Table 55–2 DES3DECRYPT Parameters for Raw Data

Parameter Description

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-9

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of U.S. regulations
governing the export of cryptographic products.

DES3ENCRYPT Procedures and Functions

55-10 PL/SQL Packages and Types Reference

DES3ENCRYPT Procedures and Functions

These subprograms generate the encrypted form of the input data by passing it
through the Triple DES (3DES) encryption algorithm.

Oracle's implementation of 3DES supports either a 2-key or 3-key implementation,
in outer cipher-block-chaining (CBC) mode.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input IN RAW,
 key IN RAW,
 encrypted_data OUT RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 encrypted_string OUT VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL);

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input IN RAW,
 key IN RAW,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv IN RAW DEFAULT NULL)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3Encrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 which IN PLS_INTEGER DEFAULT TwoKeyMode
 iv_string IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-11

Parameters

Usage Notes
If you are using Oracle's 3DES interface with a 2-key implementation, you must
supply a single key of 128 bits as an argument to the DES3ENCRYPT procedure.
With a 3-key implementation, you must supply a single key of 192 bits. Oracle then
breaks the supplied key into two 64-bit keys. As with DES, the 3DES algorithm
throws away 8 bits of each derived key. However, you must supply a single 128-bit
key for the 2-key 3DES implementation or a single 192-bit key for the 3-key 3DES
implementation; otherwise the package will raise an error. The DES3ENCRYPT
procedure uses the 2-key implementation by default.

You also have the option of providing an initialization vector (IV) with the
DES3ENCRYPT procedure. An IV is a block of random data prepended to the data
you intend to encrypt. The IV has no meaning. It is there to make each message
unique. Prepending an IV to your input data avoids starting encrypted blocks of
data with common header information, which may give cryptanalysts information
they can use to decrypt your data.

If the input data or key given to the PL/SQL DES3ENCRYPT procedure is empty,
then the procedure raises the error ORA-28231 "Invalid input to
Obfuscation toolkit."

Table 55–3 DES3ENCRYPT Parameters Procedure and Function

Parameter Description

input Data to be encrypted.

key Encryption key.

encrypted_data Encrypted data.

which If = 0, (default), then TwoKeyMode is used. If = 1, then
ThreeKeyMode is used.

iv Initialization vector.

input_string String to be encrypted.

key_string Encryption key string.

encrypted_
string

Encrypted string.

iv_string Initialization vector.

DES3ENCRYPT Procedures and Functions

55-12 PL/SQL Packages and Types Reference

If the input data given to the DES3ENCRYPT procedure is not a multiple of 8 bytes,
the procedure raises the error ORA-28232 "Invalid input size for
Obfuscation toolkit."

If you try to double encrypt data using the DES3ENCRYPT procedure, then the
procedure raises the error ORA-28233 "Double encryption not
supported."

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra
bytes are ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the which parameter, ORA-28236 "Invalid
Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1
(ThreeKeyMode) are valid.

Restrictions
The DES3ENCRYPT procedure has two restrictions. The first is that the DES key
length for encryption is fixed at 128 bits (for 2-key DES) or 192 bits (for 3-key DES);
you cannot alter these key lengths.

The second is that you cannot execute multiple passes of encryption using 3DES.
(Note: the 3DES algorithm itself encrypts data multiple times; however, you cannot
call the DES3ENCRYPT function itself more than once to encrypt the same data
using 3DES.)

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of U.S. regulations
governing the export of cryptographic products.

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-13

DES3GETKEY Procedures and Functions

These subprograms take a random value and uses it to generate an encryption key.
For Triple DES, you specify the mode so that the returned key has the proper
length.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed IN RAW,
 key OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed_string IN VARCHAR2,
 key OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DES3GetKey(
 which IN PLS_INTEGER DEFAULT TwoKeyMode,
 seed_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 55–4 DES3GETKEY Procedure and Function Parameters

Parameter Description

which If = 0, (default), then TwoKeyMode is used. If = 1, then ThreeKeyMode
is used.

seed A value at least 80 characters long.

key Encryption key.

seed_string A value at least 80 characters long.

key Encryption key.

DESDECRYPT Procedures and Functions

55-14 PL/SQL Packages and Types Reference

DESDECRYPT Procedures and Functions

These subprograms generate the decrypted form of the input data.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input IN RAW,
 key IN RAW,
 decrypted_data OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 decrypted_string OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input IN RAW,
 key IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESDecrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 55–5 DESDECRYPT Procedure and Function Parameters

Parameter Description

input Data to be decrypted.

key Decryption key.

decrypted_data Decrypted data.

input_string String to be decrypted.

key_string Decryption key string.

decrypted_string Decrypted string.

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-15

Usage Notes
If the input data or key given to the PL/SQL DESDECRYPT function is empty, then
Oracle raises ORA error 28231 "Invalid input to Obfuscation
toolkit."

If the input data given to the DESDECRYPT function is not a multiple of 8 bytes,
Oracle raises ORA error 28232 "Invalid input size for Obfuscation
toolkit."

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra
bytes are ignored. So a 9-byte key will not generate an exception.

Restrictions
The DES key length for encryption is fixed at 64 bits (of which 56 bits are used); you
cannot alter this key length.

Note: ORA-28233 is not applicable to the DESDECRYPT function.

Note: The key length limitation is a requirement of U.S.
regulations governing the export of cryptographic products.

DESENCRYPT Procedures and Functions

55-16 PL/SQL Packages and Types Reference

DESENCRYPT Procedures and Functions

These subprograms generate the encrypted form of the input data.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input IN RAW,
 key IN RAW,
 encrypted_data OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2,
 encrypted_string OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input IN RAW,
 key IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESEncrypt(
 input_string IN VARCHAR2,
 key_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 55–6 DESENCRYPT Procedure and Function Parameters

Parameter Description

input Data to be encrypted.

key Encryption key.

encrypted_data Encrypted data.

input_string String to be encrypted.

key_string Encryption key string.

encrypted_string Encrypted string.

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-17

Usage Notes
The DES algorithm encrypts data in 64-bit blocks using a 56-bit key. The DES
algorithm throws away 8 bits of the supplied key (the particular bits which are
thrown away is beyond the scope of this documentation). However, when using the
algorithm, you must supply a 64-bit key or the package will raise an error.

If the input data or key given to the PL/SQL DESEncrypt procedure is empty, then
the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DESENCRYPT procedure is not a multiple of 8 bytes,
the procedure raises the error ORA-28232 "Invalid input size for
Obfuscation toolkit."

If you try to double-encrypt data using the DESENCRYPT procedure, then the
procedure raises the error ORA-28233 "Double encryption not
supported."

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra
bytes are ignored. So a 9-byte key will not generate an exception.

Restrictions
The DESENCRYPT procedure has the following restrictions:

■ The DES key length for encryption is fixed at 56 bits; you cannot alter this key
length.

■ You cannot execute multiple passes of encryption. That is, you cannot
re-encrypt previously encrypted data by calling the function twice.

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of U.S. regulations
governing the export of cryptographic products.

DESGETKEY Procedures and Functions

55-18 PL/SQL Packages and Types Reference

DESGETKEY Procedures and Functions

These subprograms take a random value and use it to generate an encryption key.

Syntax
DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed IN RAW,
 key OUT RAW);

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed_string IN VARCHAR2,
 key OUT VARCHAR2);

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed IN RAW)
 RETURN RAW;

DBMS_OBFUSCATION_TOOLKIT.DESGetKey(
 seed_string IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 55–7 DESGETKEY Procedure and Function Parameters

Parameter Description

seed A value at least 80 characters long.

key Encryption key.

seed_string A value at least 80 characters long.

key Encryption key.

Summary of DBMS_OBFUSCATION Subprograms

DBMS_OBFUSCATION_TOOLKIT 55-19

MD5 Procedures and Functions

These subprograms generate MD5 hashes of data. The MD5 algorithm ensures data
integrity by generating a 128-bit cryptographic message digest value from given
data.

Syntax
DBMS_OBFUSCATION_TOOLKIT.MD5(
 input IN RAW,
 checksum OUT raw_checksum);

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input_string IN VARCHAR2,
 checksum_string OUT varchar2_checksum);

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input IN RAW)
 RETURN raw_checksum;

DBMS_OBFUSCATION_TOOLKIT.MD5(
 input_string IN VARCHAR2)
 RETURN varchar2_checksum;

Parameters

Table 55–8 MD5 Procedure and Function Parameters

Parameter Name Description

input Data to be hashed

checksum 128-bit cryptographic message digest

input_string Data to be hashed

checksum_
string

128-bit cryptographic message digest

MD5 Procedures and Functions

55-20 PL/SQL Packages and Types Reference

DBMS_ODCI 56-1

56
DBMS_ODCI

DBMS_ODCI package contains a single user function related to the use of Data
Cartridges.

This chapter contains the following topic:

■ Summary of DBMS_ODCI Subprograms

See Also:

■ Oracle Data Cartridge Developer's Guide

Summary of DBMS_ODCI Subprograms

56-2 PL/SQL Packages and Types Reference

Summary of DBMS_ODCI Subprograms

Table 56–1 DBMS_ODCI Package Subprograms

Subprogram Description

ESTIMATE_CPU_UNITS
Function on page 56-3

Returns the approximate number of CPU instructions (in
thousands) corresponding to a specified time interval (in
seconds)

Summary of DBMS_ODCI Subprograms

DBMS_ODCI 56-3

ESTIMATE_CPU_UNITS Function

This function returns the approximate number of CPU instructions (in thousands)
corresponding to a specified time interval (in seconds). This information can be
used to associate the CPU cost with a user-defined function for the extensible
optimizer.

The function takes as input the elapsed time of the user function, measures CPU
units by multiplying the elapsed time by the processor speed of the machine, and
returns the approximate number of CPU instructions that should be associated with
the user function. For a multiprocessor machine, ESTIMATE_CPU_UNITS considers
the speed of a single processor.

Syntax
DBMS_ODCI.ESTIMATE_CPU_UNITS(

elapsed_time NUMBER)
 RETURN NUMBER;

Parameters

Usage Notes
When associating CPU cost with a user-defined function, use the full number of
CPU units rather than the number of thousands of CPU units returned by
ESTIMATE_CPU_UNITS; multiply the number returned by ESTIMATE_CPU_UNITS
by 1,000.

Parameter Description

elapsed_time The elapsed time in seconds that it takes to execute a function.

ESTIMATE_CPU_UNITS Function

56-4 PL/SQL Packages and Types Reference

DBMS_OFFLINE_OG 57-1

57
DBMS_OFFLINE_OG

The DBMS_OFFLINE_OG package contains the public interface for offline
instantiation of master groups.

This chapter contains the following topics:

■ Documentation of DBMS_OFFLINE_OG

Documentation of DBMS_OFFLINE_OG

57-2 PL/SQL Packages and Types Reference

Documentation of DBMS_OFFLINE_OG

For a complete description of this package within the context of Replication, see
DBMS_OFFLINE_OG in the Oracle Database Advanced Replication Management API
Reference.

DBMS_OLAP 58-1

58
DBMS_OLAP

The DBMS_OLAP package, presented here for reasons of backward compatibility,
provides a collection of materialized view analysis and advisory functions that are
callable from any PL/SQL program. Some of the functions generate output tables.

Note: With Oracle 10g Release 1 (10.1), the DBMS_OLAP package
has been replaced with improved technology. While Oracle
recommends you not begin development using DBMS_OLAP, Oracle
continues to support DBMS_OLAP, and your existing applications
using DBMS_OLAP will continue to work.

■ If you are developing new or substantially modified applications and
had previously used the Summary Advisor in DBMS_OLAP, you should
now use the SQLAccess Advisor described in Chapter 12, "DBMS_
ADVISOR".

■ If you had previously used DBMS_OLAP.VALIDATE_DIMENSION, you
should now use DBMS_DIMENSION.VALIDATE_DIMENSION
described in Chapter 32, "DBMS_DIMENSION".

■ If you had previously used DBMS_OLAP.ESTIMATE_MVIEW_SIZE,
you should now use DBMS_MVIEW.ESTIMATE_MVIEW_SIZE
described in Chapter 54, "DBMS_MVIEW"

See Also: Oracle Data Warehousing Guide for more information.

58-2 PL/SQL Packages and Types Reference

This chapter contains the following topics:

■ Using DBMS_OLAP

■ Overview

■ Views

■ Views

■ Deprecated Subprograms

■ Summary of DBMS_OLAP Subprograms

Using DBMS_OLAP

DBMS_OLAP 58-3

Using DBMS_OLAP

■ Overview

■ Views

■ Deprecated Subprograms

Overview

DBMS_OLAP performs seven major functions, which include materialized view
strategy recommendation, materialized view strategy evaluation, reporting and
script generation, repository management, workload management, filter
management, and dimension validation.

To perform materialized view strategy recommendation and evaluation functions,
the workload information can either be provided by the user or synthesized by the
Advisor engine. In the former case, cardinality information of all tables and
materialized views referenced in the workload are required. In the latter case,
dimension objects must be present and cardinality information for all dimension
tables, fact tables, and materialized views are required. Cardinality information
should be gathered with the DBMS_STATS.GATHER_TABLE_STATS procedure.
Once these functions are completed, the analysis results can be presented with the
reporting and script generation function.

The workload management function handles three types of workload, which are
user-specified workload, SQL cache workload, and Oracle Trace workload. To
process the user-specified workload, a user-defined workload table must be present
in the user's schema. To process Oracle Trace workload, the Oracle Trace formatter
must be run to preprocess collected workload statistics into default V-tables in the
user's schema.

Views

Several views are created when using DBMS_OLAP. All are in the SYSTEM schema.
To access these views, you must have a DBA role.

Views

58-4 PL/SQL Packages and Types Reference

SYSTEM.MVIEW_EVALUATIONS

SYSTEM.MVIEW_EXCEPTIONS

Table 58–1 SYSTEM.MVIEW_EVALUATIONS

Column NULL? Datatype Description

RUNID NOT NULL NUMBER Run id identifying a unique Advisor
call.

MVIEW_OWNER - VARCHAR2(30) Owner of materialized view.

MVIEW_NAME - VARCHAR2(30) Name of an exiting materialized view in
this database.

RANK NOT NULL NUMBER Rank of this materialized view in
descending order of benefit_to_
cost_ratio.

STORAGE_IN_BYTES - NUMBER Size of the materialized view in bytes.

FREQUENCY - NUMBER Number of times this materialized view
appears in the workload.

CUMULATIVE_BENEFIT - NUMBER The cumulative benefit of the
materialized view.

BENEFIT_TO_COST_
RATIO

NOT NULL NUMBER The ratio of cumulative_benefit to
storage_in_bytes.

Table 58–2 SYSTEM.MVIEW_EXCEPTIONS

Column NULL? Datatype Description

RUNID - NUMBER Run id identifying a unique advisor
call.

OWNER - VARCHAR2(30) Owner name.

TABLE_NAME - VARCHAR2(30) Table name.

DIMENSION_NAME - VARCHAR2(30) Dimension name.

RELATIONSHIP - VARCHAR2(11) Violated relation name.

BAD_ROWID - ROWID Location of offending entry.

Using DBMS_OLAP

DBMS_OLAP 58-5

SYSTEM.MVIEW_FILTER

SYSTEM.MVIEW_FILTERINSTANCE

Table 58–3 SYSTEM.MVIEW_FILTER

Column NULL? Datatype Description

FILTERID NOT NULL NUMBER Unique number used to identify the
operation that used this filter.

SUBFILTERNUM NOT NULL NUMBER A unique id number that groups all filter
items together. A corresponding filter
header record can be found in the MVIEW_
LOG table.

SUBFILTERTYPE - VARCHAR2(12) Filter item number.

STR_VALUE - VARCHAR2(1028) String attribute for items that require
strings.

NUM_VALUE1 - NUMBER Numeric low for items that require
numbers.

NUM_VALUE2 - NUMBER Numeric high for items that require
numbers.

DATE_VALUE1 - DATE Date low for items that require dates.

DATE_VALUE2 - DATE Date high for items that require dates.

Table 58–4 SYSTEM.MVIEW_FILTERINSTANCE

Column NULL? Datatype Description

RUNID NOT NULL NUMBER Unique number used to identify the
operation that used this filter.

FILTERID - NUMBER A unique id number that groups all filter
items together. A corresponding filter
header record can be found in the
MVIEW_LOG table.

SUBFILTERNUM - NUMBER Filter item number.

SUBFILTERTYPE - VARCHAR2(12) Filter item type.

STR_VALUE - VARCHAR2(1028) String attribute for items that require
strings.

NUM_VALUE1 - NUMBER Numeric low for items that require
numbers.

Views

58-6 PL/SQL Packages and Types Reference

SYSTEM.MVIEW_LOG

NUM_VALUE2 - NUMBER Numeric high for items that require
numbers.

DATE_VALUE1 - DATE Date low for items that require dates.

DATE_VALUE2 - DATE Date high for items that require dates.

Table 58–5 SYSTEM.MVIEW_LOG

Column NULL? Datatype Description

ID NOT NULL NUMBER Unique number used to identify the table entry.
The number must be created using the
CREATE_ID routine.

FILTERID - NUMBER Optional filter id. Zero indicates no
user-supplied filter has been applied to the
operation.

RUN_BEGIN - DATE Date at which the operation began.

RUN_END - DATE Date at which the operation ended.

TYPE - VARCHAR2(11) A name that identifies the type of operation.

STATUS - VARCHAR2(11) The current operational status.

MESSAGE - VARCHAR2(2000) Informational message indicating current
operation or condition.

COMPLETED - NUMBER Number of steps completed by operation.

TOTAL - NUMBER Total number steps to be performed.

ERROR_CODE - VARCHAR2(20) Oracle error code in the event of an error.

Table 58–4 (Cont.) SYSTEM.MVIEW_FILTERINSTANCE

Column NULL? Datatype Description

Using DBMS_OLAP

DBMS_OLAP 58-7

SYSTEM.MVIEW_RECOMMENDATIONS

Table 58–6 SYSTEM.MVIEW_RECOMMENDATIONS

Column NULL? Datatype Description

RUNID - NUMBER Run id identifying a unique advisor call.

ALL_TABLES - VARCHAR2(2000) A comma-delimited list of fully
qualified table names for structured
recommendations.

FACT_TABLES - VARCHAR2(1000) A comma-delimited list of grouping
levels, if any, for structured
recommendation.

GROUPING_LEVELS - VARCHAR2(2000) -

QUERY_TEXT - LONG Query text of materialized view if
RECOMMENDED_ACTION is CREATE; null
otherwise.

RECOMMENDATION_
NUMBER

NOT NULL NUMBER Unique identifier for this
recommendation.

RECOMMENDED_ACTION - VARCHAR2(6) CREATE, RETAIN, or DROP.

MVIEW_OWNER - VARCHAR2(30) Owner of the materialized view if
RECOMMENDED_ACTION is RETAIN or
DROP; null otherwise.

MVIEW_NAME - VARCHAR2(30) Name of the materialized view if
RECOMMENDED_ACTION is RETAIN or
DROP; null otherwise.

STORAGE_IN_BYTES - NUMBER Actual or estimated storage in bytes.

PCT_PERFORMANCE_GAIN - NUMBER The expected incremental improvement
in performance obtained by accepting
this recommendation relative to the
initial condition, assuming that all
previous recommendations have been
accepted, or NULL if unknown.

BENEFIT_TO_COST_
RATIO

NOT NULL NUMBER Ratio of the incremental improvement in
performance to the size of the
materialized view in bytes, or NULL if
unknown.

Views

58-8 PL/SQL Packages and Types Reference

SYSTEM.MVIEW_WORKLOAD

Table 58–7 SYSTEM.MVIEW_WORKLOAD

Column NULL? Datatype Description

APPLICATION - VARCHAR2(30) Optional application name for the query.

CARDINALITY - NUMBER Total cardinality of all of tables in query.

WORKLOADID - NUMBER Workload id identifying a unique
sampling.

FREQUENCY - NUMBER Number of times query executed.

IMPORT_TIME - DATE Date at which item was collected.

LASTUSE - DATE Last date of execution.

OWNER - VARCHAR2(30) User who last executed query.

PRIORITY - NUMBER User-supplied ranking of query.

QUERY - LONG Query text.

QUERYID - NUMBER Id number identifying a unique query.

RESPONSETIME - NUMBER Execution time in seconds.

RESULTSIZE - NUMBER Total bytes selected by the query.

Using DBMS_OLAP

DBMS_OLAP 58-9

Deprecated Subprograms

The DBMS_OLAP subprograms have been replaced with improved technology: see
Chapter 12, "DBMS_ADVISOR", Chapter 32, "DBMS_DIMENSION" and
Chapter 54, "DBMS_MVIEW". All DBMS_OLAP subprograms are obsolete with
Oracle 10g Release 1 (10.1), and while Oracle will continue to support them, they
are documented only for reasons of backward compatibility.

■ ADD_FILTER_ITEM Procedure

■ CREATE_ID Procedure

■ ESTIMATE_MVIEW_SIZE Procedure

■ EVALUATE_MVIEW_STRATEGY Procedure

■ GENERATE_MVIEW_REPORT Procedure

■ GENERATE_MVIEW_SCRIPT Procedure

■ LOAD_WORKLOAD_CACHE Procedure

■ LOAD_WORKLOAD_TRACE Procedure

■ PURGE_FILTER Procedure

■ PURGE_RESULTS Procedure

■ PURGE_WORKLOAD Procedure

■ RECOMMEND_MVIEW_STRATEGY Procedure

■ SET_CANCELLED Procedure

■ VALIDATE_DIMENSION Procedure

■ VALIDATE_WORKLOAD_CACHE Procedure

■ VALIDATE_WORKLOAD_TRACE Procedure

■ VALIDATE_WORKLOAD_USER Procedure

Summary of DBMS_OLAP Subprograms

58-10 PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms

Note: The DBMS_OLAP subprograms have been replaced with
improved technology:

■ If you are developing new or substantially modified applications and
had previously used the Summary Advisor in DBMS_OLAP, you should
now use the SQLAccess Advisor described in Chapter 12, "DBMS_
ADVISOR".

■ If you had previously used DBMS_OLAP.VALIDATE_DIMENSION, you
should now use DBMS_DIMENSION.VALIDATE_DIMENSION
described in Chapter 32, "DBMS_DIMENSION".

■ If you had previously used DBMS_OLAP.ESTIMATE_MVIEW_SIZE,
you should now use DBMS_MVIEW.ESTIMATE_MVIEW_SIZE
described in Chapter 54, "DBMS_MVIEW"

Table 58–8 DBMS_OLAP Package Subprograms

Subprogram Description

ADD_FILTER_ITEM Procedure
on page 58-12

Filters the contents being used during the
recommendation process [seeDeprecated Subprograms on
page 58-9]

CREATE_ID Procedure on
page 58-14

Generates an internal ID used by a new workload
collection, a new filter, or a new advisor run
[seeDeprecated Subprograms on page 58-9]

ESTIMATE_MVIEW_SIZE
Procedure on page 58-15

Estimates the size of a materialized view that you might
create, in bytes and rows [seeDeprecated Subprograms on
page 58-9]

EVALUATE_MVIEW_
STRATEGY Procedure on
page 58-16

Measures the utilization of each existing materialized view
[seeDeprecated Subprograms on page 58-9]

GENERATE_MVIEW_REPORT
Procedure on page 58-17

Generates an HTML-based report on the given Advisor
run [seeDeprecated Subprograms on page 58-9]

GENERATE_MVIEW_SCRIPT
Procedure on page 58-18

Generates a simple script containing the SQL commands
to implement Summary Advisor recommendations
[seeDeprecated Subprograms on page 58-9]

LOAD_WORKLOAD_CACHE
Procedure on page 58-19

Obtains a SQL cache workload [seeDeprecated
Subprograms on page 58-9]

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-11

LOAD_WORKLOAD_TRACE
Procedure on page 58-21

Loads a workload collected by Oracle Trace
[seeDeprecated Subprograms on page 58-9]

LOAD_WORKLOAD_USER
Procedure on page 58-23

Loads a user-defined workload [seeDeprecated
Subprograms on page 58-9]

PURGE_FILTER Procedure on
page 58-24

Deletes a specific filter or all filters [seeDeprecated
Subprograms on page 58-9]

PURGE_RESULTS Procedure
on page 58-25

Removes all results or those for a specific run
[seeDeprecated Subprograms on page 58-9]

PURGE_WORKLOAD
Procedure on page 58-26

Deletes all workloads or a specific collection
[seeDeprecated Subprograms on page 58-9]

RECOMMEND_MVIEW_
STRATEGY Procedure on
page 58-27

Generates a set of recommendations about which
materialized views should be created, retained, or
dropped [seeDeprecated Subprograms on page 58-9]

SET_CANCELLED Procedure
on page 58-29

Stops the Advisor if it takes too long returning results
[seeDeprecated Subprograms on page 58-9]

VALIDATE_DIMENSION
Procedure on page 58-30

Verifies that the relationships specified in a dimension
are correct [seeDeprecated Subprograms on page 58-9]

VALIDATE_WORKLOAD_
CACHE Procedure on
page 58-32

Validates the SQL Cache workload before performing load
operations [seeDeprecated Subprograms on page 58-9]

VALIDATE_WORKLOAD_
TRACE Procedure on
page 58-33

Validates the Oracle Trace workload before performing
load operations [seeDeprecated Subprograms on
page 58-9]

VALIDATE_WORKLOAD_
USER Procedure on page 58-34

Validates the user-supplied workload before performing
load operations [seeDeprecated Subprograms on
page 58-9]

Table 58–8 (Cont.) DBMS_OLAP Package Subprograms

Subprogram Description

ADD_FILTER_ITEM Procedure

58-12 PL/SQL Packages and Types Reference

ADD_FILTER_ITEM Procedure

This procedure adds a new filter item to an existing filter to make it more restrictive.
It also creates a filter to restrict what is analyzed for the workload.

Syntax
ADD_FILTER_ITEM (
 filter_id IN NUMBER,
 filter_name IN VARCHAR2,
 string_list IN VARCHAR2,
 number_min IN NUMBER,
 number_max IN NUMBER,
 date_min IN VARCHAR2,
 date_max IN VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–9 ADD_FILTER_ITEM Procedure Parameters

Parameter Description

filter_id An ID that uniquely describes the filter. It is generated by the DBMS_
OLAP.CREATE_ID procedure.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-13

filter_name ■ APPLICATION: String-workload's application column. An example
of how to load a SQL Cache workload follows.

■ BASETABLE: String-based tables referenced by workload queries.
Name must be fully qualified including owner and table name (for
example, SH.SALES).

■ CARDINALITY: Numerical-sum of cardinality of the referenced base
tables.

■ FREQUENCY: Numerical-workload's frequency column.

■ LASTUSE: Date-workload's lastuse column. Not used by SQL Cache
workload.

■ OWNER: String-workload's owner column. Expected in uppercase
unless owner defined explicitly to be not all in uppercase.

■ PRIORITY: Numerical-workload's priority column. Not used by SQL
Cache workload.

■ RESPONSETIME: Numerical-workload's response time column. Not
used by SQL Cache workload.

■ SCHEMA: String-based schema referenced by workload filter.

■ TRACENAME: String-list of oracle trace collection names. Only used
by a Trace Workload.

string_list A comma-delimited list of strings. This parameter is only used by the
filter items of the string type.

number_min The lower bound of a numerical range. NULL represents the lowest
possible value. This parameter is only used by the parameters of the
numerical type.

number_max The upper bound of a numerical range, NULL for no upper bound. NULL
represents the highest possible value. This parameter is only used by the
parameters of the numerical type.

date_min The lower bound of a date range. NULL represents the lowest possible
date value. This parameter is only used by the parameters of the date
type.

date_max The upper bound of a date range. NULL represents the highest possible
date value. This parameter is only used by the parameters of the date
type.

Table 58–9 (Cont.) ADD_FILTER_ITEM Procedure Parameters

Parameter Description

CREATE_ID Procedure

58-14 PL/SQL Packages and Types Reference

CREATE_ID Procedure

This procedure creates a unique identifier, which is used to identify a filter, a
workload or results of an advisor or dimension validation run.

Syntax
CALL DBMS_OLAP.CREATE_ID (
 id OUT NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–10 CREATE_ID Procedure Parameters

Parameter Description

id The unique identifier that can be used to identify a filter, a workload, or
an Advisor run.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-15

ESTIMATE_MVIEW_SIZE Procedure

This procedure estimates the size of a materialized view that you might create, in
bytes and number of rows.

Syntax
DBMS_OLAP.ESTIMATE_MVIEW_SIZE (
 stmt_id IN VARCHAR2,
 select_clause IN VARCHAR2,
 num_rows OUT NUMBER,
 num_bytes OUT NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–11 ESTIMATE_MVIEW_SIZE Procedure Parameters

Parameter Description

stmt_id Arbitrary string used to identify the statement in an EXPLAIN PLAN.

select_
clause

The SELECT statement to be analyzed.

num_rows Estimated cardinality.

num_bytes Estimated number of bytes.

EVALUATE_MVIEW_STRATEGY Procedure

58-16 PL/SQL Packages and Types Reference

EVALUATE_MVIEW_STRATEGY Procedure

This procedure measures the utilization of each existing materialized view based on
the materialized view usage statistics collected from the workload. The workload_
id is optional. If not provided, EVALUATE_MVIEW_STRATEGY uses a hypothetical
workload.

Syntax
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY (
run_id IN NUMBER,
workload_id IN NUMBER,
filter_id IN NUMBER);

Parameters

Usage Notes
Periodically, the unused results can be purged from the system by calling the DBMS_
OLAP.PURGE_RESULTS procedure.

Note: See Deprecated Subprograms on page 58-9.

Table 58–12 EVALUATE_MVIEW_STRATEGY Procedure Parameters

Parameter Description

run_id An ID generated by the DBMS_OLAP.CREATE_ID procedure to identify
results of a run.

workload_id An optional workload ID that maps to a workload in the current
repository. Use the parameter DBMS_OLAP.WORKLOAD_ALL to choose
all workloads.

filter_id Specify filter for the workload to be used. The value DBMS_
OLAP.FILTER_NONE indicates no filtering.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-17

GENERATE_MVIEW_REPORT Procedure

This procedure generates an HTML-based report on the given Advisor run.

Syntax
DBMS_OLAP.GENERATE_MVIEW_REPORT (
 filename IN VARCHAR2,
 id IN NUMBER,
 flags IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–13 GENERATE_MVIEW_REPORT Procedure Parameters

Parameter Description

filename Fully qualified output file name to receive HTML data. Note that the
Oracle server restricts file access within Oracle stored procedures. See
the "Security and Performance" section of the Java Developer's Guide for
more information on file permissions.

id An ID that identifies an advisor run. Or use the parameter DBMS_
OLAP.RUNID_ALL to indicate all advisor runs should be reported.

flags Bit masked flags indicating what sections should be reported

■ DBMS_OLAP.RPT_ACTIVITY -- Overall activities

■ DBMS_OLAP.RPT_JOURNAL -- Runtime journals

■ DBMS_OLAP.RPT_WORKLOAD_FILTER -- Filters

■ DBMS_OLAP.RPT_WORKLOAD_DETAIL -- Workload information

■ DBMS_OLAP.RPT_WORKLOAD_QUERY -- Workload query
information

■ DBMS_OLAP.RPT_RECOMMENDATION -- Recommendations

■ DBMS_OLAP.RPT_USAGE -- Materialized view usage

■ DBMS_OLAP.RPT_ALL -- All sections

GENERATE_MVIEW_SCRIPT Procedure

58-18 PL/SQL Packages and Types Reference

GENERATE_MVIEW_SCRIPT Procedure

This procedure generates a simple script containing the SQL commands to
implement Summary Advisor recommendations.

Syntax
DBMS_OLAP.GENERATE_MVIEW_SCRIPT(
 filename IN VARCHAR2,
 id IN NUMBER,
 tspace IN VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–14 GENERATE_MVIEW_SCRIPT Procedure Parameters

Parameter Description

filename Fully qualified output file name to receive HTML data. Note that the
Oracle server restricts file access within Oracle stored procedures. See
the "Security and Performance" section of the Java Developer's Guide
for more information on file permissions.

id An ID that identifies an advisor run. The parameter DBMS_
OLAP.RUNID_ALL indicates all advisor runs should be reported.

tspace Optional tablespace name to use when creating materialized views.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-19

LOAD_WORKLOAD_CACHE Procedure

This procedure loads a SQL cache workload.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_CACHE (
 workload_id IN NUMBER,
 flags IN NUMBER,
 filter_id IN NUMBER,
 application IN VARCHAR2,
 priority IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–15 LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Description

workload_id Fully qualified output file name to receive HTML data. Note that the
Oracle server restricts file access within Oracle stored procedures. See
the "Security and Performance" section of the Java Developer's Guide for
more information on file permission.

flags ■ DBMS_OLAP.WORKLOAD_OVERWRITE: The load routine will
explicitly remove any existing queries from the workload that are
owned by the specified collection ID.

■ DBMS_OLAP.WORKLOAD_APPEND: The load routine preserves any
existing queries in the workload. Any queries collected by the load
operation will be appended to the end of the specified workload.

■ DBMS_OLAP.WORKLOAD_NEW: The load routine assumes there are
no existing queries in the workload. If it finds an existing workload
element, the call will fail with an error.

Note: the flags have the same behavior irrespective of the LOAD_
WORKLOAD operation.

filter_id Specify filter for the workload to be loaded.

application The default business application name. This value will be used for a
query if one is not found in the target workload.

LOAD_WORKLOAD_CACHE Procedure

58-20 PL/SQL Packages and Types Reference

priority The default business priority to be assigned to every query in the target
workload.

Table 58–15 (Cont.) LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Description

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-21

LOAD_WORKLOAD_TRACE Procedure

This procedure loads an Oracle Trace workload.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_TRACE (
 workload_id IN NUMBER,
 flags IN NUMBER,
 filter_id IN NUMBER,
 application IN VARCHAR2,
 priority IN NUMBER,
 owner_name IN VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–16 LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Description

collectionid Fully qualified output file name to receive HTML data. Note that the
Oracle server restricts file access within Oracle stored procedures. See
the "Security and Performance" section of the Java Developer's Guide for
more information on file permission.

flags ■ DBMS_OLAP.WORKLOAD_OVERWRITE: The load routine will
explicitly remove any existing queries from the workload that are
owned by the specified collection ID.

■ DBMS_OLAP.WORKLOAD_APPEND: The load routine preserves any
existing queries in the workload. Any queries collected by the load
operation will be appended to the end of the specified workload.

■ DBMS_OLAP.WORKLOAD_NEW: The load routine assumes there are
no existing queries in the workload. If it finds an existing workload
element, the call will fail with an error.

Note: the flags have the same behavior irrespective of the LOAD_
WORKLOAD operation.

filter_id Specify filter for the workload to be loaded.

application The default business application name. This value will be used for a
query if one is not found in the target workload.

LOAD_WORKLOAD_TRACE Procedure

58-22 PL/SQL Packages and Types Reference

priority The default business priority to be assigned to every query in the target
workload.

owner_name The schema that contains the Oracle Trace data. If omitted, the current
user will be used.

Table 58–16 (Cont.) LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Description

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-23

LOAD_WORKLOAD_USER Procedure

This procedure loads a user-defined workload.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_USER (
 workload_id IN NUMBER,
 flags IN NUMBER,
 filter_id IN NUMBER,
 owner_name IN VARCHAR2,
 table_name IN VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–17 LOAD_WORKLOAD_USER Procedure Parameters

Parameter Description

workload_id The required id that was returned by the DBMS_OLAP.CREATE_ID call.

flags ■ DBMS_OLAP.WORKLOAD_OVERWRITE: The load routine will
explicitly remove any existing queries from the workload that are
owned by the specified collection ID

■ DBMS_OLAP.WORKLOAD_APPEND: The load routine preserves any
existing queries in the workload. Any queries collected by the load
operation will be appended to the end of the specified workload

■ DBMS_OLAP.WORKLOAD_NEW: The load routine assumes there are
no existing queries in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of the LOAD_
WORKLOAD operation.

filter_id Specify filter for the workload to be loaded.

owner_name The schema that contains the user supplied table or view.

table_name The table or view name containing valid workload data.

PURGE_FILTER Procedure

58-24 PL/SQL Packages and Types Reference

PURGE_FILTER Procedure

This procedure removes a filter at any time. You can delete a specific filter or all
filters.

Syntax
DBMS_OLAP.PURGE_FILTER (
 filter_id IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–18 PURGE_FILTER Procedure Parameters

Parameter Description

filter_id The parameter DBMS_OLAP.FILTER_ALL indicates all filters should be
removed.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-25

PURGE_RESULTS Procedure

Many procedures in the DBMS_OLAP package generate output in system tables,
such as recommendation results for RECOMMEND_MVIEW_STRATEGY and
evaluation results for EVALUATE_MVIEW_STRATEGY, and dimension validation
results for VALIDATE_DIMENSION. When these outputs are no longer required,
they should be removed using the procedure PURGE_RESULTS. You can remove all
results or those for a specific run.

Syntax
DBMS_OLAP.PURGE_RESULTS (
 run_id IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–19 PURGE_RESULTS Procedure Parameters

Parameter Description

run_id An ID generated with the DBMS_OLAP.CREATE_ID
procedure. The ID should be associated with a
RECOMMEND_MVIEW_STRATEGY or a EVALUATE_
MVIEW_STRATEGY or a VALIDATE_DIMENSION run.
Use the value DBMS_OLAP.RUNID_ALL to specify all
such runs.

PURGE_WORKLOAD Procedure

58-26 PL/SQL Packages and Types Reference

PURGE_WORKLOAD Procedure

This procedure removes workloads when they are no longer needed. You can delete
all workloads or a specific collection.

Syntax
DBMS_OLAP.PURGE_WORKLOAD (
 workload_id IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–20 DBMS_OLAP.PURGE_WORKLOAD Procedure Parameters

Parameter Description

workload_id An ID number originally assigned by the create_id call. If the value of
workload_id is set to DBMS_OLAP.WORKLOAD_ALL, then all workloads
for the current user will be deleted.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-27

RECOMMEND_MVIEW_STRATEGY Procedure

This procedure generates a set of recommendations about which materialized views
should be created, retained, or dropped, based on information in the workload
(gathered by Oracle Trace, the user workload, or the SQL cache), and an analysis of
table and column cardinality statistics gathered by the DBMS_STATS.GATHER_
TABLE_STATS procedure.

RECOMMEND_MVIEW_STRATEGY requires that you have run the GATHER_TABLE_
STATS procedure to gather table and column cardinality statistics and have
collected and formatted the workload statistics.

The workload is aggregated to determine the count of each request in the workload,
and this count is used as a weighting factor during the optimization process. If the
workload_id is not provided, then RECOMMEND_MVIEW_STRATEGY uses a
hypothetical workload based on dimension definitions and other embedded
statistics.

The space of all dimensional materialized views that include the specified fact
tables identifies the set of materialized views that optimize performance across the
workload. The recommendation results are stored in system tables, which can be
accessed through the view SYSTEM.MVIEW_RECOMMENDATIONS.

Syntax
DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY (
 run_id IN NUMBER,
 workload_id IN NUMBER,
 filter_id IN NUMBER,
 storage_in_bytes IN NUMBER,
 retention_pct IN NUMBER,
 retention_list IN VARCHAR2,
 fact_table_filter IN VARCHAR2);

Note: See Deprecated Subprograms on page 58-9.

RECOMMEND_MVIEW_STRATEGY Procedure

58-28 PL/SQL Packages and Types Reference

Parameters

Usage Notes
Periodically, the unused results can be purged from the system by calling the
PURGE_RESULTS procedure.

Table 58–21 RECOMMEND_MVIEW_STRATEGY Procedure Parameters

Parameter Description

run_id An ID generated by the DBMS_OLAP.CREATE_ID procedure to
uniquely identify results of a run.

workload_id An optional workload ID that maps to a workload in the
current repository. Use the parameter DBMS_
OLAP.WORKLOAD_ALL to choose all workloads.

If the workload_id is set to NULL, the call will use a
hypothetical workload.

filter_id An optional filter ID that maps to a set of user-supplied filter
items. Use the parameter DBMS_OLAP.FILTER_NONE to avoid
filtering.

storage_in_bytes Maximum storage, in bytes, that can be used for storing
materialized views. This number must be nonnegative.

retention_pct Number between 0 and 100 that specifies the percent of
existing materialized view storage that must be retained, based
on utilization on the actual or hypothetical workload.

A materialized view is retained if the cumulative space, ranked
by utilization, is within the retention threshold specified (or if
it is explicitly listed in retention_list). Materialized views
that have a NULL utilization (for example, nondimensional
materialized views) are always retained.

retention_list Comma-delimited list of materialized view table names. A
drop recommendation is not made for any materialized view
that appears in this list.

fact_table_filter Optional list of fact tables used to filter real or ideal workload.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-29

SET_CANCELLED Procedure

If the Summary Advisor takes too long to make its recommendations using the
procedures RECOMMEND_MVIEW_STRATEGY, you can stop it by calling the
procedure SET_CANCELLED and passing in the run_id for this recommendation
process.

Syntax
DBMS_OLAP.SET_CANCELLED (
 run_id IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–22 DBMS_OLAP.SET_CANCELLED Procedure Parameters

Parameter Description

run_id Id that uniquely identifies an advisor analysis operation. This call can be
used to cancel a long running workload collection as well as an Advisor
analysis session.

VALIDATE_DIMENSION Procedure

58-30 PL/SQL Packages and Types Reference

VALIDATE_DIMENSION Procedure

This procedure verifies that the hierarchical and attribute relationships, and join
relationships, specified in an existing dimension object are correct. This provides a
fast way to ensure that referential integrity is maintained.

The validation results are stored in system tables, which can be accessed through
the view SYSTEM.MVIEW_EXCEPTIONS.

Syntax
DBMS_OLAP.VALIDATE_DIMENSION (
 dimension_name IN VARCHAR2,
 dimension_owner IN VARCHAR2,
 incremental IN BOOLEAN,
 check_nulls IN BOOLEAN,
 run_id IN NUMBER);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–23 VALIDATE_DIMENSION Procedure Parameters

Parameter Description

dimension_name Name of the dimension to analyze.

dimension_owner Name of the dimension owner.

incremental If TRUE, then tests are performed only for the rows specified in
the sumdelta$ table for tables of this dimension; otherwise,
check all rows.

check_nulls ■ If TRUE, then all level columns are verified to be nonnull;
otherwise, this check is omitted.

■ Specify FALSE when nonnullness is guaranteed by other
means, such as NOT NULL constraints.

run_id An ID generated by the DBMS_OLAP.CREATE_ID procedure to
identify a run.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-31

Usage Notes
Periodically, the unused results can be purged from the system by calling the
PURGE_RESULTS procedure.

VALIDATE_WORKLOAD_CACHE Procedure

58-32 PL/SQL Packages and Types Reference

VALIDATE_WORKLOAD_CACHE Procedure

This procedure validates the SQL Cache workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_CACHE (
 valid OUT NUMBER,
 error OUT VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–24 VALIDATE_WORKLOAD_USER Procedure Parameters

Parameter Description

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2, return error set.

Summary of DBMS_OLAP Subprograms

DBMS_OLAP 58-33

VALIDATE_WORKLOAD_TRACE Procedure

This procedure validates the Oracle Trace workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_TRACE (
 owner_name IN VARCHAR2,
 valid OUT NUMBER,
 error OUT VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–25 VALIDATE_WORKLOAD_TRACE Procedure Parameters

Parameter Description

owner_name Owner of the trace workload table.

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2, return error text.

VALIDATE_WORKLOAD_USER Procedure

58-34 PL/SQL Packages and Types Reference

VALIDATE_WORKLOAD_USER Procedure

This procedure validates the user-supplied workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_USER (
 owner_name IN VARCHAR2,
 table_name IN VARCHAR2,
 valid OUT NUMBER,
 error OUT VARCHAR2);

Parameters

Note: See Deprecated Subprograms on page 58-9.

Table 58–26 VALIDATE_WORKLOAD_USER Procedure Parameters

Parameter Description

owner_name Owner of the user workload table.

table_name User workload table name.

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2, return error set.

DBMS_OUTLN 59-1

59
DBMS_OUTLN

The DBMS_OUTLN package, synonymous withOUTLN_PKG, contains the functional
interface for subprograms associated with the management of stored outlines.

This chapter contains the following topics:

■ Using DBMS_OUTLN

■ Overview

■ Security Model

■ Summary of DBMS_OUTLN Subprograms

See Also: For more information about using the DBMS_OUTLN package,
see Using Plan Stability in Oracle Database Performance Tuning Guide.

Using DBMS_OUTLN

59-2 PL/SQL Packages and Types Reference

Using DBMS_OUTLN

■ Overview

■ Security Model

Overview

A stored outline is the stored data that pertains to an execution plan for a given SQL
statement. It enables the optimizer to repeatedly re-create execution plans that are
equivalent to the plan originally generated along with the outline.The data stored in
an outline consists, in part, of a set of hints that are used to achieve plan stability.

Security Model

DBMS_OUTLN contains management procedures that should be available to
appropriate users only. EXECUTE privilege is not extended to the general user
community unless the DBA explicitly does so.

PL/SQL functions that are available for outline management purposes can be
executed only by users with EXECUTE privilege on the procedure (or package).

Summary of DBMS_OUTLN Subprograms

DBMS_OUTLN 59-3

Summary of DBMS_OUTLN Subprograms

Table 59–1 DBMS_OUTLN Package Subprograms

Subprogram Description

CLEAR_USED Procedure on
page 59-4

Clears the outline 'used' flag

CREATE_OUTLINE Procedure
on page 59-5

Generates outlines from the shared cursor identified by
hash value and child number

DROP_BY_CAT Procedure on
page 59-6

Drops outlines that belong to a specified category

DROP_UNUSED Procedure on
page 59-7

Drops outlines that have never been applied in the
compilation of a SQL statement

EXACT_TEXT_SIGNATURES
Procedure on page 59-8

Updates outline signatures to those that compute based
on exact text matching

UPDATE_BY_CAT Procedure
on page 59-9

Changes the category of outlines in one category to a
new category

UPDATE_SIGNATURES
Procedure on page 59-10

Updates outline signatures to the current version's
signature

CLEAR_USED Procedure

59-4 PL/SQL Packages and Types Reference

CLEAR_USED Procedure

This procedure clears the outline 'used' flag.

Syntax
DBMS_OUTLN.CLEAR_USED (
 name IN VARCHAR2);

Parameters

Table 59–2 CLEAR_USED Procedure Parameters

Parameter Description

name Name of the outline.

Summary of DBMS_OUTLN Subprograms

DBMS_OUTLN 59-5

CREATE_OUTLINE Procedure

This procedure generates an outline from the shared cursor identified by hash value
and child number.

Syntax
DBMS_OUTLN.CREATE_OUTLINE (
 hash_value IN NUMBER,
 child_number IN NUMBER,
 category IN VARCHAR2 DEFAULT 'DEFAULT');

Parameters

Table 59–3 CREATE_OUTLINE Procedure Parameters

Parameter Description

hash_value Hash value identifying the target shared cursor.

child_number Child number of the target shared cursor.

category Category in which to create outline (optional).

DROP_BY_CAT Procedure

59-6 PL/SQL Packages and Types Reference

DROP_BY_CAT Procedure

This procedure drops outlines that belong to a particular category. While outlines
are put into the DEFAULT category unless otherwise specified, users have the option
of grouping their outlines into groups called categories.

Syntax
DBMS_OUTLN.DROP_BY_CAT (
 cat VARCHAR2);

Parameters

Usage Notes
This procedure purges a category of outlines in a single call.

Examples
This example drops all outlines in the DEFAULT category:

DBMS_OUTLN.DROP_BY_CAT('DEFAULT');

Table 59–4 DROP_BY_CAT Procedure Parameters

Parameter Description

cat Category of outlines to drop.

Summary of DBMS_OUTLN Subprograms

DBMS_OUTLN 59-7

DROP_UNUSED Procedure

This procedure drops outlines that have never been applied in the compilation of a
SQL statement.

Syntax
DBMS_OUTLN.DROP_UNUSED;

Usage Notes
You can use DROP_UNUSED for outlines generated by an application for one-time
use SQL statements created as a result of dynamic SQL. These outlines are never
used and take up valuable disk space.

EXACT_TEXT_SIGNATURES Procedure

59-8 PL/SQL Packages and Types Reference

EXACT_TEXT_SIGNATURES Procedure

This procedure updates outline signatures to those that compute based on exact
text matching.

Syntax
DBMS.OUTLN.EXACT_TEXT_SIGNATURES;

Usage Notes
This procedure is relevant only for downgrading an outline to 8.1.6 or earlier.

Summary of DBMS_OUTLN Subprograms

DBMS_OUTLN 59-9

UPDATE_BY_CAT Procedure

This procedure changes the category of all outlines in one category to a new
category.

Syntax
DBMS.OUTLN.UPDATE_BY_CAT (
 oldcat VARCHAR2 default 'DEFAULT',
 newcat VARCHAR2 default 'DEFAULT');

Parameters

Table 59–5 UPDATE_BY_CAT Procedure Parameters

Parameter Description

oldcat The current category of outlines.

newcat The new category of outlines.

UPDATE_SIGNATURES Procedure

59-10 PL/SQL Packages and Types Reference

UPDATE_SIGNATURES Procedure

This procedure updates outline signatures to the current version's signature.

Syntax
DBMS.OUTLN.UPDATE_SIGNATURES;

Usage Notes
You should execute this procedure if you have imported outlines generated in an
earlier release to ensure that the signatures are compatible with the current release's
computation algorithm.

DBMS_OUTLN_EDIT 60-1

60
DBMS_OUTLN_EDIT

The DBMS_OUTLN_EDIT package is an invoker's rights package.

This chapter contains the following topic:

■ Summary of DBMS_OUTLN_EDIT Subprograms

See Also: For more information about using the DBMS_OUTLN_EDIT
package, see UsingPlan Stability in Oracle Database Performance Tuning
Guide.

Summary of DBMS_OUTLN_EDIT Subprograms

60-2 PL/SQL Packages and Types Reference

Summary of DBMS_OUTLN_EDIT Subprograms

Table 60–1 DBMS_OUTLN_EDIT Package Subprograms

Subprogram Description

CHANGE_JOIN_POS Procedure
on page 60-3

Changes the join position for the hint identified by
outline name and hint number to the position specified
by newpos

CREATE_EDIT_TABLES
Procedure on page 60-4

Creates outline editing tables in calling a user's schema

DROP_EDIT_TABLES Procedure
on page 60-5

Drops outline editing tables in calling the user's schema

GENERATE_SIGNATURE
Procedure on page 60-6

Generates a signature for the specified SQL text

REFRESH_PRIVATE_OUTLINE
Procedure on page 60-7

Refreshes the in-memory copy of the outline,
synchronizing its data with the edits made to the outline
hints

Summary of DBMS_OUTLN_EDIT Subprograms

DBMS_OUTLN_EDIT 60-3

CHANGE_JOIN_POS Procedure

This function changes the join position for the hint identified by outline name and
hint number to the position specified by newpos.

Syntax
DBMS_OUTLN_EDIT.CHANGE_JOIN_POS (
 name VARCHAR2
 hintno NUMBER
 newpos NUMBER);

Parameters

Table 60–2 CHANGE_JOIN_POS Procedure Parameters

Parameter Description

name Name of the private outline to be modified.

hintno Hint number to be modified.

newpos New join position for the target hint.

CREATE_EDIT_TABLES Procedure

60-4 PL/SQL Packages and Types Reference

CREATE_EDIT_TABLES Procedure

This procedure creates outline editing tables in calling a user's schema.

Syntax
DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES;

Usage Notes
Beginning with release 10i you will not need to use this statement because the
outline editing tables will already exist as temporary tables in the SYSTEM schema.

Summary of DBMS_OUTLN_EDIT Subprograms

DBMS_OUTLN_EDIT 60-5

DROP_EDIT_TABLES Procedure

This procedure drops outline editing tables in calling the user's schema.

Syntax
DBMS_OUTLN_EDIT.DROP_EDIT_TABLES;

GENERATE_SIGNATURE Procedure

60-6 PL/SQL Packages and Types Reference

GENERATE_SIGNATURE Procedure

This procedure generates a signature for the specified SQL text.

Syntax
DBMS_OUTLN.GENERATE_SIGNATURE (
 sqltxt IN VARCHAR2,
 signature OUT RAW);

Parameters

Table 60–3 GENERATE_SIGNATURE Procedure Parameters

Parameter Description

sqltxt The specified SQL.

signature The signature to be generated.

Summary of DBMS_OUTLN_EDIT Subprograms

DBMS_OUTLN_EDIT 60-7

REFRESH_PRIVATE_OUTLINE Procedure

This procedure refreshes the in-memory copy of the outline, synchronizing its data
with the edits made to the outline hints.

Syntax
DBMS_OUTLN_EDIT.REFRESH_PRIVATE_OUTLINE (
 name IN VARCHAR2);

Parameters

Table 60–4 REFRESH_PRIVATE_OUTLINE Procedure Parameters

Parameter Description

name Name of the private outline to be refreshed.

REFRESH_PRIVATE_OUTLINE Procedure

60-8 PL/SQL Packages and Types Reference

DBMS_OUTPUT 61-1

61
DBMS_OUTPUT

The DBMS_OUTPUT package enables you to send messages from stored procedures,
packages, and triggers. The package is especially useful for displaying PL/SQL
debugging information.

This chapter contains the following topics:

■ Using DBMS_OUTPUT

■ Security Model

■ Types

■ Operational Notes

■ Exceptions

■ Deprecated Subprograms

■ Exceptions

■ Summary of DBMS_OUTPUT Subprograms

Using DBMS_OUTPUT

61-2 PL/SQL Packages and Types Reference

Using DBMS_OUTPUT

■ Security Model

■ Types

■ Operational Notes

■ Exceptions

■ Deprecated Subprograms

■ Examples

Security Model

At the end of this script, a public synonym (DBMS_OUTPUT) is created and EXECUTE
permission on this package is granted to public.

Types

Type CHARARR is a table type.

Operational Notes

The PUT_LINE Procedures and PUT_LINE Procedures in this package enable you
to place information in a buffer that can be read by another trigger, procedure, or
package. In a separate PL/SQL procedure or anonymous block, you can display the
buffered information by calling the GET_LINE Procedure.

If you do not call GET_LINE, or if you do not display the messages on your screen
in SQL*Plus or Enterprise Manager, then the buffered messages are ignored. A
trigger might want to print out some debugging information. To do this, the trigger
would do:

DBMS_OUTPUT.PUT_LINE('I got here:'||:new.col||' is the new value');

If you have enabled the DBMS_OUTPUT package, then this PUT_LINE would be
buffered, and you could, after executing the statement (presumably some INSERT,
DELETE, or UPDATE that caused the trigger to fire), get the line of information back.
For example:

Using DBMS_OUTPUT

DBMS_OUTPUT 61-3

BEGIN
 DBMS_OUTPUT.GET_LINE(:buffer, :status);
END;

It could then display the buffer on the screen. You repeat calls to GET_LINE until
status comes back as nonzero. For better performance, you should use calls to GET_
LINES Procedure which can return an array of lines.

Enterprise Manager and SQL*Plus implement a SET SERVEROUTPUT ON command
to know whether to make calls to GET_LINE(S) after issuing INSERT, UPDATE,
DELETE or anonymous PL/SQL calls (these are the only ones that can cause
triggers or stored procedures to be executed).

Exceptions

DBMS_OUTPUT subprograms raise the application error ORA-20000, and the output
procedures can return the following errors:

Deprecated Subprograms

The PUT Procedures that take a number are obsolete and, while currently supported,
are included in this release for legacy reasons only.

Examples

Example 1: Debugging Stored Procedures and Triggers
The DBMS_OUTPUT package is commonly used to debug stored procedures and
triggers. This package can also be used to enable you to retrieve information about

Note: Messages sent using DBMS_OUTPUT are not actually sent
until the sending subprogram or trigger completes. There is no
mechanism to flush output during the execution of a procedure.

Table 61–1 DBMS_OUTPUT Errors

Error Description

ORU-10027: Buffer overflow

ORU-10028: Line length overflow

Examples

61-4 PL/SQL Packages and Types Reference

an object and format this output, as shown in "Example 2: Retrieving Information
About an Object" on page 61-5.

This function queries the employee table and returns the total salary for a specified
department. The function includes several calls to the PUT_LINE procedure:

CREATE FUNCTION dept_salary (dnum NUMBER) RETURN NUMBER IS
 CURSOR emp_cursor IS
 SELECT sal, comm FROM emp WHERE deptno = dnum;
 total_wages NUMBER(11, 2) := 0;
 counter NUMBER(10) := 1;
BEGIN

 FOR emp_record IN emp_cursor LOOP
 emp_record.comm := NVL(emp_record.comm, 0);
 total_wages := total_wages + emp_record.sal
 + emp_record.comm;
 DBMS_OUTPUT.PUT_LINE('Loop number = ' || counter ||
 '; Wages = '|| TO_CHAR(total_wages)); /* Debug line */
 counter := counter + 1; /* Increment debug counter */
 END LOOP;
 /* Debug line */
 DBMS_OUTPUT.PUT_LINE('Total wages = ' ||
 TO_CHAR(total_wages));
 RETURN total_wages;

END dept_salary;

Assume the EMP table contains the following rows:

EMPNO SAL COMM DEPT
----- ------- -------- -------
1002 1500 500 20
1203 1000 30
1289 1000 10
1347 1000 250 20

Assume the user executes the following statements in the Enterprise Manager SQL
Worksheet input pane:

SET SERVEROUTPUT ON
VARIABLE salary NUMBER;
EXECUTE :salary := dept_salary(20);

The user would then see the following information displayed in the output pane:

Loop number = 1; Wages = 2000

Using DBMS_OUTPUT

DBMS_OUTPUT 61-5

Loop number = 2; Wages = 3250
Total wages = 3250

PL/SQL procedure successfully executed.

Example 2: Retrieving Information About an Object
In this example, the user has used the EXPLAIN PLAN command to retrieve
information about the execution plan for a statement and has stored it in PLAN_
TABLE. The user has also assigned a statement ID to this statement. The example
EXPLAIN_OUT procedure retrieves the information from this table and formats the
output in a nested manner that more closely depicts the order of steps undergone in
processing the SQL statement.

 /**/
/* Create EXPLAIN_OUT procedure. User must pass STATEMENT_ID to */
/* to procedure, to uniquely identify statement. */
/**/
CREATE OR REPLACE PROCEDURE explain_out
 (statement_id IN VARCHAR2) AS

 -- Retrieve information from PLAN_TABLE into cursor EXPLAIN_ROWS.

 CURSOR explain_rows IS
 SELECT level, id, position, operation, options,
 object_name
 FROM plan_table
 WHERE statement_id = explain_out.statement_id
 CONNECT BY PRIOR id = parent_id
 AND statement_id = explain_out.statement_id
 START WITH id = 0
 ORDER BY id;

BEGIN

 -- Loop through information retrieved from PLAN_TABLE:

 FOR line IN explain_rows LOOP

 -- At start of output, include heading with estimated cost.

 IF line.id = 0 THEN
 DBMS_OUTPUT.PUT_LINE ('Plan for statement '
 || statement_id
 || ', estimated cost = ' || line.position);

Examples

61-6 PL/SQL Packages and Types Reference

 END IF;

 -- Output formatted information. LEVEL determines indention level.

 DBMS_OUTPUT.PUT_LINE (lpad(' ',2*(line.level-1)) ||
 line.operation || ' ' || line.options || ' ' ||
 line.object_name);
 END LOOP;

END;

See Also: Chapter 155, "UTL_FILE"

Summary of DBMS_OUTPUT Subprograms

DBMS_OUTPUT 61-7

Summary of DBMS_OUTPUT Subprograms

Table 61–2 DBMS_OUTPUT Package Subprograms

Subprogram Description

DISABLE Procedure on page 61-8 Disables message output

ENABLE Procedure on page 61-9 Enables message output

GET_LINE Procedure on
page 61-10

Retrieves one line from buffer

GET_LINES Procedure on
page 61-10

Retrieves an array of lines, from buffer

PUT Procedures on page 61-13 Places a line in the buffer

PUT_LINE Procedures on
page 61-15

Places partial line in buffer

NEW_LINE Procedure on
page 61-12

Terminates a line created with PUT

Note: The PUT Procedures that take a number are obsolete and,
while currently supported, are included in this release for legacy
reasons only.

DISABLE Procedure

61-8 PL/SQL Packages and Types Reference

DISABLE Procedure

This procedure disables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_
LINES, and purges the buffer of any remaining information.

As with ENABLE, you do not need to call this procedure if you are using the
SERVEROUTPUT option of Enterprise Manager or SQL*Plus.

Syntax
DBMS_OUTPUT.DISABLE;

Pragmas
pragma restrict_references(disable,WNDS,RNDS);

Summary of DBMS_OUTPUT Subprograms

DBMS_OUTPUT 61-9

ENABLE Procedure

This procedure enables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_
LINES. Calls to these procedures are ignored if the DBMS_OUTPUT package is not
enabled.

Syntax
DBMS_OUTPUT.ENABLE (
 buffer_size IN INTEGER DEFAULT 20000);

Pragmas
pragma restrict_references(enable,WNDS,RNDS);

Parameters

Usage Notes

If there are multiple calls to ENABLE, then buffer_size is the largest of the values
specified. The maximum size is 1,000,000, and the minimum is 2,000.

Exceptions

Table 61–3 ENABLE Procedure Parameters

Parameter Description

buffer_size Amount of information, in bytes, to buffer.

Note: It is not necessary to call this procedure when you use the
SERVEROUTPUT option of Enterprise Manager or SQL*Plus.

Table 61–4 ENABLE Procedure Exceptions

Error Description

ORA-20000:,

ORU-10027:

Buffer overflow, limit of <buffer_limit> bytes.

GET_LINE Procedure

61-10 PL/SQL Packages and Types Reference

GET_LINE Procedure

This procedure retrieves a single line of buffered information.

Syntax
DBMS_OUTPUT.GET_LINE (
 line OUT VARCHAR2,
 status OUT INTEGER);

Parameters

Usage Notes
■ You can choose to retrieve from the buffer a single line or an array of lines. Call

the GET_LINE procedure to retrieve a single line of buffered information. To
reduce the number of calls to the server, call the GET_LINES procedure to
retrieve an array of lines from the buffer.

■ You can choose to automatically display this information if you are using
Enterprise Manager or SQL*Plus by using the special SET SERVEROUTPUT ON
command.

■ After calling GET_LINE or GET_LINES, any lines not retrieved before the next
call to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them
with the next message.

Table 61–5 GET_LINE Procedure Parameters

Parameter Description

line Returns a single line of buffered information, excluding a final
newline character: The maximum length is 255 bytes.

status If the call completes successfully, then the status returns as 0. If
there are no more lines in the buffer, then the status is 1.

Summary of DBMS_OUTPUT Subprograms

DBMS_OUTPUT 61-11

GET_LINES Procedure

This procedure retrieves an array of lines from the buffer.

Syntax
DBMS_OUTPUT.GET_LINES (
 lines OUT CHARARR,
 numlines IN OUT INTEGER);

Parameters

Usage Notes
■ You can choose to retrieve from the buffer a single line or an array of lines. Call

the GET_LINE procedure to retrieve a single line of buffered information. To
reduce the number of calls to the server, call the GET_LINES procedure to
retrieve an array of lines from the buffer.

■ You can choose to automatically display this information if you are using
Enterprise Manager or SQL*Plus by using the special SET SERVEROUTPUT ON
command.

■ After calling GET_LINE or GET_LINES, any lines not retrieved before the next
call to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them
with the next message.

Table 61–6 GET_LINES Procedure Parameters

Parameter Description

lines Returns an array of lines of buffered information.CHARARR is
a table of VARCHAR2(255). The maximum length of each line
in the array is 255 bytes.

numlines Number of lines you want to retrieve from the buffer.

After retrieving the specified number of lines, the procedure
returns the number of lines actually retrieved. If this number is
less than the number of lines requested, then there are no more
lines in the buffer.

NEW_LINE Procedure

61-12 PL/SQL Packages and Types Reference

NEW_LINE Procedure

This procedure puts an end-of-line marker. GET_LINE(S) returns "lines" as
delimited by "newlines". Every call to PUT_LINE or NEW_LINE generates a line that
is returned by GET_LINE(S).

Syntax
DBMS_OUTPUT.NEW_LINE;

Exceptions

Table 61–7 NEW_LINE Procedure Exceptions

Error Description

ORA-20000,
ORU-10027:

Buffer overflow, limit of <buf_limit> bytes.

ORA-20000,
ORU-10028:

Line length overflow, limit of 255 bytes for each line.

Summary of DBMS_OUTPUT Subprograms

DBMS_OUTPUT 61-13

PUT Procedures

This procedure places a line in the buffer.

Syntax
DBMS_OUTPUT.PUT (item IN VARCHAR2);

DBMS_OUTPUT.PUT (item IN NUMBER);

Parameters

Exceptions

Usage Notes
■ You can build a line of information piece by piece by making multiple calls to

PUT, or place an entire line of information into the buffer by calling PUT_LINE.

■ When you call PUT_LINE the item you specify is automatically followed by an
end-of-line marker. If you make calls to PUT to build a line, then you must add
your own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES
do not return lines that have not been terminated with a newline character.

Note: The PUT procedure that takes a NUMBER is obsolete and,
while currently supported, is included in this release for legacy
reasons only.

Table 61–8 PUT and PUT_LINE Procedure Parameters

Parameter Description

item Item to buffer.

Table 61–9 PUT and PUT_LINE Procedure Exceptions

Error Description

ORA-20000,
ORU-10027:

Buffer overflow, limit of <buf_limit> bytes.

ORA-20000,
ORU-10028:

Line length overflow, limit of 255 bytes for each line.

PUT Procedures

61-14 PL/SQL Packages and Types Reference

■ If your line exceeds the buffer limit, then you receive an error message.

■ Output that you create using PUT or PUT_LINE is buffered. The output cannot
be retrieved until the PL/SQL program unit from which it was buffered returns
to its caller.

For example, Enterprise Manager or SQL*Plus do not display DBMS_OUTPUT
messages until the PL/SQL program completes. There is no mechanism for
flushing the DBMS_OUTPUT buffers within the PL/SQL program. For example:

SQL> SET SERVER OUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('hello');
 3 DBMS_LOCK.SLEEP (10);
 4 END;

Summary of DBMS_OUTPUT Subprograms

DBMS_OUTPUT 61-15

PUT_LINE Procedures

This procedure places a partial line in the buffer.

Syntax
DBMS_OUTPUT.PUT_LINE (item IN VARCHAR2);

DBMS_OUTPUT.PUT (item IN NUMBER);

Parameters

Exceptions

Usage Notes
■ You can build a line of information piece by piece by making multiple calls to

PUT, or place an entire line of information into the buffer by calling PUT_LINE.

■ When you call PUT_LINE the item you specify is automatically followed by an
end-of-line marker. If you make calls to PUT to build a line, then you must add
your own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES
do not return lines that have not been terminated with a newline character.

Note: The PUT_LINE procedure that takes a NUMBER is obsolete
and, while currently supported, is included in this release for
legacy reasons only.

Table 61–10 PUT and PUT_LINE Procedure Parameters

Parameter Description

item Item to buffer.

Table 61–11 PUT and PUT_LINE Procedure Exceptions

Error Description

ORA-20000,
ORU-10027:

Buffer overflow, limit of <buf_limit> bytes.

ORA-20000,
ORU-10028:

Line length overflow, limit of 255 bytes for each line.

PUT_LINE Procedures

61-16 PL/SQL Packages and Types Reference

■ If your line exceeds the buffer limit, then you receive an error message.

■ Output that you create using PUT or PUT_LINE is buffered. The output cannot
be retrieved until the PL/SQL program unit from which it was buffered returns
to its caller.

For example, Enterprise Manager or SQL*Plus do not display DBMS_OUTPUT
messages until the PL/SQL program completes. There is no mechanism for
flushing the DBMS_OUTPUT buffers within the PL/SQL program. For example:

SQL> SET SERVER OUTPUT ON
SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('hello');
 3 DBMS_LOCK.SLEEP (10);
 4 END;

DBMS_PCLXUTIL 62-1

62
DBMS_PCLXUTIL

The DBMS_PCLXUTIL package provides intra-partition parallelism for creating
partition-wise local indexes. DBMS_PCLXUTIL circumvents the limitation that, for
local index creation, the degree of parallelism is restricted to the number of
partitions as only one slave process for each partition is used.

This chapter contains the following topics:

■ Using DBMS_PCLXUTIL

■ Overview

■ Operational Notes

■ Rules and Limits

■ Summary of DBMS_PCLXUTIL Subprograms

See Also: There are several rules concerning partitions and
indexes. For more information, see Oracle Database Concepts and
Oracle Database Administrator's Guide.

Using DBMS_PCLXUTIL

62-2 PL/SQL Packages and Types Reference

Using DBMS_PCLXUTIL

■ Overview

■ Operational Notes

■ Rules and Limits

Overview

DBMS_PCLXUTIL uses the DBMS_JOB package to provide a greater degree of
parallelism for creating a local index for a partitioned table. This is achieved by
asynchronous inter-partition parallelism using the background processes (with
DBMS_JOB), in combination with intra-partition parallelism using the parallel query
slave processes.

DBMS_PCLXUTIL works with both range and range-hash composite partitioning.

The DBMS_PCLXUTIL package can be used during the following DBA tasks:

1. Local index creation

The procedure BUILD_PART_INDEX assumes that the dictionary information
for the local index already exists. This can be done by issuing the create index
SQL command with the UNUSABLE option.

 CREATE INDEX <idx_name> on <tab_name>(...) local(...) unusable;

This causes the dictionary entries to be created without "building" the index
itself, the time consuming part of creating an index. Now, invoking the
procedure BUILD_PART_INDEX causes a concurrent build of local indexes with
the specified degree of parallelism.

 EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

For composite partitions, the procedure automatically builds local indexes for
all subpartitions of the composite table.

2. Local index maintenance

By marking desired partitions usable or unusable, the BUILD_PART_INDEX
procedure also enables selective rebuilding of local indexes. The force_opt
parameter provides a way to override this and build local indexes for all
partitions.

Using DBMS_PCLXUTIL

DBMS_PCLXUTIL 62-3

 ALTER INDEX <idx_name> local(...) unusable;

Rebuild only the desired (sub)partitions (that are marked unusable):

 EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

Rebuild all (sub)partitions using force_opt = TRUE:

 EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,TRUE);

A progress report is produced, and the output appears on screen when the
program is ended (because the DBMS_OUTPUT package writes messages to a
buffer first, and flushes the buffer to the screen only upon termination of the
program).

Operational Notes

DBMS_PCLXUTIL submits a job for each partition. It is the responsibility of the
user/dba to control the number of concurrent jobs by setting the INIT.ORA
parameter JOB_QUEUE_PROCESSES correctly. There is minimal error checking for
correct syntax. Any errors are reported in the job queue process trace files.

Rules and Limits

Because DBMS_PCLXUTIL uses the DBMS_JOB package, you must be aware of the
following limitations pertaining to DBMS_JOB:

■ You must decide appropriate values for the job_queue_processes
initialization parameter. Clearly, if the job processes are not started before
calling BUILD_PART_INDEX(), then the package will not function properly. The
background processes are specified by the following init.ora parameters:

 job_queue_processes=n #the number of background processes = n

■ Failure conditions are reported only in the trace files (a DBMS_JOB limitation),
making it impossible to give interactive feedback to the user. This package

Note: For range partitioning, the minimum compatibility mode is
8.0; for range-hash composite partitioning, the minimum
compatibility mode is 8i.

Rules and Limits

62-4 PL/SQL Packages and Types Reference

prints a failure message, removes unfinished jobs from the queue, and requests
the user to take a look at the j*.trc trace files.

Summary of DBMS_PCLXUTIL Subprograms

DBMS_PCLXUTIL 62-5

Summary of DBMS_PCLXUTIL Subprograms

Table 62–1 DBMS_PCLXUTIL Package Subprograms

Subprogram Description

BUILD_PART_INDEX Procedure
on page 62-6

Provides intra-partition parallelism for creating
partition-wise local indexes

BUILD_PART_INDEX Procedure

62-6 PL/SQL Packages and Types Reference

BUILD_PART_INDEX Procedure

This procedure provides intra-partition parallelism for creating partition-wise local
indexes.

Syntax
DBMS_PCLXUTIL.BUILD_PART_INDEX (
 jobs_per_batch IN NUMBER DEFAULT 1,
 procs_per_job IN NUMBER DEFAULT 1,
 tab_name IN VARCHAR2 DEFAULT NULL,
 idx_name IN VARCHAR2 DEFAULT NULL,
 force_opt IN BOOLEAN DEFAULT FALSE);

Parameters

Examples
Suppose a table PROJECT is created with two partitions PROJ001 and PROJ002,
along with a local index IDX.

A call to the procedure BUILD_PART_INDEX(2,4,'PROJECT','IDX',TRUE) produces
the following output:

SQLPLUS> EXECUTE dbms_pclxutil.build_part_index(2,4,'PROJECT','IDX',TRUE);
Statement processed.
INFO: Job #21 created for partition PROJ002 with 4 slaves
INFO: Job #22 created for partition PROJ001 with 4 slaves

Table 62–2 BUILD_PART_INDEX Procedure Parameters

Parameter Description

jobs_per_batch The number of concurrent partition-wise "local index builds".

procs_per_job The number of parallel query slaves to be utilized for each
local index build (1 <= procs_per_job <= max_slaves).

tab_name The name of the partitioned table (an exception is raised if the
table does not exist or not partitioned).

idx_name The name given to the local index (an exception is raised if a
local index is not created on the table tab_name).

force_opt If TRUE, then force rebuild of all partitioned indexes;
otherwise, rebuild only the partitions marked 'UNUSABLE'.

DBMS_PIPE 63-1

63
DBMS_PIPE

The DBMS_PIPE package lets two or more sessions in the same instance
communicate. Oracle pipes are similar in concept to the pipes used in UNIX, but
Oracle pipes are not implemented using the operating system pipe mechanisms.

This chapter contains the following topics:

■ Using DBMS_PIPE

■ Overview

■ Security Model

■ Constants

■ Operational Notes

■ Exceptions

■ Examples

■ Summary of DBMS_PIPE Subprograms

Using DBMS_PIPE

63-2 PL/SQL Packages and Types Reference

Using DBMS_PIPE

■ Overview

■ Security Model

■ Constants

■ Operational Notes

■ Exceptions

■ Examples

Overview

Pipe functionality has several potential applications:

■ External service interface: You can communicate with user-written services that
are external to the RDBMS. This can be done effectively in a shared server
process, so that several instances of the service are executing simultaneously.
Additionally, the services are available asynchronously. The requestor of the
service does not need to block a waiting reply. The requestor can check (with or
without time out) at a later time. The service can be written in any of the 3GL
languages that Oracle supports.

■ Independent transactions: The pipe can communicate to a separate session
which can perform an operation in an independent transaction (such as logging
an attempted security violation detected by a trigger).

■ Alerters (non-transactional): You can post another process without requiring the
waiting process to poll. If an "after-row" or "after-statement" trigger were to
alert an application, then the application would treat this alert as an indication
that the data probably changed. The application would then read the data to get
the current value. Because this is an "after" trigger, the application would want
to do a "SELECT FOR UPDATE" to make sure it read the correct data.

■ Debugging: Triggers and stored procedures can send debugging information to
a pipe. Another session can keep reading out of the pipe and display it on the
screen or write it to a file.

■ Concentrator: This is useful for multiplexing large numbers of users over a
fewer number of network connections, or improving performance by
concentrating several user-transactions into one DBMS transaction.

Using DBMS_PIPE

DBMS_PIPE 63-3

Security Model

Security can be achieved by use of GRANT EXECUTE on the DBMS_PIPE package by
creating a pipe using the private parameter in the CREATE_PIPE function and by
writing cover packages that only expose particular features or pipenames to
particular users or roles.

Depending upon your security requirements, you may choose to use either Public
Pipes or Private Pipes.

Constants

maxwait constant integer := 86400000; /* 1000 days */

This is the maximum time to wait attempting to send or receive a message.

Operational Notes

Information sent through Oracle pipes is buffered in the system global area (SGA).
All information in pipes is lost when the instance is shut down.

The operation of DBMS_PIPE is considered with regard to the following topics:

■ Public Pipes

■ Writing and Reading Pipes

■ Private Pipes

Public Pipes
You may create a public pipe either implicitly or explicitly. For implicit public pipes,
the pipe is automatically created when it is referenced for the first time, and it
disappears when it no longer contains data. Because the pipe descriptor is stored in
the SGA, there is some space usage overhead until the empty pipe is aged out of the
cache.

Caution: Pipes are independent of transactions. Be careful using
pipes when transaction control can be affected.

Operational Notes

63-4 PL/SQL Packages and Types Reference

You create an explicit public pipe by calling the CREATE_PIPE function with the
private flag set to FALSE. You must deallocate explicitly-created pipes by calling
the REMOVE_PIPE function.

The domain of a public pipe is the schema in which it was created, either explicitly
or implicitly.

Writing and Reading Pipes
Each public pipe works asynchronously. Any number of schema users can write to a
public pipe, as long as they have EXECUTE permission on the DBMS_PIPE package,
and they know the name of the public pipe. However, once buffered information is
read by one user, it is emptied from the buffer, and is not available for other readers
of the same pipe.

The sending session builds a message using one or more calls to the PACK_
MESSAGE procedure. This procedure adds the message to the session's local
message buffer. The information in this buffer is sent by calling the SEND_MESSAGE
function, designating the pipe name to be used to send the message. When SEND_
MESSAGE is called, all messages that have been stacked in the local buffer are sent.

A process that wants to receive a message calls the RECEIVE_MESSAGE function,
designating the pipe name from which to receive the message. The process then
calls the UNPACK_MESSAGE procedure to access each of the items in the message.

Private Pipes
You explicitly create a private pipe by calling the CREATE_PIPE function. Once
created, the private pipe persists in shared memory until you explicitly deallocate it
by calling the REMOVE_PIPE function. A private pipe is also deallocated when the
database instance is shut down.

You cannot create a private pipe if an implicit pipe exists in memory and has the
same name as the private pipe you are trying to create. In this case, CREATE_PIPE
returns an error.

Access to a private pipe is restricted to:

■ Sessions running under the same userid as the creator of the pipe

■ Stored subprograms executing in the same userid privilege domain as the pipe
creator

■ Users connected as SYSDBA

Using DBMS_PIPE

DBMS_PIPE 63-5

An attempt by any other user to send or receive messages on the pipe, or to remove
the pipe, results in an immediate error. Any attempt by another user to create a pipe
with the same name also causes an error.

As with public pipes, you must first build your message using calls to PACK_
MESSAGE before calling SEND_MESSAGE. Similarly, you must call RECEIVE_
MESSAGE to retrieve the message before accessing the items in the message by
calling UNPACK_MESSAGE.

Exceptions

DBMS_PIPE package subprograms can return the following errors:

Examples

■ Example 1: Debugging

■ Example 2: Execute System Commands

■ Example 3: External Service Interface

Example 1: Debugging
This example shows the procedure that a PL/SQL program can call to place
debugging information in a pipe.

CREATE OR REPLACE PROCEDURE debug (msg VARCHAR2) AS
 status NUMBER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(LENGTH(msg));
 DBMS_PIPE.PACK_MESSAGE(msg);
 status := DBMS_PIPE.SEND_MESSAGE('plsql_debug');
 IF status != 0 THEN
 raise_application_error(-20099, 'Debug error');

Table 63–1 DBMS_PIPE Errors

Error Description

ORA-23321: Pipename may not be null. This can be returned by the CREATE_
PIPE function, or any subprogram that takes a pipe name as a
parameter.

ORA-23322: Insufficient privilege to access pipe. This can be returned by any
subprogram that references a private pipe in its parameter list.

Examples

63-6 PL/SQL Packages and Types Reference

 END IF;
END debug;

The following Pro*C code receives messages from the PLSQL_DEBUG pipe in
"Example 1: Debugging" and displays the messages. If the Pro*C session is run in a
separate window, then it can be used to display any messages that are sent to the
debug procedure from a PL/SQL program executing in a separate session.

#include <stdio.h>
#include <string.h>

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[20];
 int status;
 int msg_length;
 char retval[2000];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sql_error();

main()
{

-- Prepare username:
 strcpy(username.arr, "SCOTT/TIGER");
 username.len = strlen(username.arr);

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :username;

 printf("connected\n");

-- Start an endless loop to look for and print messages on the pipe:
 FOR (;;)
 {
 EXEC SQL EXECUTE
 DECLARE
 len INTEGER;
 typ INTEGER;
 sta INTEGER;
 chr VARCHAR2(2000);
 BEGIN
 chr := '';

Using DBMS_PIPE

DBMS_PIPE 63-7

 sta := dbms_pipe.receive_message('plsql_debug');
 IF sta = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(len);
 DBMS_PIPE.UNPACK_MESSAGE(chr);
 END IF;
 :status := sta;
 :retval := chr;
 IF len IS NOT NULL THEN
 :msg_length := len;
 ELSE
 :msg_length := 2000;
 END IF;
 END;
 END-EXEC;
 IF (status == 0)
 printf("\n%.*s\n", msg_length, retval);
 ELSE
 printf("abnormal status, value is %d\n", status);
 }
}

void sql_error()
{
 char msg[1024];
 int rlen, len;
 len = sizeof(msg);
 sqlglm(msg, &len, &rlen);
 printf("ORACLE ERROR\n");
 printf("%.*s\n", rlen, msg);
 exit(1);
}

Example 2: Execute System Commands
This example shows PL/SQL and Pro*C code let a PL/SQL stored procedure (or
anonymous block) call PL/SQL procedures to send commands over a pipe to a
Pro*C program that is listening for them.

The Pro*C program sleeps and waits for a message to arrive on the named pipe.
When a message arrives, the Pro*C program processes it, carrying out the required
action, such as executing a UNIX command through the system() call or executing a
SQL command using embedded SQL.

DAEMON.SQL is the source code for the PL/SQL package. This package contains
procedures that use the DBMS_PIPE package to send and receive message to and

Examples

63-8 PL/SQL Packages and Types Reference

from the Pro*C daemon. Note that full handshaking is used. The daemon always
sends a message back to the package (except in the case of the STOP command).
This is valuable, because it allows the PL/SQL procedures to be sure that the Pro*C
daemon is running.

You can call the DAEMON packaged procedures from an anonymous PL/SQL
block using SQL*Plus or Enterprise Manager. For example:

SQLPLUS> variable rv number
SQLPLUS> execute :rv := DAEMON.EXECUTE_SYSTEM('ls -la');

On a UNIX system, this causes the Pro*C daemon to execute the command
system("ls -la").

Remember that the daemon needs to be running first. You might want to run it in
the background, or in another window beside the SQL*Plus or Enterprise Manager
session from which you call it.

The DAEMON.SQL also uses the DBMS_OUTPUT package to display the results. For
this example to work, you must have execute privileges on this package.

DAEMON.SQL Example. This is the code for the PL/SQL DAEMON package:

CREATE OR REPLACE PACKAGE daemon AS
 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 PROCEDURE stop(timeout NUMBER DEFAULT 10);
END daemon;
/
CREATE OR REPLACE PACKAGE BODY daemon AS

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;
 pipe_name VARCHAR2(30);
 BEGIN

Using DBMS_PIPE

DBMS_PIPE 63-9

 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

 DBMS_PIPE.PACK_MESSAGE('SYSTEM');
 DBMS_PIPE.PACK_MESSAGE(pipe_name);
 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20010,
 'Execute_system: Error while sending. Status = ' ||
 status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20011,
 'Execute_system: Error while receiving.
 Status = ' || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> 'done' THEN
 RAISE_APPLICATION_ERROR(-20012,
 'Execute_system: Done not received.');
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE('System command executed. result = ' ||
 command_code);
 RETURN command_code;
 END execute_system;

 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;
 pipe_name VARCHAR2(30);

 BEGIN
 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

 DBMS_PIPE.PACK_MESSAGE('SQL');
 DBMS_PIPE.PACK_MESSAGE(pipe_name);

Examples

63-10 PL/SQL Packages and Types Reference

 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20020,
 'Execute_sql: Error while sending. Status = ' || status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);

 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20021,
 'execute_sql: Error while receiving.
 Status = ' || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> 'done' THEN
 RAISE_APPLICATION_ERROR(-20022,
 'execute_sql: done not received.');
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE
 ('SQL command executed. sqlcode = ' || command_code);
 RETURN command_code;
 END execute_sql;

 PROCEDURE stop(timeout NUMBER DEFAULT 10) IS
 status NUMBER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('STOP');
 status := DBMS_PIPE.SEND_MESSAGE('daemon', timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20030,
 'stop: error while sending. status = ' || status);
 END IF;
 END stop;
END daemon;

daemon.pc Example. This is the code for the Pro*C daemon. You must precompile
this using the Pro*C Precompiler, Version 1.5.x or later. You must also specify the
USERID and SQLCHECK options, as the example contains embedded PL/SQL code.

Using DBMS_PIPE

DBMS_PIPE 63-11

proc iname=daemon userid=scott/tiger sqlcheck=semantics

Then C-compile and link in the normal way.

#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char *uid = "scott/tiger";
 int status;
 VARCHAR command[20];
 VARCHAR value[2000];
 VARCHAR return_name[30];
EXEC SQL END DECLARE SECTION;

void
connect_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf("Daemon error while connecting:\n");
 printf("%.*s\n", msg_length, msg_buffer);
 printf("Daemon quitting.\n");
 exit(1);
}

void
sql_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

Note: To use a VARCHAR output host variable in a PL/SQL
block, you must initialize the length component before entering the
block.

Examples

63-12 PL/SQL Packages and Types Reference

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf("Daemon error while executing:\n");
 printf("%.*s\n", msg_length, msg_buffer);
 printf("Daemon continuing.\n");
}
main()
{
command.len = 20; /*initialize length components*/
value.len = 2000;
return_name.len = 30;
 EXEC SQL WHENEVER SQLERROR DO connect_error();
 EXEC SQL CONNECT :uid;
 printf("Daemon connected.\n");

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 printf("Daemon waiting...\n");
 while (1) {
 EXEC SQL EXECUTE
 BEGIN
 :status := DBMS_PIPE.RECEIVE_MESSAGE('daemon');
 IF :status = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(:command);
 END IF;
 END;
 END-EXEC;
 IF (status == 0)
 {
 command.arr[command.len] = '\0';
 IF (!strcmp((char *) command.arr, "STOP"))
 {
 printf("Daemon exiting.\n");
 break;
 }

 ELSE IF (!strcmp((char *) command.arr, "SYSTEM"))
 {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = '\0';
 printf("Will execute system command '%s'\n", value.arr);

Using DBMS_PIPE

DBMS_PIPE 63-13

 status = system(value.arr);
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('done');
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 IF (status)
 {
 printf
 ("Daemon error while responding to system command.");
 printf(" status: %d\n", status);
 }
 }
 ELSE IF (!strcmp((char *) command.arr, "SQL")) {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = '\0';
 printf("Will execute sql command '%s'\n", value.arr);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL EXECUTE IMMEDIATE :value;
 status = sqlca.sqlcode;

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.PACK_MESSAGE('done');
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 IF (status)
 {
 printf("Daemon error while responding to sql command.");
 printf(" status: %d\n", status);
 }

Examples

63-14 PL/SQL Packages and Types Reference

 }
 ELSE
 {
 printf
 ("Daemon error: invalid command '%s' received.\n",
 command.arr);
 }
 }
 ELSE
 {
 printf("Daemon error while waiting for signal.");
 printf(" status = %d\n", status);
 }
 }
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);

Example 3: External Service Interface
Put the user-written 3GL code into an OCI or Precompiler program. The program
connects to the database and executes PL/SQL code to read its request from the
pipe, computes the result, and then executes PL/SQL code to send the result on a
pipe back to the requestor.

Below is an example of a stock service request. The recommended sequence for the
arguments to pass on the pipe for all service requests is:

 protocol_version VARCHAR2 - '1', 10 bytes or less
 returnpipe VARCHAR2 - 30 bytes or less
 service VARCHAR2 - 30 bytes or less
 arg1 VARCHAR2/NUMBER/DATE
 ...
 argn VARCHAR2/NUMBER/DATE

The recommended format for returning the result is:

 success VARCHAR2 - 'SUCCESS' if OK,
 otherwise error message
 arg1 VARCHAR2/NUMBER/DATE
 ...
 argn VARCHAR2/NUMBER/DATE

The "stock price request server" would do, using OCI or PRO* (in pseudo-code):

 <loop forever>
 BEGIN dbms_stock_server.get_request(:stocksymbol); END;

Using DBMS_PIPE

DBMS_PIPE 63-15

 <figure out price based on stocksymbol (probably from some radio
 signal), set error if can't find such a stock>
 BEGIN dbms_stock_server.return_price(:error, :price); END;

A client would do:

 BEGIN :price := stock_request('YOURCOMPANY'); end;

The stored procedure, dbms_stock_server, which is called by the preceding
"stock price request server" is:

 CREATE OR REPLACE PACKAGE dbms_stock_server IS
 PROCEDURE get_request(symbol OUT VARCHAR2);
 PROCEDURE return_price(errormsg IN VARCHAR2, price IN VARCHAR2);
 END;

 CREATE OR REPLACE PACKAGE BODY dbms_stock_server IS
 returnpipe VARCHAR2(30);

 PROCEDURE returnerror(reason VARCHAR2) IS
 s INTEGER;
 BEGIN
 dbms_pipe.pack_message(reason);
 s := dbms_pipe.send_message(returnpipe);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:' || to_char(s) ||
 ' sending on pipe');
 END IF;
 END;

 PROCEDURE get_request(symbol OUT VARCHAR2) IS
 protocol_version VARCHAR2(10);
 s INTEGER;
 service VARCHAR2(30);
 BEGIN
 s := dbms_pipe.receive_message('stock_service');
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:' || to_char(s) ||
 'reading pipe');
 END IF;
 dbms_pipe.unpack_message(protocol_version);
 IF protocol_version <> '1' THEN
 raise_application_error(-20000, 'Bad protocol: ' ||
 protocol_version);
 END IF;

Examples

63-16 PL/SQL Packages and Types Reference

 dbms_pipe.unpack_message(returnpipe);
 dbms_pipe.unpack_message(service);
 IF service != 'getprice' THEN
 returnerror('Service ' || service || ' not supported');
 END IF;
 dbms_pipe.unpack_message(symbol);
 END;

 PROCEDURE return_price(errormsg in VARCHAR2, price in VARCHAR2) IS
 s INTEGER;
 BEGIN
 IF errormsg is NULL THEN
 dbms_pipe.pack_message('SUCCESS');
 dbms_pipe.pack_message(price);
 ELSE
 dbms_pipe.pack_message(errormsg);
 END IF;
 s := dbms_pipe.send_message(returnpipe);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||
 ' sending on pipe');
 END IF;
 END;
 END;

The procedure called by the client is:

 CREATE OR REPLACE FUNCTION stock_request (symbol VARCHAR2)
 RETURN VARCHAR2 IS
 s INTEGER;
 price VARCHAR2(20);
 errormsg VARCHAR2(512);
 BEGIN
 dbms_pipe.pack_message('1'); -- protocol version
 dbms_pipe.pack_message(dbms_pipe.unique_session_name); -- return pipe
 dbms_pipe.pack_message('getprice');
 dbms_pipe.pack_message(symbol);
 s := dbms_pipe.send_message('stock_service');
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||
 ' sending on pipe');
 END IF;
 s := dbms_pipe.receive_message(dbms_pipe.unique_session_name);
 IF s <> 0 THEN
 raise_application_error(-20000, 'Error:'||to_char(s)||

Using DBMS_PIPE

DBMS_PIPE 63-17

 ' receiving on pipe');
 END IF;
 dbms_pipe.unpack_message(errormsg);
 IF errormsg <> 'SUCCESS' THEN
 raise_application_error(-20000, errormsg);
 END IF;
 dbms_pipe.unpack_message(price);
 RETURN price;
 END;

You would typically only grant execute on dbms_stock_service to the stock
service application server, and would only grant execute on stock_request to
those users allowed to use the service.

See Also: Chapter 13, "DBMS_ALERT"

Summary of DBMS_PIPE Subprograms

63-18 PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms

Table 63–2 DBMS_PIPE Package Subprograms

Subprogram Description

CREATE_PIPE Function on
page 63-19

Creates a pipe (necessary for private pipes)

PACK_MESSAGE Procedures on
page 63-21

Builds message in local buffer

SEND_MESSAGE Function on
page 63-23

Sends message on named pipe: This implicitly creates a
public pipe if the named pipe does not exist

RECEIVE_MESSAGE Function on
page 63-26

Copies message from named pipe into local buffer

NEXT_ITEM_TYPE Function on
page 63-28

Returns datatype of next item in buffer

UNPACK_MESSAGE Procedures
on page 63-29

Accesses next item in buffer

REMOVE_PIPE Function on
page 63-31

Removes the named pipe

PURGE Procedure on page 63-33 Purges contents of named pipe

RESET_BUFFER Procedure on
page 63-34

Purges contents of local buffer

UNIQUE_SESSION_NAME
Function on page 63-35

Returns unique session name

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-19

CREATE_PIPE Function

This function explicitly creates a public or private pipe. If the private flag is TRUE,
then the pipe creator is assigned as the owner of the private pipe.

Explicitly-created pipes can only be removed by calling REMOVE_PIPE, or by
shutting down the instance.

Syntax
DBMS_PIPE.CREATE_PIPE (
 pipename IN VARCHAR2,
 maxpipesize IN INTEGER DEFAULT 8192,
 private IN BOOLEAN DEFAULT TRUE)
RETURN INTEGER;

Pragmas
pragma restrict_references(create_pipe,WNDS,RNDS);

Parameters

Table 63–3 CREATE_PIPE Function Parameters

Parameter Description

pipename Name of the pipe you are creating.

You must use this name when you call SEND_MESSAGE and
RECEIVE_MESSAGE. This name must be unique across the
instance.

Caution: Do not use pipe names beginning with ORA$. These
are reserved for use by procedures provided by Oracle.
Pipename should not be longer than 128 bytes, and is case
insensitive. At this time, the name cannot contain Globalization
Support characters.

CREATE_PIPE Function

63-20 PL/SQL Packages and Types Reference

Return Values

Exceptions

maxpipesize The maximum size allowed for the pipe, in bytes.

The total size of all of the messages on the pipe cannot exceed
this amount. The message is blocked if it exceeds this
maximum. The default maxpipesize is 8192 bytes.

The maxpipesize for a pipe becomes a part of the
characteristics of the pipe and persists for the life of the pipe.
Callers of SEND_MESSAGE with larger values cause the
maxpipesize to be increased. Callers with a smaller value use
the existing, larger value.

private Uses the default, TRUE, to create a private pipe.

Public pipes can be implicitly created when you call SEND_
MESSAGE.

Table 63–4 CREATE_PIPE Function Return Values

Return Description

0 Successful.

If the pipe already exists and the user attempting to create it is
authorized to use it, then Oracle returns 0, indicating success,
and any data already in the pipe remains.

If a user connected as SYSDBA/SYSOPER re-creates a pipe,
then Oracle returns status 0, but the ownership of the pipe
remains unchanged.

ORA-23322 Failure due to naming conflict.

If a pipe with the same name exists and was created by a
different user, then Oracle signals error ORA-23322, indicating
the naming conflict.

Table 63–5 CREATE_PIPE Function Exception

Exception Description

Null pipe name Permission error: Pipe with the same name already exists, and
you are not allowed to use it.

Table 63–3 (Cont.) CREATE_PIPE Function Parameters

Parameter Description

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-21

PACK_MESSAGE Procedures

This procedure builds your message in the local message buffer. To send a message,
first make one or more calls to PACK_MESSAGE. Then, call SEND_MESSAGE to send
the message in the local buffer on the named pipe.

The procedure is overloaded to accept items of type VARCHAR2, NCHAR, NUMBER,
DATE., RAW and ROWID items. In addition to the data bytes, each item in the buffer
requires one byte to indicate its type, and two bytes to store its length. One
additional byte is needed to terminate the message.The overhead for all types other
than VARCHAR is 4 bytes.

Syntax
DBMS_PIPE.PACK_MESSAGE (
 item IN VARCHAR2);

DBMS_PIPE.PACK_MESSAGE (
 item IN NCHAR);

DBMS_PIPE.PACK_MESSAGE (
 item IN NUMBER);

DBMS_PIPE.PACK_MESSAGE (
 item IN DATE);

DBMS_PIPE.PACK_MESSAGE_RAW (
 item IN RAW);

DBMS_PIPE.PACK_MESSAGE_ROWID (
 item IN ROWID);

Pragmas
pragma restrict_references(pack_message,WNDS,RNDS);
pragma restrict_references(pack_message_raw,WNDS,RNDS);
pragma restrict_references(pack_message_rowid,WNDS,RNDS);

PACK_MESSAGE Procedures

63-22 PL/SQL Packages and Types Reference

Parameters

Usage Notes
In Oracle database version 8.x, the char-set-id (2 bytes) and the char-set-form (1
byte) are stored with each data item. Therefore, the overhead when using Oracle
database version 8.x is 7 bytes.

When you call SEND_MESSAGE to send this message, you must indicate the name of
the pipe on which you want to send the message. If this pipe already exists, then
you must have sufficient privileges to access this pipe. If the pipe does not already
exist, then it is created automatically.

Exceptions
ORA-06558 is raised if the message buffer overflows (currently 4096 bytes). Each
item in the buffer takes one byte for the type, two bytes for the length, plus the
actual data. There is also one byte needed to terminate the message.

Table 63–6 PACK_MESSAGE Procedure Parameters

Parameter Description

item Item to pack into the local message buffer.

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-23

SEND_MESSAGE Function

This function sends a message on the named pipe.

The message is contained in the local message buffer, which was filled with calls to
PACK_MESSAGE. You can create a pipe explicitly using CREATE_PIPE, otherwise, it
is created implicitly.

Syntax
DBMS_PIPE.SEND_MESSAGE (
 pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT MAXWAIT,
 maxpipesize IN INTEGER DEFAULT 8192)
 RETURN INTEGER;

Pragmas
pragma restrict_references(send_message,WNDS,RNDS);

Parameters

Table 63–7 SEND_MESSAGE Function Parameters

Parameter Description

pipename Name of the pipe on which you want to place the message.

If you are using an explicit pipe, then this is the name that you
specified when you called CREATE_PIPE.

Caution: Do not use pipe names beginning with 'ORA$'. These
names are reserved for use by procedures provided by Oracle.
Pipename should not be longer than 128 bytes, and is
case-insensitive. At this time, the name cannot contain
Globalization Support characters.

timeout Time to wait while attempting to place a message on a pipe, in
seconds.

The default value is the constant MAXWAIT, which is defined as
86400000 (1000 days).

SEND_MESSAGE Function

63-24 PL/SQL Packages and Types Reference

Return Values

maxpipesize Maximum size allowed for the pipe, in bytes.

The total size of all the messages on the pipe cannot exceed this
amount. The message is blocked if it exceeds this maximum.
The default is 8192 bytes.

The maxpipesize for a pipe becomes a part of the
characteristics of the pipe and persists for the life of the pipe.
Callers of SEND_MESSAGE with larger values cause the
maxpipesize to be increased. Callers with a smaller value
simply use the existing, larger value.

Specifying maxpipesize as part of the SEND_MESSAGE
procedure eliminates the need for a separate call to open the
pipe. If you created the pipe explicitly, then you can use the
optional maxpipesize parameter to override the creation
pipe size specifications.

Table 63–8 SEND_MESSAGE Function Return Values

Return Description

0 Success.

If the pipe already exists and the user attempting to create it is
authorized to use it, then Oracle returns 0, indicating success, and
any data already in the pipe remains.

If a user connected as SYSDBS/SYSOPER re-creates a pipe, then
Oracle returns status 0, but the ownership of the pipe remains
unchanged.

1 Timed out.

This procedure can timeout either because it cannot get a lock on
the pipe, or because the pipe remains too full to be used. If the
pipe was implicitly-created and is empty, then it is removed.

3 An interrupt occurred.

If the pipe was implicitly created and is empty, then it is removed.

ORA-23322 Insufficient privileges.

If a pipe with the same name exists and was created by a different
user, then Oracle signals error ORA-23322, indicating the naming
conflict.

Table 63–7 (Cont.) SEND_MESSAGE Function Parameters

Parameter Description

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-25

Exceptions

Table 63–9 SEND_MESSAGE Function Exception

Exception Description

Null pipe name Permission error. Insufficient privilege to write to the pipe. The
pipe is private and owned by someone else.

RECEIVE_MESSAGE Function

63-26 PL/SQL Packages and Types Reference

RECEIVE_MESSAGE Function

This function copies the message into the local message buffer.

Syntax
DBMS_PIPE.RECEIVE_MESSAGE (
 pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT maxwait)
RETURN INTEGER;

Pragmas
pragma restrict_references(receive_message,WNDS,RNDS);

Parameters

Return Values

Table 63–10 RECEIVE_MESSAGE Function Parameters

Parameter Description

pipename Name of the pipe on which you want to receive a message.

Names beginning with ORA$ are reserved for use by Oracle

timeout Time to wait for a message, in seconds.

The default value is the constant MAXWAIT, which is defined as
86400000 (1000 days). A timeout of 0 lets you read without
blocking.

Table 63–11 RECEIVE_MESSAGE Function Return Values

Return Description

0 Success

1 Timed out. If the pipe was implicitly-created and is empty,
then it is removed.

2 Record in the pipe is too large for the buffer. (This should not
happen.)

3 An interrupt occurred.

ORA-23322 User has insufficient privileges to read from the pipe.

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-27

Usage Notes
To receive a message from a pipe, first call RECEIVE_MESSAGE. When you receive a
message, it is removed from the pipe; hence, a message can only be received once.
For implicitly-created pipes, the pipe is removed after the last record is removed
from the pipe.

If the pipe that you specify when you call RECEIVE_MESSAGE does not already
exist, then Oracle implicitly creates the pipe and waits to receive the message. If the
message does not arrive within a designated timeout interval, then the call returns
and the pipe is removed.

After receiving the message, you must make one or more calls to UNPACK_MESSAGE
to access the individual items in the message. The UNPACK_MESSAGE procedure is
overloaded to unpack items of type DATE, NUMBER, VARCHAR2, and there are two
additional procedures to unpack RAW and ROWID items. If you do not know the type
of data that you are attempting to unpack, then call NEXT_ITEM_TYPE to determine
the type of the next item in the buffer.

Exceptions

Table 63–12 RECEIVE_MESSAGE Function Exceptions

Exception Description

Null pipe name Permission error. Insufficient privilege to remove the record
from the pipe. The pipe is owned by someone else.

NEXT_ITEM_TYPE Function

63-28 PL/SQL Packages and Types Reference

NEXT_ITEM_TYPE Function

This function determines the datatype of the next item in the local message buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, call NEXT_ITEM_TYPE.

Syntax
DBMS_PIPE.NEXT_ITEM_TYPE
 RETURN INTEGER;

Pragmas
pragma restrict_references(next_item_type,WNDS,RNDS);

Return Values

Table 63–13 NEXT_ITEM_TYPE Function Return Values

Return Description

0 No more items

6 NUMBER

9 VARCHAR2

11 ROWID

12 DATE

23 RAW

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-29

UNPACK_MESSAGE Procedures

This procedure retrieves items from the buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, call UNPACK_MESSAGE.

Syntax
DBMS_PIPE.UNPACK_MESSAGE (
 item OUT VARCHAR2);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT NCHAR);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT NUMBER);

DBMS_PIPE.UNPACK_MESSAGE (
 item OUT DATE);

DBMS_PIPE.UNPACK_MESSAGE_RAW (
 item OUT RAW);

DBMS_PIPE.UNPACK_MESSAGE_ROWID (
 item OUT ROWID);

Pragmas
pragma restrict_references(unpack_message,WNDS,RNDS);
pragma restrict_references(unpack_message_raw,WNDS,RNDS);
pragma restrict_references(unpack_message_rowid,WNDS,RNDS);

Note: The UNPACK_MESSAGE procedure is overloaded to return
items of type VARCHAR2, NCHAR, NUMBER, or DATE. There are two
additional procedures to unpack RAW and ROWID items.

UNPACK_MESSAGE Procedures

63-30 PL/SQL Packages and Types Reference

Parameters

Exceptions
ORA-06556 or 06559 are generated if the buffer contains no more items, or if the
item is not of the same type as that requested.

Table 63–14 UNPACK_MESSAGE Procedure Parameters

Parameter Description

item Argument to receive the next unpacked item from the local
message buffer.

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-31

REMOVE_PIPE Function

This function removes explicitly-created pipes.

Pipes created implicitly by SEND_MESSAGE are automatically removed when
empty. However, pipes created explicitly by CREATE_PIPE are removed only by
calling REMOVE_PIPE, or by shutting down the instance. All unconsumed records
in the pipe are removed before the pipe is deleted.

This is similar to calling PURGE on an implicitly-created pipe.

Syntax
DBMS_PIPE.REMOVE_PIPE (
 pipename IN VARCHAR2)
RETURN INTEGER;

Pragmas
pragma restrict_references(remove_pipe,WNDS,RNDS);

Parameters

Return Values

Table 63–15 REMOVE_PIPE Function Parameters

Parameter Description

pipename Name of pipe that you want to remove.

Table 63–16 REMOVE_PIPE Function Return Values

Return Description

0 Success

If the pipe does not exist, or if the pipe already exists and the
user attempting to remove it is authorized to do so, then Oracle
returns 0, indicating success, and any data remaining in the
pipe is removed.

ORA-23322 Insufficient privileges.

If the pipe exists, but the user is not authorized to access the
pipe, then Oracle signals error ORA-23322, indicating
insufficient privileges.

REMOVE_PIPE Function

63-32 PL/SQL Packages and Types Reference

Exceptions

Table 63–17 REMOVE_PIPE Function Exception

Exception Description

Null pipe name Permission error: Insufficient privilege to remove pipe. The
pipe was created and is owned by someone else.

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-33

PURGE Procedure

This procedure empties the contents of the named pipe.

An empty implicitly-created pipe is aged out of the shared global area according to
the least-recently-used algorithm. Thus, calling PURGE lets you free the memory
associated with an implicitly-created pipe.

Syntax
DBMS_PIPE.PURGE (
 pipename IN VARCHAR2);

Pragmas
pragma restrict_references(purge,WNDS,RNDS);

Parameters

Usage Notes
Because PURGE calls RECEIVE_MESSAGE, the local buffer might be overwritten
with messages as they are purged from the pipe. Also, you can receive an
ORA-23322 (insufficient privileges) error if you attempt to purge a pipe with which
you have insufficient access rights.

Exceptions
Permission error if pipe belongs to another user.

Table 63–18 PURGE Procedure Parameters

Parameter Description

pipename Name of pipe from which to remove all messages.

The local buffer may be overwritten with messages as they are
discarded. Pipename should not be longer than 128 bytes, and
is case-insensitive.

RESET_BUFFER Procedure

63-34 PL/SQL Packages and Types Reference

RESET_BUFFER Procedure

This procedure resets the PACK_MESSAGE and UNPACK_MESSAGE positioning
indicators to 0.

Because all pipes share a single buffer, you may find it useful to reset the buffer
before using a new pipe. This ensures that the first time you attempt to send a
message to your pipe, you do not inadvertently send an expired message remaining
in the buffer.

Syntax
DBMS_PIPE.RESET_BUFFER;

Pragmas
pragma restrict_references(reset_buffer,WNDS,RNDS);

Summary of DBMS_PIPE Subprograms

DBMS_PIPE 63-35

UNIQUE_SESSION_NAME Function

This function receives a name that is unique among all of the sessions that are
currently connected to a database.

Multiple calls to this function from the same session always return the same value.
You might find it useful to use this function to supply the PIPENAME parameter for
your SEND_MESSAGE and RECEIVE_MESSAGE calls.

Syntax
DBMS_PIPE.UNIQUE_SESSION_NAME
 RETURN VARCHAR2;

Pragmas
pragma restrict_references(unique_session_name,WNDS,RNDS,WNPS);

Return Values
This function returns a unique name. The returned name can be up to 30 bytes.

UNIQUE_SESSION_NAME Function

63-36 PL/SQL Packages and Types Reference

DBMS_PROFILER 64-1

64
DBMS_PROFILER

The DBMS_PROFILER package provides an interface to profile existing PL/SQL
applications and identify performance bottlenecks. You can then collect and
persistently store the PL/SQL profiler data.

This chapter contains the following topics:

■ Using DBMS_PROFILER

■ Overview

■ Security Model

■ Operational Notes

■ Exceptions

■ Summary of DBMS_PROFILER Subprograms

Using DBMS_PROFILER

64-2 PL/SQL Packages and Types Reference

Using DBMS_PROFILER

■ Overview

■ Security Model

■ Operational Notes

■ Exceptions

Overview

This package enables the collection of profiler (perfoprmance) data for performance
improvement or for determining code coverage for PL/SQL applications.
Application developers can use code coverage data to focus their incremental
testing efforts.

With this interface, you can generate profiling information for all named library
units that are executed in a session. The profiler gathers information at the PL/SQL
virtual machine level. This information includes the total number of times each line
has been executed, the total amount of time that has been spent executing that line,
and the minimum and maximum times that have been spent on a particular
execution of that line.

The profiling information is stored in database tables. This enables querying on the
data: you can build customizable reports (summary reports, hottest lines, code
coverage data, and so on. And you can analyze the data.

The PROFTAB.SQL script creates tables with the columns, datatypes, and
definitions as shown in Table 64–1, Table 64–2, and Table 64–3.

Note: It is possible to infer the code coverage figures for PL/SQL
units for which data has been collected.

Table 64–1 Columns in Table PLSQL_PROFILER_RUNS

Column Datatype Definition

runid NUMBER PRIMARY
KEY

Unique run identifier from plsql_profiler_
runnumber

related_run NUMBER Runid of related run (for client/server correlation)

Using DBMS_PROFILER

DBMS_PROFILER 64-3

run_owner VARCHAR2(32), User who started run

run_date DATE Start time of run

run_comment VARCHAR2(2047) User provided comment for this run

run_total_
time

NUMBER Elapsed time for this run in nanoseconds

run_system_
info

VARCHAR2(2047) Currently unused

run_comment1 VARCHAR2(2047) Additional comment

spare1 VARCHAR2(256) Unused

Table 64–2 Columns in Table PLSQL_PROFILER_UNITS

Column Datatype Definition

runid NUMBER Primary key, references plsql_profiler_runs,

unit_number NUMBER Primary key, internally generated library unit #

unit_type VARCHAR2(32) Library unit type

unit_owner VARCHAR2(32) Library unit owner name

unit_name VARCHAR2(32) Library unit name timestamp on library unit

unit_
timestamp

DATE In the future will be used to detect changes to unit
between runs

total_time NUMBER Total time spent in this unit in nanoseconds. The profiler
does not set this field, but it is provided for the
convenience of analysis tools.

 spare1 NUMBER Unused

 spare2 NUMBER Unused

Table 64–3 Columns in Table PLSQL_PROFILER_DATA

Column Datatype Definition

runid NUMBER Primary key, unique (generated) run identifier

unit_number NUMBER Primary key, internally generated library unit number

Table 64–1 (Cont.) Columns in Table PLSQL_PROFILER_RUNS

Column Datatype Definition

Security Model

64-4 PL/SQL Packages and Types Reference

With Oracle database version 8.x, a sample textual report writer(profrep.sql) is
provided with the PL/SQL demo scripts.

Security Model

The profiler only gathers data for units for which a user has CREATE privilege; you
cannot use the package to profile units for which EXECUTE ONLY access has been
granted. In general, if a user can debug a unit, the same user can profile it.
However, a unit can be profiled whether or not it has been compiled DEBUG. Oracle
advises that modules that are being profiled should be compiled DEBUG, since this
provides additional information about the unit in the database.

Operational Notes

■ Typical Run

■ Two Methods of Exception Generation

line# NUMBER Primary key, not null, line number in unit

total_occur NUMBER Number of times line was executed

total_time NUMBER Total time spent executing line in nanoseconds

min_time NUMBER Minimum execution time for this line in nanoseconds

max_time NUMBER Maximum execution time for this line in nanoseconds

spare1 NUMBER Unused

spare2 NUMBER Unused

spare3 NUMBER Unused

spare4 NUMBER Unused

Note: DBMS_PROFILER treats any program unit that is compiled
in NATIVE mode as if you do not have CREATE privilege, that is,
you will not get any output.

Table 64–3 (Cont.) Columns in Table PLSQL_PROFILER_DATA

Column Datatype Definition

Using DBMS_PROFILER

DBMS_PROFILER 64-5

Typical Run
Improving application performance is an iterative process. Each iteration involves
the following steps:

1. Running the application with one or more benchmark tests with profiler data
collection enabled.

2. Analyzing the profiler data and identifying performance problems.

3. Fixing the problems.

The PL/SQL profiler supports this process using the concept of a "run". A run
involves running the application through benchmark tests with profiler data
collection enabled. You can control the beginning and the ending of a run by calling
the START_PROFILER and STOP_PROFILER functions.

A typical run involves:

■ Starting profiler data collection in the run.

■ Executing PL/SQL code for which profiler and code coverage data is required.

■ Stopping profiler data collection, which writes the collected data for the run
into database tables

As the application executes, profiler data is collected in memory data structures that
last for the duration of the run. You can call the FLUSH_DATA function at
intermediate points during the run to get incremental data and to free memory for
allocated profiler data structures.

Flushing the collected data involves storing collected data in database tables. The
tables should already exist in the profiler user's schema. The PROFTAB.SQL script
creates the tables and other data structures required for persistently storing the
profiler data.

Note that running PROFTAB.SQL drops the current tables. The PROFTAB.SQL
script is in the RDBMS/ADMIN directory. Some PL/SQL operations, such as the first
execution of a PL/SQL unit, may involve I/O to catalog tables to load the byte code

Note: The collected profiler data is not automatically stored when
the user disconnects. You must issue an explicit call to the FLUSH_
DATA or the STOP_PROFILER function to store the data at the end
of the session. Stopping data collection stores the collected data.

Operational Notes

64-6 PL/SQL Packages and Types Reference

for the PL/SQL unit being executed. Also, it may take some time executing package
initialization code the first time a package procedure or function is called.

To avoid timing this overhead, "warm up" the database before collecting profile data.
To do this, run the application once without gathering profiler data.

You can allow profiling across all users of a system, for example, to profile all users
of a package, independent of who is using it. In such cases, the SYSADMIN should
use a modified PROFLOAD.SQL script which:

■ Creates the profiler tables and sequence

■ Grants SELECT/INSERT/UPDATE on those tables and sequence to all users

■ Defines public synonyms for the tables and sequence

Two Methods of Exception Generation
Each routine in this package has two versions that allow you to determine how
errors are reported.

■ A function that returns success/failure as a status value and will never raise an
exception

■ A procedure that returns normally if it succeeds and raises an exception if it
fails

In each case, the parameters of the function and procedure are identical. Only the
method by which errors are reported differs. If there is an error, there is a
correspondence between the error codes that the functions return, and the
exceptions that the procedures raise.

To avoid redundancy, the following section only provides details about the
functional form.

Note: Do not alter the actual fields of the tables.

See Also: "FLUSH_DATA Function and Procedure" on page 64-9.

Using DBMS_PROFILER

DBMS_PROFILER 64-7

Exceptions

Table 64–4 DBMS_PROFILER Exceptions

A 0 return value from any function denotes successful completion; a nonzero return
value denotes an error condition. The possible errors are as follows:

■ 'A subprogram was called with an incorrect parameter.'

 error_param constant binary_integer := 1;

■ 'Data flush operation failed. Check whether the profiler tables have been
created, are accessible, and that there is adequate space.'

 error_io constant binary_integer := 2;

■ There is a mismatch between package and database implementation. Oracle
returns this error if an incorrect version of the DBMS_PROFILER package is
installed, and if the version of the profiler package cannot work with this
database version. The only recovery is to install the correct version of the
package.

 error_version constant binary_integer := -1;

Exception Description

version_mismatch Corresponds to error_version.

profiler_error Corresponds to either "error_param" or "error_io".

Summary of DBMS_PROFILER Subprograms

64-8 PL/SQL Packages and Types Reference

Summary of DBMS_PROFILER Subprograms

Table 64–5 DBMS_PROFILER Package Subprograms

Subprogram Description

FLUSH_DATA Function
and Procedure on
page 64-9

Flushes profiler data collected in the user's session

GET_VERSION Procedure
on page 64-10

Gets the version of this API

INTERNAL_VERSION_
CHECK Function on
page 64-11

Verifies that this version of the DBMS_PROFILER package can
work with the implementation in the database

PAUSE_PROFILER
Function and Procedure
on page 64-12

Pauses profiler data collection

RESUME_PROFILER
Function and Procedure
on page 64-13

Resumes profiler data collection

START_PROFILER
Functions and Procedures
on page 64-14

Starts profiler data collection in the user's session

STOP_PROFILER
Function and Procedure
on page 64-15

Stops profiler data collection in the user's session

Summary of DBMS_PROFILER Subprograms

DBMS_PROFILER 64-9

FLUSH_DATA Function and Procedure

This function flushes profiler data collected in the user's session. The data is flushed
to database tables, which are expected to preexist.

Syntax
DBMS_PROFILER.FLUSH_DATA
 RETURN BINARY_INTEGER;

DBMS_PROFILER.FLUSH_DATA;

Note: Use the PROFTAB.SQL script to create the tables and other
data structures required for persistently storing the profiler data.

GET_VERSION Procedure

64-10 PL/SQL Packages and Types Reference

GET_VERSION Procedure

This procedure gets the version of this API.

Syntax
DBMS_PROFILER.GET_VERSION (
 major OUT BINARY_INTEGER,
 minor OUT BINARY_INTEGER);

Parameters

Table 64–6 GET_VERSION Procedure Parameters

Parameter Description

major Major version of DBMS_PROFILER.

minor Minor version of DBMS_PROFILER.

Summary of DBMS_PROFILER Subprograms

DBMS_PROFILER 64-11

INTERNAL_VERSION_CHECK Function

This function verifies that this version of the DBMS_PROFILER package can work
with the implementation in the database.

Syntax
DBMS_PROFILER.INTERNAL_VERSION_CHECK
 RETURN BINARY_INTEGER;

PAUSE_PROFILER Function and Procedure

64-12 PL/SQL Packages and Types Reference

PAUSE_PROFILER Function and Procedure

This function pauses profiler data collection.

Syntax
DBMS_PROFILER.PAUSE_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.PAUSE_PROFILER;

Summary of DBMS_PROFILER Subprograms

DBMS_PROFILER 64-13

RESUME_PROFILER Function and Procedure

This function resumes profiler data collection.

Syntax
DBMS_PROFILER.RESUME_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.RESUME_PROFILER;

START_PROFILER Functions and Procedures

64-14 PL/SQL Packages and Types Reference

START_PROFILER Functions and Procedures

This function starts profiler data collection in the user's session.

There are two overloaded forms of the START_PROFILER function; one returns the
run number of the started run, as well as the result of the call. The other does not
return the run number. The first form is intended for use with GUI-based tools
controlling the profiler.

Syntax
DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='',
 run_number OUT BINARY_INTEGER)
 RETURN BINARY_INTEGER;

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='')
RETURN BINARY_INTEGER;

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='',
 run_number OUT BINARY_INTEGER);

DBMS_PROFILER.START_PROFILER(
 run_comment IN VARCHAR2 := sysdate,
 run_comment1 IN VARCHAR2 :='');

Parameters

Table 64–7 START_PROFILER Function Parameters

Parameter Description

run_comment Each profiler run can be associated with a comment. For
example, the comment could provide the name and version of
the benchmark test that was used to collect data.

run_number Stores the number of the run so you can store and later recall
the run's data.

run_comment1 Allows you to make interesting comments about the run.

Summary of DBMS_PROFILER Subprograms

DBMS_PROFILER 64-15

STOP_PROFILER Function and Procedure

This function stops profiler data collection in the user's session.

This function has the side effect of flushing data collected so far in the session, and
it signals the end of a run.

Syntax
DBMS_PROFILER.STOP_PROFILER
 RETURN BINARY_INTEGER;

DBMS_PROFILER.STOP_PROFILER;

STOP_PROFILER Function and Procedure

64-16 PL/SQL Packages and Types Reference

DBMS_PROPAGATION_ADM 65-1

65
DBMS_PROPAGATION_ADM

The DBMS_PROPAGATION_ADM package, one of a set of Streams packages, provides
administrative interfaces for configuring a propagation from a source queue to a
destination queue.

This chapter contains the following topic:

■ Summary of DBMS_PROPAGATION_ADM Subprograms

See Also: Oracle Streams Concepts and Administration and Oracle
Streams Replication Administrator's Guide for more information about
this package and propagations

Summary of DBMS_PROPAGATION_ADM Subprograms

65-2 PL/SQL Packages and Types Reference

Summary of DBMS_PROPAGATION_ADM Subprograms

Table 65–1 DBMS_PROPAGATION_ADM Package Subprograms

Subprogram Description

ALTER_PROPAGATION Procedure on
page 65-3

Adds, alters, or removes a rule set for a
propagation

CREATE_PROPAGATION Procedure
on page 65-6

Creates a propagation and specifies the source
queue, destination queue, and rule set for the
propagation

DROP_PROPAGATION Procedure on
page 65-11

Drops a propagation

Note: All procedures commit unless specified otherwise.

Summary of DBMS_PROPAGATION_ADM Subprograms

DBMS_PROPAGATION_ADM 65-3

ALTER_PROPAGATION Procedure

This procedure adds, alters, or removes a rule set for a propagation.

Syntax
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT false,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT false);

See Also: Oracle Streams Concepts and Administration and
Chapter 82, "DBMS_RULE_ADM" for more information about rules
and rule sets

ALTER_PROPAGATION Procedure

65-4 PL/SQL Packages and Types Reference

Parameters

Table 65–2 ALTER_PROPAGATION Procedure Parameters

Parameter Description

propagation_name The name of the propagation you are altering. You must
specify an existing propagation name. Do not specify an
owner.

rule_set_name The name of the positive rule set for the propagation.
The positive rule set contains the rules that instruct the
propagation to propagate events.

If you want to use a positive rule set for the propagation,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a positive rule set in the hr schema named
prop_rules, enter hr.prop_rules. If the schema is
not specified, then the current user is the default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_rule_set
parameter is set to false, then retains any existing
positive rule set. If you specify NULL and the remove_
rule_set parameter is set to true, then removes any
existing positive rule set.

remove_rule_set If true, then removes the positive rule set for the
specified propagation. If you remove a positive rule set
for a propagation, and the propagation does not have a
negative rule set, then the propagation propagates all
events.

If you remove a positive rule set for a propagation, and a
negative rule set exists for the propagation, then the
propagation propagates all events in its queue that are
not discarded by the negative rule set.

If false, then retains the positive rule set for the
specified propagation.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false.

Summary of DBMS_PROPAGATION_ADM Subprograms

DBMS_PROPAGATION_ADM 65-5

negative_rule_set_name The name of the negative rule set for the propagation.
The negative rule set contains the rules that instruct the
propagation to discard events.

If you want to use a negative rule set for the
propagation, then you must specify an existing rule set
in the form [schema_name.]rule_set_name. For
example, to specify a negative rule set in the hr schema
named neg_rules, enter hr.neg_rules. If the schema
is not specified, then the current user is the default.

An error is returned if the specified rule set does not
exist. You can create a rule set and add rules to it using
the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

If you specify NULL and the remove_negative_rule_
set parameter is set to false, then retains any existing
negative rule set. If you specify NULL and the remove_
negative_rule_set parameter is set to true, then
removes any existing negative rule set.

If you specify both a positive and a negative rule set for a
propagation, then the negative rule set is always
evaluated first.

remove_negative_rule_set If true, then removes the negative rule set for the
specified propagation. If you remove a negative rule set
for a propagation, and the propagation does not have a
positive rule set, then the propagation propagates all
events.

If you remove a negative rule set for a propagation, and
a positive rule set exists for the propagation, then the
propagation propagates all events in its queue that are
not discarded by the positive rule set.

If false, then retains the negative rule set for the
specified propagation.

If the negative_rule_set_name parameter is
non-NULL, then this parameter should be set to false.

Table 65–2 (Cont.) ALTER_PROPAGATION Procedure Parameters

Parameter Description

CREATE_PROPAGATION Procedure

65-6 PL/SQL Packages and Types Reference

CREATE_PROPAGATION Procedure

This procedure creates a propagation and specifies the source queue, destination
queue, and any rule set for the propagation. A propagation propagates events in a
local source queue to a destination queue. The destination queue may or may not be
in the same database as the source queue.

This procedure also starts propagation and establishes a default schedule for its
propagation job. The default schedule has the following properties:

■ The start time is SYSDATE().

■ The duration is NULL, which means infinite.

■ The next time is NULL, which means that propagation restarts as soon as it
finishes the current duration.

■ The latency is five seconds, which is the wait time for a message to be
propagated to a destination queue after it is enqueued into a queue with no
messages requiring propagation to the same destination queue.

Syntax
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name IN VARCHAR2,
 source_queue IN VARCHAR2,
 destination_queue IN VARCHAR2,
 destination_dblink IN VARCHAR2 DEFAULT NULL,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL);

See Also:

■ Chapter 82, "DBMS_RULE_ADM"

■ Oracle Streams Concepts and Administration

Summary of DBMS_PROPAGATION_ADM Subprograms

DBMS_PROPAGATION_ADM 65-7

Parameters

Table 65–3 CREATE_PROPAGATION Procedure Parameters

Parameter Description

propagation_name The name of the propagation you are creating. A NULL
setting is not allowed. Do not specify an owner.

Note: The propagation_name setting cannot be altered
after the propagation is created.

source_queue The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter. If the
schema is not specified, then the current user is the default.

destination_queue The name of the destination queue, specified as [schema_
name.]queue_name.

For example, to specify a destination queue named
streams_queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter. If the
schema is not specified, then the current user is the default.

destination_dblink The name of the database link that will be used by the
propagation. The database link is from the database that
contains the source queue to the database that contains the
destination queue.

If NULL, then the source queue and destination queue must
be in the same database.

Note: Connection qualifiers are not allowed.

CREATE_PROPAGATION Procedure

65-8 PL/SQL Packages and Types Reference

rule_set_name The name of the positive rule set for the propagation. The
positive rule set contains the rules that instruct the
propagation to propagate events.

If you want to use a positive rule set for the propagation,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a positive rule set in the hr schema named prop_
rules, enter hr.prop_rules. If the schema is not
specified, then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no negative rule set exists for the
propagation, then the propagation propagates all events in
its queue.

If you specify NULL, and a negative rule set exists for the
propagation, then the propagation propagates all events in
its queue that are not discarded by the negative rule set.

negative_rule_set_name The name of the negative rule set for the propagation. The
negative rule set contains the rules that instruct the
propagation to discard events.

If you want to use a negative rule set for the propagation,
then you must specify an existing rule set in the form
[schema_name.]rule_set_name. For example, to
specify a negative rule set in the hr schema named neg_
rules, enter hr.neg_rules. If the schema is not specified,
then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the DBMS_
STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no positive rule set exists for the
propagation, then the propagation propagates all events in
its queue.

If you specify NULL, and a positive rule set exists for the
propagation, then the propagation propagates all events in
its queue that are not discarded by the positive rule set.

If you specify both a positive and a negative rule set for a
propagation, then the negative rule set is always evaluated
first.

Table 65–3 (Cont.) CREATE_PROPAGATION Procedure Parameters

Parameter Description

Summary of DBMS_PROPAGATION_ADM Subprograms

DBMS_PROPAGATION_ADM 65-9

Usage Notes
If no propagation job exists for the database link specified when this procedure is
run, then a propagation job is created for use by the propagation. If a propagation
job is created, then the user who runs this procedure owns the propagation job. If a
propagation job already exists for the specified database link, then the existing
propagation job is used.

You can administer a propagation job using the following procedures in the DBMS_
AQADM package:

■ To alter the default schedule for a propagation job, use the ALTER_
PROPAGATION_SCHEDULE procedure.

■ To stop propagation, use the DISABLE_PROPAGATION_SCHEDULE procedure
and specify the source queue for the queue_name parameter and the database
link for the destination parameter.

■ To restart propagation, use the ENABLE_PROPAGATION_SCHEDULE procedure
and specify the source queue for the queue_name parameter and the database
link for the destination parameter. Restarting propagation may be necessary
if a propagation job is disabled automatically due to errors.

These types of changes affect all propagations that use the propagation job.

The user who owns the source queue is the user who propagates events. This user
must have the necessary privileges to propagate events. These privileges include
the following:

■ Execute privilege on the rule set used by the propagation

■ Execute privilege on all rule-based transformation functions used in the rule set

■ Enqueue privilege on the destination queue if the destination queue is in the
same database

If the propagation propagates events to a destination queue in a remote database,
then the owner of the source queue must be able to use the propagation's database
link and the user to which the database link connects at the remote database must
have enqueue privilege on the destination queue.

CREATE_PROPAGATION Procedure

65-10 PL/SQL Packages and Types Reference

Note:

■ Currently, a single propagation job propagates all events that
use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

■ The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

Summary of DBMS_PROPAGATION_ADM Subprograms

DBMS_PROPAGATION_ADM 65-11

DROP_PROPAGATION Procedure

This procedure drops a propagation and deletes all captured and user-enqueued
events for the destination queue in the source queue. This procedure also removes
the schedule for propagation from the source queue to the destination queue.

Syntax
DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
When you use this procedure to drop a propagation, information about rules
created for the propagation using the DBMS_STREAMS_ADM package is removed
from the data dictionary views for Streams rules. Information about such a rule is
removed even if the rule is not in either rule set for the propagation.

The following are the data dictionary views for Streams rules:

■ ALL_STREAMS_GLOBAL_RULES

Table 65–4 DROP_PROPAGATION Procedure Parameters

Parameter Description

propagation_name The name of the propagation you are dropping. You must
specify an existing propagation name. Do not specify an
owner.

drop_unused_rule_sets If true, then drops any rule sets, positive and negative, used
by the specified propagation if these rule sets are not used by
any other Streams client, which includes capture processes,
propagations, apply processes, and messaging clients. If this
procedure drops a rule set, then this procedure also drops
any rules in the rule set that are not in another rule set.

If false, then does not drop the rule sets used by the
specified propagation, and the rule sets retain their rules.

See Also: Oracle Streams Concepts and Administration for more
information about Streams data dictionary views

DROP_PROPAGATION Procedure

65-12 PL/SQL Packages and Types Reference

■ DBA_STREAMS_GLOBAL_RULES

■ ALL_STREAMS_MESSAGE_RULES

■ DBA_STREAMS_MESSAGE_RULES

■ ALL_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ ALL_STREAMS_TABLE_RULES

■ DBA_STREAMS_TABLE_RULES

Note: When you drop a propagation, the propagation job used by
the propagation is dropped automatically, if no other propagations
are using the propagation job.

DBMS_RANDOM 66-1

66
DBMS_RANDOM

The DBMS_RANDOM package provides a built-in random number generator. DBMS_
RANDOM is not intended for cryptography.

This chapter contains the following topics:

■ Using DBMS_RANDOM

■ Security Model

■ Operational Notes

■ Summary of DBMS_RANDOM Subprograms

Using DBMS_RANDOM

66-2 PL/SQL Packages and Types Reference

Using DBMS_RANDOM

■ Security Model

■ Operational Notes

Security Model

This package should be installed as SYS. By default, the package is initialized with
the current user name, current time down to the second, and the current session.

Operational Notes

■ DBMS_RANDOM.RANDOM produces integers in [-2^^31, 2^^31).

■ DBMS_RANDOM.VALUE produces numbers in [0,1) with 38 digits of precision.

DBMS_RANDOM can be explicitly initialized, but does not need to be initialized
before calling the random number generator. It will automatically initialize with the
date, userid, and process id if no explicit initialization is performed.

If this package is seeded twice with the same seed, then accessed in the same way, it
will produce the same results in both cases.

In some cases, such as when testing, you may want the sequence of random
numbers to be the same on every run. In that case, you seed the generator with a
constant value by calling one of the overloads of DBMS_RANDOM.SEED. To produce
different output for every run, simply to omit the call to "Seed" and the system will
choose a suitable seed for you.

Summary of DBMS_RANDOM Subprograms

DBMS_RANDOM 66-3

Summary of DBMS_RANDOM Subprograms

Table 66–1 DBMS_RANDOM Package Subprograms

Subprogram Description

INITIALIZE Procedure on
page 66-4

Initializes the package with a seed value

NORMAL Function on
page 66-5

Returns random numbers in a normal distribution

RANDOM Procedure on
page 66-6

Generates a random number

SEED Procedures on
page 66-7

Resets the seed

STRING Function on
page 66-8

Gets a random string

TERMINATE Procedure
on page 66-9

Terminates package

VALUE Functions on
page 66-10

This function gets a random number, greater than or equal to 0
and less than 1, with 38 digits to the right of the decimal
(38-digit precision), while the overloaded function gets a
random Oracle number x, where x is greater than or equal to
low and less than high

Note: The INITIALIZE Procedure, RANDOM Procedure and the
TERMINATE Procedure are all obsolete and, while currently
supported, are included in this release for legacy reasons only.

INITIALIZE Procedure

66-4 PL/SQL Packages and Types Reference

INITIALIZE Procedure

This procedure initializes the generator (but see Usage Notes).

Syntax
DBMS_RANDOM.INITIALIZE (
 val IN BINARY_INTEGER);

Pragmas
PRAGMA restrict_references (initialize, WNDS)

Parameters

Usage Notes
This procedure is obsolete as it simply calls the SEED Procedures on page 66-7.

Table 66–2 INITIALIZE Procedure Parameters

Parameter Description

val The seed number used to generate a random number.

Summary of DBMS_RANDOM Subprograms

DBMS_RANDOM 66-5

NORMAL Function

This function returns random numbers in a standard normal distribution.

Syntax
DBMS_RANDOM.NORMAL
 RETURN NUMBER;

Pragmas
PRAGMA restrict_references (normal, WNDS)

Return Values

Table 66–3 NORMAL Procedure Parameters

Parameter Description

number Returns a random number.

RANDOM Procedure

66-6 PL/SQL Packages and Types Reference

RANDOM Procedure

This procedure generates a random number (but see Usage Notes).

Syntax
DBMS_RANDOM.RANDOM
 RETURN binary_integer;

Pragmas
PRAGMA restrict_references (random, WNDS)

Return Values

Usage Notes
This procedure is obsolete and, although it is currently supported, it should not be
used.

Table 66–4 RANDOM Procedure Parameters

Parameter Description

binary_integer Returns a random integer greater or equal to -power(2,31) and
less than power(2,31).

Summary of DBMS_RANDOM Subprograms

DBMS_RANDOM 66-7

SEED Procedures

This procedure resets the seed.

Syntax
DBMS_RANDOM.SEED (
 seed IN BINARY_INTEGER);

DBMS_RANDOM.SEED (
 seed IN VARCHAR2);

Pragmas
PRAGMA restrict_references (seed, WNDS);

Parameters

Usage Notes
The seed can be a string up to length 2000.

Table 66–5 SEED Procedure Parameters

Parameter Description

seed Seed number or string used to generate a random number.

STRING Function

66-8 PL/SQL Packages and Types Reference

STRING Function

This function gets a random string.

Syntax
DBMS_RANDOM.STRING
 opt IN CHAR,
 len IN NUMBER)
 RETURN VARCHAR2;

Pragmas
PRAGMA restrict_references (string, WNDS)

Parameters

Return Values

Table 66–6 STRING Function Parameters

Parameter Description

opt Specifies what the returning string looks like:

■ 'u', 'U' - returning string in uppercase alpha characters

■ 'l', 'L' - returning string in lowercase alpha characters

■ 'a', 'A' - returning string in mixed case alpha characters

■ 'x', 'X' - returning string in uppercase alpha-numeric
characters

■ 'p', 'P' - returning string in any printable characters.

Otherwise the returning string is in uppercase alpha
characters.

len The length of the returning string.

Table 66–7 STRING Function Parameters

Parameter Description

VARCHAR2 Returns a VARCHAR2.

Summary of DBMS_RANDOM Subprograms

DBMS_RANDOM 66-9

TERMINATE Procedure

When you are finished with the package, call the TERMINATE procedure (but see
Usage Notes)

Syntax
DBMS_RANDOM.TERMINATE

Usage Notes
This procedure performs no function and, although it is currently supported, it is
obsolete and should not be used.

VALUE Functions

66-10 PL/SQL Packages and Types Reference

VALUE Functions

The basic function gets a random number, greater than or equal to 0 and less than 1,
with 38 digits to the right of the decimal (38-digit precision). Alternatively, you can
get a random Oracle number x, where x is greater than or equal to low and less
than high.

Syntax
DBMS_RANDOM.VALUE
 RETURN NUMBER;

DBMS_RANDOM.VALUE(
 low IN NUMBER,
 high IN NUMBER)
RETURN NUMBER;

Parameters

Return Values

Table 66–8 VALUE Function Parameters

Parameter Description

low The lowest number in a range from which to generate a
random number. The number generated may be equal to low.

high The highest number below which to generate a random
number. The number generated will be less than high.

Table 66–9 VALUE Function Parameters

Parameter Description

NUMBER Returns an Oracle Number.

DBMS_RECTIFIER_DIFF 67-1

67
DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package provides an interface used to detect and
resolve data inconsistencies between two replicated sites.

■ Documentation of DBMS_RECTIFIER_DIFF

Documentation of DBMS_RECTIFIER_DIFF

67-2 PL/SQL Packages and Types Reference

Documentation of DBMS_RECTIFIER_DIFF

For a complete description of this package within the context of Replication, see
DBMS_RECTIFIER_DIFF in the Oracle Database Advanced Replication Management
API Reference.

DBMS_REDEFINITION 68-1

68
DBMS_REDEFINITION

The DBMS_REDEFINITION package provides an interface to perform an online
redefinition of tables.

This chapter contains the following topics:

■ Using DBMS_REDEFINITION

■ Overview

■ Constants

■ Operational Notes

■ Summary of DBMS_REDEFINITION Subprograms

See Also: Oracle Database Administrator's Guide for more
information.

Using DBMS_REDEFINITION

68-2 PL/SQL Packages and Types Reference

Using DBMS_REDEFINITION

■ Overview

■ Constants

■ Operational Notes

Overview

To achieve online redefinition, incrementally maintainable local materialized views
are used. Materialized view logs need to be defined on the master tables to support
incrementally maintainable materialized views. These logs keep track of the
changes to the master tables and are used by the materialized views during refresh
synchronization.

Constants

The following constants are defined for this package:

■ cons_orig_params constant PLS_INTEGER := 1;

■ cons_use_pk constant BINARY_INTEGER := 1;

■ cons_use_rowid constant BINARY_INTEGER := 2;

■ cons_index constant PLS_INTEGER := 2;

■ cons_constraint constant PLS_INTEGER := 3;

■ cons_trigger constant PLS_INTEGER := 4;

Operational Notes

■ cons_use_pk and cons_use_rowid are constants used as input to the
"options_flag" parameter in both the START_REDEF_TABLE Procedure and
CAN_REDEF_TABLE Procedure. cons_use_rowid is used to indicate that
the redefinition should be done using rowids while cons_use_pk implies that
the redefinition should be done using primary keys or pseudo-primary keys
(which are unique keys with all component columns having NOT NULL
constraints).

Using DBMS_REDEFINITION

DBMS_REDEFINITION 68-3

■ cons_index, cons_trigger and cons_constraint are used to specify the
type of the dependent object being (un)registered in REGISTER_DEPENDENT_
OBJECT Procedure and UNREGISTER_DEPENDENT_OBJECT Procedure
(parameter "dep_type").

cons_index ==> dependent object is of type INDEX

cons_trigger ==> dependent object is of type TRIGGER

cons_constraint==> dependent object type is of type CONSTRAINT

■ cons_orig_params as used as input to the "copy_indexes" parameter in
COPY_TABLE_DEPENDENTS Procedure. Using this parameter implies that
the indexes on the original table be copied onto the interim table using the same
storage parameters as that of the original index.

Summary of DBMS_REDEFINITION Subprograms

68-4 PL/SQL Packages and Types Reference

Summary of DBMS_REDEFINITION Subprograms

Table 68–1 DBMS_REDEFINITION Package Subprograms

Subprogram Description

ABORT_REDEF_TABLE
Procedure on page 68-5

Cleans up errors that occur during the redefinition process.

CAN_REDEF_TABLE
Procedure on page 68-6

Determines if a given table can be redefined online.

COPY_TABLE_
DEPENDENTS Procedure
on page 68-7

Copies the dependent objects of the original table onto the
interim table.

FINISH_REDEF_TABLE
Procedure on page 68-9

Completes the redefinition process.

REGISTER_
DEPENDENT_OBJECT
Procedure on page 68-10

Registers a dependent object (index, trigger or constraint) on
the table being redefined and the corresponding dependent
object on the interim table.

START_REDEF_TABLE
Procedure on page 68-11

Initiates the redefinition process.

SYNC_INTERIM_TABLE
Procedure on page 68-13

Keeps the interim table synchronized with the original table.

UNREGISTER_
DEPENDENT_OBJECT
Procedure on page 68-14

Unregisters a dependent object (index, trigger or constraint) on
the table being redefined and the corresponding dependent
object on the interim table.

Summary of DBMS_REDEFINITION Subprograms

DBMS_REDEFINITION 68-5

ABORT_REDEF_TABLE Procedure

This procedure cleans up errors that occur during the redefinition process. This
procedure can also be used to terminate the redefinition process any time after
start_redef_table has been called and before finish_redef_table is
called.

Syntax
DBMS_REDEFINITION.ABORT_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2);

Parameters

Table 68–2 ABORT_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

CAN_REDEF_TABLE Procedure

68-6 PL/SQL Packages and Types Reference

CAN_REDEF_TABLE Procedure

This procedure determines if a given table can be redefined online. This is the first
step of the online redefinition process. If the table is not a candidate for online
redefinition, an error message is raised.

Syntax
DBMS_REDEFINITION.CAN_REDEF_TABLE (
 uname IN VARCHAR2,
 tname IN VARCHAR2,
 options_flag IN PLS_INTEGER := 1);

Parameters

Exceptions
If the table is not a candidate for online redefinition, an error message is raised.

Table 68–3 CAN_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the table.

tname The name of the table to be redefined.

options_flag Indicates the type of redefinition method to use. If the value of
this flag is dbms_redefinition.cons_use_pk, then the
redefinition is done using primary keys or pseudo-primary
keys (unique keys with all component columns having NOT
NULL constraints). If the value of this flag is dbms_
redefinition.cons_use_rowid, then the redefinition is
done using rowids. The default method of redefinition is
using primary keys.

Summary of DBMS_REDEFINITION Subprograms

DBMS_REDEFINITION 68-7

COPY_TABLE_DEPENDENTS Procedure

This procedure clones the dependent objects of the table being redefined onto the
interim table and registers the dependent objects. This procedure does not clone the
already registered dependent objects.

This API will be used to clone the dependent objects like grants, triggers,
constraints and privileges from the table being redefined onto the interim table
(which represents the post-redefinition table).

All cloned referential constraints involving the interim tables will be created
disabled (they will be automatically enabled after the redefinition) and all triggers
on interim tables will not fire till the redefinition is completed. After the redefinition
is complete, the cloned objects will be renamed to the corresponding
pre-redefinition names of the objects (from which they were cloned from).

Syntax
DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 copy_indexes IN PLS_INTEGER := 0,
 copy_triggers IN BOOLEAN := TRUE,
 copy_constraints IN BOOLEAN := TRUE,
 copy_privileges IN BOOLEAN := TRUE,
 ignore_errors IN BOOLEAN := FALSE,
 num_errors OUT PLS_INTEGER);

Parameters

Table 68–4 COPY_TABLE_DEPENDENTS Procedure Parameters

Parameter Description

uname The schema name of the tables.

orig_table The name of the table being redefined.

int_table The name of the interim table.

COPY_TABLE_DEPENDENTS Procedure

68-8 PL/SQL Packages and Types Reference

Usage Notes
It is the user's responsibility that the cloned dependent objects are unaffected by the
redefinition. All the triggers will be cloned and it is the user's responsibility that the
cloned triggers are unaffected by the redefinition.

copy_indexes A flag indicating whether to copy the indexes

■ 0 - don't copy any index

■ dbms_redefinition.cons_orig_params – copy the
indexes using the physical parameters of the source
indexes

copy_triggers TRUE implies clone triggers, FALSE implies do nothing

copy_constraints TRUE implies clone constraints, FALSE implies do nothing

copy_privileges TRUE implies clone privileges, FALSE implies do nothing

ignore_errors TRUE implies if an error occurs while cloning a particular
dependent object, then skip that object and continue cloning
other dependent objects. FALSE implies that the cloning
process should stop upon encountering an error.

num_errors The number of errors that occurred while cloning dependent
objects

Table 68–4 (Cont.) COPY_TABLE_DEPENDENTS Procedure Parameters

Parameter Description

Summary of DBMS_REDEFINITION Subprograms

DBMS_REDEFINITION 68-9

FINISH_REDEF_TABLE Procedure

This procedure completes the redefinition process. Before this step, you can create
new indexes, triggers, grants, and constraints on the interim table. The referential
constraints involving the interim table must be disabled. After completing this step,
the original table is redefined with the attributes and data of the interim table. The
original table is locked briefly during this procedure.

Syntax
DBMS_REDFINITION.FINISH_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2);

Parameters

Table 68–5 FINISH_REDEF_TABLE Procedure Parameters

Parameters Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

REGISTER_DEPENDENT_OBJECT Procedure

68-10 PL/SQL Packages and Types Reference

REGISTER_DEPENDENT_OBJECT Procedure

This procedure registers a dependent object (index, trigger or constraint) on the
table being redefined and the corresponding dependent object on the interim table.

Syntax
DBMS_REDFINITION.REGISTER_DEPEPENDENT_OBJECT(
 uame IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 dep_type IN PLS_INTEGER,
 dep_owner IN VARCHAR2,
 dep_orig_name IN VARCHAR2,
 dep_int_name IN VARCHAR2);

Parameters

Usage Notes
■ Attempting to register an already registered object will raise an error.

■ Registering a dependent object will automatically remove that object from DBA_
REDEFINITION_ERRORS if an entry exists for that object.

Table 68–6 REGISTER_DEPENDENT_OBJECT Procedure Parameters

Parameters Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

dep_type The type of the dependent object.

dep_owner The owner of the dependent object.

dep_orig_name The name of the original dependent object.

dep_int_name The name of the interim dependent object.

Summary of DBMS_REDEFINITION Subprograms

DBMS_REDEFINITION 68-11

START_REDEF_TABLE Procedure

After verifying that the table can be redefined online, you manually create an empty
interim table (in the same schema as the table to be redefined) with the desired
attributes of the post-redefinition table, and then call this procedure to initiate the
redefinition.

Syntax
DBMS_REDINITION.START_REDEF_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 col_mapping IN VARCHAR2 := NULL,
 options_flag IN BINARY_INTEGER := 1
 orderby_cols IN VARCHAR2 := NULL);

Parameters

Table 68–7 START_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

col_mapping The mapping information from the columns in the original
table to the columns in the interim table. (This is similar to the
column list on the SELECT clause of a query.) If NULL, all the
columns in the original table are selected and have the same
name after redefinition.

options_flag Indicates the type of redefinition method to use. If the value of
this flag is dbms_redefinition.cons_use_pk, then the
redefinition is done using primary keys or pseudo-primary
keys (unique keys with all component columns having NOT
NULL constraints). If the value of this flag is dbms_
redefinition.cons_use_rowid, then the redefinition is
done using rowids. The default method of redefinition is
using primary keys.

START_REDEF_TABLE Procedure

68-12 PL/SQL Packages and Types Reference

orderby_cols This optional parameter accepts the list of columns (along with
the optional keyword(s) ascending/descending) with which to
order by the rows during the initial instantiation of the interim
table (the order by is only done for the initial instantiation and
not for subsequent synchronizations)

Table 68–7 (Cont.) START_REDEF_TABLE Procedure Parameters

Parameter Description

Summary of DBMS_REDEFINITION Subprograms

DBMS_REDEFINITION 68-13

SYNC_INTERIM_TABLE Procedure

This procedure keeps the interim table synchronized with the original table. This
step is useful in minimizing the amount of synchronization needed to be done by
finish_redef_table before completing the online redefinition. This procedure
can be called between long running operations (such as create index) on the interim
table to sync it up with the data in the original table and speed up subsequent
operations.

Syntax
DBMS_REDFINITION.SYNC_INTERIM_TABLE (
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2);

Parameters

Table 68–8 SYNC_INTERIM_TABLE Procedure Parameters

Parameter Description

uname The schema name of the table.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

UNREGISTER_DEPENDENT_OBJECT Procedure

68-14 PL/SQL Packages and Types Reference

UNREGISTER_DEPENDENT_OBJECT Procedure

This procedure unregisters a dependent object (index, trigger or constraint) on the
table being redefined and the corresponding dependent object on the interim table.

Syntax
DBMS_REDFINITION.UNREGISTER_DEPEPENDENT_OBJECT(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 dep_type IN PLS_INTEGER,
 dep_owner IN VARCHAR2,
 dep_orig_name IN VARCHAR2,
 dep_int_name IN VARCHAR2);

Parameters

Table 68–9 UNREGISTER_DEPENDENT_OBJECT Procedure Parameters

Parameters Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

dep_type The type of the dependent object.

dep_owner The owner of the dependent object.

dep_orig_name The name of the original dependent object.

dep_int_name The name of the interim dependent object.

DBMS_REFRESH 69-1

69
DBMS_REFRESH

The DBMS_REFRESH package enables you to create groups of materialized views
that can be refreshed together to a transactionally consistent point in time.

■ Documentation of DBMS_REFRESH

Documentation of DBMS_REFRESH

69-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REFRESH

For a complete description of this package within the context of Replication, see
DBMS_REFRESH in the Oracle Database Advanced Replication Management API
Reference.

DBMS_REPAIR 70-1

70
DBMS_REPAIR

The DBMS_REPAIR pacakge contains data corruption repair procedures that enable
you to detect and repair corrupt blocks in tables and indexes. You can address
corruptions where possible and continue to use objects while you attempt to rebuild
or repair them.

This chapter contains the following topics:

■ Using DBMS_REPAIR

■ Overview

■ Security Model

■ Constants

■ Exceptions

■ Examples

■ Summary of DBMS_REPAIR Subprograms

See Also: For detailed information about using the DBMS_
REPAIR package, see Oracle Database Administrator's Guide.

Using DBMS_REPAIR

70-2 PL/SQL Packages and Types Reference

Using DBMS_REPAIR

■ Overview

■ Security Model

■ Constants

■ Exceptions

■ Examples

Overview

Security Model

The package is owned by SYS. Execution privilege is not granted to other users.

Constants

The DBMS_REPAIR package defines several enumerated constants that should be
used for specifying parameter values. Enumerated constants must be prefixed with
the package name. For example, DBMS_REPAIR.TABLE_OBJECT.

Table 70–1 lists the parameters and the enumerated constants.

Note: The DBMS_REPAIR package is intended for use by database
administrators only. It is not intended for use by application
developers.

Table 70–1 DBMS_REPAIR Constants

Parameter Constant

object_type TABLE_OBJECT, INDEX_OBJECT, CLUSTER_OBJECT

action CREATE_ACTION, DROP_ACTION, PURGE_ACTION

table_type REPAIR_TABLE, ORPHAN_TABLE

flags SKIP_FLAG, NOSKIP_FLAG

Using DBMS_REPAIR

DBMS_REPAIR 70-3

Exceptions

Note: The default table_name will be REPAIR_TABLE when
table_type is REPAIR_TABLE, and will be ORPHAN_KEY_TABLE
when table_type is ORPHAN_TABLE.

Table 70–2 DBMS_REPAIR Exceptions

Exception Description Action

942 Reported by DBMS_REPAIR.ADMIN_
TABLES during a DROP_ACTION
when the specified table doesn't exist.

-

955 Reported by DBMS_REPAIR.
CREATE_ACTION when the specified
table already exists.

-

24120 An invalid parameter was passed to
the specified DBMS_REPAIR
procedure.

Specify a valid parameter value or use
the parameter's default.

24122 An incorrect block range was
specified.

Specify correct values for the BLOCK_
START and BLOCK_END parameters.

24123 An attempt was made to use the
specified feature, but the feature is
not yet implemented.

Do not attempt to use the feature.

24124 An invalid ACTION parameter was
specified.

Specify CREATE_ACTION, PURGE_
ACTION or DROP_ACTION for the
ACTION parameter.

24125 An attempt was made to fix corrupt
blocks on an object that has been
dropped or truncated since DBMS_
REPAIR.CHECK_OBJECT was run.

Use DBMS_REPAIR.ADMIN_TABLES to
purge the repair table and run DBMS_
REPAIR.CHECK_OBJECT to determine
whether there are any corrupt blocks
to be fixed.

24127 TABLESPACE parameter specified
with an ACTION other than CREATE_
ACTION.

Do not specify TABLESPACE when
performing actions other than
CREATE_ACTION.

24128 A partition name was specified for an
object that is not partitioned.

Specify a partition name only if the
object is partitioned.

Examples

70-4 PL/SQL Packages and Types Reference

Examples

/* Fix the bitmap status for all the blocks in table mytab in schema sys */

EXECUTE DBMS_REPAIR.SEGMENT_FIX_STATUS('SYS', 'MYTAB');

/* Mark block number 45, filenumber 1 for table mytab in sys schema as FULL.*/

EXECUTE DBMS_REPAIR.SEGMENT_FIX_STATUS('SYS', 'MYTAB', TABLE_OBJECT,1, 45, 1);

24129 An attempt was made to pass a table
name parameter without the
specified prefix.

Pass a valid table name parameter.

24130 An attempt was made to specify a
repair or orphan table that does not
exist.

Specify a valid table name parameter.

24131 An attempt was made to specify a
repair or orphan table that does not
have a correct definition.

Specify a table name that refers to a
properly created table.

24132 An attempt was made to specify a
table name is greater than 30
characters long.

Specify a valid table name parameter.

Table 70–2 (Cont.) DBMS_REPAIR Exceptions

Exception Description Action

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-5

Summary of DBMS_REPAIR Subprograms

Table 70–3 DBMS_REPAIR Package Subprograms

Subprogram Description

ADMIN_TABLES Procedure on
page 70-6

Provides administrative functions for the DBMS_REPAIR
package repair and orphan key tables, including create,
purge, and drop functions

CHECK_OBJECT Procedure on
page 70-8

Detects and reports corruptions in a table or index

DUMP_ORPHAN_KEYS
Procedure on page 70-10

Reports on index entries that point to rows in corrupt data
blocks

FIX_CORRUPT_BLOCKS
Procedure on page 70-12

Marks blocks software corrupt that have been previously
detected as corrupt by CHECK_OBJECT

REBUILD_FREELISTS
Procedure on page 70-14

Rebuilds an object's freelists

SEGMENT_FIX_STATUS
Procedure on page 70-15

Fixes the corrupted state of a bitmap entry

SKIP_CORRUPT_BLOCKS
Procedure on page 70-17

Sets whether to ignore blocks marked corrupt during table
and index scans or to report ORA-1578 when blocks
marked corrupt are encountered

ADMIN_TABLES Procedure

70-6 PL/SQL Packages and Types Reference

ADMIN_TABLES Procedure

This procedure provides administrative functions for the DBMS_REPAIR package
repair and orphan key tables.

Syntax
DBMS_REPAIR.ADMIN_TABLES (
 table_name IN VARCHAR2,
 table_type IN BINARY_INTEGER,
 action IN BINARY_INTEGER,
 tablespace IN VARCHAR2 DEFAULT NULL);

Parameters

Table 70–4 ADMIN_TABLES Procedure Parameters

Parameter Description

table_name Name of the table to be processed. Defaults to ORPHAN_KEY_
TABLE or REPAIR_TABLE based on the specified table_
type. When specified, the table name must have the
appropriate prefix: ORPHAN_ or REPAIR_.

table_type Type of table; must be either ORPHAN_TABLE or REPAIR_
TABLE.

See "Constants" on page 70-2.

action Indicates what administrative action to perform.

Must be either CREATE_ACTION, PURGE_ACTION, or DROP_
ACTION. If the table already exists, and if CREATE_ACTION is
specified, then an error is returned. PURGE_ACTION indicates
to delete all rows in the table that are associated with
non-existent objects. If the table does not exist, and if DROP_
ACTION is specified, then an error is returned.

When CREATE_ACTION and DROP_ACTION are specified, an
associated view named DBA_<table_name> is created and
dropped respectively. The view is defined so that rows
associated with non-existent objects are eliminated.

Created in the SYS schema.

See "Constants" on page 70-2.

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-7

tablespace Indicates the tablespace to use when creating a table.

By default, the SYS default tablespace is used. An error is
returned if the tablespace is specified and if the action is not
CREATE_ACTION.

Table 70–4 (Cont.) ADMIN_TABLES Procedure Parameters

Parameter Description

CHECK_OBJECT Procedure

70-8 PL/SQL Packages and Types Reference

CHECK_OBJECT Procedure

This procedure checks the specified objects and populates the repair table with
information about corruptions and repair directives.

Validation consists of block checking all blocks in the object.

Syntax
DBMS_REPAIR.CHECK_OBJECT (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 relative_fno IN BINARY_INTEGER DEFAULT NULL,
 block_start IN BINARY_INTEGER DEFAULT NULL,
 block_end IN BINARY_INTEGER DEFAULT NULL,
 corrupt_count OUT BINARY_INTEGER);

Parameters

Table 70–5 CHECK_OBJECT Procedure Parameters

Parameter Description

schema_name Schema name of the object to be checked.

object_name Name of the table or index to be checked.

partition_name Partition or subpartition name to be checked.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are checked. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are checked.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See "Constants" on page 70-2.

repair_table_name Name of the repair table to be populated.

The table must exist in the SYS schema. Use the admin_
tables procedure to create a repair table. The default name is
REPAIR_TABLE.

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-9

Usage Notes
You may optionally specify a DBA range, partition name, or subpartition name
when you want to check a portion of an object.

flags Reserved for future use.

relative_fno Relative file number: Used when specifying a block range.

block_start First block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition.

block_end Last block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition. If only one of block_start or block_end is
specified, then the other defaults to the first or last block in the
file respectively.

corrupt_count Number of corruptions reported.

Table 70–5 (Cont.) CHECK_OBJECT Procedure Parameters

Parameter Description

DUMP_ORPHAN_KEYS Procedure

70-10 PL/SQL Packages and Types Reference

DUMP_ORPHAN_KEYS Procedure

This procedure reports on index entries that point to rows in corrupt data blocks.
For each such index entry encountered, a row is inserted into the specified orphan
table.

If the repair table is specified, then any corrupt blocks associated with the base table
are handled in addition to all data blocks that are marked software corrupt.
Otherwise, only blocks that are marked corrupt are handled.

This information may be useful for rebuilding lost rows in the table and for
diagnostic purposes.

Syntax
DBMS_REPAIR.DUMP_ORPHAN_KEYS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT INDEX_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 orphan_table_name IN VARCHAR2 DEFAULT 'ORPHAN_KEYS_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 key_count OUT BINARY_INTEGER);

Parameters

Table 70–6 DUMP_ORPHAN_KEYS Procedure Parameters

Parameter Description

schema_name Schema name.

object_name Object name.

partition_name Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. The default is INDEX_
OBJECT

See "Constants" on page 70-2.

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-11

repair_table_name Name of the repair table that has information regarding
corrupt blocks in the base table.

The specified table must exist in the SYS schema. The admin_
tables procedure is used to create the table.

orphan_table_name Name of the orphan key table to populate with information
regarding each index entry that refers to a row in a corrupt
data block.

The specified table must exist in the SYS schema. The admin_
tables procedure is used to create the table.

flags Reserved for future use.

key_count Number of index entries processed.

Table 70–6 (Cont.) DUMP_ORPHAN_KEYS Procedure Parameters

Parameter Description

FIX_CORRUPT_BLOCKS Procedure

70-12 PL/SQL Packages and Types Reference

FIX_CORRUPT_BLOCKS Procedure

This procedure fixes the corrupt blocks in specified objects based on information in
the repair table that was previously generated by the check_object procedure.

Prior to effecting any change to a block, the block is checked to ensure the block is
still corrupt. Corrupt blocks are repaired by marking the block software corrupt.
When a repair is effected, the associated row in the repair table is updated with a fix
timestamp.

Syntax
DBMS_REPAIR.FIX_CORRUPT_BLOCKS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 repair_table_name IN VARCHAR2 DEFAULT 'REPAIR_TABLE',
 flags IN BINARY_INTEGER DEFAULT NULL,
 fix_count OUT BINARY_INTEGER);

Parameters

Table 70–7 FIX_CORRUPT_BLOCKS Procedure Parameters

Parameter Description

schema_name Schema name.

object_name Name of the object with corrupt blocks to be fixed.

partition_name Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See "Constants" on page 70-2.

repair_table_name Name of the repair table with the repair directives.

Must exist in the SYS schema.

flags Reserved for future use.

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-13

fix_count Number of blocks fixed.

Table 70–7 (Cont.) FIX_CORRUPT_BLOCKS Procedure Parameters

Parameter Description

REBUILD_FREELISTS Procedure

70-14 PL/SQL Packages and Types Reference

REBUILD_FREELISTS Procedure

This procedure rebuilds the freelists for the specified object. All free blocks are
placed on the master freelist. All other freelists are zeroed.

If the object has multiple freelist groups, then the free blocks are distributed among
all freelists, allocating to the different groups in round-robin fashion.

Syntax
DBMS_REPAIR.REBUILD_FREELISTS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT);

Parameters

Table 70–8 REBUILD_FREELISTS Procedure Parameters

Parameter Description

schema_name Schema name.

object_name Name of the object whose freelists are to be rebuilt.

partition_name Partition or subpartition name whose freelists are to be rebuilt.

If this is a partitioned object, and partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and the specified partition contains
subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See"Constants" on page 70-2.

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-15

SEGMENT_FIX_STATUS Procedure

With this procedure you can fix the corrupted state of a bitmap entry. The procedure
either recalculates the state based on the current contents of the corresponding
block or sets the state to a specific value.

Syntax
DBMS_REPAIR.SEGMENT_FIX_STATUS (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 file_number IN BINARY_INTEGER DEFAULT NULL,
 block_number IN BINARY_INTEGER DEFAULT NULL,
 status_value IN BINARY_INTEGER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL,);

Parameters

Table 70–9 SEGMENT_FIX_STATUS Procedure Parameters

Parameter Description

schema_owner Schema name of the segment.

segment_name Segment name.

partition_name Optional. Name of an individual partition. NULL for
nonpartitioned objects. Default is NULL.

segment_type Optional Type of the segment (for example, TABLE_OBJECT or
INDEX-OBJECT). Default is NULL.

file_number (optional) The tablespace-relative file number of the data block
whose status has to be fixed. If omitted, all the blocks in the
segment will be checked for state correctness and fixed.

block_number (optional) The file-relative block number of the data block
whose status has to be fixed. If omitted, all the blocks in the
segment will be checked for state correctness and fixed.

SEGMENT_FIX_STATUS Procedure

70-16 PL/SQL Packages and Types Reference

status_value (optional) The value to which the block status described by the
file_number and block_number will be set. If omitted, the
status will be set based on the current state of the block. This is
almost always the case, but if there is a bug in the calculation
algorithm, the value can be set manually. Status values:

■ 1 = block is full

■ 2 = block is 0-25% free

■ 3 = block is 25-50% free

■ 4 = block is 50-75% free

■ 5 = block is 75-100% free

The status for bitmap blocks, segment headers, and extent map
blocks cannot be altered. The status for blocks in a fixed hash
area cannot be altered. For index blocks, there are only two
possible states: 1 = block is full and 3 = block has free space.

Table 70–9 (Cont.) SEGMENT_FIX_STATUS Procedure Parameters

Parameter Description

Summary of DBMS_REPAIR Subprograms

DBMS_REPAIR 70-17

SKIP_CORRUPT_BLOCKS Procedure

This procedure enables or disables the skipping of corrupt blocks during index and
table scans of the specified object.

When the object is a table, skip applies to the table and its indexes. When the object
is a cluster, it applies to all of the tables in the cluster, and their respective indexes.

Syntax
DBMS_REPAIR.SKIP_CORRUPT_BLOCKS (
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
 flags IN BINARY_INTEGER DEFAULT SKIP_FLAG);

Parameters

Note: When Oracle performs an index range scan on a corrupt
index after DBMS_REPAIR.SKIP_CORRUPT_BLOCKS has been set
for the base table, corrupt branch blocks and root blocks are not
skipped. Only corrupt non-root leaf blocks are skipped.

Table 70–10 SKIP_CORRUPT_BLOCKS Procedure Parameters

Parameter Description

schema_name Schema name of the object to be processed.

object_name Name of the object.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or CLUSTER_OBJECT.

See "Constants" on page 70-2.

flags If SKIP_FLAG is specified, then it turns on the skip of software
corrupt blocks for the object during index and table scans. If
NOSKIP_FLAG is specified, then scans that encounter software
corrupt blocks return an ORA-1578.

See"Constants" on page 70-2.

SKIP_CORRUPT_BLOCKS Procedure

70-18 PL/SQL Packages and Types Reference

DBMS_REPCAT 71-1

71
DBMS_REPCAT

The DBMS_REPCAT package provides routines to administer and update the
replication catalog and environment.

■ Documentation of DBMS_REPCAT

Documentation of DBMS_REPCAT

71-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REPCAT

For a complete description of this package within the context of Replication, see
DBMS_REPCAT in the Oracle Database Advanced Replication Management API Reference.

DBMS_REPCAT_ADMIN 72-1

72
DBMS_REPCAT_ADMIN

The DBMS_REPCAT_ADMIN package enables you to create users with the privileges
needed by the symmetric replication facility.

■ Documentation of DBMS_REPCAT_ADMIN

Documentation of DBMS_REPCAT_ADMIN

72-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REPCAT_ADMIN

For a complete description of this package within the context of Replication, see
DBMS_REPCAT_ADMIN in the Oracle Database Advanced Replication Management API
Reference.

DBMS_REPCAT_INSTANTIATE 73-1

73
DBMS_REPCAT_INSTANTIATE

The DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

■ Documentation of DBMS_REPCAT_INSTANTIATE

Documentation of DBMS_REPCAT_INSTANTIATE

73-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REPCAT_INSTANTIATE

For a complete description of this package within the context of Replication, see
DBMS_REPCAT_INSTANTIATE in the Oracle Database Advanced Replication
Management API Reference.

DBMS_REPCAT_RGT 74-1

74
DBMS_REPCAT_RGT

The DBMS_REPCAT_RGT package controls the maintenance and definition of refresh
group templates.

■ Documentation of DBMS_REPCAT_RGT

Documentation of DBMS_REPCAT_RGT

74-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REPCAT_RGT

For a complete description of this package within the context of Replication, see
DBMS_REPCAT_RGT in the Oracle Database Advanced Replication Management API
Reference.

DBMS_REPUTIL 75-1

75
DBMS_REPUTIL

The DBMS_REPUTIL package contains subprograms to generate shadow tables,
triggers, and packages for table replication, as well as subprograms to generate
wrappers for replication of standalone procedure invocations and packaged
procedure invocations. This package is referenced only by the generated code.

■ Documentation of DBMS_REPUTIL

Documentation of DBMS_REPUTIL

75-2 PL/SQL Packages and Types Reference

Documentation of DBMS_REPUTIL

For a complete description of this package within the context of Replication, see
DBMS_REPUTIL in the Oracle Database Advanced Replication Management API
Reference.

DBMS_RESOURCE_MANAGER 76-1

76
DBMS_RESOURCE_MANAGER

The DBMS_RESOURCE_MANAGER package maintains plans, consumer groups, and
plan directives. It also provides semantics so that you may group together changes
to the plan schema.

This chapter contains the following topics:

■ Using DBMS_RESOURCE_MANAGER

■ Security Model

■ Constants

■ Examples

■ Summary of DBMS_RESOURCE_MANAGER Subprograms

See Also: For more information on using the Database Resource
Manager, see Oracle Database Administrator's Guide.

Using DBMS_RESOURCE_MANAGER

76-2 PL/SQL Packages and Types Reference

Using DBMS_RESOURCE_MANAGER

■ Security Model

■ Constants

■ Examples

Security Model

The invoker must have the ADMINISTER_RESOURCE_MANAGER system privilege to
execute these procedures. The procedures to grant and revoke this privilege are in
the package DBMS_RESOURCE_MANAGER_PRIVS.

Constants

Examples

One of the advantages of plans is that they can refer to each other. The entries in a
plan can either be consumer groups or subplans. For example, the following is also
a set of valid CPU plan directives:

Table 76–1 Constants - Names and Oracle Enterprise Manager Abbreviations

Constant Definition

client_machine CONSTANT VARCHAR2(30) := 'CLIENT_MACHINE';

client_os_user CONSTANT VARCHAR2(30) := 'CLIENT_OS_USER';

client_program CONSTANT VARCHAR2(30) := 'CLIENT_PROGRAM';

module_name CONSTANT VARCHAR2(30) := 'MODULE_NAME';

module_name_action CONSTANT VARCHAR2(30) := 'MODULE_NAME_ACTION';

oracle_user CONSTANT VARCHAR2(30) := 'ORACLE_USER'

service_module CONSTANT VARCHAR2(30) := 'SERVICE_MODULE';

service_module_
action

CONSTANT VARCHAR2(30) := 'SERVICE_MODULE_
ACTION';

service_name CONSTANT VARCHAR2(30) := 'SERVICE_NAME';

Using DBMS_RESOURCE_MANAGER

DBMS_RESOURCE_MANAGER 76-3

If these plan directives were in effect and there were an infinite number of runnable
sessions in all consumer groups, then the MAILDB plan would be assigned 30% of
the available CPU resources, while the BUGDB plan would be assigned 70% of the
available CPU resources. Breaking this further down, sessions in the "Postman"
consumer group would be run 12% (40% of 30%) of the time, while sessions in the
"Online" consumer group would be run 56% (80% of 70%) of the time. Figure 76–1
diagram depicts this scenario:

Figure 76–1 Resource Manager Scenario

Conceptually the active sessions are underneath the consumer groups. In other
words, a session belongs to a resource consumer group, and this consumer group is
used by a plan to determine allocation of processing resources.

A multiplan (plan with one or more subplans) definition of CPU plan directives
cannot be collapsed into a single plan with one set of plan directives, because each
plan is its own entity. The CPU quanta that is allotted to a plan or subplan gets used
only within that plan, unless that plan contains no consumer groups with active
sessions. Therefore, in this example, if the Bug Maintenance Group did not use any
of its quanta, then it would get recycled within that plan, thus going back to level 1

Table 76–2 MYDB PLAN CPU Plan Directives

Subplan/Group CPU_Level 1

MAILDB Plan 30%

BUGDB Plan 70%

MYDB
PLAN

MAILDB
PLAN

BUGDB
PLAN

100% @
Level 2

20% @
Level 1

80% @
Level 1

100% @
Level 3

100% @
Level 3

40% @
Level 1

20% @
Level 2

80% @
Level 2

70% @
Level 1

MAIL MAINT
GROUP

ONLINE
GROUP

BATCH
GROUP

BUG MAINT
GROUP

USERS
GROUP

POSTMAN
GROUP

30% @
Level 1

OTHER
GROUPS

Examples

76-4 PL/SQL Packages and Types Reference

within the BUGDB PLAN. If the multiplan definition in the preceding example got
collapsed into a single plan with multiple consumer groups, then there would be no
way to explicitly recycle the Bug Maintenance Group's unused quanta. It would
have to be recycled globally, thus giving the mail sessions an opportunity to use it.

The resources for a database can be partitioned at a high level among multiple
applications and then repartitioned within an application. If a given group within
an application does not need all the resources it is assigned, then the resource is
only repartitioned within the same application.

The following example uses the default plan and consumer group allocation
methods:

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'bugdb_plan',
 COMMENT => 'Resource plan/method for bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'maildb_plan',
 COMMENT => 'Resource plan/method for mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'mydb_plan',
 COMMENT => 'Resource plan/method for bug and mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Bug_Online_
group',
 COMMENT => 'Resource consumer group/method for online bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Bug_Batch_group',
COMMENT => 'Resource consumer group/method for bug users sessions who run batch
jobs');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Bug_Maintenance_
group',
 COMMENT => 'Resource consumer group/method for users sessions who maintain
 the bug db');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Mail_users_
group',
 COMMENT => 'Resource consumer group/method for mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Mail_Postman_
group',
 COMMENT => 'Resource consumer group/method for mail postman');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Mail_Maintenance_
group',
 COMMENT => 'Resource consumer group/method for users sessions who maintain
the mail
 db');
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan', GROUP_OR_
SUBPLAN => 'Bug_Online_group',
 COMMENT => 'online bug users sessions at level 1', CPU_P1 => 80, CPU_P2=> 0,

Using DBMS_RESOURCE_MANAGER

DBMS_RESOURCE_MANAGER 76-5

 PARALLEL_DEGREE_LIMIT_P1 => 8);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan', GROUP_OR_
SUBPLAN => 'Bug_Batch_group',
 COMMENT => 'batch bug users sessions at level 1', CPU_P1 => 20, CPU_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan', GROUP_OR_
SUBPLAN => 'Bug_Maintenance_group',
 COMMENT => 'bug maintenance users sessions at level 2', CPU_P1 => 0, CPU_P2
=> 100, PARALLEL_DEGREE_LIMIT_P1 => 3);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan', GROUP_OR_
SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3', CPU_P1 => 0, CPU_P2 => 0,
CPU_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan', GROUP_OR_
SUBPLAN => 'Mail_Postman_group',
 COMMENT => 'mail postman at level 1', CPU_P1 => 40, CPU_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan', GROUP_OR_
SUBPLAN => 'Mail_users_group',
 COMMENT => 'mail users sessions at level 2', CPU_P1 => 0, CPU_P2 => 80,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan', GROUP_OR_
SUBPLAN => 'Mail_Maintenance_group',
 COMMENT => 'mail maintenance users sessions at level 2', CPU_P1 => 0, CPU_P2
=> 20,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan', GROUP_OR_
SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3', CPU_P1 => 0, CPU_P2 => 0,
CPU_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'mydb_plan', GROUP_OR_
SUBPLAN => 'maildb_plan',
 COMMENT=> 'all mail users sessions at level 1', CPU_P1 => 30);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'mydb_plan', GROUP_OR_
SUBPLAN => 'bugdb_plan',
 COMMENT => 'all bug users sessions at level 1', CPU_P1 => 70);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;

The preceding call to VALIDATE_PENDING_AREA is optional, because the
validation is implicitly done in SUBMIT_PENDING_AREA.

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

Examples

76-6 PL/SQL Packages and Types Reference

DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'bugdb_plan',
 COMMENT => 'Resource plan/method for bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'maildb_plan',
 COMMENT => 'Resource plan/method for mail users sessions');

DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'mydb_plan',
 COMMENT => 'Resource plan/method for bug and mail users sessions');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Bug_Online_group',
 COMMENT => 'Resource consumer group/method for online bug users sessions');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Bug_Batch_group',
 COMMENT => 'Resource consumer group/method for bug users sessions who run
batch jobs');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Bug_Maintenance_group',
 COMMENT => 'Resource consumer group/method for users sessions who maintain
the bug db');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Mail_users_group',
 COMMENT => 'Resource consumer group/method for mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Mail_Postman_group',
 COMMENT => 'Resource consumer group/method for mail postman');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'Mail_Maintenance_group',
 COMMENT => 'Resource consumer group/method for users sessions who maintain
the mail
db');

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'bugdb_plan', GROUP_OR_SUBPLAN => 'Bug_Online_group',
 COMMENT => 'online bug users sessions at level 1',
 CPU_P1 => 80, CPU_P2=> 0,
 PARALLEL_DEGREE_LIMIT_P1 => 8);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'bugdb_plan', GROUP_OR_SUBPLAN => 'Bug_Batch_group',
 COMMENT => 'batch bug users sessions at level 1',
 CPU_P1 => 20, CPU_P2 => 0,

Using DBMS_RESOURCE_MANAGER

DBMS_RESOURCE_MANAGER 76-7

 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'bugdb_plan', GROUP_OR_SUBPLAN => 'Bug_Maintenance_group',
 COMMENT => 'bug maintenance users sessions at level 2',
 CPU_P1 => 0, CPU_P2 => 100,
 PARALLEL_DEGREE_LIMIT_P1 => 3);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'bugdb_plan', GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3',
 CPU_P1 => 0, CPU_P2 => 0, CPU_P3 => 100);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'maildb_plan', GROUP_OR_SUBPLAN => 'Mail_Postman_group',
 COMMENT => 'mail postman at level 1',
 CPU_P1 => 40, CPU_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'maildb_plan', GROUP_OR_SUBPLAN => 'Mail_users_group',
 COMMENT => 'mail users sessions at level 2',
 CPU_P1 => 0, CPU_P2 => 80,
 PARALLEL_DEGREE_LIMIT_P1 => 4);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'maildb_plan', GROUP_OR_SUBPLAN => 'Mail_Maintenance_group',
 COMMENT => 'mail maintenance users sessions at level 2',
 CPU_P1 => 0, CPU_P2 => 20,
 PARALLEL_DEGREE_LIMIT_P1 => 2);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'maildb_plan', GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3',
 CPU_P1 => 0, CPU_P2 => 0, CPU_P3 => 100);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'mydb_plan', GROUP_OR_SUBPLAN => 'maildb_plan',
 COMMENT=> 'all mail users sessions at level 1',
 CPU_P1 => 30);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'mydb_plan', GROUP_OR_SUBPLAN => 'bugdb_plan',
 COMMENT => 'all bug users sessions at level 1',
 CPU_P1 => 70);

DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

Summary of DBMS_RESOURCE_MANAGER Subprograms

76-8 PL/SQL Packages and Types Reference

Summary of DBMS_RESOURCE_MANAGER Subprograms

Table 76–3 DBMS_RESOURCE_MANAGER Package Subprograms

Subprogram Description

CLEAR_PENDING_AREA
Procedure on page 76-10

Clears the work area for the resource manager

CREATE_CONSUMER_
GROUP Procedure on
page 76-11

Creates entries which define resource consumer groups

CREATE_PENDING_AREA
Procedure on page 76-12

Creates a work area for changes to resource manager
objects

CREATE_PLAN Procedure on
page 76-14

Creates entries which define resource plans

CREATE_PLAN_DIRECTIVE
Procedure on page 76-16

Creates resource plan directives

CREATE_SIMPLE_PLAN
Procedure on page 76-19

Creates a single-level resource plan containing up to eight
consumer groups in one step

DELETE_CONSUMER_
GROUP Procedure on
page 76-20

Deletes entries which define resource consumer groups

DELETE_PLAN Procedure on
page 76-21

Deletes the specified plan as well as all the plan directives
it refers to

DELETE_PLAN_CASCADE
Procedure on page 76-23

Deletes the specified plan as well as all its descendants
(plan directives, subplans, consumer groups)

DELETE_PLAN_DIRECTIVE
Procedure on page 76-22

Deletes resource plan directives

SET_CONSUMER_GROUP_
MAPPING Procedure on
page 76-24

Adds, deletes, or modifes pairs for the login and run-time
attribute mappings

SET_CONSUMER_GROUP_
MAPPING_PRI Procedure on
page 76-25

Creates the session attribute mapping priority list

SET_INITIAL_CONSUMER_
GROUP Procedure on
page 76-27

Assigns the initial resource consumer group for a user

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-9

SUBMIT_PENDING_AREA
Procedure on page 76-29

Submits pending changes for the resource manager

SWITCH_CONSUMER_
GROUP_FOR_SESS Procedure
on page 76-30

Changes the resource consumer group of a specific session

SWITCH_CONSUMER_
GROUP_FOR_USER Procedure
on page 76-31

Changes the resource consumer group for all sessions with
a given user name

SWITCH_PLAN Procedure on
page 76-32

Sets the current resource manager plan

UPDATE_CONSUMER_
GROUP Procedure on
page 76-33

Updates entries which define resource consumer groups

UPDATE_PLAN Procedure on
page 76-34

Updates entries which define resource plans

UPDATE_PLAN_DIRECTIVE
Procedure on page 76-35

Updates resource plan directives

VALIDATE_PENDING_AREA
Procedure on page 76-38

Validates pending changes for the resource manage

Table 76–3 (Cont.) DBMS_RESOURCE_MANAGER Package Subprograms

Subprogram Description

CLEAR_PENDING_AREA Procedure

76-10 PL/SQL Packages and Types Reference

CLEAR_PENDING_AREA Procedure

This procedure lets you clear pending changes for the resource manager.

Syntax
DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA;

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-11

CREATE_CONSUMER_GROUP Procedure

This procedure lets you create entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN');

Parameters

Table 76–4 CREATE_CONSUMER_GROUP Procedure Parameters

Parameter Description

consumer_group The name of the consumer group.

comment The user's comment.

cpu_mth The resource allocation method for distributing CPU among
sessions in the consumer group. The default is ROUND-ROBIN,
which uses a round-robin scheduler to ensure sessions are
fairly executed. RUN-TO-COMPLETION specifies that sessions
with the largest active time are scheduled ahead of other
sessions

CREATE_PENDING_AREA Procedure

76-12 PL/SQL Packages and Types Reference

CREATE_PENDING_AREA Procedure

This procedure lets you make changes to resource manager objects.

All changes to the plan schema must be done within a pending area. The pending
area can be thought of as a "scratch" area for plan schema changes. The
administrator creates this pending area, makes changes as necessary, possibly
validates these changes, and only when the submit is completed do these changes
become active.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA;

Usage Notes
You may, at any time while the pending area is active, view the current plan schema
with your changes by selecting from the appropriate user views.

At any time, you may clear the pending area if you want to stop the current
changes. You may also call the VALIDATE procedure to confirm whether the
changes you has made are valid. You do not have to do your changes in a given
order to maintain a consistent group of entries. These checks are also implicitly
done when the pending area is submitted.

The following rules must be adhered to, and they are checked whenever the
validate or submit procedures are executed:

■ No plan schema may contain any loops.

■ All plans and consumer groups referred to by plan directives must exist.

■ All plans must have plan directives that refer to either plans or consumer
groups.

■ All percentages in any given level must not add up to greater than 100 for the
emphasis resource allocation method.

Note: Oracle allows "orphan" consumer groups (in other words,
consumer groups that have no plan directives that refer to them).
This is in anticipation that an administrator may want to create a
consumer group that is not currently being used, but will be used
in the future.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-13

■ No plan may be deleted that is currently being used as a top plan by an active
instance.

■ For Oracle8i, the plan directive parameter, parallel_degree_limit_p1,
may only appear in plan directives that refer to consumer groups (that is, not at
subplans).

■ There cannot be more than 32 plan directives coming from any given plan (that
is, no plan can have more than 32 children).

■ There cannot be more than 32 consumer groups in any active plan schema.

■ Plans and consumer groups use the same namespace; therefore, no plan can
have the same name as any consumer group.

■ There must be a plan directive for OTHER_GROUPS somewhere in any active
plan schema.This ensures that a session not covered by the currently active plan
is allocated resources as specified by the OTHER_GROUPS directive.

If any of the preceding rules are broken when checked by the VALIDATE or SUBMIT
procedures, then an informative error message is returned. You may then make
changes to fix the problem(s) and reissue the validate or submit procedures.

CREATE_PLAN Procedure

76-14 PL/SQL Packages and Types Reference

CREATE_PLAN Procedure

This procedure creates entries which define resource plans.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PLAN (
 plan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'EMPHASIS',
 active_sess_pool_mth IN VARCHAR2 DEFAULT 'ACTIVE_SESS_POOL_ABSOLUTE',
 parallel_degree_limit_mth IN VARCHAR2 DEFAULT
 'PARALLEL_DEGREE_LIMIT_ABSOLUTE',
 queueing_mth IN VARCHAR2 DEFAULT 'FIFO_TIMEOUT',);

Parameters

Table 76–5 CREATE_PLAN Procedure Parameters

Parameter Description

plan The name of the resource plan.

comment User's comment.

cpu_mth The resource allocation method for specifying how much
CPU each consumer group or sub plan gets. EMPHASIS,
the default method, is for multilevel plans that use
percentages to specify how CPU is distributed among
consumer groups. RATIO is for single-level plans that use
ratios to specify how CPU is distributed.

active_sess_pool_mth The Active session pool resource allocation method.
Limits the number of active sessions. All other sessions are
inactive and wait in a queue to be activated. ACTIVE_
SESS_POOL_ABSOLUTE is the default and only method
available.

parallel_degree_limit_
mth

The resource allocation method for specifying a limit on
the degree of parallelism of any operation. PARALLEL_
DEGREE_LIMIT_ABSOLUTE is the default and only
method available.

queueing_mth The Queuing resource allocation method. Controls order
in which queued inactive sessions will execute. FIFO_
TIMEOUT is the default and only method available

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-15

Usage Notes
If you want to use any default resource allocation method, then you do not need not
specify it when creating or updating a plan.

CREATE_PLAN_DIRECTIVE Procedure

76-16 PL/SQL Packages and Types Reference

CREATE_PLAN_DIRECTIVE Procedure

This procedure lets you create resource plan directives.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_p1 IN NUMBER DEFAULT NULL,
 cpu_p2 IN NUMBER DEFAULT NULL,
 cpu_p3 IN NUMBER DEFAULT NULL,
 cpu_p4 IN NUMBER DEFAULT NULL,
 cpu_p5 IN NUMBER DEFAULT NULL,
 cpu_p6 IN NUMBER DEFAULT NULL,
 cpu_p7 IN NUMBER DEFAULT NULL,
 cpu_p8 IN NUMBER DEFAULT NULL,
 active_sess_pool_p1 IN NUMBER DEFAULT NULL,
 queueing_p1 IN NUMBER DEFAULT NULL,
 parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 switch_group IN VARCHAR2 DEFAULT NULL,
 switch_time IN NUMBER DEFAULT NULL,
 switch_estimate IN BOOLEAN DEFAULT FALSE,
 max_est_exec_time IN NUMBER DEFAULT NULL,
 undo_pool IN NUMBER DEFAULT NULL,
 max_idle_time IN NUMBER DEFAULT NULL,

 max_idle_blocker_time IN NUMBER DEFAULT NULL,
 switch_time_in_call IN NUMBER DEFAULT NULL);

Parameters

Table 76–6 CREATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan The name of the resource plan.

group_or_subplan The name of the consumer group or subplan.

comment Comment for the plan directive.

cpu_p1 For EMPHASIS, specifies the CPU percentage at the first level.
For RATIO, specifies the weight of cpu usage. Default is NULL
for all CPU parameters.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-17

cpu_p2 For EMPHASIS, specifies the CPU percentage at the second
level. Not applicable for RATIO.

cpu_p3 For EMPHASIS, specifies the CPU percentage at the third level.
Not applicable for RATIO.

cpu_p4 For EMPHASIS, specifies the CPU percentage at the fourth
level. Not applicable for RATIO.

cpu_p5 For EMPHASIS, specifies the CPU percentage at the fifth level.
Not applicable for RATIO.

cpu_p6 For EMPHASIS, specifies the CPU percentage at the sixth level.
Not applicable for RATIO.

cpu_p7 For EMPHASIS, specifies the CPU percentage at the seventh
level. Not applicable for RATIO.

cpu_p8 For EMPHASIS, specifies the CPU percentage at the eighth
level. Not applicable for RATIO.

active_sess_pool_p1 Specifies maximum number of concurrently active sessions for
a consumer group. Default is NULL, which means unlimited.

queueing_p1 Specified time (in seconds) after which a job in the inactive
session queue (waiting for execution) will time out. Default is
NULL, which means unlimited.

parallel_degree_
limit_p1

Specifies a limit on the degree of parallelism for any operation.
Default is NULL, which means unlimited.

switch_group Specifies consumer group to which this session is switched if
other switch criteria is met. Default is NULL. If the group name
is 'CANCEL_SQL', the current call will be canceled when other
switch criteria are met. If the group name is 'KILL_SESSION',
the session will be killed when other switch criteria are met.

switch_time Specifies time (in seconds) that a session can execute before an
action is taken. Default is NULL, which means unlimited.

switch_estimate If TRUE, tells Oracle to use its execution time estimate to
automatically switch the consumer group of an operation
before beginning its execution. Default is FALSE.

Table 76–6 (Cont.) CREATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

CREATE_PLAN_DIRECTIVE Procedure

76-18 PL/SQL Packages and Types Reference

Usage Notes
■ All parameters default to NULL. However, for the EMPHASIS CPU resource

allocation method, this case would starve all the users.

■ For max_idle_time and max_idle_blocker_time, PMON will check these
limits once a minute. If it finds a session that has exceeded one of the limits, it
will forcibly kill the session and clean up all its state.

■ The parameter switch_time_in_call is mostly useful for three-tier
applications where the mid-tier server is implementing session pooling. By
using switch_time_in_call, the resource usage of one client will not affect
a future client that happens to be executed on the same session.

max_est_exec_time Specifies the maximum execution time (in seconds) allowed for
a session. If the optimizer estimates that an operation will take
longer than MAX_EST_EXEC_TIME, the operation is not started
and ORA-07455 is issued. If the optimizer does not provide an
estimate, this directive has no effect. Default is NULL, which
means unlimited.

undo_pool Sets a maximum in kilobytes (K) on the total amount of undo
generated by a consumer group. Default is NULL, which means
unlimited.

max_idle_time Indicates the maximum session idle time. Default is NULL,
which means unlimited.

max_idle_blocker_
time

The maximum amount of time in seconds that a session can be
idle while blocking another session's acquisition of a resource.

switch_time_in_call Specifies time (in seconds) that a session can execute before an
action is taken. At the end of the top call, the consumer group
of the session is restored to its original consumer group.
Default is NULL, which means unlimited. Both SWITCH_TIME_
IN_CALL and SWITCH_TIME cannot be specified.

Table 76–6 (Cont.) CREATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-19

CREATE_SIMPLE_PLAN Procedure

This procedure creates a single-level resource plan containing up to eight consumer
groups in one step. You do not need to create a pending area manually before
creating a resource plan, or use the CREATE_CONSUMER_GROUP and CREATE_
RESOURCE_PLAN_DIRECTIVES procedures separately.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN (
 SIMPLE_PLAN IN VARCHAR2 DEFAULT,
 CONSUMER_GROUP1 IN VARCHAR2 DEFAULT,
 GROUP1_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP2 IN VARCHAR2 DEFAULT,
 GROUP2_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP3 IN VARCHAR2 DEFAULT,
 GROUP3_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP4 IN VARCHAR2 DEFAULT,
 GROUP4_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP5 IN VARCHAR2 DEFAULT,
 GROUP5_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP6 IN VARCHAR2 DEFAULT,
 GROUP6_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP7 IN VARCHAR2 DEFAULT,
 GROUP7_CPU IN NUMBER DEFAULT,
 CONSUMER_GROUP8 IN VARCHAR2 DEFAULT,
 GROUP8_CPU IN NUMBER DEFAULT);

DELETE_CONSUMER_GROUP Procedure

76-20 PL/SQL Packages and Types Reference

DELETE_CONSUMER_GROUP Procedure

This procedure lets you delete entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2);

Parameters

Table 76–7 DELETE_CONSUMER_GROUP Procedure Parameters

Parameters Description

consumer_group The name of the consumer group to be deleted.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-21

DELETE_PLAN Procedure

This procedure deletes the specified plan as well as all the plan directives to which
it refers.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN (
 plan IN VARCHAR2);

Parameters

Table 76–8 DELETE_PLAN Procedure Parameters

Parameter Description

plan The name of the resource plan to delete.

DELETE_PLAN_DIRECTIVE Procedure

76-22 PL/SQL Packages and Types Reference

DELETE_PLAN_DIRECTIVE Procedure

This procedure lets you delete resource plan directives.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2);

Parameters

Table 76–9 DELETE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan The name of the resource plan.

group_or_subplan The name of the group or subplan.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-23

DELETE_PLAN_CASCADE Procedure

This procedure deletes the specified plan and all of its descendants (plan directives,
subplans, consumer groups). Mandatory objects and directives are not deleted.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN_CASCADE (
 plan IN VARCHAR2);

Parameters

Usage Notes
If DELETE_PLAN_CASCADE encounters any error, then it rolls back, and nothing is
deleted.

Table 76–10 DELETE_PLAN_CASCADE Procedure Parameters

Parameters Description

plan The name of the plan.

SET_CONSUMER_GROUP_MAPPING Procedure

76-24 PL/SQL Packages and Types Reference

SET_CONSUMER_GROUP_MAPPING Procedure

This procedure adds, deletes, or modifies entries that map sessions to consumer
groups, based on the session's login and runtime attributes.

Syntax
DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING(
 attribute IN VARCHAR2,
 value IN VARCHAR2,
 consumer_group IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
If no mapping exists for the given attribute and value, a mapping to the given
consumer group will be created. If a mapping already exists for the given attribute
and value, the mapped consumer group will be updated to the one given. If the
consumer_group argument is NULL, then any mapping from the given attribute
and value will be deleted.

Table 76–11 SET_CONSUMER_GROUP_MAPPING Procedure Parameters

Parameters Description

attribute The mapping attribute to add/modify. It can be one of the
Constants listed.

value The attribute value to match.

consumer_group The name of the mapped consumer group, or NULL to delete a
mapping.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-25

SET_CONSUMER_GROUP_MAPPING_PRI Procedure

Multiple attributes of a session can be used to map the session to a consumer group.
This procedure prioritizes the attribute mappings.

Syntax
DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING_PRI(
 explicit IN NUMBER,
 oracle_user IN NUMBER,
 service_name IN NUMBER,
 client_os_user IN NUMBER,
 client_program IN NUMBER,
 client_machine IN NUMBER,
 module_name IN NUMBER,
 module_name_action IN NUMBER,
 service_module IN NUMBER,
 service_module_action IN NUMBER);

Parameters
-PRIORITY

Table 76–12 SET_CONSUMER_GROUP_MAPPING_PRI Procedure Parameters

Parameters Description

explicit The priority of the explicit mapping.

oracle_user The priority of the Oracle user name mapping.

service_name The priority of the client service name mapping.

client_os_user The priority of the client operating system user name mapping.

client_program The priority of the client program mapping.

client_machine The priority of the client machine mapping.

module_name The priority of the application module name mapping.

module_name_action The priority of the application module name and action
mapping.

service_module The priority of the service name and application module name
mapping.

module_name_action The priority of the service name, application module name,
and application action mapping.

SET_CONSUMER_GROUP_MAPPING_PRI Procedure

76-26 PL/SQL Packages and Types Reference

Usage Notes
Each priority value must be a unique integer from 1 to 10. Together, they establish
an ordering where 1 is the highest priority and 10 is the lowest.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-27

SET_INITIAL_CONSUMER_GROUP Procedure

The initial consumer group of a user is the consumer group to which any session
created by that user initially belongs. This procedure sets the initial resource
consumer group for a user.

Syntax
DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Usage Notes
The ADMINISTER_RESOURCE_MANAGER or the ALTER USER system privilege are
required to be able to execute this procedure. The user, or PUBLIC, must be directly
granted switch privilege to a consumer group before it can be set to be the user's
initial consumer group. Switch privilege for the initial consumer group cannot come
from a role granted to that user.

If the initial consumer group for a user has never been set, then the user's initial
consumer group is automatically the consumer group: DEFAULT_CONSUMER_
GROUP.

DEFAULT_CONSUMER_GROUP has switch privileges granted to PUBLIC; therefore,
all users are automatically granted switch privilege for this consumer group. Upon
deletion of a consumer group, all users having the deleted group as their initial
consumer group now have DEFAULT_CONSUMER_GROUP as their initial consumer

Table 76–13 SET_INITIAL_CONSUMER_GROUP Procedure Parameters

Parameters Description

user The name of the user.

consumer_group The user's initial consumer group.

Note: These semantics are similar to those for ALTER USER
DEFAULT ROLE.

SET_INITIAL_CONSUMER_GROUP Procedure

76-28 PL/SQL Packages and Types Reference

group. All currently active sessions belonging to a deleted consumer group are
switched to DEFAULT_CONSUMER_GROUP.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-29

SUBMIT_PENDING_AREA Procedure

This procedure lets you submit pending changes for the resource manager. It clears
the pending area after validating and committing the changes (if valid).

Syntax
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA;

Note: A call to SUBMIT_PENDING_AREA may fail even if
VALIDATE_PENDING_AREA succeeds. This may happen if a plan
being deleted is loaded by an instance after a call to VALIDATE_
PENDING_AREA, but before a call to SUBMIT_PENDING_AREA.

SWITCH_CONSUMER_GROUP_FOR_SESS Procedure

76-30 PL/SQL Packages and Types Reference

SWITCH_CONSUMER_GROUP_FOR_SESS Procedure

This procedure lets you change the resource consumer group of a specific session. It
also changes the consumer group of any (PQ) slave sessions that are related to the
top user session.

Syntax
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS (
 session_id IN NUMBER,
 session_serial IN NUMBER,
 consumer_group IN VARCHAR2);

Parameters

Table 76–14 SWITCH_CONSUMER_GROUP_FOR_SESS Procedure Parameters

Parameter Description

session_id SID column from the view V$SESSION.

session_serial SERIAL# column from view V$SESSION.

consumer_group The name of the consumer group to switch to.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-31

SWITCH_CONSUMER_GROUP_FOR_USER Procedure

This procedure lets you change the resource consumer group for all sessions with a
given user ID. It also change the consumer group of any (PQ) slave sessions that are
related to the top user session.

Syntax
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Usage Notes
The SWITCH_CONSUMER_GROUP_FOR_SESS Procedure and SWITCH_
CONSUMER_GROUP_FOR_USER procedures let you to raise or lower the allocation of
CPU resources of certain sessions or users. This provides a functionality similar to
the nice command on UNIX.

These procedures cause the session to be moved into the newly specified consumer
group immediately.

Table 76–15 SWITCH_CONSUMER_GROUP_FOR_USER Procedure Parameters

Parameter Description

user The name of the user.

consumer_group The name of the consumer group to switch to.

SWITCH_PLAN Procedure

76-32 PL/SQL Packages and Types Reference

SWITCH_PLAN Procedure

This procedure sets the current resource manager plan.

Syntax
DBMS_RESOURCE_MANAGER.SWITCH_PLAN(
 plan_name IN VARCHAR2,
 sid IN VARCHAR2 DEFAULT '*');

Parameters

Table 76–16 SWITCH_PLAN_GROUP_FOR_USER Procedure Parameters

Parameter Description

plan_name The name of the plan to which to switch.

sid The sid parameter is relevant only in a Real Application
Clusters environment. This parameter lets you to change the
plan for a particular instance. Specify the sid of the instance
where you want to change the plan. Or specify '*' if you
want Oracle to change the plan for all instances.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-33

UPDATE_CONSUMER_GROUP Procedure

This procedure lets you update entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
If the parameters to the UPDATE_CONSUMER_GROUP procedure are not specified,
then they remain unchanged in the data dictionary.

Table 76–17 UPDATE_CONSUMER_GROUP Procedure Parameter

Parameter Description

consumer_group The name of consumer group.

new_comment New user's comment.

new_cpu_mth The name of new method for CPU resource allocation.

UPDATE_PLAN Procedure

76-34 PL/SQL Packages and Types Reference

UPDATE_PLAN Procedure

This procedure updates entries which define resource plans.

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_PLAN (
 plan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL,
 new_active_sess_pool_mth IN VARCHAR2 DEFAULT NULL,
 new_parallel_degree_limit_mth IN VARCHAR2 DEFAULT NULL,
 new_queueing_mth IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
■ If the parameters to UPDATE_PLAN Procedure are not specified, then they

remain unchanged in the data dictionary.

■ If you want to use any default resource allocation method, then you do not
need not specify it when creating or updating a plan.

Table 76–18 UPDATE_PLAN Procedure Parameters

Parameter Description

plan The name of resource plan.

new_comment New user's comment.

new_cpu_mth The name of new allocation method for CPU resources.

new_active_sess_
pool_mth

The name of new method for maximum active sessions.

new_parallel_degree_
limit_mth

The name of new method for degree of parallelism.

new_queueing_mth Specifies type of queuing policy to use with active session pool
feature.

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-35

UPDATE_PLAN_DIRECTIVE Procedure

This procedure lets you update resource plan directives.

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_p1 IN NUMBER DEFAULT NULL,
 new_cpu_p2 IN NUMBER DEFAULT NULL,
 new_cpu_p3 IN NUMBER DEFAULT NULL,
 new_cpu_p4 IN NUMBER DEFAULT NULL,
 new_cpu_p5 IN NUMBER DEFAULT NULL,
 new_cpu_p6 IN NUMBER DEFAULT NULL,
 new_cpu_p7 IN NUMBER DEFAULT NULL,
 new_cpu_p8 IN NUMBER DEFAULT NULL,
 new_active_sess_pool_p1 IN NUMBER DEFAULT NULL,
 new_queueing_p1 IN NUMBER DEFAULT NULL,
 new_parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 new_switch_group IN VARCHAR2 DEFAULT NULL,
 new_switch_time IN NUMBER DEFAULT NULL,
 new_switch_estimate IN BOOLEAN DEFAULT FALSE,
 new_max_est_exec_time IN NUMBER DEFAULT NULL,
 new_undo_pool IN NUMBER DEFAULT NULL,

 new_max_idle_time IN NUMBER DEFAULT NULL,
 new_max_idle_blocker_time IN NUMBER DEFAULT NULL,
 new_switch_time_in_call IN NUMBER DEFAULT NULL);

Parameters

Table 76–19 UPDATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan The name of the resource plan.

group_or_subplan The name of the consumer group or subplan.

new_comment Comment for the plan directive.

new_cpu_p1 For EMPHASIS, specifies the CPU percentage at the first level.
For RATIO, specifies the weight of CPU usage. Default is NULL
for all CPU parameters.

UPDATE_PLAN_DIRECTIVE Procedure

76-36 PL/SQL Packages and Types Reference

new_cpu_p2 For EMPHASIS, specifies the CPU percentage at the second
level. Not applicable for RATIO.

new_cpu_p3 For EMPHASIS, specifies the CPU percentage at the third level.
Not applicable for RATIO.

new_cpu_p4 For EMPHASIS, specifies the CPU percentage at the fourth
level. Not applicable for RATIO.

new_cpu_p5 For EMPHASIS, specifies the CPU percentage at the fifth level.
Not applicable for RATIO.

new_cpu_p6 For EMPHASIS, specifies the CPU percentage at the sixth level.
Not applicable for RATIO.

new_cpu_p7 For EMPHASIS, specifies the CPU percentage at the seventh
level. Not applicable for RATIO.

new_cpu_p8 For EMPHASIS, specifies the CPU percentage at the eighth
level. Not applicable for RATIO.

new_active_sess_
pool_p1

Specifies maximum number of concurrently active sessions for
a consumer group. Default is NULL, which means unlimited.

new_queueing_p1 Specified time (in seconds) after which a job in the inactive
session queue (waiting for execution) will time out. Default is
NULL, which means unlimited.

new_switch_group Specifies a limit on the degree of parallelism for any operation.
Default is NULL, which means unlimited.

new_switch_time Specifies consumer group to which this session is switched if
other switch criteria is met. Default is NULL. If the group name
is 'CANCEL_SQL', the current call will be canceled when other
switch criteria are met. If the group name is 'KILL_SESSION',
the session will be killed when other switch criteria are met.

new_switch_estimate Specifies time (in seconds) that a session can execute before an
action is taken. Default is NULL, which means unlimited.

new_max_est_exec_
time

If TRUE, tells Oracle to use its execution time estimate to
automatically switch the consumer group of an operation
before beginning its execution. Default is FALSE.

new_undo_pool Specifies the maximum execution time (in seconds) allowed for
a session. If the optimizer estimates that an operation will take
longer than MAX_EST_EXEC_TIME, the operation is not started
and ORA-07455 is issued. If the optimizer does not provide an
estimate, this directive has no effect. Default is NULL, which
means unlimited.

Table 76–19 (Cont.) UPDATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

Summary of DBMS_RESOURCE_MANAGER Subprograms

DBMS_RESOURCE_MANAGER 76-37

Usage Notes
■ If the parameters for UPDATE_PLAN_DIRECTIVE are left unspecified, then they

remain unchanged in the data dictionary.

■ For new_max_idle_time and new_max_idle_blocker_time, PMON will
check these limits once a minute. If it finds a session that has exceeded one of
the limits, it will forcibly kill the session and clean up all its state.

■ The parameter new_switch_time_in_call is mostly useful for three-tier
applications where the mid-tier server is implementing session pooling. By
turning on new_switch_time_in_call, the resource usage of one client will
not affect the consumer group of a future client that happens to be executed on
the same session.

new_parallel_degree_
limit_p1

Sets a maximum in kilobytes (K) on the total amount of undo
generated by a consumer group. Default is NULL, which means
unlimited.

new_max_idle_time Indicates the maximum session idle time. Default is NULL,
which means unlimited.

new_max_idle_
blocker_time

The maximum amount of time in seconds that a session can be
idle while blocking another session's acquisition of a resource.

new_switch_time_in_
call

Specifies time (in seconds) that a session can execute before an
action is taken. At the end of the top call, the consumer group
of the session is restored to its original consumer group.
Default is NULL, which means unlimited. Both SWITCH_TIME_
IN_CALL and SWITCH_TIME cannot be specified.

Table 76–19 (Cont.) UPDATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

VALIDATE_PENDING_AREA Procedure

76-38 PL/SQL Packages and Types Reference

VALIDATE_PENDING_AREA Procedure

This procedure lets you validate pending changes for the resource manager.

Syntax
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA;

DBMS_RESOURCE_MANAGER_PRIVS 77-1

77
DBMS_RESOURCE_MANAGER_PRIVS

The DBMS_RESOURCE_MANAGER_PRIVS package maintains privileges associated
with the Resource Manager.

This chapter contains the following topics:

■ Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

See Also: For more information on using the Database Resource
Manager, see Oracle Database Administrator's Guide.

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

77-2 PL/SQL Packages and Types Reference

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

Table 77–1 DBMS_RESOURCE_MANAGER_PRIVS Package Subprograms

Subprogram Description

GRANT_SWITCH_
CONSUMER_GROUP
Procedure on page 77-3

Grants the privilege to switch to resource consumer
groups

GRANT_SYSTEM_PRIVILEGE
Procedure on page 77-5

Performs a grant of a system privilege

REVOKE_SWITCH_
CONSUMER_GROUP
Procedure on page 77-6

Revokes the privilege to switch to resource consumer
groups.

REVOKE_SYSTEM_PRIVILEGE
Procedure on page 77-8

Performs a revoke of a system privilege

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

DBMS_RESOURCE_MANAGER_PRIVS 77-3

GRANT_SWITCH_CONSUMER_GROUP Procedure

This procedure grants the privilege to switch to a resource consumer group.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 grantee_name IN VARCHAR2,
 consumer_group IN VARCHAR2,
 grant_option IN BOOLEAN);

Parameters

Usage Notes
If you grant permission to switch to a particular consumer group to a user, then that
user can immediately switch their current consumer group to the new consumer
group.

If you grant permission to switch to a particular consumer group to a role, then any
users who have been granted that role and have enabled that role can immediately
switch their current consumer group to the new consumer group.

If you grant permission to switch to a particular consumer group to PUBLIC, then
any user can switch to that consumer group.

If the grant_option parameter is TRUE, then users granted switch privilege for
the consumer group may also grant switch privileges for that consumer group to
others.

In order to set the initial consumer group of a user, you must grant the switch
privilege for that group to the user.

Table 77–2 GRANT_SWITCH_CONSUMER_GROUP Procedure Parameters

Parameter Description

grantee_name Name of the user or role to whom privilege is to be granted.

consumer_group Name of consumer group.

grant_option TRUE if grantee should be allowed to grant access, FALSE
otherwise.

See Also: Chapter 76, "DBMS_RESOURCE_MANAGER"

GRANT_SWITCH_CONSUMER_GROUP Procedure

77-4 PL/SQL Packages and Types Reference

Examples
BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 'scott', 'mail_maintenance_group', true);
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.set_consumer_group_mapping(
 dbms_resource_manager.oracle_user, 'scott','mail_maintenance_group');
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

DBMS_RESOURCE_MANAGER_PRIVS 77-5

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure performs a grant of a system privilege to a user or role.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
 grantee_name IN VARCHAR2,

privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER',
 admin_option IN BOOLEAN);

Parameters

Usage Notes
Currently, Oracle provides only one system privilege for the Resource Manager:
ADMINISTER_RESOURCE_MANAGER. Database administrators have this system
privilege with the admin option. The grantee and the revokee can either be a user or
a role. Users that have been granted the system privilege with the admin option can
also grant this privilege to others.

Examples
The following call grants this privilege to a user called scott without the admin
option:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
 grantee_name => 'scott',
 privilege_name => 'ADMINISTER_RESOURCE_MANAGER',
 admin_option => FALSE);
END;
/

Table 77–3 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

grantee_name Name of the user or role to whom privilege is to be granted.

privilege_name Name of the privilege to be granted.

admin_option TRUE if the grant is with admin_option, FALSE otherwise.

REVOKE_SWITCH_CONSUMER_GROUP Procedure

77-6 PL/SQL Packages and Types Reference

REVOKE_SWITCH_CONSUMER_GROUP Procedure

This procedure revokes the privilege to switch to a resource consumer group.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 revokee_name IN VARCHAR2,
 consumer_group IN VARCHAR2);

Parameters

Usage Notes
If you revoke a user's switch privilege for a particular consumer group, then any
subsequent attempts by that user to switch to that consumer group will fail.

If you revoke the initial consumer group from a user, then that user will
automatically be part of the DEFAULT_CONSUMER_GROUP consumer group when
logging in.

If you revoke the switch privilege for a consumer group from a role, then any users
who only had switch privilege for the consumer group through that role will not be
able to switch to that consumer group.

If you revoke the switch privilege for a consumer group from PUBLIC, then any
users who could previously only use the consumer group through PUBLIC will not
be able to switch to that consumer group.

Examples
The following example revokes the privileges to switch to mail_maintenance_
group from Scott:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 'scott', 'mail_maintenance_group');

Table 77–4 REVOKE_SWITCH_CONSUMER_GROUP Procedure Parameter

Parameter Description

revokee_name Name of user/role from which to revoke access.

consumer_group Name of consumer group.

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

DBMS_RESOURCE_MANAGER_PRIVS 77-7

END;
/

REVOKE_SYSTEM_PRIVILEGE Procedure

77-8 PL/SQL Packages and Types Reference

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure performs a revoke of a system privilege from a user or role.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE (
 revokee_name IN VARCHAR2,
 privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER');

Parameters

Examples
The following call revokes the ADMINISTER_RESOURCE_MANAGER from user scott:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE ('scott');
END;
/

Table 77–5 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

revokee_name Name of the user or role from whom privilege is to be revoked.

privilege_name Name of the privilege to be revoked.

DBMS_RESUMABLE 78-1

78
DBMS_RESUMABLE

With the DBMS_RESUMABLE package, you can suspend large operations that run
out of space or reach space limits after executing for a long time, fix the problem,
and make the statement resume execution. In this way you can write applications
without worrying about running into space-related errors.

This chapter contains the following topics:

■ Using DBMS_RESUMABLE

■ Operational Notes

■ Summary of DBMS_RESUMABLE Subprograms

Using DBMS_RESUMABLE

78-2 PL/SQL Packages and Types Reference

Using DBMS_RESUMABLE

■ Operational Notes

Operational Notes

When you suspend a statement, you should log the suspension in the alert log. You
should also register a procedure to be executed when the statement is suspended.
Using a view, you can monitor the progress of the statement and indicate whether
the statement is currently executing or suspended.

Suspending a statement automatically results in suspending the transaction. Thus
all transactional resources are held during a statement suspend and resume. When
the error condition disappears, the suspended statement automatically resumes
execution. A resumable space allocation can be suspended and resumed multiple
times during execution.

A suspension timeout interval is associated with resumable space allocations. A
resumable space allocation that is suspended for the timeout interval (the default is
two hours) wakes up and returns an exception to the user. A suspended statement
may be forced to throw an exception using the DMBS_RESUMABLE.ABORT()
procedure.

Summary of DBMS_RESUMABLE Subprograms

DBMS_RESUMABLE 78-3

Summary of DBMS_RESUMABLE Subprograms

Table 78–1 DBMS_RESUMABLE Package Subprograms

Subprogram Description

ABORT Procedure on
page 78-4

Aborts a suspended resumable space allocation

GET_SESSION_TIMEOUT
Function on page 78-5

Returns the current timeout value of the resumable space
allocations for a session with session_id

GET_TIMEOUT Function
on page 78-6

Returns the current timeout value of resumable space
allocations for the current session

SET_SESSION_TIMEOUT
Procedure on page 78-7

Sets the timeout of resumable space allocations for a session
with session_id

SET_TIMEOUT Procedure
on page 78-8

Sets the timeout of resumable space allocations for the current
session

SPACE_ERROR_INFO
Function on page 78-9

Looks for space-related errors in the error stack, otherwise
returning FALSE

ABORT Procedure

78-4 PL/SQL Packages and Types Reference

ABORT Procedure

This procedure aborts a suspended resumable space allocation. The parameter
session_id is the session ID in which the statement is executed. For a parallel
DML/DDL, session_id is any session ID that participates in the parallel
DML/DDL. This operation is guaranteed to succeed. The procedure can be called
either inside or outside of the AFTER SUSPEND trigger.

Syntax
DBMS_RESUMABLE.ABORT (
 session_id IN NUMBER);

Parameters

Usage Notes
To call an ABORT procedure, you must be the owner of the session with session_
id, have ALTER SYSTEM privileges, or be a DBA.

Table 78–2 ABORT Procedure Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.

Summary of DBMS_RESUMABLE Subprograms

DBMS_RESUMABLE 78-5

GET_SESSION_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for a
session with session_id.

Syntax
DBMS_RESUMABLE.GET_SESSION_TIMEOUT (
 session_id IN NUMBER)
RETURN NUMBER;

Parameters

Return Values

Usage Notes
If session_id does not exist, the GET_SESSION_TIMEOUT function returns -1.

Table 78–3 GET_SESSION_TIMEOUT Function Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.

Table 78–4 REQUEST Function Return Values

Return Value Description

NUMBER The current timeout value of resumable space allocations
for a session with session_id.The timeout is returned
in seconds.

GET_TIMEOUT Function

78-6 PL/SQL Packages and Types Reference

GET_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for
the current session.

Syntax
DBMS_RESUMABLE.GET_TIMEOUT
 RETURN NUMBER;

Return Values

Usage Notes
If the current session is not resumable enabled, the GET_TIMEOUT function returns
-1.

Table 78–5 GET_TIMEOUT Function Return Values

Return Value Description

NUMBER The current timeout value of resumable space allocations
for the current session.The returned value is in seconds.

Summary of DBMS_RESUMABLE Subprograms

DBMS_RESUMABLE 78-7

SET_SESSION_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for a session with
session_id. The new timeout setting applies to the session immediately. If
session_id does not exist, no operation occurs.

Syntax
DBMS_RESUMABLE.SET_SESSION_TIMEOUT (
 session_id IN NUMBER,
 timeout IN NUMBER);

Parameters

Table 78–6 SET_SESSION_TIMEOUT Procedure Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.

timeout The timeout of the resumable space allocation.

SET_TIMEOUT Procedure

78-8 PL/SQL Packages and Types Reference

SET_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for the current
session. The new timeout setting applies to the session immediately.

Syntax
DBMS_RESUMABLE.SET_TIMEOUT (
 timeout IN NUMBER);

Parameters

Table 78–7 SET_TIMEOUT Procedure Parameters

Parameter Description

timeout The timeout of the resumable space allocation.

Summary of DBMS_RESUMABLE Subprograms

DBMS_RESUMABLE 78-9

SPACE_ERROR_INFO Function

This function looks for space-related errors in the error stack. If it cannot find a
space related error, it will return FALSE. Otherwise, TRUE is returned and
information about the particular object that causes the space error is returned.

Syntax
DBMS_RESUMABLE.SPACE_ERROR_INFO
 error_type OUT VARCHAR2,
 object_type OUT VARCHAR2,
 object_owner OUT VARCHAR2,
 table_space_name OUT VARCHAR2,
 object_name OUT VARCHAR2,
 sub_object_name OUT VARCHAR2)
RETURN BOOLEAN;

Parameters

Table 78–8 SPACE_ERROR_INFO Function Parameters

Parameter Description

error_type The space error type. It will be one of the following:

■ NO MORE SPACE

■ MAX EXTENTS REACHED

■ SPACE QUOTA EXCEEDED

SPACE_ERROR_INFO Function

78-10 PL/SQL Packages and Types Reference

object_type The object type. It will be one of the following:

■ TABLE

■ INDEX

■ CLUSTER

■ TABLE SPACE

■ ROLLBACK SEGMENT

■ UNDO SEGMENT

■ LOB SEGMENT

■ TEMP SEGMENT

■ INDEX PARTITION

■ TABLE PARTITION

■ LOB PARTITION

■ TABLE SUBPARTITION

■ INDEX SUBPARTITION

■ LOB SUBPARTITION

The type can also be NULL if it does not apply.

object_owner The owner of the object. NULL if it cannot be determined.

table_space_name The table space where the object resides. NULL if it cannot be
determined.

object_name The name of rollback segment, temp segment, table, index, or
cluster.

sub_object_name The partition name or sub-partition name of LOB, TABLE, or
INDEX. NULL if it cannot be determined.

Table 78–8 (Cont.) SPACE_ERROR_INFO Function Parameters

Parameter Description

DBMS_RLS 79-1

79
DBMS_RLS

The DBMS_RLS package contains the fine-grained access control administrative
interface, which is used to implement Virtual Private Database (VPD). DBMS_RLS is
available with the Enterprise Edition only.

This chapter contains the following topics:

■ Using DBMS_RLS

■ Overview

■ Security Model

■ Operational Notes

■ Summary of DBMS_RLS Subprograms

See Also: Oracle Database Security Guide for usage information on
DBMS_RLS.

Using DBMS_RLS

79-2 PL/SQL Packages and Types Reference

Using DBMS_RLS

Overview

The functionality to support fine-grained access control is based on dynamic
predicates, where security rules are not embedded in views, but are acquired at the
statement parse time, when the base table or view is referenced in a DML statement.

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL
function, which is associated with a security policy through a PL/SQL interface. For
example:

DBMS_RLS.ADD_POLICY (
 'hr', 'employees', 'emp_policy', 'hr', 'emp_sec', 'select');

Whenever the EMPLOYEES table, under the HR schema, is referenced in a query or
subquery (SELECT), the server calls the EMP_SEC function (under the HR schema).
This function returns a predicate specific to the current user for the EMP_POLICY
policy. The policy function may generate the predicates based on the session
environment variables available during the function call. These variables usually
appear in the form of application contexts. The policy can specify any combination
of security-relevant columns and of these statement types: INDEX, SELECT, INSERT,
UPDATE, or DELETE.

The server then produces a transient view with the text:

SELECT * FROM hr.employees WHERE P1

Here, P1 (for example, where SAL > 10000, or even a subquery) is the predicate
returned from the EMP_SEC function. The server treats the EMPLOYEES table as a
view and does the view expansion just like the ordinary view, except that the view
text is taken from the transient view instead of the data dictionary.

If the predicate contains subqueries, then the owner (definer) of the policy function
is used to resolve objects within the subqueries and checks security for those
objects. In other words, users who have access privilege to the policy-protected
objects do not need to know anything about the policy. They do not need to be
granted object privileges for any underlying security policy. Furthermore, the users
do not require EXECUTE privilege on the policy function, because the server makes
the call with the function definer's right.

Using DBMS_RLS

DBMS_RLS 79-3

DBMS_RLS also provides the interface to drop or enable security policies. For
example, you can drop or enable the EMP_POLICY with the following PL/SQL
statements:

DBMS_RLS.DROP_POLICY('hr', 'employees', 'emp_policy');
DBMS_RLS.ENABLE_POLICY('hr', 'employees', 'emp_policy', FALSE);

Security Model

A security check is performed when the transient view is created with a subquery.
The schema owning the policy function, which generates the dynamic predicate, is
the transient view's definer for security check and object lookup.

Operational Notes

The DBMS_RLS procedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_RLS procedures are
part of the DDL transaction.

For example, you may create a trigger for CREATE TABLE. Inside the trigger, you
may add a column through ALTER TABLE, and you can add a policy through
DBMS_RLS. All these operations are in the same transaction as CREATE TABLE, even
though each one is a DDL statement. The CREATE TABLE succeeds only if the
trigger is completed successfully.

Views of current cursors and corresponding predicates are available from v$vpd_
policies.

A synonym can reference only a view or a table.

Note: The transient view can preserve the updatability of the
parent object because it is derived from a single table or view with
predicate only; that is, no JOIN, ORDER BY, GROUP BY, and so on.

Summary of DBMS_RLS Subprograms

79-4 PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms

Table 79–1 DBMS_RLS Subprograms Package Subprograms

Subprogram Description

ADD_POLICY Procedure on
page 79-5

Adds a fine-grained access control policy to a table,
view, or synonym

DROP_POLICY Procedure on
page 79-10

Drops a fine-grained access control policy from a table,
view, or synonym

REFRESH_POLICY Procedure on
page 79-11

Causes all the cached statements associated with the
policy to be reparsed

ENABLE_POLICY Procedure on
page 79-12

Enables or disables a fine-grained access control policy

CREATE_POLICY_GROUP
Procedure on page 79-13

Creates a policy group

ADD_GROUPED_POLICY
Procedure on page 79-14

Adds a policy associated with a policy group

ADD_POLICY_CONTEXT
Procedure on page 79-17

Adds the context for the active application

DELETE_POLICY_GROUP
Procedure on page 79-19

Deletes a policy group

DROP_GROUPED_POLICY
Procedure on page 79-20

Drops a policy associated with a policy group

DROP_POLICY_CONTEXT
Procedure on page 79-21

Drops a driving context from the object so that it will
have one less driving context

ENABLE_GROUPED_POLICY
Procedure on page 79-22

Enables or disables a row-level group security policy

DISABLE_GROUPED_POLICY
Procedure on page 79-23

Disables a row-level group security policy

REFRESH_GROUPED_POLICY
Procedure on page 79-24

Reparses the SQL statements associated with a
refreshed policy

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-5

ADD_POLICY Procedure

This procedure adds a fine-grained access control policy to a table, view, or
synonym.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A COMMIT is also performed at the end of the operation.

Syntax
DBMS_RLS.ADD_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 function_schema IN VARCHAR2 NULL,
 policy_function IN VARCHAR2,
 statement_types IN VARCHAR2 NULL,
 update_check IN BOOLEAN FALSE,
 enable IN BOOLEAN TRUE,
 static_policy IN BOOLEAN FALSE,
 policy_type IN BINARY_INTEGER NULL,
 long_predicate IN BOOLEAN FALSE,
 sec_relevant_cols IN VARCHAR2,
 sec_relevant_cols_opt IN BINARY_INTEGER NULL);

Parameters

See Also: Operational Notes on page 79-3

Table 79–2 ADD_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table, view, or synonym (current default
schema, if NULL).

object_name Name of table, view, or synonym to which the policy is added.

policy_name Name of policy to be added. It must be unique for the same table or
view.

function_schema Schema of the policy function (current default schema, if NULL).

ADD_POLICY Procedure

79-6 PL/SQL Packages and Types Reference

policy_function Name of a function which generates a predicate for the policy. If
the function is defined within a package, then the name of the
package must be present.

statement_types Statement types to which the policy applies. It can be any
combination of INDEX, SELECT, INSERT, UPDATE, or DELETE. The
default is to apply to all of these types except INDEX.

update_check Optional argument for INSERT or UPDATE statement types. The
default is FALSE. Setting update_check to TRUE causes the server
to also check the policy against the value after insert or update.

enable Indicates if the policy is enabled when it is added. The default is
TRUE.

static_policy The default is FALSE. If it is set to TRUE, the server assumes that the
policy function for the static policy produces the same predicate
string for anyone accessing the object, except for SYS or the
privilege user who has the EXEMPT ACCESS POLICY privilege.

policy_type Default is NULL, which means policy_type is decided by the
value of static_policy. The available policy types are listed in
Table 79–3. Specifying any of these policy types overrides the value
of static_policy.

long_predicate Default is FALSE, which means the policy function can return a
predicate with a length of up to 4000 bytes. TRUE means the
predicate text string length can be up to 32K bytes.Policies existing
prior to the availability of this parameter retain a 32K limit.

sec_relevant_
cols

Enables column-level Virtual Private Database (VPD), which
enforces security policies when a column containing sensitive
information is referenced in a query. Applies to tables and views,
but not to synonyms. Specify a list of comma- or space-separated
valid column names of the policy-protected object. The policy is
enforced only if a specified column is referenced (or, for an abstract
datatype column, its attributes are referenced) in the user SQL
statement or its underlying view definition. Default is all the
user-defined columns for the object.

sec_relevant_
cols_opt

Use with sec_relevant_cols to display all rows for
column-level VPD filtered queries (SELECT only), but where
sensitive columns appear as NULL. Default is set to NULL, which
allows the filtering defined with sec_relevant_cols to take
effect. Set to dbms_rls.ALL_ROWS to display all rows, but with
sensitive column values, which are filtered by sec_relevant_
cols, displayed as NULL. See "Usage Notes" on page 79-7 for
restrictions and additional information about this option.

Table 79–2 (Cont.) ADD_POLICY Procedure Parameters (Cont.)

Parameter Description

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-7

Usage Notes
■ SYS is free of any security policy.

■ The policy functions which generate dynamic predicates are called by the
server. Following is the interface for the function:

 FUNCTION policy_function (object_schema IN VARCHAR2, object_name VARCHAR2)
 RETURN VARCHAR2
 --- object_schema is the schema owning the table of view.
 --- object_name is the name of table, view, or synonym to which the policy
applies.

Table 79–3 DBMS_RLS.ADD_POLICY Policy Types

Policy Type Description

STATIC Predicate is assumed to be the same regardless of the runtime
environment. Static policy functions are executed once and then cached in
SGA. Statements accessing the same object do not reexecute the policy
function. However, each execution of the same cursor could produce a
different row set even for the same predicate because the predicate may
filter the data differently based on attributes such as SYS_CONTEXT or
SYSDATE. Applies to only one object.

SHARED_STATIC Same as STATIC except that the server first looks for a cached predicate
generated by the same policy function of the same policy type. Shared
across multiple objects.

CONTEXT_SENSITIVE Server re-evaluates the policy function at statement execution time if it
detects context changes since the last use of the cursor. For session
pooling where multiple clients share a database session, the middle tier
must reset context during client switches. Note that the server does not
cache the value returned by the function for this policy type; it always
executes the policy function on statement parsing. Applies to only one
object.

SHARED_CONTEXT_SENSITIVE Same as CONTEXT_SENSITIVE except that the server first looks for a
cached predicate generated by the same policy function of the same
policy type within the same database session. If the predicate is found in
the session memory, the policy function is not reexecuted and the cached
value is valid until session private application context changes occur.
Shared across multiple objects.

DYNAMIC The default policy type. Server assumes the predicate may be affected by
any system or session environment at any time, and so always reexecutes
the policy function on each statement parsing or execution. Applies to
only one object.

ADD_POLICY Procedure

79-8 PL/SQL Packages and Types Reference

■ The policy functions must have the purity level of WNDS (write no database
state).

■ Dynamic predicates generated out of different policies for the same object have
the combined effect of a conjunction (ANDed) of all the predicates.

■ The security check and object lookup are performed against the owner of the
policy function for objects in the subqueries of the dynamic predicates.

■ If the function returns a zero length predicate, then it is interpreted as no
restriction being applied to the current user for the policy.

■ When a table alias is required (for example, parent object is a type table) in the
predicate, the name of the table or view itself must be used as the name of the
alias. The server constructs the transient view as something like

"select c1, c2, ... from tab tab where <predicate>"

■ Validity of the function is checked at runtime for ease of installation and other
dependency issues during import and export.

■ Column-level VPD column masking behavior (specified with sec_relevant_
cols_opt => dbms_rls.ALL_ROWS) is fundamentally different from all
other VPD policies, which return only a subset of rows. Instead the column
masking behavior returns all rows specified by the user's query, but the
sensitive column values display as NULL. The restrictions for this option are as
follows:

– Only applies to SELECT statements

– Unlike regular VPD predicates, the masking condition that is generated by
the policy function must be a simple boolean expression.

– If your application performs calculations, or does not expect NULL values,
then you should use the default behavior of column-level VPD, which is
specified with the sec_relevant_cols parameter.

– If you use UPDATE AS SELECT with this option, then only the values in
the columns you are allowed to see will be updated.

– This option may prevent some rows from displaying. For example:

select * from employees

See Also: The Oracle Database Application Developer's Guide -
Fundamentals has more details about the RESTRICT_REFERENCES
pragma.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-9

where salary = 10

This query may not return rows if the salary column returns a NULL value
because the column masking option has been set.

Examples
As the first of two examples, the following creates a policy that applies to the
hr.employee table. This is a column-level VPD policy that will be enforced only if
a SELECT or an INDEX statement refers to the salary, birthdate, or SSN
columns of the table explicitly, or implicitly through a view. It is also a CONTEXT_
SENSITIVE policy, so the server will invoke the policy function hr.hrfun at parse
time. During execution, it will only invoke the function if there has been any session
private context change since the last use of the statement cursor. The predicate
generated by the policy function must not exceed 4000 bytes, the default length
limit, since the long_predicate parameter is omitted from the call.

BEGIN
dbms_rls.add_policy(object_schema => 'hr',

object_name => 'employee',
policy_name => 'hr_policy',
function_schema =>'hr',
policy_function => 'hrfun',
statement_types =>'select,index',
policy_type => dbms_rls.CONTEXT_SENSITIVE,
sec_relevant_cols=>'salary,birthdate,ssn');

END;
/

As the second example, the following command creates another policy that applies
to the same object for hosting, so users can access only data based on their
subscriber ID. Since it is defined as a SHARED_STATIC policy type, the server will
first try to find the predicate in the SGA cache. The server will only invoke the
policy function, subfun, if that search fails.

BEGIN
dbms_rls.add_policy(object_schema => 'hr',

object_name => 'employee',
policy_name => 'hosting_policy',
function_schema =>'hr',
policy_function => 'subfun',
policy_type => dbms_rls.SHARED_STATIC);

END;
/

DROP_POLICY Procedure

79-10 PL/SQL Packages and Types Reference

DROP_POLICY Procedure

This procedure drops a fine-grained access control policy from a table, view, or
synonym.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A COMMIT is also performed at the end of the operation.

Syntax
DBMS_RLS.DROP_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2);

Parameters

See Also: Operational Notes on page 79-3

Table 79–4 DROP_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table, view or synonym (current default
schema if NULL).

object_name Name of table, view, or synonym.

policy_name Name of policy to be dropped from table, view, or synonym.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-11

REFRESH_POLICY Procedure

This procedure causes all the cached statements associated with the policy to be
reparsed. This guarantees that the latest change to this policy will have immediate
effect after the procedure is executed.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A COMMIT is also performed at the end of the operation.

Syntax
DBMS_RLS.REFRESH_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2 NULL,
 policy_name IN VARCHAR2 NULL);

Parameters

Usage Notes
The procedure returns an error if it tries to refresh a disabled policy.

See Also: Operational Notes on page 79-3

Table 79–5 REFRESH_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table, view, or synonym.

object_name Name of table, view, or synonym with which the policy is
associated.

policy_name Name of policy to be refreshed.

ENABLE_POLICY Procedure

79-12 PL/SQL Packages and Types Reference

ENABLE_POLICY Procedure

This procedure enables or disables a fine-grained access control policy. A policy is
enabled when it is created.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A COMMIT is also performed at the end of the operation.

Syntax
DBMS_RLS.ENABLE_POLICY (
 object_schema IN VARCHAR2 NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 enable IN BOOLEAN);

Parameters

See Also: Operational Notes on page 79-3

Table 79–6 ENABLE_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing table, view, or synonym (current default schema
if NULL).

object_name Name of table, view, or synonym with which the policy is
associated.

policy_name Name of policy to be enabled or disabled.

enable TRUE to enable the policy, FALSE to disable the policy.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-13

CREATE_POLICY_GROUP Procedure

This procedure creates a policy group.

Syntax
DBMS_RLS.CREATE_POLICY_GROUP (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2);

Parameters

Usage Notes
The group must be unique for each table or view.

Table 79–7 CREATE_POLICY_GROUP Procedure Parameters

Parameter Description

object_schema Schema containing the table, view, or synonym.

object_name Name of the table, view, or synonym to which the policy is added.

policy_group Name of the policy group that the policy belongs to.

ADD_GROUPED_POLICY Procedure

79-14 PL/SQL Packages and Types Reference

ADD_GROUPED_POLICY Procedure

This procedure adds a policy associated with a policy group.

Syntax
DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2,
 policy_name VARCHAR2,
 function_schema VARCHAR2,
 policy_function VARCHAR2,
 statement_types VARCHAR2,
 update_check BOOLEAN,
 enabled BOOLEAN,
 static_policy IN BOOLEAN FALSE,
 policy_type IN BINARY_INTEGER NULL,
 long_predicate IN BOOLEAN FALSE,
 sec_relevant_cols IN VARCHAR2);

Parameters

Table 79–8 ADD_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

policy_group The name of the policy group that the policy belongs to.

policy_name The name of the policy; must be unique for the same table or view.

function_schema The schema owning the policy function.

policy_function The name of the function that generates a predicate for the policy. If
the function is defined within a package, the name of the package
must be present.

statement_types Statement types to which the policy applies. It can be any
combination of INDEX, SELECT, INSERT, UPDATE, or DELETE. The
default is to apply to all of these types except INDEX.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-15

Usage Notes
■ This procedure adds a policy to the specified table, view, or synonym and

associates the policy with the specified policy group.

update_check For INSERT and UPDATE statements only, setting update_check to
TRUE causes the server to check the policy against the value after
INSERT or UPDATE.

enable Indicates if the policy is enable when it is added. The default is
TRUE.

static_policy The default is FALSE. If it is set to TRUE, the server assumes that the
policy function for the static policy produces the same predicate
string for anyone accessing the object, except for SYS or the
privilege user who has the EXEMPT ACCESS POLICY privilege.

policy_type Default is NULL, which means policy_type is decided by the
value of static_policy. The available policy types are listed in
Table 79–3. Specifying any of these policy types overrides the value
of static_policy.

long_predicate Default is FALSE, which means the policy function can return a
predicate with a length of up to 4000 bytes. TRUE means the
predicate text string length can be up to 32K bytes.Policies existing
prior to the availability of this parameter retain a 32K limit.

sec_relevant_
cols

Enables column-level Virtual Private Database (VPD), which
enforces security policies when a column containing sensitive
information is referenced in a query. Applies to tables and views,
but not to synonyms. Specify a list of comma- or space-separated
valid column names of the policy-protected object. The policy is
enforced only if a specified column is referenced (or, for an abstract
datatype column, its attributes are referenced) in the user SQL
statement or its underlying view definition. Default is all the
user-defined columns for the object.

sec_relevant_
cols_opt

Use with sec_relevant_cols to display all rows for
column-level VPD filtered queries (SELECT only), but where
sensitive columns appear as NULL. Default is set to NULL, which
allows the filtering defined with sec_relevant_cols to take
effect. Set to dbms_rls.ALL_ROWS to display all rows, but with
sensitive column values, which are filtered by sec_relevant_
cols, displayed as NULL. See "Usage Notes" on page 79-7 for
restrictions and additional information about this option.

Table 79–8 (Cont.) ADD_GROUPED_POLICY Procedure Parameters

Parameter Description

ADD_GROUPED_POLICY Procedure

79-16 PL/SQL Packages and Types Reference

■ The policy group must have been created by using the CREATE_POLICY_
GROUP Procedure on page 79-13.

■ The policy name must be unique within a policy group for a specific object.

■ Policies from the default policy group, SYS_DEFAULT, are always executed
regardless of the active policy group; however, fine-grained access control
policies do not apply to users with EXEMPT ACCESS POLICY system privilege.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-17

ADD_POLICY_CONTEXT Procedure

This procedure adds the context for the active application.

Syntax
DBMS_RLS.ADD_POLICY_CONTEXT (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 namespace VARCHAR2,
 attribute VARCHAR2);

Parameters

Usage Notes
Note the following:

■ This procedure indicates the application context that drives the enforcement of
policies; this is the context that determines which application is running.

■ The driving context can be session or global.

■ At execution time, the server retrieves the name of the active policy group from
the value of this context.

■ There must be at least one driving context defined for each object that has fine-
grained access control policies; otherwise, all policies for the object will be
executed.

■ Adding multiple context to the same object will cause policies from multiple
policy groups to be enforced.

■ If the driving context is NULL, policies from all policy groups are used.

Table 79–9 ADD_POLICY_CONTEXT Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

namespace The namespace of the driving context

attribute The attribute of the driving context.

ADD_POLICY_CONTEXT Procedure

79-18 PL/SQL Packages and Types Reference

■ If the driving context is a policy group with policies, all enabled policies from
that policy group will be applied, along with all policies from the SYS_
DEFAULT policy group.

■ To add a policy to table hr.employees in group access_control_group,
the following command is issued:

DBMS_RLS.ADD_GROUPED_POLICY('hr','employees','access_control_
group','policy1','SYS', 'HR.ACCESS');

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-19

DELETE_POLICY_GROUP Procedure

This procedure deletes a policy group.

Syntax
DBMS_RLS.DELETE_POLICY_GROUP (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2);

Parameters

Usage Notes
Note the following:

■ This procedure deletes a policy group for the specified table, view, or synonym.

■ No policy can be in the policy group.

Table 79–10 DELETE_POLICY_GROUP Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

policy_group The name of the policy group that the policy belongs to.

DROP_GROUPED_POLICY Procedure

79-20 PL/SQL Packages and Types Reference

DROP_GROUPED_POLICY Procedure

This procedure drops a policy associated with a policy group.

Syntax
DBMS_RLS.DROP_GROUPED_POLICY (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2,
 policy_name VARCHAR2);

Parameters

Table 79–11 DROP_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
dropped.

policy_group The name of the policy group that the policy belongs to.

policy_name The name of the policy.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-21

DROP_POLICY_CONTEXT Procedure

This procedure drops a driving context from the object so that it will have one less
driving context.

Syntax
DBMS_RLS.DROP_POLICY_CONTEXT (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 namespace VARCHAR2,
 attribute VARCHAR2);

Parameters

Table 79–12 DROP_POLICY_CONTEXT Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
dropped.

namespace The namespace of the driving context.

attribute The attribute of the driving context.

ENABLE_GROUPED_POLICY Procedure

79-22 PL/SQL Packages and Types Reference

ENABLE_GROUPED_POLICY Procedure

This procedure enables or disables a row-level group security policy.

Syntax
DBMS_RLS.ENABLE_GROUPED_POLICY (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 group_name VARCHAR2,
 policy_name VARCHAR2,
 enable BOOLEAN);

Parameters

Usage Notes
■ The procedure causes the current transaction, if any, to commit before the

operation is carried out.

■ A commit is performed at the end of the operation.

■ A policy is enabled when it is created.

Table 79–13 ENABLE_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym with which the policy is
associated.

group_name The name of the group of the policy.

policy_name The name of the policy to be enabled or disabled.

enable TRUE enables the policy; FALSE disables the policy.

Summary of DBMS_RLS Subprograms

DBMS_RLS 79-23

DISABLE_GROUPED_POLICY Procedure

This procedure disables a row-level group security policy.

Syntax
DBMS_RLS.DISABLE_GROUPED_POLICY (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 group_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

Usage Notes
■ The procedure causes the current transaction, if any, to commit before the

operation is carried out.

■ A commit is performed at the end of the operation.

■ A policy is disabled when this procedure is executed or when the ENABLE_
GROUPED_POLICY procedure is executed with "enable" set to FALSE.

Table 79–14 E NABLE_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym with which the policy is
associated.

group_name The name of the group of the policy.

policy_name The name of the policy to be enabled or disabled.

REFRESH_GROUPED_POLICY Procedure

79-24 PL/SQL Packages and Types Reference

REFRESH_GROUPED_POLICY Procedure

This procedure reparses the SQL statements associated with a refreshed policy.

Syntax
DBMS_RLS.REFRESH_GROUPED_POLICY (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 group_name VARCHAR2,
 policy_name VARCHAR2);

Parameters

Usage Notes
■ This procedure causes all the cached statements associated with the policy to be

reparsed. This guarantees that the latest change to the policy has immediate
effect after the procedure is executed.

■ The procedure causes the current transaction, if any, to commit before the
operation is carried out.

■ A commit is performed at the end of the operation.

■ The procedure returns an error if it tries to refresh a disabled policy.

Table 79–15 REFRESH_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym with which the policy is
associated.

group_name The name of the group of the policy.

policy_name The name of the policy.

DBMS_ROWID 80-1

80
DBMS_ROWID

The DBMS_ROWID package lets you create ROWIDs and obtain information about
ROWIDs from PL/SQL programs and SQL statements. You can find the data block
number, the object number, and other ROWID components without writing code to
interpret the base-64 character external ROWID. DBMS_ROWID is intended for
upgrading from Oracle database version 7 to Oracle database version 8.X.

This chapter contains the following topics:

■ Using DBMS_ROWID

■ Security Model

■ Types

■ Exceptions

■ Exceptions

■ Examples

■ Summary of DBMS_ROWID Subprograms

Note: DBMS_ROWID is not to be used with universal ROWIDs
(UROWIDs).

Using DBMS_ROWID

80-2 PL/SQL Packages and Types Reference

Using DBMS_ROWID

■ Security Model

■ Types

■ Exceptions

■ Operational Notes

■ Examples

Security Model

This package runs with the privileges of calling user, rather than the package owner
SYS.

Types

■ Extension and Restriction Types

■ Verification Types

■ Object Types

■ Conversion Types

Extension and Restriction Types
The types are as follows:

■ RESTRICTED—restricted ROWID

■ EXTENDED—extended ROWID

For example:

rowid_type_restricted constant integer := 0;
rowid_type_extended constant integer := 1;

Note: Extended ROWIDs are only used in Oracle database version
8.Xi and higher.

Using DBMS_ROWID

DBMS_ROWID 80-3

Verification Types

For example:

rowid_is_valid constant integer := 0;
rowid_is_invalid constant integer := 1;

Object Types

For example:

rowid_object_undefined constant integer := 0;

Conversion Types

For example:

rowid_convert_internal constant integer := 0;
rowid_convert_external constant integer := 1;

Table 80–1 Verification Types

Result Description

VALID Valid ROWID

INVALID Invalid ROWID

Table 80–2 Object Types

Result Description

UNDEFINED Object Number not defined (for restricted ROWIDs)

Table 80–3 Conversion Types

Result Description

INTERNAL Convert to/from column of ROWID type

EXTERNAL Convert to/from string format

Exceptions

80-4 PL/SQL Packages and Types Reference

Exceptions

For example:

ROWID_INVALID exception;
 pragma exception_init(ROWID_INVALID, -1410);

ROWID_BAD_BLOCK exception;
 pragma exception_init(ROWID_BAD_BLOCK, -28516);

Operational Notes

■ Some of the functions in this package take a single parameter, such as a ROWID.
This can be a character or a PL/SLQ ROWID, either restricted or extended, as
required.

■ You can call the DBMS_ROWID functions and procedures from PL/SQL code,
and you can also use the functions in SQL statements.

■ You can use functions from the DBMS_ROWID package just like built-in SQL
functions; in other words, you can use them wherever you can use an
expression. In this example, the ROWID_BLOCK_NUMBER function is used to
return just the block number of a single row in the EMP table:

SELECT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid)
 FROM emp
 WHERE ename = 'KING';

■ If Oracle returns the error "ORA:452, 0, 'Subprogram '%s' violates its associated
pragma' for pragma restrict_references, it could mean the violation is due to:

– A problem with the current procedure or function

Table 80–4 Exceptions

Exception Description

ROWID_INVALID Invalid rowid format

ROWID_BAD_BLOCK Block is beyond end of file

Note: ROWID_INFO is a procedure. It can only be used in PL/SQL
code.

Using DBMS_ROWID

DBMS_ROWID 80-5

– Calling a procedure or function without a pragma or due to calling one
with a less restrictive pragma

– Calling a package procedure or function that touches the initialization code
in a package or that sets the default values

Examples

This example returns the ROWID for a row in the EMP table, extracts the data object
number from the ROWID, using the ROWID_OBJECT function in the DBMS_ROWID
package, then displays the object number:

DECLARE
 object_no INTEGER;
 row_id ROWID;
 ...
BEGIN
 SELECT ROWID INTO row_id FROM emp
 WHERE empno = 7499;
 object_no := DBMS_ROWID.ROWID_OBJECT(row_id);
 DBMS_OUTPUT.PUT_LINE('The obj. # is '|| object_no);
 ...

Summary of DBMS_ROWID Subprograms

80-6 PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms

Table 80–5 DBMS_ROWID Package Subprograms

Subprogram Description

ROWID_BLOCK_NUMBER
Function on page 80-7

Returns the block number of a ROWID

ROWID_CREATE Function on
page 80-8

Creates a ROWID, for testing only

ROWID_INFO Procedure on
page 80-10

Returns the type and components of a ROWID

ROWID_OBJECT Function on
page 80-12

Returns the object number of the extended ROWID

ROWID_RELATIVE_FNO
Function on page 80-13

Returns the file number of a ROWID

ROWID_ROW_NUMBER
Function on page 80-14

Returns the row number

ROWID_TO_ABSOLUTE_FNO
Function on page 80-15

Returns the absolute file number associated with the
ROWID for a row in a specific table

ROWID_TO_EXTENDED
Function on page 80-17

Converts a ROWID from restricted format to extended

ROWID_TO_RESTRICTED
Function on page 80-19

Converts an extended ROWID to restricted format

ROWID_TYPE Function on
page 80-20

Returns the ROWID type: 0 is restricted, 1 is extended

ROWID_VERIFY Function on
page 80-21

Checks if a ROWID can be correctly extended by the
ROWID_TO_EXTENDED function

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-7

ROWID_BLOCK_NUMBER Function

This function returns the database block number for the input ROWID.

Syntax
DBMS_ROWID.ROWID_BLOCK_NUMBER (
 row_id IN ROWID,
 ts_type_in IN VARCHAR2 DEFAULT 'SMALLFILE')
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_block_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
The example SQL statement selects the block number from a ROWID and inserts it
into another table:

INSERT INTO T2 (SELECT dbms_rowid.rowid_block_number(ROWID, 'BIGFILE')
 FROM some_table
 WHERE key_value = 42);

Table 80–6 ROWID_BLOCK_NUMBER Function Parameters

Parameter Description

row_id ROWID to be interpreted.

ts_type_in The type of the tablespace (bigfile/smallfile) to which the row
belongs.

ROWID_CREATE Function

80-8 PL/SQL Packages and Types Reference

ROWID_CREATE Function

This function lets you create a ROWID, given the component parts as parameters.

This is useful for testing ROWID operations, because only the Oracle Server can
create a valid ROWID that points to data in a database.

Syntax
DBMS_ROWID.ROWID_CREATE (
 rowid_type IN NUMBER,
 object_number IN NUMBER,
 relative_fno IN NUMBER,
 block_number IN NUMBER,
 row_number IN NUMBER)
 RETURN ROWID;

Pragmas
pragma RESTRICT_REFERENCES(rowid_create,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
Create a dummy extended ROWID:

Table 80–7 ROWID_CREATE Function Parameters

Parameter Description

rowid_type Type (restricted or extended).

Set the rowid_type parameter to 0 for a restricted ROWID. Set
it to 1 to create an extended ROWID.

If you specify rowid_type as 0, then the required object_
number parameter is ignored, and ROWID_CREATE returns a
restricted ROWID.

object_number Data object number (rowid_object_undefined for
restricted).

relative_fno Relative file number.

block_number Block number in this file.

row_number Returns row number in this block.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-9

 my_rowid := DBMS_ROWID.ROWID_CREATE(1, 9999, 12, 1000, 13);

Find out what the rowid_object function returns:

 obj_number := DBMS_ROWID.ROWID_OBJECT(my_rowid);

The variable obj_number now contains 9999.

ROWID_INFO Procedure

80-10 PL/SQL Packages and Types Reference

ROWID_INFO Procedure

This procedure returns information about a ROWID, including its type (restricted or
extended), and the components of the ROWID. This is a procedure, and it cannot be
used in a SQL statement.

Syntax
DBMS_ROWID.ROWID_INFO (
 rowid_in IN ROWID,
 ts_type_in IN VARCHAR2 DEFAULT 'SMALLFILE',
 rowid_type OUT NUMBER,
 object_number OUT NUMBER,
 relative_fno OUT NUMBER,
 block_number OUT NUMBER,
 row_number OUT NUMBER);

Pragmas
 pragma RESTRICT_REFERENCES(rowid_info,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 80–8 ROWID_INFO Procedure Parameters

Parameter Description

rowid_in ROWID to be interpreted. This determines if the ROWID is a
restricted (0) or extended (1) ROWID.

ts_type_in The type of the tablespace (bigfile/smallfile) to which the row
belongs.

rowid_type Returns type (restricted/extended).

object_number Returns data object number (rowid_object_undefined for
restricted).

relative_fno Returns relative file number.

block_number Returns block number in this file.

row_number Returns row number in this block.

See Also: "ROWID_TYPE Function" on page 80-20

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-11

Examples
This example reads back the values for the ROWID that you created in the ROWID_
CREATE:

DBMS_ROWID.ROWID_INFO(my_rowid, 'BIGFILE', rid_type, obj_num, file_num, block_
num, row_num);

DBMS_OUTPUT.PUT_LINE('The type is ' || rid_type);
DBMS_OUTPUT.PUT_LINE('Data object number is ' || obj_num);
-- and so on...

ROWID_OBJECT Function

80-12 PL/SQL Packages and Types Reference

ROWID_OBJECT Function

This function returns the data object number for an extended ROWID. The function
returns zero if the input ROWID is a restricted ROWID.

Syntax
DBMS_ROWID.ROWID_OBJECT (
 rowid_id IN ROWID)
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_object,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
SELECT dbms_rowid.rowid_object(ROWID)
 FROM emp
 WHERE empno = 7499;

Table 80–9 ROWID_OBJECT Function Parameters

Parameter Description

row_id ROWID to be interpreted.

Note: The ROWID_OBJECT_UNDEFINED constant is returned for
restricted ROWIDs.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-13

ROWID_RELATIVE_FNO Function

This function returns the relative file number of the ROWID specified as the IN
parameter. (The file number is relative to the tablespace.)

Syntax
DBMS_ROWID.ROWID_RELATIVE_FNO (
 rowid_id IN ROWID,
 ts_type_in IN VARCHAR2 DEFAULT 'SMALLFILE')
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_relative_fno,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
The example PL/SQL code fragment returns the relative file number:

DECLARE
 file_number INTEGER;
 rowid_val ROWID;
BEGIN
 SELECT ROWID INTO rowid_val
 FROM dept
 WHERE loc = 'Boston';
 file_number :=
 dbms_rowid.rowid_relative_fno(rowid_val, 'SMALLFILE');
 ...

Table 80–10 ROWID_RELATIVE_FNO Function Parameters

Parameter Description

row_id ROWID to be interpreted.

ts_type_in The type of the tablespace (bigfile/smallfile) to which the row
belongs.

ROWID_ROW_NUMBER Function

80-14 PL/SQL Packages and Types Reference

ROWID_ROW_NUMBER Function

This function extracts the row number from the ROWID IN parameter.

Syntax
DBMS_ROWID.ROWID_ROW_NUMBER (
 row_id IN ROWID)
 RETURN NUMBER;

Pragmas
 PRAGMA RESTRICT_REFERENCES(rowid_row_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
Select a row number:

SELECT dbms_rowid.rowid_row_number(ROWID)
 FROM emp
 WHERE ename = 'ALLEN';

Table 80–11 ROWID_ROW_NUMBER Function Parameters

Parameter Description

row_id ROWID to be interpreted.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-15

ROWID_TO_ABSOLUTE_FNO Function

This function extracts the absolute file number from a ROWID, where the file number
is absolute for a row in a given schema and table. The schema name and the name
of the schema object (such as a table name) are provided as IN parameters for this
function.

Syntax
DBMS_ROWID.ROWID_TO_ABSOLUTE_FNO (
 row_id IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_to_absolute_fno,WNDS,WNPS,RNPS);

Parameters

Examples
DECLARE
 abs_fno INTEGER;
 rowid_val CHAR(18);
 object_name VARCHAR2(20) := 'EMP';
BEGIN
 SELECT ROWID INTO rowid_val
 FROM emp
 WHERE empno = 9999;
 abs_fno := dbms_rowid.rowid_to_absolute_fno(
 rowid_val, 'SCOTT', object_name);

Table 80–12 ROWID_TO_ABSOLUTE_FNO Function Parameters

Parameter Description

row_id ROWID to be interpreted.

schema_name Name of the schema which contains the table.

object_name Table name.

ROWID_TO_ABSOLUTE_FNO Function

80-16 PL/SQL Packages and Types Reference

Note: For partitioned objects, the name must be a table name, not
a partition or a sub/partition name.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-17

ROWID_TO_EXTENDED Function

This function translates a restricted ROWID that addresses a row in a schema and
table that you specify to the extended ROWID format. Later, it may be removed from
this package into a different place.

Syntax
DBMS_ROWID.ROWID_TO_EXTENDED (
 old_rowid IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 conversion_type IN INTEGER)
 RETURN ROWID;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_to_extended,WNDS,WNPS,RNPS);

Parameters

Return Values
ROWID_TO_EXTENDED returns the ROWID in the extended character format. If the
input ROWID is NULL, then the function returns NULL. If a zero-valued ROWID is
supplied (00000000.0000.0000), then a zero-valued restricted ROWID is returned.

Table 80–13 ROWID_TO_EXTENDED Function Parameters

Parameter Description

old_rowid ROWID to be converted.

schema_name Name of the schema which contains the table (optional).

object_name Table name (optional).

conversion_type The following constants are defined:

rowid_convert_internal (:=0)

rowid_convert_external (:=1)

ROWID_TO_EXTENDED Function

80-18 PL/SQL Packages and Types Reference

Examples
Assume that there is a table called RIDS in the schema SCOTT, and that the table
contains a column ROWID_COL that holds ROWIDs (restricted), and a column
TABLE_COL that point to other tables in the SCOTT schema. You can convert the
ROWIDs to extended format with the statement:

UPDATE SCOTT.RIDS
 SET rowid_col =
 dbms_rowid.rowid_to_extended (
 rowid_col, 'SCOTT", TABLE_COL, 0);

Usage Notes
If the schema and object names are provided as IN parameters, then this function
verifies SELECT authority on the table named, and converts the restricted ROWID
provided to an extended ROWID, using the data object number of the table. That
ROWID_TO_EXTENDED returns a value, however, does not guarantee that the
converted ROWID actually references a valid row in the table, either at the time that
the function is called, or when the extended ROWID is actually used.

If the schema and object name are not provided (are passed as NULL), then this
function attempts to fetch the page specified by the restricted ROWID provided. It
treats the file number stored in this ROWID as the absolute file number. This can
cause problems if the file has been dropped, and its number has been reused prior
to the migration. If the fetched page belongs to a valid table, then the data object
number of this table is used in converting to an extended ROWID value. This is very
inefficient, and Oracle recommends doing this only as a last resort, when the target
table is not known. The user must still know the correct table name at the time of
using the converted value.

If an extended ROWID value is supplied, the data object number in the input
extended ROWID is verified against the data object number computed from the table
name parameter. If the two numbers do not match, the INVALID_ROWID exception
is raised. If they do match, the input ROWID is returned.

See Also: The ROWID_VERIFY Function has a method to
determine if a given ROWID can be converted to the extended
format.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-19

ROWID_TO_RESTRICTED Function

This function converts an extended ROWID into restricted ROWID format.

Syntax
DBMS_ROWID.ROWID_TO_RESTRICTED (
 old_rowid IN ROWID,
 conversion_type IN INTEGER)
 RETURN ROWID;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_to_restricted,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 80–14 ROWID_TO_RESTRICTED Function Parameters

Parameter Description

old_rowid ROWID to be converted.

conversion_type The following constants are defined:

rowid_convert_internal (:=0)

rowid_convert_external (:=1)

ROWID_TYPE Function

80-20 PL/SQL Packages and Types Reference

ROWID_TYPE Function

This function returns 0 if the ROWID is a restricted ROWID, and 1 if it is extended.

Syntax
DBMS_ROWID.ROWID_TYPE (
 rowid_id IN ROWID)
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_type,WNDS,RNDS,WNPS,RNPS);

Parameters

Examples
IF DBMS_ROWID.ROWID_TYPE(my_rowid) = 1 THEN
 my_obj_num := DBMS_ROWID.ROWID_OBJECT(my_rowid);

Table 80–15 ROWID_TYPE Function Parameters

Parameter Description

row_id ROWID to be interpreted.

Summary of DBMS_ROWID Subprograms

DBMS_ROWID 80-21

ROWID_VERIFY Function

This function verifies the ROWID. It returns 0 if the input restricted ROWID can be
converted to extended format, given the input schema name and table name, and it
returns 1 if the conversion is not possible.

Syntax
DBMS_ROWID.ROWID_VERIFY (
 rowid_in IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 conversion_type IN INTEGER
 RETURN NUMBER;

Pragmas
 pragma RESTRICT_REFERENCES(rowid_verify,WNDS,WNPS,RNPS);

Parameters

Examples
Considering the schema in the example for the ROWID_TO_EXTENDED function, you
can use the following statement to find bad ROWIDs prior to conversion. This
enables you to fix them beforehand.

Note: You can use this function in a WHERE clause of a SQL
statement, as shown in the example.

Table 80–16 ROWID_VERIFY Function Parameters

Parameter Description

rowid_in ROWID to be verified.

schema_name Name of the schema which contains the table.

object_name Table name.

conversion_type The following constants are defined:

rowid_convert_internal (:=0)

rowid_convert_external (:=1)

ROWID_VERIFY Function

80-22 PL/SQL Packages and Types Reference

SELECT ROWID, rowid_col
 FROM SCOTT.RIDS
 WHERE dbms_rowid.rowid_verify(rowid_col, NULL, NULL, 0) =1;

See Also: Chapter 161, "UTL_RAW", Chapter 163, "UTL_REF"

DBMS_RULE 81-1

81
DBMS_RULE

The DBMS_RULE package contains subprograms that enable the evaluation of a rule
set for a specified event.

This chapter contains the following topics:

■ Using DBMS_RULE

■ Security Model

■ Summary of DBMS_RULE Subprograms

See Also:

■ Chapter 181, "Rule TYPEs" for more information about the
types used with the DBMS_RULE package

■ Chapter 82, "DBMS_RULE_ADM" and Oracle Streams Concepts
and Administration for more information about this package and
rules

Using DBMS_RULE

81-2 PL/SQL Packages and Types Reference

Using DBMS_RULE

■ Security Model

Security Model

PUBLIC is granted execute privilege on this package.

Summary of DBMS_RULE Subprograms

DBMS_RULE 81-3

Summary of DBMS_RULE Subprograms

Table 81–1 DBMS_RULE Package Subprograms

Subprogram Description

CLOSE_ITERATOR
Procedure on page 81-4

Closes an open iterator

EVALUATE Procedures on
page 81-5

Evaluates the rules in the specified rule set that use the
evaluation context specified

GET_NEXT_HIT Function on
page 81-10

Returns the next rule that evaluated to TRUE from a true
rules iterator, or returns the next rule that evaluated to
MAYBE from a maybe rules iterator; returns NULL if there are
no more rules that evaluated to TRUE or MAYBE.

CLOSE_ITERATOR Procedure

81-4 PL/SQL Packages and Types Reference

CLOSE_ITERATOR Procedure

This procedure closes an open iterator.

Syntax
DBMS_RULE.CLOSE_ITERATOR(

iterator IN NUMBER);

Parameter

Usage Notes
This procedure requires an open iterator that was returned by an earlier call to
DBMS_RULE.EVALUATE in the same session. The user who runs this procedure
does not require any privileges on the rule set being evaluated.

Closing an iterator frees resources, such as memory, associated with the iterator.
Therefore, Oracle recommends that you close an iterator when it is no longer
needed.

Table 81–2 CLOSE_ITERATOR Procedure Parameter

Parameter Description

iterator The iterator to be closed

See Also: "EVALUATE Procedures" on page 81-5

Summary of DBMS_RULE Subprograms

DBMS_RULE 81-5

EVALUATE Procedures

This procedure evaluates the rules in the specified rule set that use the evaluation
context specified for a specified event.

This procedure is overloaded. The true_rules and maybe_rules parameters are
mutually exclusive with the true_rules_iterator and maybe_rules_
iterator parameters. In addition, the procedure with the true_rules and
maybe_rules parameters includes the stop_on_first_hit parameter, but the
other procedure does not.

Syntax
DBMS_RULE.EVALUATE(

rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2,

 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
stop_on_first_hit IN BOOLEAN DEFAULT false,
simple_rules_only IN BOOLEAN DEFAULT false,
true_rules OUT SYS.RE$RULE_HIT_LIST,
maybe_rules OUT SYS.RE$RULE_HIT_LIST);

DBMS_RULE.EVALUATE(
rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2,

 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
simple_rules_only IN BOOLEAN DEFAULT false,

 true_rules_iterator OUT BINARY_INTEGER,
 maybe_rules_iterator OUT BINARY_INTEGER);

EVALUATE Procedures

81-6 PL/SQL Packages and Types Reference

Parameters

Table 81–3 EVALUATE Procedure Parameters

Parameter Description

rule_set_name Name of the rule set in the form [schema_name.]rule_
set_name. For example, to evaluate all of the rules in a rule
set named hr_rules in the hr schema, enter hr.hr_rules
for this parameter. If the schema is not specified, then the
schema of the current user is used.

evaluation_context An evaluation context name in the form [schema_
name.]evaluation_context_name. If the schema is not
specified, then the name of the current user is used.

Only rules that use the specified evaluation context are
evaluated.

event_context A list of name-value pairs that identify events that cause
evaluation

table_values Contains the data for table rows using the table aliases
specified when the evaluation context was created. Each table
alias in the list must be unique.

column_values Contains the partial data for table rows. It must not contain
column values for tables, whose values are already specified in
table_values.

variable_values A list containing the data for variables.

The only way for an explicit variable value to be known is to
specify its value in this list.

If an implicit variable value is not specified in the list, then the
function used to obtain the value of the implicit variable is
invoked. If an implicit variable value is specified in the list,
then this value is used and the function is not invoked.

attribute_values Contains the partial data for variables. It must not contain
attribute values for variables whose values are already
specified in variable_values.

stop_on_first_hit If true, then the rules engine stops evaluation as soon as it
finds a TRUE rule.

If true and there are no TRUE rules, then the rules engine
stops evaluation as soon as it finds a rule that may evaluate to
TRUE given more data.

If false, then the rules engine continues to evaluate rules
even after it finds a TRUE rule.

Summary of DBMS_RULE Subprograms

DBMS_RULE 81-7

Usage Notes

The rules in the rule set are evaluated using the data specified for table_values,
column_values, variable_values, and attribute_values. These values
must refer to tables and variables in the specified evaluation context. Otherwise, an
error is raised.

simple_rules_only If true, then only those rules that are simple enough to be
evaluated fast (without issuing SQL) are considered for
evaluation.

If false, then evaluates all rules.

true_rules Receives the output of the EVALUATE procedure into a varray
of RE$RULE_HIT_LIST type.

If no rules evaluate to TRUE, then true_rules is empty.

If at least one rule evaluates to TRUE and stop_on_first_
hit is true, then true_rules contains one rule that
evaluates to TRUE.

If stop_on_first_hit is false, then true_rules contains
all rules that evaluate to TRUE.

maybe_rules If all rules can be evaluated completely, without requiring any
additional data, then maybe_rules is empty.

If stop_on_first_hit is true, then if there is at least one
rule that may evaluate to TRUE given more data, and no rules
evaluate to TRUE, then maybe_rules contains one rule that
may evaluate to TRUE.

If stop_on_first_hit is false, then maybe_rules
contains all rules that may evaluate to TRUE given more data.

true_rules_iterator Contains the iterator for accessing rules that are TRUE

maybe_rules_iterator Contains the iterator for accessing rules that may be TRUE
given additional data or the ability to issue SQL

Note: Rules in the rule set that use an evaluation context different
from the one specified are not considered for evaluation.

Table 81–3 (Cont.) EVALUATE Procedure Parameters

Parameter Description

EVALUATE Procedures

81-8 PL/SQL Packages and Types Reference

The caller may specify, using stop_on_first_hit, if evaluation must stop as
soon as the first TRUE rule or the first MAYBE rule (if there are no TRUE rules) is
found.

The caller may also specify, using simple_rules_only, if only rules that are
simple enough to be evaluated fast (which means without SQL) should be
considered for evaluation. This makes evaluation faster, but causes rules that cannot
be evaluated without SQL to be returned as MAYBE rules.

Partial evaluation is supported. The EVALUATE procedure can be called with data
for only some of the tables, columns, variables, or attributes. In such a case, rules
that cannot be evaluated because of a lack of data are returned as MAYBE rules,
unless they can be determined to be TRUE or FALSE based on the values of one or
more simple expressions within the rule. For example, given a value of 1 for
attribute "a.b" of variable "x", a rule with the following rule condition can be
returned as TRUE, without a value for table "tab":

(:x.a.b = 1) or (tab.c > 10)

The results of an evaluation are the following:

■ TRUE rules, which is the list of rules that evaluate to TRUE based on the given
data. These rules are returned either in the OUT parameter true_rules, which
returns all of the rules that evaluate to TRUE, or in the OUT parameter true_
rules_iterator, which returns each rule that evaluates to TRUE one at a
time.

■ MAYBE rules, which is the list of rules that could not be evaluated for one of the
following reasons:

– The rule refers to data that was unavailable. For example, a variable
attribute "x.a.b" is specified, but no value is specified for the variable
"x", the attribute "a", or the attribute "a.b".

– The rule is not simple enough to be evaluated fast (without SQL) and
simple_rules_only is specified as true, or partial data is available.

Maybe rules are returned either in the OUT parameter maybe_rules, which
returns all of the rules that evaluate to MAYBE, or in the OUT parameter maybe_
rules_iterator, which returns each rule that evaluates to MAYBE one at a
time.

The caller may specify whether the procedure returns all of the rules that evaluate
to TRUE and MAYBE for the event or an iterator for rules that evaluate to TRUE and
MAYBE. A true rules iterator enables the client to fetch each rule that evaluates to

Summary of DBMS_RULE Subprograms

DBMS_RULE 81-9

TRUE one at a time, and a maybe rules iterator enables the client to fetch each rule
that evaluates to MAYBE one at a time.

If you use an iterator, then you use the GET_NEXT_HIT function in the DBMS_RULE
package to retrieve the next rule that evaluates to TRUE or MAYBE from an iterator.
Oracle recommends that you close an iterator if it is no longer needed to free
resources, such as memory, used by the iterator. An iterator can be closed in the
following ways:

■ The CLOSE_ITERATOR procedure in the DBMS_RULE package is run with the
iterator specified.

■ The iterator returns NULL because no more rules evaluate to TRUE or MAYBE.

■ The session in which the iterator is running ends.

To run the DBMS_RULE.EVALUATE procedure, a user must meet at least one of the
following requirements:

■ Have EXECUTE_ON_RULE_SET privilege on the rule set

■ Have EXECUTE_ANY_RULE_SET system privilege

■ Be the rule set owner

Note: The rules engine does not invoke any actions. An action
context can be returned with each returned rule, but the client of
the rules engine must invoke any necessary actions.

See Also:

■ Chapter 181, "Rule TYPEs" for more information about the
types used with the DBMS_RULE package

■ "GET_NEXT_HIT Function" on page 81-10

■ "CLOSE_ITERATOR Procedure" on page 81-4

GET_NEXT_HIT Function

81-10 PL/SQL Packages and Types Reference

GET_NEXT_HIT Function

This function returns the next rule that evaluated to TRUE from a true rules iterator,
or returns the next rule that evaluated to MAYBE from a maybe rules iterator. The
function returns NULL if there are no more rules that evaluated to TRUE or MAYBE.

Syntax
DBMS_RULE.GET_NEXT_HIT(

iterator IN NUMBER)
RETURN SYS.RE$RULE_HIT;

Parameter

Usage Notes
This procedure requires an open iterator that was returned by an earlier call to
DBMS_RULE.EVALUATE in the same session. The user who runs this procedure
does not require any privileges on the rule set being evaluated.

When an iterator returns NULL, it is closed automatically. If an open iterator is no
longer needed, then use the CLOSE_ITERATOR procedure in the DBMS_RULE
package to close it.

Table 81–4 GET_NEXT_HIT Procedure Parameter

Parameter Description

iterator The iterator from which the rule that evaluated to TRUE or MAYBE is
retrieved

Note: This function raises an error if the rule set being evaluated
was modified after the call to the DBMS_RULE.EVALUATE
procedure that returned the iterator. Modifications to a rule set
include added rules to the rule set, changing existing rules in the
rule set, dropping rules from the rule set, and dropping the rule set.

Summary of DBMS_RULE Subprograms

DBMS_RULE 81-11

See Also:

■ Chapter 181, "Rule TYPEs" for more information about the
types used with the DBMS_RULE package

■ "EVALUATE Procedures" on page 81-5

■ "CLOSE_ITERATOR Procedure" on page 81-4

GET_NEXT_HIT Function

81-12 PL/SQL Packages and Types Reference

DBMS_RULE_ADM 82-1

82
DBMS_RULE_ADM

The DBMS_RULE_ADM package provides the administrative interfaces for creating
and managing rules, rule sets, and rule evaluation contexts.

This chapter contains the following topics:

■ Using DBMS_RULE_ADM

■ Security Model

■ Summary of DBMS_RULE_ADM Subprograms

See Also:

■ Chapter 181, "Rule TYPEs" for more information about the
types used with the DBMS_RULE_ADM package

■ Chapter 81, "DBMS_RULE" and Oracle Streams Concepts and
Administration for more information about this package and
rules

Using DBMS_RULE_ADM

82-2 PL/SQL Packages and Types Reference

Using DBMS_RULE_ADM

■ Security Model

Security Model

PUBLIC is granted execute privilege on this package.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-3

Summary of DBMS_RULE_ADM Subprograms

Table 82–1 DBMS_RULE_ADM Package Subprograms

Subprogram Description

ADD_RULE Procedure on page 82-4 Adds the specified rule to the specified rule set

ALTER_RULE Procedure on page 82-6 Changes one or more aspects of the specified rule

CREATE_EVALUATION_CONTEXT
Procedure on page 82-9

Creates a rule evaluation context

CREATE_RULE Procedure on
page 82-11

Creates a rule with the specified name

CREATE_RULE_SET Procedure on
page 82-13

Creates a rule set with the specified name

DROP_EVALUATION_CONTEXT
Procedure on page 82-15

Drops the rule evaluation context with the
specified name

DROP_RULE Procedure on page 82-16 Drops the rule with the specified name

DROP_RULE_SET Procedure on
page 82-17

Drops the rule set with the specified name

GRANT_OBJECT_PRIVILEGE
Procedure on page 82-18

Grants the specified object privilege on the
specified object to the specified user or role

GRANT_SYSTEM_PRIVILEGE
Procedure on page 82-20

Grants the specified system privilege to the
specified user or role

REMOVE_RULE Procedure on
page 82-22

Removes the specified rule from the specified rule
set

REVOKE_OBJECT_PRIVILEGE
Procedure on page 82-24

Revokes the specified object privilege on the
specified object from the specified user or role

REVOKE_SYSTEM_PRIVILEGE
Procedure on page 82-25

Revokes the specified system privilege from the
specified user or role

Note: All procedures commit unless specified otherwise.

ADD_RULE Procedure

82-4 PL/SQL Packages and Types Reference

ADD_RULE Procedure

This procedure adds the specified rule to the specified rule set.

Syntax
DBMS_RULE_ADM.ADD_RULE(

 rule_name IN VARCHAR2,
rule_set_name IN VARCHAR2,

 evaluation_context IN VARCHAR2 DEFAULT NULL,
rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Have ALTER_ON_RULE_SET privilege on the rule set

■ Have ALTER_ANY_RULE_SET system privilege

Table 82–2 ADD_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are adding to the rule set, specified as
[schema_name.]rule_name. For example, to add a rule
named all_a in the hr schema, enter hr.all_a for this
parameter. If the schema is not specified, then the current user
is the default.

rule_set_name The name of the rule set to which you are adding the rule,
specified as [schema_name.]rule_set_name. For example,
to add the rule to a rule set named apply_rules in the hr
schema, enter hr.apply_rules for this parameter. If the
schema is not specified, then the current user is the default.

evaluation_context An evaluation context name in the form [schema_
name.]evaluation_context_name. If the schema is not
specified, then the current user is the default.

Only specify an evaluation context if the rule itself does not
have an evaluation context and you do not want to use the rule
set's evaluation context for the rule.

rule_comment Optional description, which may contain the reason for adding
the rule to the rule set

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-5

■ Be the owner of the rule set

Also, the rule set owner must meet at least one of the following requirements:

■ Have EXECUTE_ON_RULE privilege on the rule

■ Have EXECUTE_ANY_RULE system privilege

■ Be the rule owner

If the rule has no evaluation context and no evaluation context is specified when
you run this procedure, then rule uses the evaluation context associated with the
rule set. In such a case, the rule owner must have the necessary privileges on all the
base objects accessed by the rule using the evaluation context.

If an evaluation context is specified, then the rule set owner must meet at least one
of the following requirements:

■ Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

■ Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

■ Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects
accessed by the rule using the evaluation context.

ALTER_RULE Procedure

82-6 PL/SQL Packages and Types Reference

ALTER_RULE Procedure

This procedure changes one or more aspects of the specified rule.

Syntax
DBMS_RULE_ADM.ALTER_RULE(

rule_name IN VARCHAR2,
condition IN VARCHAR2 DEFAULT NULL,
evaluation_context IN VARCHAR2 DEFAULT NULL,

 remove_evaluation_context IN BOOLEAN DEFAULT false,
action_context IN SYS.RE$NV_LIST DEFAULT NULL,

 remove_action_context IN BOOLEAN DEFAULT false,
 rule_comment IN VARCHAR2 DEFAULT NULL,
 remove_rule_comment IN BOOLEAN DEFAULT false);

Parameters

Table 82–3 ALTER_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are altering, specified as
[schema_name.]rule_name. For example, to alter a
rule named all_a in the hr schema, enter hr.all_a for
this parameter. If the schema is not specified, then the
current user is the default.

condition The condition to be associated with the rule.

If non-NULL, then the rule's condition is changed.

evaluation_context An evaluation context name in the form [schema_
name.]evaluation_context_name. If the schema is
not specified, then the current user is the default.

If non-NULL, then the rule's evaluation context is
changed.

remove_evaluation_context If true, then sets the evaluation context for the rule to
NULL, which effectively removes the evaluation context
from the rule.

If false, then retains any evaluation context for the
specified rule.

If the evaluation_context parameter is non-NULL,
then this parameter should be set to false.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-7

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Have ALTER_ON_RULE privilege on the rule

■ Have ALTER_ANY_RULE system privilege

■ Be the owner of the rule being altered

If an evaluation context is specified, then the rule owner must meet at least one of
the following requirements:

■ Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

■ Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

■ Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects
accessed by the rule using the evaluation context.

action_context If non-NULL, then changes the action context associated
with the rule. A rule action context is information
associated with a rule that is interpreted by the client of
the rules engine when the rule is evaluated.

remove_action_context If true, then sets the action context for the rule to NULL,
which effectively removes the action context from the
rule.

If false, then retains any action context for the
specified rule.

If the action_context parameter is non-NULL, then
this parameter should be set to false.

rule_comment If non-NULL, then changes the description of the rule

remove_rule_comment If true, then sets the comment for the rule to NULL,
which effectively removes the comment from the rule.

If false, then retains any comment for the specified
rule.

If the rule_comment parameter is non-NULL, then this
parameter should be set to false.

Table 82–3 (Cont.) ALTER_RULE Procedure Parameters

Parameter Description

ALTER_RULE Procedure

82-8 PL/SQL Packages and Types Reference

See Also: Chapter 181, "Rule TYPEs" for more information about
the types used with the DBMS_RULE_ADM package

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-9

CREATE_EVALUATION_CONTEXT Procedure

This procedure creates a rule evaluation context. A rule evaluation context defines
external data that can be referenced in rule conditions. The external data can either
exist as variables or as table data.

Syntax
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(

evaluation_context_name IN VARCHAR2,
table_aliases IN SYS.RE$TABLE_ALIAS_LIST DEFAULT NULL,
variable_types IN SYS.RE$VARIABLE_TYPE_LIST DEFAULT NULL,
evaluation_function IN VARCHAR2 DEFAULT NULL,
evaluation_context_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 82–4 CREATE_EVALUATION_CONTEXT Procedure Parameters

Parameter Description

evaluation_context_name The name of the evaluation context you are creating,
specified as [schema_name.]evaluation_
context_name.

For example, to create an evaluation context named
dept_eval_context in the hr schema, enter
hr.dept_eval_context for this parameter. If the
schema is not specified, then the current user is the
default.

table_aliases Table aliases that specify the tables in an evaluation
context. The table aliases can be used to reference
tables in rule conditions.

variable_types A list of variables for the evaluation context

evaluation_function An optional function that will be called to evaluate
rules using the evaluation context. It must have the
same form as the DBMS_RULE.EVALUATE procedure.
If the schema is not specified, then the current user is
the default.

See "Usage Notes" for more information about the
evaluation function.

evaluation_context_comment An optional description of the rule evaluation context.

CREATE_EVALUATION_CONTEXT Procedure

82-10 PL/SQL Packages and Types Reference

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the evaluation context being created and have CREATE_
EVALUATION_CONTEXT_OBJ system privilege

■ Have CREATE_ANY_EVALUATION_CONTEXT system privilege

The evaluation function must have the following signature:

FUNCTION evaluation_function_name(
 rule_set_name IN VARCHAR2,
 evaluation_context IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST DEFAULT NULL,
 table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
 column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
 variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
 attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
 stop_on_first_hit IN BOOLEAN DEFAULT false,
 simple_rules_only IN BOOLEAN DEFAULT false,
 true_rules OUT SYS.RE$RULE_HIT_LIST,
 maybe_rules OUT SYS.RE$RULE_HIT_LIST);
RETURN BINARY_INTEGER;

The return value of the function must be one of the following:

■ DBMS_RULE_ADM.EVALUATION_SUCCESS: The user specified evaluation
function completed the rule set evaluation successfully. The rules engine returns
the results of the evaluation obtained by the evaluation function to the rules
engine client using the DBMS_RULE.EVALUATE procedure.

■ DBMS_RULE_ADM.EVALUATION_CONTINUE: The rules engine evaluates the
rule set as if there were no evaluation function. The evaluation function is not
used, and any results returned by the evaluation function are ignored.

■ DBMS_RULE_ADM.EVALUATION_FAILURE: The user specified evaluation
function failed. Rule set evaluation stops, and an error is raised.

See Also: Chapter 181, "Rule TYPEs" for more information about
the types used with the DBMS_RULE_ADM package

Note: Each parameter is required and must have the specified
datatype. However, you can change the names of the parameters.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-11

CREATE_RULE Procedure

This procedure creates a rule.

Syntax
DBMS_RULE_ADM.CREATE_RULE(

rule_name IN VARCHAR2,
condition IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
action_context IN SYS.RE$NV_LIST DEFAULT NULL,
rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 82–5 CREATE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are creating, specified as [schema_
name.]rule_name. For example, to create a rule named all_
a in the hr schema, enter hr.all_a for this parameter. If the
schema is not specified, then the current user is the default.

condition The condition to be associated with the rule. A condition
evaluates to TRUE or FALSE and can be any condition allowed
in the WHERE clause of a SELECT statement. For example, the
following is a valid rule condition:

department_id = 30

Note: Do not include the word "WHERE" in the condition.

evaluation_context An optional evaluation context name in the form [schema_
name.]evaluation_context_name, which is associated
with the rule. If the schema is not specified, then the current
user is the default.

If evaluation_context is not specified, then the rule
inherits the evaluation context from its rule set.

action_context The action context associated with the rule. A rule action
context is information associated with a rule that is interpreted
by the client of the rules engine when the rule is evaluated.

rule_comment An optional description of the rule

CREATE_RULE Procedure

82-12 PL/SQL Packages and Types Reference

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the rule being created and have the CREATE_RULE_OBJ system
privilege

■ Have CREATE_ANY_RULE system privilege

If an evaluation context is specified, then the rule owner must meet at least one of
the following requirements:

■ Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

■ Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS.

■ Be the evaluation context owner

Also, the rule owner must have the necessary privileges on all the base objects
accessed by the rule using the evaluation context.

See Also: Chapter 181, "Rule TYPEs" for more information about
the types used with the DBMS_RULE_ADM package

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-13

CREATE_RULE_SET Procedure

This procedure creates a rule set.

Syntax
DBMS_RULE_ADM.CREATE_RULE_SET(

rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
 rule_set_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the rule set being created and have CREATE_RULE_SET_OBJ
system privilege

■ Have CREATE_ANY_RULE_SET system privilege

If an evaluation context is specified, then the rule set owner must meet at least one
of the following requirements:

■ Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

Table 82–6 CREATE_RULE_SET Procedure Parameters

Parameter Description

rule_set_name The name of the rule set you are creating, specified as [schema_
name.]rule_set_name. For example, to create a rule set
named apply_rules in the hr schema, enter hr.apply_rules
for this parameter. If the schema is not specified, then the current
user is the default.

evaluation_context An optional evaluation context name in the form [schema_
name.]evaluation_context_name, which applies to all rules
in the rule set that are not associated with an evaluation context
explicitly. If the schema is not specified, then the current user is
the default.

rule_set_comment An optional description of the rule set

CREATE_RULE_SET Procedure

82-14 PL/SQL Packages and Types Reference

■ Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

■ Be the evaluation context owner

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-15

DROP_EVALUATION_CONTEXT Procedure

This procedure drops a rule evaluation context.

Syntax
DBMS_RULE_ADM.DROP_EVALUATION_CONTEXT(

evaluation_context_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the evaluation context

■ Have DROP_ANY_EVALUATION_CONTEXT system privilege

Table 82–7 DROP_EVALUATION_CONTEXT Procedure Parameters

Parameter Description

evaluation_context_name The name of the evaluation context you are dropping,
specified as [schema_name.]evaluation_context_
name.

For example, to drop an evaluation context named dept_
eval_context in the hr schema, enter hr.dept_eval_
context for this parameter. If the schema is not specified,
then the current user is the default.

force If true, then removes the rule evaluation context from all
rules and rule sets that use it.

If false and no rules or rule sets use the rule evaluation
context, then drops the rule evaluation context.

If false and one or more rules or rule sets use the rule
evaluation context, then raises an exception.

Caution: Setting force to true can result in rules and
rule sets that do not have an evaluation context. If neither
a rule nor the rule set it is in has an evaluation context,
and no evaluation context was specified for the rule by the
ADD_RULE procedure, then the rule cannot be evaluated.

DROP_RULE Procedure

82-16 PL/SQL Packages and Types Reference

DROP_RULE Procedure

This procedure drops a rule.

Syntax
DBMS_RULE_ADM.DROP_RULE(

rule_name IN VARCHAR2,
force IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the rule

■ Have DROP_ANY_RULE system privilege

Table 82–8 DROP_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are dropping, specified as [schema_
name.]rule_name. For example, to drop a rule named all_a
in the hr schema, enter hr.all_a for this parameter. If the
schema is not specified, then the current user is the default.

force If true, then removes the rule from all rule sets that contain it.

If false and no rule sets contain the rule, then drops the rule.

If false and one or more rule sets contain the rule, then raises
an exception.

Note:

■ To remove a rule from a rule set without dropping the rule
from the database, use the REMOVE_RULE procedure.

■ The rule evaluation context associated with the rule, if any, is
not dropped when you run this procedure.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-17

DROP_RULE_SET Procedure

This procedure drops a rule set.

Syntax
DBMS_RULE_ADM.DROP_RULE_SET(

rule_set_name IN VARCHAR2,
 delete_rules IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Have DROP_ANY_RULE_SET system privilege

■ Be the owner of the rule set

Table 82–9 DROP_RULE_SET Procedure Parameters

Parameter Description

rule_set_name The name of the rule set you are dropping, specified as
[schema_name.]rule_set_name. For example, to drop a
rule set named apply_rules in the hr schema, enter
hr.apply_rules for this parameter. If the schema is not
specified, then the current user is the default.

delete_rules If true, then also drops any rules that are in the rule set. If any
of the rules in the rule set are also in another rule set, then
these rules are not dropped.

If false, then the rules in the rule set are retained.

Note: The rule evaluation context associated with the rule set, if
any, is not dropped when you run this procedure.

GRANT_OBJECT_PRIVILEGE Procedure

82-18 PL/SQL Packages and Types Reference

GRANT_OBJECT_PRIVILEGE Procedure

This procedure grants the specified object privilege on the specified object to the
specified user or role. If a user owns the object, then the user automatically is
granted all privileges on the object, with grant option.

Syntax
DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(

privilege IN BINARY_INTEGER,
 object_name IN VARCHAR2,
 grantee IN VARCHAR2,
grant_option IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Be the owner of the object on which the privilege is granted

Table 82–10 GRANT_OBJECT_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the object privilege to grant to the grantee on the
object. See "Usage Notes" on page 82-18 for the available object
privileges.

object_name The name of the object for which you are granting the privilege
to the grantee, specified as [schema_name.]object_name.
For example, to grant the privilege on a rule set named apply_
rules in the hr schema, enter hr.apply_rules for this
parameter. If the schema is not specified, then the current user
is the default. The object must be an existing rule, rule set, or
evaluation context.

grantee The name of the user or role for which the privilege is granted.
The specified user cannot be the owner of the object.

grant_option If true, then the specified user or users granted the specified
privilege can grant this privilege to others.

If false, then the specified user or users granted the specified
privilege cannot grant this privilege to others.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-19

■ Have the same privilege as the privilege being granted with the grant option

In addition, if the object is a rule set, then the user must have EXECUTE privilege on
all the rules in the rule set with grant option or must own the rules in the rule set.

Table 82–11 lists the object privileges.

Examples
For example, to grant the HR user the privilege to alter a rule named hr_dml in the
strmadmin schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALTER_ON_RULE,
 object_name => 'strmadmin.hr_dml',
 grantee => 'hr',
 grant_option => false);
END;
/

Table 82–11 Object Privileges for Evaluation Contexts, Rules, and Rule Sets

Privilege Description

SYS.DBMS_RULE_ADM.ALL_ON_EVALUATION_CONTEXT Alter and execute a particular evaluation
context in another user's schema

SYS.DBMS_RULE_ADM.ALL_ON_RULE Alter and execute a particular rule in another
user's schema

SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET Alter and execute a particular rule set in
another user's schema

SYS.DBMS_RULE_ADM.ALTER_ON_EVALUATION_CONTEXT Alter a particular evaluation context in
another user's schema

SYS.DBMS_RULE_ADM.ALTER_ON_RULE Alter a particular rule in another user's
schema

SYS.DBMS_RULE_ADM.ALTER_ON_RULE_SET Alter a particular rule set in another user's
schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_EVALUATION_CONTEXT Execute a particular evaluation context in
another user's schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE Execute a particular rule in another user's
schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET Execute a particular rule set in another user's
schema

GRANT_SYSTEM_PRIVILEGE Procedure

82-20 PL/SQL Packages and Types Reference

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grant the specified system privilege to the specified user or role.

Syntax
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(

privilege IN BINARY_INTEGER,
 grantee IN VARCHAR2,
grant_option IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
Table 82–13 lists the system privileges.

Table 82–12 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the system privilege to grant to the grantee.

grantee The name of the user or role for which the privilege is granted

grant_option If true, then the specified user or users granted the specified
privilege can grant the system privilege to others.

If false, then the specified user or users granted the specified
privilege cannot grant the system privilege to others.

Table 82–13 System Privileges for Evaluation Contexts, Rules, and Rule Sets

Privilege Description

SYS.DBMS_RULE_ADM.ALTER_ANY_EVALUATION_CONTEXT Alter any evaluation context owned by any
user

SYS.DBMS_RULE_ADM.ALTER_ANY_RULE Alter any rule owned by any user

SYS.DBMS_RULE_ADM.ALTER_ANY_RULE_SET Alter any rule set owned by any user

SYS.DBMS_RULE_ADM.CREATE_ANY_EVALUATION_CONTEXT Create a new evaluation context in any
schema

SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ Create a new evaluation context in the
grantee's schema

SYS.DBMS_RULE_ADM.CREATE_ANY_RULE Create a new rule in any schema

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-21

For example, to grant the strmadmin user the privilege to create a rule set in any
schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET,
 grantee => 'strmadmin',
 grant_option => false);
END;
/

SYS.DBMS_RULE_ADM.CREATE_RULE_OBJ Create a new rule in the grantee's schema

SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET Create a new rule set in any schema

SYS.DBMS_RULE_ADM.CREATE_RULE_SET_OBJ Create a new rule set in the grantee's
schema

SYS.DBMS_RULE_ADM.DROP_ANY_EVALUATION_CONTEXT Drop any evaluation context in any schema

SYS.DBMS_RULE_ADM.DROP_ANY_RULE Drop any rule in any schema

SYS.DBMS_RULE_ADM.DROP_ANY_RULE_SET Drop any rule set in any schema

SYS.DBMS_RULE_ADM.EXECUTE_ANY_EVALUATION_CONTEXT Execute any evaluation context owned by
any user

SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE Execute any rule owned by any user

SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE_SET Execute any rule set owned by any user

Note: When you grant a privilege on "ANY" object (for example,
ALTER_ANY_RULE), and the initialization parameter O7_
DICTIONARY_ACCESSIBILITY is set to false, you give the user
access to that type of object in all schemas, except the SYS schema.
By default, the initialization parameter O7_DICTIONARY_
ACCESSIBILITY is set to false.

If you want to grant access to an object in the SYS schema, then you
can grant object privileges explicitly on the object. Alternatively,
you can set the O7_DICTIONARY_ACCESSIBILITY initialization
parameter to true. Then privileges granted on "ANY" object will
allow access to any schema, including SYS.

Table 82–13 System Privileges for Evaluation Contexts, Rules, and Rule Sets

Privilege Description

REMOVE_RULE Procedure

82-22 PL/SQL Packages and Types Reference

REMOVE_RULE Procedure

This procedure removes the specified rule from the specified rule set.

Syntax
DBMS_RULE_ADM.REMOVE_RULE(

rule_name IN VARCHAR2,
rule_set_name IN VARCHAR2,

 evaluation_context IN VARCHAR2 DEFAULT NULL,
 all_evaluation_contexts IN BOOLEAN DEFAULT false);

Parameters

Table 82–14 REMOVE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are removing from the rule set,
specified as [schema_name.]rule_name. For example,
to remove a rule named all_a in the hr schema, enter
hr.all_a for this parameter. If the schema is not
specified, then the current user is the default.

rule_set_name The name of the rule set from which you are removing the
rule, specified as [schema_name.]rule_set_name. For
example, to remove the rule from a rule set named apply_
rules in the hr schema, enter hr.apply_rules for this
parameter. If the schema is not specified, then the current
user is the default.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-23

Usage Notes
To run this procedure, a user must meet at least one of the following requirements:

■ Have ALTER_ON_RULE_SET privilege on the rule set

■ Have ALTER_ANY_RULE_SET system privilege

■ Be the owner of the rule set

evaluation_context_name The name of the evaluation context associated with the
rule you are removing, specified as [schema_
name.]evaluation_context_name. For example, to
specify an evaluation context named dept_eval_context
in the hr schema, enter hr.dept_eval_context for this
parameter. If the schema is not specified, then the current
user is the default.

If an evaluation context was specified for the rule you are
removing when you added the rule to the rule set using
the ADD_RULE procedure, then specify the same
evaluation context. If you added the same rule more than
once with different evaluation contexts, then specify the
rule with the evaluation context you want to remove. If
you specify an evaluation context that is not associated
with the rule, then an error is raised.

Specify NULL if you did not specify an evaluation context
when you added the rule to the rule set. If you specify
NULL and there are one or more evaluation contexts
associated with the rule, then an error is raised.

all_evaluation_contexts If true, then the rule is removed from the rule set with all
of its associated evaluation contexts.

If false, then only the rule with the specified evaluation
context is removed.

This parameter is relevant only if the same rule is added
more than once to the rule set with different evaluation
contexts.

Note: This procedure does not drop a rule from the database. To
drop a rule from the database, use the DROP_RULE procedure.

Table 82–14 REMOVE_RULE Procedure Parameters

Parameter Description

REVOKE_OBJECT_PRIVILEGE Procedure

82-24 PL/SQL Packages and Types Reference

REVOKE_OBJECT_PRIVILEGE Procedure

This procedure revokes the specified object privilege on the specified object from
the specified user or role.

Syntax
DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(

privilege IN BINARY_INTEGER,
 object_name IN VARCHAR2,
 revokee IN VARCHAR2);

Parameters

Table 82–15 REVOKE_OBJECT_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the object privilege on the object to revoke from
the revokee. See "GRANT_OBJECT_PRIVILEGE Procedure" on
page 82-18 for a list of the object privileges.

object_name The name of the object for which you are revoking the
privilege from the revokee, specified as [schema_
name.]object_name. For example, to revoke an object
privilege on a rule set named apply_rules in the hr schema,
enter hr.apply_rules for this parameter. If the schema is
not specified, then the current user is the default. The object
must be an existing rule, rule set, or evaluation context.

revokee The name of the user or role from which the privilege is
revoked. The user who owns the object cannot be specified.

Summary of DBMS_RULE_ADM Subprograms

DBMS_RULE_ADM 82-25

REVOKE_SYSTEM_PRIVILEGE Procedure

Revokes the specified system privilege from the specified user or role.

Syntax
DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(

privilege IN BINARY_INTEGER,
 revokee IN VARCHAR2);

Parameters

Table 82–16 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the system privilege to revoke from the revokee.
See "GRANT_SYSTEM_PRIVILEGE Procedure" on page 82-20
for a list of the system privileges.

revokee The name of the user or role from which the privilege is
revoked

REVOKE_SYSTEM_PRIVILEGE Procedure

82-26 PL/SQL Packages and Types Reference

DBMS_SCHEDULER 83-1

83
DBMS_SCHEDULER

The DBMS_SCHEDULER package provides a collection of scheduling functions and
procedures that are callable from any PL/SQL program.

This chapter contains the following topics:

■ Using DBMS_SCHEDULER

■ Rules and Limits

■ Summary of DBMS_SCHEDULER Subprograms

See Also: Oracle Database Administrator's Guide for more
information regarding how to use DBMS_SCHEDULER

Using DBMS_SCHEDULER

83-2 PL/SQL Packages and Types Reference

Using DBMS_SCHEDULER

■ Rules and Limits

Rules and Limits

The following rules apply when using the DBMS_SCHEDULER package:

■ Only SYS can do anything in SYS schema.

■ Several of the procedures accept comma-delimited lists of object names. When a
list of names is provided, the Scheduler will stop executing the list on the very
first object that returns an error. This means that the Scheduler will not perform
the task on the objects in the list after the one that caused the error. For example,
DBMS_SCHEDULER.STOP_JOB ('job1, job2, job3, sys.jobclass1,
sys.jobclass2, sys.jobclass3'); If job3 could not be stopped, then
job1 and job2 will be stopped, but the jobs in jobclass1, jobclass2, and
jobclass3 will not be stopped.

■ Performing an action on an object that does not exist returns a PL/SQL
exception stating that the object does not exist.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-3

Summary of DBMS_SCHEDULER Subprograms

Table 83–1 DBMS_SCHEDULER Package Subprograms

Subprogram Description

ADD_WINDOW_
GROUP_MEMBER
Procedure on page 83-6

Adds a window to an existing window group

CLOSE_WINDOW
Procedure on page 83-7

Closes an open Scheduler window prematurely

COPY_JOB Procedure on
page 83-8

Copies an existing job

CREATE_JOB Procedures
on page 83-9

Creates a job

CREATE_JOB_CLASS
Procedure on page 83-14

Creates a job class

CREATE_PROGRAM
Procedure on page 83-17

Creates a program

CREATE_SCHEDULE
Procedure on page 83-20

Creates a schedule

CREATE_WINDOW
Procedures on page 83-26

Creates a window

CREATE_WINDOW_
GROUP Procedure on
page 83-29

Creates a new window group

DEFINE_ANYDATA_
ARGUMENT Procedure
on page 83-30

Defines a program argument whose value is of a complex type
and must be passed encapsulated in an AnyData object

DEFINE_METADATA_
ARGUMENT Procedure
on page 83-32

Defines a special metadata argument for the program. You can
retrieve specific Scheduler metadata through this argument

DEFINE_PROGRAM_
ARGUMENT Procedure
on page 83-33

Defines a program argument whose value can be passed as a
string literal to the program

DISABLE Procedure on
page 83-35

Disables a program, job, window, or window group

Summary of DBMS_SCHEDULER Subprograms

83-4 PL/SQL Packages and Types Reference

DROP_JOB Procedure on
page 83-38

Drops a job or all jobs in a job class

DROP_JOB_CLASS
Procedure on page 83-39

Drops a job class

DROP_PROGRAM
Procedure on page 83-40

Drops a program

DROP_PROGRAM_
ARGUMENT Procedures
on page 83-41

Drops a program argument

DROP_SCHEDULE
Procedure on page 83-42

Drops a schedule

DROP_WINDOW
Procedure on page 83-43

Drops a window

DROP_WINDOW_
GROUP Procedure on
page 83-44

Drops a window group

ENABLE Procedure on
page 83-45

Enables a program, job, window, or window group

EVALUATE_
CALENDAR_STRING
Procedure on page 83-46

Evaluates the calendar string and tells you what the next
execution date of a job or window will be

GENERATE_JOB_NAME
Function on page 83-48

Generates a unique name for a job. This enables you to identify
jobs by adding a prefix, so, for example, Sally's jobs would be
named sally1, sally2, and so on

GET_ATTRIBUTE
Procedure on page 83-49

Retrieves the value of an attribute of a Scheduler object

GET_SCHEDULER_
ATTRIBUTE Procedure on
page 83-50

Retrieves the value of a Scheduler attribute

OPEN_WINDOW
Procedure on page 83-51

Opens a window prematurely. The window is opened
immediately for the duration

PURGE_LOG Procedure
on page 83-53

Purges specific rows from the job and window logs

REMOVE_WINDOW_
GROUP_MEMBER
Procedure on page 83-54

Removes a window from an existing window group. This fails
if the specified window is not a member of the given group

Table 83–1 (Cont.) DBMS_SCHEDULER Package Subprograms

Subprogram Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-5

RESET_JOB_
ARGUMENT_VALUE
Procedures on page 83-55

Resets the current value assigned to an argument defined with
the associated program

RUN_JOB Procedure on
page 83-56

Runs a job immediately

SET_ATTRIBUTE
Procedure on page 83-58

Changes an attribute of a Scheduler object

SET_ATTRIBUTE_NULL
Procedure on page 83-68

Changes an attribute of a Scheduler object to NULL

SET_JOB_ANYDATA_
VALUE Procedures on
page 83-69

Sets the value of a job argument encapsulated in an AnyData
object

SET_JOB_ARGUMENT_
VALUE Procedures on
page 83-71

Sets the value of a job argument

SET_SCHEDULER_
ATTRIBUTE Procedure on
page 83-73

Sets the value of a Scheduler attribute

STOP_JOB Procedure on
page 83-76

Stops a currently running job or all jobs in a job class

Table 83–1 (Cont.) DBMS_SCHEDULER Package Subprograms

Subprogram Description

ADD_WINDOW_GROUP_MEMBER Procedure

83-6 PL/SQL Packages and Types Reference

ADD_WINDOW_GROUP_MEMBER Procedure

This procedure adds one or more windows to an existing window group.

Syntax
DBMS_SCHEDULER.ADD_WINDOW_GROUP_MEMBER (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2);

Parameters

Usage Notes
If an already open window is added to a window group, the Scheduler will not pick
up jobs that point to this window group until the next window in the window
group opens.

Adding a window to a group requires the MANAGE SCHEDULER privilege.

Note that a window group cannot be a member of another window group.

Table 83–2 ADD_WINDOW_GROUP_MEMBER Procedure Parameters

Parameter Description

group_name The name of the window group.

window_list The name of the window or windows.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-7

CLOSE_WINDOW Procedure

This procedure closes an open window prematurely. A closed window means that it
is no longer in effect. When a window is closed, the Scheduler will switch the
resource plan to the one that was in effect outside the window or in the case of
overlapping windows to another window.

Syntax
DBMS_SCHEDULER.CLOSE_WINDOW (
 window_name IN VARCHAR2);

Parameters

Usage Notes
 If you try to close a window that does not exist or is not open, an error is generated.

A job that is running will not stop when the window it is running in closes unless
the attribute stop_on_close was set to TRUE for the job. However, the resources
allocated to the job may change because the resource plan may change.

When a running job has a window group as its schedule, the job will not be stopped
when its window is closed if another window that is also a member of the same
window group then becomes active. This is the case even if the job has the attribute
stop_on_close set to TRUE.

Closing a window requires the MANAGE SCHEDULER privilege.

Table 83–3 CLOSE_WINDOW Procedure Parameters

Parameter Description

window_name The name of the window.

COPY_JOB Procedure

83-8 PL/SQL Packages and Types Reference

COPY_JOB Procedure

This procedure copies all attributes of an existing job to a new job. The new job is
created disabled, while the state of the existing job is unaltered.

Syntax
DBMS_SCHEDULER.COPY_JOB (
 old_job IN VARCHAR2,
 new_job IN VARCHAR2);

Parameters

Table 83–4 COPY_JOB Procedure Parameters

Parameter Description

old_job The name of the existing job.

new_job The name of the new job.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-9

CREATE_JOB Procedures

This procedure creates a job.

The procedure is overloaded. The different functionality of each form of syntax is
presented along with the syntax declaration.

Syntax
Creates a job in a single call without using an existing program or schedule:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL);

Creates a job using a named schedule object and a named program object:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL);

Creates a job using a named program object and an inlined schedule:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,

CREATE_JOB Procedures

83-10 PL/SQL Packages and Types Reference

 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL);

Creates a job using a named schedule object and an inlined program or program:

DBMS_SCHEDULER.CREATE_JOB (
 job_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 83–5 CREATE_JOB Procedure Parameters

Parameter Description

job_name This attribute specifies the name of the job and uniquely identifies the job.
The name has to be unique in the SQL namespace. For example, a job
cannot have the same name as a table in a schema.

If job_name is not specified, an error is generated. If you want to have a
name generated by the Scheduler, you can use the GENERATE_JOB_NAME
procedure to generate a name and then use the output in the CREATE_JOB
procedure. The GENERATE_JOB_NAME procedure call generates a number
from a sequence, which is the job name. You can prefix the number with a
string. The job name will then be the string with the number from the
sequence appended to it. See "GENERATE_JOB_NAME Function" on
page 83-48 for more information.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-11

job_type This attribute specifies the type of job that you are creating. If it is not
specified, an error is generated. The three supported values are:

plsql_block

This specifies that the job is an anonymous PL/SQL block. Job or program
arguments are not supported when the job or program type is plsql_
block. In this case, the number of arguments must be 0.

stored_procedure

This specifies that the job is an external PL/SQL procedure. By reusing
PL/SQL's External Procedure feature, this can also be a Java stored
procedure or an external C routine.

executable

This specifies that the job is a job external to the database. External jobs are
anything that can be executed from the operating system's command line.

Anydata arguments are not supported with a job or program type of
executable.

job_action This attribute specifies the action of the job. The following actions are
possible:

For a PL/SQL block, the action is to execute PL/SQL code. These blocks
must end with a semi-colon. For example, my_proc(); or BEGIN my_
proc(); END; or DECLARE arg pls_integer := 10; BEGIN my_
proc2(arg); END;. Note that the Scheduler wraps job_action in its
own block and passes the following to PL/SQL for execution: DECLARE
... BEGIN job_action END; This is done to declare some internal
Scheduler variables.

For a stored procedure, the action is the name of the stored procedure. You
have to specify the schema if the procedure resides in another schema than
the job.

PL/SQL functions or procedures with INOUT or OUT arguments are not
supported as job_action when the job or program type is stored_
procedure.

For an executable, the action is the name of the external executable,
including the full path name and any command-line arguments.

If job_action is not specified, an error is generated when creating the
job.

Table 83–5 (Cont.) CREATE_JOB Procedure Parameters(Cont.)

Parameter Description

CREATE_JOB Procedures

83-12 PL/SQL Packages and Types Reference

number_of_
arguments

This attribute specifies the number of arguments that the job expects. The
range is 0-255, with the default being 0.

program_
name

The name of the program associated with this job.

start_date This attribute specifies the first date on which this job is scheduled to start.
If start_date and repeat_interval are left null, then the job is
scheduled to run as soon as the job is enabled.

For repeating jobs that use a calendaring expression to specify the repeat
interval, start_date is used as a reference date. The first time the job will
be scheduled to run is the first match of the calendaring expression that is
on or after the current date.

The Scheduler cannot guarantee that a job will execute on an exact time
because the system may be overloaded and thus resources unavailable.

repeat_
interval

This attribute specifies how often the job should repeat. You can specify the
repeat interval by using calendaring or PL/SQL expressions.

The expression specified is evaluated to determine the next time the job
should run. If repeat_interval is not specified, the job will run only
once at the specified start date. See Table 83–9 for further information.

schedule_
name

The name of the schedule, window, or window group associated with this
job.

end_date This attribute specifies the date after which the job will expire and will no
longer be executed. When end_date is reached, the job is disabled. The
STATE of the job will be set to COMPLETED, and the enabled flag will be
set to FALSE.

If no value for end_date is specified, the job will repeat forever unless
max_runs or max_failures is set, in which case the job stops when
either value is reached.

The value for end_date must be after the value for start_date. If it is
not, an error is generated when the job is enabled.

job_class This attribute specifies the job class that the job belongs to. If no job class is
specified, then the job is assigned to the default class. Note that the owner
of a job must have EXECUTE privileges on a job class in order to run a job
using the resources of that class. If an invalid value for job_class is
specified, an error is generated.

comments This attribute specifies a comment about the job. By default, this attribute is
NULL.

Table 83–5 (Cont.) CREATE_JOB Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-13

Usage Notes
Jobs are created disabled by default, thus you must explicitly enable them so they
will become active and scheduled.

To create a job in your own schema, you need to have the CREATE JOB privilege. A
user with the CREATE ANY JOB privilege can create a job in any schema.

Associating a job with a particular class or program requires EXECUTE privileges for
that class.

enabled This attribute specifies whether the job is created enabled or not. The
possible settings are TRUE or FALSE. By default, this attribute is set to
FALSE and, therefore, the job is created as disabled. A disabled job means
that the metadata about the job has been captured and the job exists as a
database object but the Scheduler will ignore it and the job coordinator will
not pick the job for processing. In order for the job coordinator to process
the job, the job has to be enabled. You can enable a job by setting this
argument to TRUE or by using the ENABLE procedure.

auto_drop This flag specifies whether the job will be automatically dropped once it
has been executed for non-repeating jobs or when its status is changed to
COMPLETED for repeating jobs. The metadata is removed from the database
if this flag is set to TRUE.

If this flag is set to FALSE, the jobs are not dropped and their metadata is
kept until the job is explicitly dropped and can be queried using the *_
SCHEDULER_JOBS views. This metadata can be removed from the table
using the DROP_JOB procedure.

By default, jobs are created with auto_drop set to TRUE.

Table 83–5 (Cont.) CREATE_JOB Procedure Parameters(Cont.)

Parameter Description

CREATE_JOB_CLASS Procedure

83-14 PL/SQL Packages and Types Reference

CREATE_JOB_CLASS Procedure

This procedure creates a job class. Job classes are created in the SYS schema.

Syntax
DBMS_SCHEDULER.CREATE_JOB_CLASS (
 job_class_name IN VARCHAR2,
 resource_consumer_group IN VARCHAR2 DEFAULT NULL,
 service IN VARCHAR2 DEFAULT NULL,
 logging_level IN PLS_INTEGER DEFAULT NULL,
 log_history IN PLS_INTEGER DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 83–6 CREATE_JOB_CLASS Procedure Parameters

Parameter Description

job_class_
name

The name of the class being created. A schema other than SYS cannot be
specified.

This attribute specifies the name of the job class and uniquely identifies
the job class. The name has to be unique in the SQL namespace. For
example, a job class cannot have the same name as a table in a schema.

resource_
consumer_
group

This attribute specifies the resource consumer group this class is
associated with. A resource consumer group is a set of synchronous or
asynchronous sessions that are grouped together based on their
processing needs. A job class has a many-to-one relationship with a
resource consumer group. The resource consumer group that the job class
associates with will determine the resources that will be allocated to the
job class.

If the resource consumer group that a job class is associated with is
dropped, the job class will then be associated with the default resource
consumer group.

If no resource consumer group is specified, the job class is associated with
the default resource consumer group.

If the specified resource consumer group does not exist when creating the
job class, an error occurs.

If resource_consumer_group is specified, you cannot specify a
service (it must be NULL). Also, if a service is specified, resource_
consumer_group must be NULL.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-15

service This attribute specifies the service the job class belongs to. The service
that a job class belongs to specifies that the jobs in this class will have
affinity to the particular service specified. In a RAC environment, this
means that the jobs in this class will only run on those database instances
that are assigned to the specific service.

If the service that a job class belongs to is dropped, the job class will then
belong to the default service.

If no service is specified, the job class will belong to the default service,
which means it will have no service affinity and any one of the database
instances within the cluster might run the job.

If the specified service does not exist when creating the job class, then an
error occurs.

logging_
level

This attribute specifies how much information is logged. The three
possible options are:

DBMS_SCHEDULER.LOGGING_OFF

No logging will be performed for any jobs in this class.

DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler will write detailed information to the job log for all runs of
each job in this class.

DBMS_SCHEDULER.LOGGING_FULL

In addition to recording every run of a job, the Scheduler will record all
operations performed on all jobs in this class. In other words, every time
a job is created, enabled, disabled, altered, and so on will be recorded in
the log.

Table 83–6 (Cont.) CREATE_JOB_CLASS Procedure Parameters(Cont.)

Parameter Description

CREATE_JOB_CLASS Procedure

83-16 PL/SQL Packages and Types Reference

Usage Notes
For users to create jobs that belong to a job class, the job owner must have EXECUTE
privileges on the job class. Therefore, after the job class has been created, EXECUTE
privileges must be granted on the job class so that users create jobs belonging to
that class. You can also grant the EXECUTE privilege to a role.

Creating a job class requires the MANAGE SCHEDULER system privilege.

log_history This enables you to control the amount of logging the Scheduler
performs. To prevent the job log and the window log from growing
indiscriminately, the Scheduler has an attribute that specifies how much
history (in days) to keep. Once a day, the Scheduler will automatically
purge all log entries from both the job log as well as the window log that
are older than the specified history. The default is 30 days.

You can change the default by using the SET_SCHEDULER_ATTRIBUTE
procedure. For example, to change it to 90 days, issue the following
statement:

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE
('log_history','90');

The range of valid values is 1 through 999.

comments This attribute is for an optional comment about the job class. By default,
this attribute is NULL.

Table 83–6 (Cont.) CREATE_JOB_CLASS Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-17

CREATE_PROGRAM Procedure

This procedure creates a program.

Syntax
DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name IN VARCHAR2,
 program_type IN VARCHAR2,
 program_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 enabled IN BOOLEAN DEFAULT FALSE,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 83–7 CREATE_PROGRAM Procedure Parameters

Parameter Description

program_
name

This attribute specifies a unique identifier for the program. The name has
to be unique in the SQL namespace. For example, a program cannot have
the same name as a table in a schema. If no name is specified, then an error
occurs.

program_
type

This attribute specifies the type of program you are creating. If it is not
specified then you will get an error. There are three supported values for
program_type:

plsql_block: This specifies that the program is a PL/SQL block. Job or
program arguments are not supported when the job or program type is
plsql_block. In this case, the number of arguments must be 0.

stored_procedure: This specifies that the program is a stored
procedure. It can be a PL/SQL, Java, or a C routine outside the database.
PL/SQL functions or procedures with INOUT or OUT arguments are not
supported as job_action when the job or program type is stored_
procedure.

executable: This specifies that the program is external to the database.
External programs implies anything that can be executed from the
operating system's command line. AnyData arguments are not supported
with job or program type executable

CREATE_PROGRAM Procedure

83-18 PL/SQL Packages and Types Reference

Usage Notes
 To create a program in his own schema, a user needs the CREATE JOB privilege. A
user with the CREATE ANY JOB privilege can create a program in any schema. A
program is created in a disabled state by default (unless the enabled field is set to
TRUE). It cannot be executed by a job until it is enabled.

program_
action

This attribute specifies the action of the program. The following actions are
possible:

For a PL/SQL block, the action is to execute PL/SQL code. These blocks
must end with a semi-colon. For example, my_proc(); or BEGIN my_
proc(); END; or DECLARE arg pls_integer := 10; BEGIN my_
proc2(arg); END;. Note that the Scheduler wraps job_action in its
own block and passes the following to PL/SQL for execution: DECLARE
... BEGIN job_action END; This is done to declare some internal
Scheduler variables.

For a stored procedure, the action is the name of the stored procedure. You
have to specify the schema if the procedure resides in another schema than
the job.

For an executable, the action is the name of the external executable,
including the full path name and any command-line arguments.

If program_action is not specified, an error is generated

If it is an anonymous block, special Scheduler metadata may be accessed
using the following variable names: job_name, job_owner, job_start,
window_start, window_end. For more information on these, see the
information regarding define_metadata_argument.

number_of_
arguments

This attribute specifies the number of arguments the program takes. If this
parameter is not specified then the default will be 0. A program can have a
maximum of 255 number of arguments.

 If the program_type is PLSQL_BLOCK, this field is ignored.

enabled This flag specifies whether the program should be created enabled or not.
If the flag is set to TRUE, then validity checks will be made and the
program will be created ENABLED should all the checks be successful. By
default, this flag is set to FALSE, which means that the program is not
created enabled. You can also call the ENABLE procedure to enable the
program before it can be used.

comments A comment about the program. By default, this attribute is NULL.

Table 83–7 (Cont.) CREATE_PROGRAM Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-19

For other users to use your programs, they must have EXECUTE privileges,
therefore once a program has been created, you have to grant EXECUTE privilege on
it.

CREATE_SCHEDULE Procedure

83-20 PL/SQL Packages and Types Reference

CREATE_SCHEDULE Procedure

This procedure creates a schedule.

Syntax
DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 83–8 CREATE_SCHEDULE Procedure Parameters

Parameter Description

schedule_name This attribute specifies a unique identifier for the schedule. The name
has to be unique in the SQL namespace. For example, a schedule cannot
have the same name as a table i a schema. If no name is specified, then
an error occurs.

start_date This attribute specifies the first date on which this schedule becomes
valid. For a repeating schedule, the value for start_date is a reference
date. In this case, the start of the schedule is not the start_date. It
depends on the repeat interval specified. start_date is used to
determine the first instance of the schedule.

If start_date is specified in the past and no value for repeat_
interval is specified, the schedule is invalid. For a repeating job or
window, start_date can be derived from the repeat_interval, if
it is not specified.

repeat_
interval

This attribute specifies how often the schedule should repeat. It is
expressed using a calendar expression. See Table 83–9 for further
information. PL/SQL expressions are not allowed as repeat intervals for
named schedules.

end_date The date after which jobs will not run and windows will not open.

A non-repeating schedule that has no end_date will be valid forever.

end_date has to be after the start_date. If this is not the case, then
an error will be generated when the schedule is created.

comments This attribute specifies an optional comment about the schedule. By
default, this attribute is NULL.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-21

Syntax for repeat_interval

Calendaring Syntax The calendaring syntax is as follows:

repeat_interval = frequency_clause
 [";" interval_clause] [";" bymonth_clause] [";" byweekno_clause]
 [";" byyearday_clause] [";" bymonthday_clause] [";" byday_clause]
 [";" byhour_clause] [";" byminute_clause] [";" bysecond_clause]

frequency_clause = "FREQ" "=" frequency
 frequency = "YEARLY" | "MONTHLY" | "WEEKLY" | "DAILY" |
 "HOURLY" | "MINUTELY" | "SECONDLY"
interval_clause = "INTERVAL" "=" intervalnum
 intervalnum = 1 through 99
bymonth_clause = "BYMONTH" "=" monthlist
 monthlist = monthday ("," monthday) *
 month = numeric_month | char_month
 numeric_month = 1 | 2 | 3 ... 12
 char_month = "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" |
 "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "DEC"
byweekno_clause = "BYWEEKNO" "=" weeknumber_list
 weeknumber_list = weekday ("," weeknumber)*
 week = [minus] weekno
 minus = "-"
 weekno = 1 through 53
byyearday_clause = "BYYEARDAY" "=" yearday_list
 yearday_list = yearday ("," yearday)*
 yearday = [minus] yeardaynum
 yeardaynum = 1 through 366
bymonthday_clause = "BYMONTHDAY" "=" monthday_list
 monthday_list = monthday ("," monthday) *
 monthday = [minus] monthdaynum
 monthdaynum = 1 through 31
byday_clause = "BYDAY" "=" byday_list
 byday_list = byday ("," byday)*
 byday = [weekdaynum] day
 weekdaynum = [minus] daynum
 daynum = 1 through 53 /* if frequency is yearly */
 daynum = 1 through 5 /* if frequency is monthly */
 day = "MON" | "TUE" | "WED" | "THU" | "FRI" | "SAT" | "SUN"
byhour_clause = "BYHOUR" "=" hour_list
 hour_list = hour ("," hour)*
 hour = 0 through 23
byminute_clause = "BYMINUTE" "=" minute_list
 minute_list = minute ("," minute)*

CREATE_SCHEDULE Procedure

83-22 PL/SQL Packages and Types Reference

 minute = 0 through 59
bysecond_clause = "BYSECOND" "=" second_list
 second_list = second ("," second)*
 second = 0 through 59

In calendaring syntax, * means 0 or more.

Table 83–9 Values for repeat_interval

Name Description

freq This specifies the type of recurrence. It must be specified. The possible
values are YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY,
MINUTELY, and SECONDLY.

interval This specifies a positive integer representing how often the recurrence
repeats. The default is 1, which means every second for secondly, every
day for daily, and so on. The maximum value is 999.

bymonth This specifies which month or months you want the job to execute in. You
can use numbers such as 1 for January and 3 for March, as well as
three-letter abbreviations such as FEB for February and JUL for July.

byweekno This specifies the week of the year as a number. It follows ISO-8601, which
defines the week as starting with Monday and ending with Sunday; and
the first week of a year as the first week, which is mostly within the
Gregorian year. That last definition is equivalent to the following two
variants: the week that contains the first Thursday of the Gregorian year;
and the week containing January 4th.

The ISO-8601 week numbers are integers from 1 to 52 or 53; parts of week 1
may be in the previous calendar year; parts of week 52 may be in the
following calendar year; and if a year has a week 53, parts of it must be in
the following calendar year.

As an example, in the year 1998 the ISO week 1 began on Monday
December 29th, 1997; and the last ISO week (week 53) ended on Sunday
January 3rd, 1999. So December 29th, 1997, is in the ISO week 1998-01; and
January 1st, 1999, is in the ISO week 1998-53.

byweekno is only valid for YEARLY.

Examples of invalid specifications are "FREQ=YEARLY; BYWEEKNO=1;
BYMONTH=12" and "FREQ=YEARLY;BYWEEKNO=53;BYMONTH=1".

byyearday This specifies the day of the year as a number. Valid values are 1 to 366. An
example is 69, which is March 10 (31 for January, 28 for February, and 10
for March). 69 evaluates to March 10 for non-leap years and March 9 in
leap years. -2 will always evaluate to December 30th independent of
whether it is a leap year.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-23

Usage Notes
This procedure requires the CREATE JOB privilege to create a schedule in one's own
schema or the CREATE ANY JOB privilege to create a schedule in someone else's
schema by specifying schema.schedule_name. Once a schedule has been
created, it can be used by other users. The schedule is created with access to
PUBLIC. Therefore, there is no need to explicitly grant access to the schedule.

repeat_interval
When using a calendaring expression, consider the following rules:

■ The calendar string must start with the frequency clause. All other clauses are
optional and can be put in any order.

■ All clauses are separated by a semi-colon and each clause can be present at most
once.

■ Spaces are allowed between syntax elements and the strings are case
insensitive.

■ The list of values for a specific BY clause do not need to be ordered.

bymonthday This specifies the day of the month as a number. Valid values are 1 to 31.
An example is 10, which means the 10th day of the selected month. You
can use the minus sign (-) to count backward from the last day, so, for
example, BYMONTHDAY=-1 means the last day of the month and
BYMONTHDAY=-2 means the next to last day of the month.

byday This specifies the day of the week from Monday to Sunday in the form
MON, TUE, and so on. Using numbers, you can specify the 26th Friday of
the year, if using a YEARLY frequency, or the 4th THU of the month, using
a MONTHLY frequency. Using the minus sign, you can say the second to
last Friday of the month. For example, -1 FRI is the last Friday of the
month.

byhour This specifies the hour on which the job is to run. Valid values are 0 to 23.
As an example, 10 means 10AM.

byminute This specifies the minute on which the job is to run. Valid values are 0 to
59. As an example, 45 means 45 minutes past the chosen hour.

bysecond This specifies the second on which the job is to run. Valid values are 0 to
59. As an example, 30 means 30 seconds past the chosen minute.

Table 83–9 (Cont.) Values for repeat_interval

Name Description

CREATE_SCHEDULE Procedure

83-24 PL/SQL Packages and Types Reference

■ When not enough BY clauses are present to determine what the next date is, this
information is retrieved from the start date. For example, "FREQ=YEARLY"
with a start date of 02/15/2003 becomes "FREQ=YEARLY;BYMONTH=FEB;
BYMONTHDAY=15", which means every year on the 15th of February.

"FREQ=YEARLY;BYMONTH=JAN,JUL" with start date 01/21/2003 becomes
"FREQ=YEARLY;BYMONTH=JAN,JUL;BYMONTHDAY=21", which means every
year on January 21 and July 21.

■ The byweekno clause is only allowed if the frequency is YEARLY. It cannot be
used with other frequencies. When it is present, it will return all days in that
week number. If you want to limit it to specific days within the week, you have
to add a BYDAY clause. For example, "FREQ=YEARLY;BYWEEKNO=2" with a
start date of 01/01/2003 will return:

01/06/2003, 01/07/2003, 01/08/2003, 01/09/2003, 01/10/2003, 01/11/2003,
01/12/2003, 01/05/2004, 01/06/2004, 01/07/2004, and so on.

Note that when the byweekno clause is used, it is possible that the dates
returned are from a year other than the current year. For example, if returning
dates for the year 2004 and the calendar string is
"FREQ=YEARLY;BYWEEKNO=1,53" for the specified week numbers in 2004, it
will return the dates:

12/29/03, 12/30/03, 12/31/03, 01/01/04, 01/02/04, 01/03/04, 01/04/04,
12/27/04, 12/28/04, 12/29/04, 12/30/04, 12/31/04, 01/01/05, 01/02/05

■ For those BY clauses that do not have a consistent range of values, you can
count backward by putting a "-" in front of the numeric value. For example,
specifying BYMONTHDAY=31 will not give you the last day of every month,
because not every month has 31 days. Instead, BYMONTHDAY=-1 will give you
the last day of the month.

This is not supported for BY clauses that are fixed in size. In other words,
bymonth, byhour, byminute, and bysecond are not supported.

■ The basic values for the byday clause are the days of the week. When the
frequency is YEARLY, or MONTHLY, you are allowed to specify a positive or
negative number in front of each day of the week. In the case of YEARLY,
BYDAY=40MON, indicates the 40th Monday of the year. In the case of MONTHLY,
BYDAY=-2SAT, indicates the second to last Saturday of the month.

Note that positive or negative numbers in front of the weekdays are not
supported for other frequencies and that in the case of yearly, the number

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-25

ranges from -53 ... -1, 1 ... 53, whereas for the monthly frequency it is limited to
-5 ... -1, 1... 5.

If no number is present in front of the weekday it specifies, every occurrence of
that weekday in the specified frequency.

■ The first day of the week is Monday.

■ The calendaring syntax does not allow you to specify a time zone. Instead the
scheduler retrieves the time zone from the start_date argument. If jobs must
follow daylight savings adjustments you must make sure that you specify a
region name for the time zone of the start_date. For example specifying the
start_date time zone as 'US/Eastern' in New York will make sure that
daylight saving adjustments are automatically applied. If instead the time zone
of the start_date is set to an absolute offset, such as '-5:00', daylight
savings adjustments are not followed and your job execution will be off by an
hour half of the year.

■ When start_date is NULL, the scheduler will determine the time zone for the
repeat interval as follows:

1. It will check whether the session time zone is a region name. The session
time zone can be set by either:

– - issuing an ALTER SESSION statement, for example:

SQL> ALTER SESSION SET time_zone = 'Asia/Shanghai';

– - or by setting the ORA_SDTZ environment variable.

2. If the session time zone is an absolute offset instead of a region name, the
scheduler will use the value of the DEFAULT_TIMEZONE scheduler
attribute. For more information see the SET_SCHEDULER_ATTRIBUTE
Procedure.

3. If the DEFAULT_TIMEZONE attribute is NULL, the scheduler will use the
time zone of systimestamp when the job or window is enabled.

CREATE_WINDOW Procedures

83-26 PL/SQL Packages and Types Reference

CREATE_WINDOW Procedures

This procedure creates a Scheduler window consisting of a recurring time window
and an associated resource plan.

The procedure is overloaded. The different functionality of each form of syntax is
presented along with the syntax declaration.

Syntax
Creates a window using a named schedule object:

DBMS_SCHEDULER.CREATE_WINDOW (
 window_name IN VARCHAR2,
 resource_plan IN VARCHAR2,
 schedule_name IN VARCHAR2,
 duration IN INTERVAL DAY TO SECOND,
 window_priority IN VARCHAR2 DEFAULT 'LOW',
 comments IN VARCHAR2 DEFAULT NULL);

Creates a window using an inlined schedule:

DBMS_SCHEDULER.CREATE_WINDOW (
 window_name IN VARCHAR2,
 resource_plan IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 duration IN INTERVAL DAY TO SECOND,
 window_priority IN VARCHAR2 DEFAULT 'LOW',
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Table 83–10 CREATE_WINDOW Procedure Parameters

Parameter Description

window_name This attribute uniquely identifies the window, and is of the form
[SYS.]name. The name has to be unique in the SQL namespace,
thus no other database object should have the same name.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-27

resource_plan This attribute specifies the resource plan. When creating a window,
a resource plan enables you to specify how resources will be
allocated among the various job classes during this window by
associating a resource plan with it. When the window opens, the
system switches to the specified resource plan. When the window
closes, the system switches to the appropriate resource plan. In
most cases, this is the resource plan that was in effect before the
window opened, but it can also be the resource plan of yet another
window.

Besides using windows to automatically switch resource plans, you
can also manually activate a plan by using the ALTER SYSTEM SET
RESOURCE_MANAGER_PLAN statement. For certain emergency
scenarios, you do not want the Scheduler to switch resource plans.
When the preceding statement is used with the force option, the
Scheduler will not be allowed to switch resource plans. It will still
attempt to do so, but a runtime error will be written to the window
log.

Only one resource plan can be associated with a window. If no
resource plan is associated with the window during its creation, the
resource plan that is in effect when the window opens will stay in
effect for the duration of the window.

If the window is open and the resource plan is dropped, then the
resource allocation for the duration of the window is not affected.

A runtime error will occur when a window is about to open and the
resource plan associated with this window has been dropped.

start_date This attribute specifies the first date on which this window is
scheduled to open. If the value for start_date specified is in the
past or is not specified, the window opens as soon as it is created.

For repeating windows that use a calendaring expression to specify
the repeat interval, the value for start_date is a reference date.
The first time the window opens depends on the repeat interval
specified and the value for start_date.

duration This attribute specifies how long the window will be open for. For
example, 'interval '5' hour' for five hours. There is no default value
for this attribute. Therefore, if none is specified when creating the
window, an error occurs. The duration is of type interval day to
seconds and ranges from one minute to 99 days.

schedule_name The name of the schedule associated with the window.

Table 83–10 (Cont.) CREATE_WINDOW Procedure Parameters(Cont.)

Parameter Description

CREATE_WINDOW Procedures

83-28 PL/SQL Packages and Types Reference

Usage Notes
Creating a window requires the MANAGE SCHEDULER privilege. Windows always
reside in the SYS schema.

repeat_interval This attribute specifies how often the window should repeat. It is
expressed using the Scheduler's calendaring syntax.

A PL/SQL expression cannot be used to specify the repeat interval
for a window.

The expression specified is evaluated to determine the next time the
window should open. If no repeat_interval is specified, the window
will open only once at the specified start date.

end_date This attribute specifies the date after which the window will no
longer open. When the value for end_date is reached, the window
is disabled. In the *_SCHEDULER_WINDOWS views, the enabled flag
of the window will be set to FALSE.

A non-repeating window that has no value for end_date opens only
once for the duration of the window. For a repeating window, if no
end_date is specified then the window will keep repeating
forever.

The end_date has to be after the start_date. If this is not the case,
then an error is generated when the window is created.

window_priority This attribute is only relevant when two windows overlap. Because
only one window can be in effect at one time, the window priority
will be used to determine which window will be opened. The two
possible values for this attribute are high and low. A high priority
window has precedence over a low priority window, which implies
that the low priority window does not open if it overlaps with a
high priority window. By default, a window is created with a
priority of low.

comments This attribute specifies an optional comment about the window. By
default, this attribute is NULL.

Table 83–10 (Cont.) CREATE_WINDOW Procedure Parameters(Cont.)

Parameter Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-29

CREATE_WINDOW_GROUP Procedure

This procedure creates a new window group.

Syntax
DBMS_SCHEDULER.CREATE_WINDOW_GROUP (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
Creating a window group requires the MANAGE SCHEDULER privilege. Window
groups reside in the SYS schema. Window groups, like windows, are created with
access to PUBLIC, therefore, no privileges are required to access window groups.

A window group cannot contain another window group

Table 83–11 CREATE_WINDOW_GROUP Procedure Parameters

Parameter Description

group_name The name of the window group.

window_list A list of the windows assigned to the window group. If a window
that does not exist is specified then, an error is generated and the
window group is not created.

Windows can also be added using the ADD_WINDOW_GROUP_
MEMBER procedure. A window group cannot be a member of
another window group. Can be NULL.

comments A comment about the window group.

DEFINE_ANYDATA_ARGUMENT Procedure

83-30 PL/SQL Packages and Types Reference

DEFINE_ANYDATA_ARGUMENT Procedure

This procedure defines a program argument whose value is of a complex type and
must be encapsulated within an AnyData object.

Syntax
DBMS_SCHEDULER.DEFINE_ANYDATA_ARGUMENT (
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 default_value IN SYS.ANYDATA,
 out_argument IN BOOLEAN DEFAULT FALSE);

Parameters

Table 83–12 DEFINE_ANYDATA_ARGUMENT Procedure Parameters

Parameter Description

program_name The name of the program to be altered. A program with this
name must exist.

argument_name The name of the argument being set. It is optional, but must be
unique if it is specified, so no other argument must exist with
this name for this program if it is non-NULL.

argument_position This specifies the position of the argument when it is being
passed to the executable, and is required. Argument numbers
go from one up to the number_of_arguments specified for
the program. This must be unique, so it will replace any
argument already defined at this position.

argument_type The type of argument being defined. This is not verified or
used by the Scheduler. It is only used by the user of the
program when deciding what value to assign to the argument.

default_value The default value to be assigned to the argument encapsulated
within an AnyData object. This is optional.

out_argument This parameter is reserved for future use. It must be set to
FALSE.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-31

Usage Notes
Defining a program argument requires that you be the owner of the program or
have ALTER privileges on that program. You can also define a program argument if
you have the CREATE ANY JOB privilege.

DEFINE_METADATA_ARGUMENT Procedure

83-32 PL/SQL Packages and Types Reference

DEFINE_METADATA_ARGUMENT Procedure

This procedure defines a special metadata argument for the program. You can
retrieve specific Scheduler metadata through this argument. You cannot set values
for jobs using this argument. Valid metadata attributes are: job_name, job_owner,
job_start, window_start, and window_end.

Syntax
DBMS_SCHEDULER.DEFINE_METADATA_ARGUMENT (
 program_name IN VARCHAR2,
 metadata_attribute IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
Defining a program argument requires that you be the owner of the program or
have ALTER privileges on that program. You can also define a program argument if
you have the CREATE ANY JOB privilege.

Table 83–13 DEFINE_METADATA_ARGUMENT Procedure Parameters

Parameter Description

program_name The name of the program to be altered.

metadata_
attribute

The metadata to be retrieved.

argument_
position

Specifies the position of the argument when it is being passed to the
executable, and is required. This cannot be greater than the number_
of_arguments specified for the program. This must be unique, so it
will replace any argument already defined at this position.

argument_name The name of the argument being set. It is optional. This must be
unique if it is specified, so no other argument must exist with this
name for this program if it is non-NULL.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-33

DEFINE_PROGRAM_ARGUMENT Procedure

This procedure defines program arguments. This does not affect whether a program
is enabled or not. Defining a program argument can be used to assign a default
value or a name to the argument.

This procedure is overloaded. The different functionality of each form of syntax is
presented along with the syntax declaration.

Syntax
Defines a program argument with a default value:

PROCEDURE define_program_argument(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 out_argument IN BOOLEAN DEFAULT FALSE);

Defines a program argument without a default value:

PROCEDURE define_anydata_argument(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 default_value IN SYS.ANYDATA,
 out_argument IN BOOLEAN DEFAULT FALSE);

Parameters

Table 83–14 DEFINE_PROGRAM_ARGUMENT Procedure Parameters

Parameter Description

program_name The name of the program to be altered. A program with this name
must exist.

argument_name The name of the argument being set. It is optional, but must be unique
if it is specified, so no other argument must exist with this name for
this program if it is non-NULL.

DEFINE_PROGRAM_ARGUMENT Procedure

83-34 PL/SQL Packages and Types Reference

Usage Notes
All program arguments from 1 to the number_of_arguments value must be
defined before a program can be enabled.

Defining a program argument requires that you be the owner of the program or
have ALTER privileges on that program. You can also define a program argument if
you have the CREATE ANY JOB privilege.

argument_
position

This specifies the position of the argument when it is being passed to
the executable, and is required. Argument numbers go from one up to
the number_of_arguments specified for the program. This must be
unique so it will replace any argument already defined at this position.

argument_type The type of argument being defined. This is not verified or used by the
Scheduler. It is only used by the user of the program when deciding
what value to assign to the argument.

default_value The default value to be assigned to the argument if none is specified
by the job.

out_argument This parameter is reserved for future use. It must be set to FALSE.

Table 83–14 (Cont.) DEFINE_PROGRAM_ARGUMENT Procedure Parameters

Parameter Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-35

DISABLE Procedure

This procedure disables a program, job, window, or window group.

Syntax
DBMS_SCHEDULER.DISABLE (
 name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Disabling an object that is already disabled does not generate an error. Because the
DISABLE procedure is used for several Scheduler objects, when disabling windows
and window groups, they must be preceded by SYS.

The purpose of the force option is to point out dependencies. No dependent
objects are altered.

To run DISABLE for a window or window group, you must have the MANAGE
SCHEDULER privilege. Otherwise, you must be the owner of the object being
disabled or have ALTER privileges on that object or have the CREATE ANY JOB
privilege.

Table 83–15 DISABLE Procedure Parameters

Parameter Description

name The name of the object being disabled. Can be a comma-delimited
list.

If a job class name is specified, then all the jobs in the job class are
disabled. The job class is not disabled.

If a window group name is specified, then the window group will
be disabled, but the windows that are members of the window
group, will not be disabled.

force Whether to ignore dependencies. See preceding notes for more
information.

DISABLE Procedure

83-36 PL/SQL Packages and Types Reference

Job
Disabling a job means that, although the metadata of the job is there, it should not
run and the job coordinator will not pick up these jobs for processing. When a job is
disabled, its state in the job queue is changed to disabled.

If force is set to FALSE and the job is currently running, an error is returned.

If force is set to TRUE, the job is disabled, but the currently running instance is
allowed to finish.

Program
When a program is disabled, the status is changed to disabled. A disabled program
implies that, although the metadata is still there, jobs that point to this program
cannot run.

If force is set to FALSE, the program must be unreferenced by any job otherwise
an error will occur.

If force is set to TRUE, those jobs that point to the program will not be disabled,
however, they will fail at runtime because their program will not be valid.

Running jobs that point to the program are not affected by the DISABLE call, and
are allowed to continue

Any argument that pertains to the program will not be affected when the program
is disabled.

Window
This means that the window will not open, however, the metadata of the window is
still there, so it can be reenabled.

If force is set to FALSE, the window must not be open or referenced by any job
otherwise an error will occur.

If force is set to TRUE, disabling a window that is open will succeed but the
window will not be closed. It will prevent the window from opening in the future
until it is re-enabled.

When the window is disabled, those jobs that have the window as their schedule
will not be disabled.

Window Group
When a window group is disabled, jobs, other than a running job, that has the
window group as its schedule will not run even if the member windows open.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-37

However, if the job had one of the window group members as its schedule, it would
still run.

The metadata of the window group is still there, so it can be reenabled. Note that
the members of the window group will still open.

If force is set to FALSE, the window group must not have any members that are
open or referenced by any job otherwise an error will occur.

If force is set to TRUE:

■ The window group is disabled and the open window will be not closed or
disabled. It will be allowed to continue to its end.

■ The window group is disabled but those jobs that have the window group as
their schedule will not be disabled.

DROP_JOB Procedure

83-38 PL/SQL Packages and Types Reference

DROP_JOB Procedure

This procedure drops a job or all jobs in a job class. It results in the job being
removed from the job queue, its metadata being removed, and no longer being
visible in the *_SCHEDULER_JOBS views. Therefore, no more runs of the job will be
executed. Dropping a job also drops all argument values set for that job.

Syntax
DBMS_SCHEDULER.DROP_JOB (
 job_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 83–16 DROP_JOB Procedure Parameters

Parameter Description

job_name The name of a job or job class. Can be a comma-delimited list. For a
job class, the SYS schema should be specified.

If the name of a job class is specified, the jobs that belong to that job
class are dropped, but the job class itself is not dropped.

force If force is set to FALSE, and an instance of the job is running at the
time of the call, the call results in an error.

If force is set to TRUE, the Scheduler attempts to first stop (issues
the STOP_JOB call) the running job instance and then drop the job.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-39

DROP_JOB_CLASS Procedure

This procedure drops a job class. Dropping a job class means that all the metadata
about the job class is removed from the database.

Syntax
DBMS_SCHEDULER.DROP_JOB_CLASS (
 job_class_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Dropping a class requires the MANAGE SCHEDULER system privilege.

DROP_JOB requires that you be the owner of the job or have ALTER privileges on
that job. You can also drop a job if you have the CREATE ANY JOB privilege.

Table 83–17 vDROP_JOB_CLASS Procedure Parameters

Parameter Description

job_class_name The name of the job class. Can be a comma-delimited list.

force If force is set to FALSE, a class must be unreferenced by any jobs to
be dropped otherwise an error will occur.

If force is set to TRUE, jobs belonging to the class are disabled and
their class is set to the default class. Only if this is successful will the
class be dropped.

Running jobs that belong to the job class are not affected.

DROP_PROGRAM Procedure

83-40 PL/SQL Packages and Types Reference

DROP_PROGRAM Procedure

This procedure drops a program. Any arguments that pertain to the program are
also dropped when the program is dropped.

Syntax
DBMS_SCHEDULER.DROP_PROGRAM (
 program_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Dropping a program requires that you be the owner of the program or have ALTER
privileges on that program. You can also drop a program if you have the CREATE
ANY JOB privilege.

Table 83–18 DROP_PROGRAM Procedure Parameters

Parameter Description

program_name The name of the program to be dropped. Can be a comma-delimited
list.

force If force is set to FALSE, the program must be unreferenced by any
job otherwise an error will occur.

If force is set to TRUE, all jobs referencing the program are
disabled before dropping the program.

Running jobs that point to the program are not affected by the
DROP_PROGRAM call, and are allowed to continue.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-41

DROP_PROGRAM_ARGUMENT Procedures

This procedure drops a program argument. An argument can be specified by either
name (if one has been given) or position.

The procedure is overloaded. The different functionality of each form of syntax is
presented along with the syntax declaration.

Syntax
Drops a program argument either by position:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER);

Drops a program argument either by name:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name IN VARCHAR2,
 argument_name IN VARCHAR2);

Parameters

Usage Notes
Dropping a program argument requires that you be the owner of the program or
have ALTER privileges on that program. You can also define a program argument if
you have the CREATE ANY JOB privilege.

Table 83–19 DROP_PROGRAM_ARGUMENT Procedure Parameters

Parameter Description

program_name The name of the program to be altered. A program with this name
must exist.

argument_name The name of the argument being dropped.

argument_
position

The position of the argument to be dropped.

DROP_SCHEDULE Procedure

83-42 PL/SQL Packages and Types Reference

DROP_SCHEDULE Procedure

This procedure drops a schedule.

Syntax
DBMS_SCHEDULER.DROP_SCHEDULE (
 schedule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You must be the owner of the schedule being dropped or have ALTER privileges for
the schedule or the CREATE ANY JOB privilege.

Table 83–20 DROP_SCHEDULE Procedure Parameters

Parameter Description

schedule_name The name of the schedule. Can be a comma-delimited list.

force If force is set to FALSE, the schedule must be unreferenced by any
job or window otherwise an error will occur.

If force is set to TRUE, any jobs or windows that use this schedule
will be disabled before the schedule is dropped

Running jobs and open windows that point to the schedule are not
affected.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-43

DROP_WINDOW Procedure

This procedure drops a window. All metadata about the window is removed from
the database. All references to the window are removed from window groups.

Syntax
DBMS_SCHEDULER.DROP_WINDOW (
 window_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Dropping a window requires the MANAGE SCHEDULER privilege.

Table 83–21 DROP_WINDOW Procedure Parameters

Parameter Description

window_name The name of the window. Can be a comma-delimited list.

force If force is set to FALSE, the window must be not be open or
referenced by any job otherwise an error will occur.

If force is set to TRUE, the window will be dropped and those jobs
that have the window as their schedule will be disabled. However,
jobs that have a window group of which the dropped window was a
member as their schedule will not be disabled. If the window is
open then, the Scheduler attempts to first close the window and
then drop it. When the window is closed, normal close window
rules apply.

Running jobs that have the window as their schedule will be
allowed to continue, unless the stop_on_window_close flag was
set to TRUE for the job. If this is the case, the job will be stopped
when the window is dropped.

DROP_WINDOW_GROUP Procedure

83-44 PL/SQL Packages and Types Reference

DROP_WINDOW_GROUP Procedure

This procedure drops a window group but not the windows that are members of
this window group.

Syntax
DBMS_SCHEDULER.DROP_WINDOW_GROUP (
 group_name IN VARCHAR2
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
If you want to drop all the windows that are members of this group but not the
window group itself, you can use the DROP_WINDOW procedure and provide name
of the window group to the call.

To drop a window group, you must have the MANAGE SCHEDULER privilege.

Table 83–22 DROP_WINDOW_GROUP Procedure Parameters

Parameter Description

group_name The name of the window group.

force If force is set to FALSE, the window group must be unreferenced
by any job otherwise an error will occur.

If force is set to TRUE, the window group will be dropped and
those jobs that have the window group as their schedule will be
disabled. Running jobs that have the window group as their
schedule are allowed to continue, even if the stop_on_window_
close flag was set to TRUE when for the job.

If a member of the window group that is being dropped is open, the
window group can still be dropped.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-45

ENABLE Procedure

This procedure enables a program, job, window, or window group. When an object
is enabled, the enabled flag is set to TRUE. By default, jobs and programs are created
disabled and windows and window groups are created enabled.

Validity checks are performed before enabling an object. If the check fails, the object
is not enabled, and an appropriate error is returned. This procedure does not return
an error if the object was already enabled.

Syntax
DBMS_SCHEDULER.ENABLE (
 name IN VARCHAR2);

Parameters

Usage Notes
Because the ENABLE procedure is used for several Scheduler objects, when enabling
windows or window groups, they must be preceded by SYS.

To run ENABLE for a window or window group, you must have the MANAGE
SCHEDULER privilege. Otherwise, you must be the owner of the object being
enabled or have ALTER privileges on that object or have the CREATE ANY JOB
privilege.

Table 83–23 ENABLE Procedure Parameters

Parameter Description

name The name of the Scheduler object being enabled. Can be a
comma-delimited list.

If a job class name is specified, then all the jobs in the job class are
enabled.

If a window group name is specified, then the window group will be
enabled, but the windows that are members of the window group, will
not be enabled.

EVALUATE_CALENDAR_STRING Procedure

83-46 PL/SQL Packages and Types Reference

EVALUATE_CALENDAR_STRING Procedure

You can define repeat intervals of jobs, windows or schedules using the Scheduler's
calendar syntax. This procedure evaluates the calendar string and tells you what the
next execution date of a job or window will be. This is very useful for testing the
correct definition of the calendar string without having to actually schedule the job
or window.

This procedure can also be used to get multiple steps of the repeat interval by
passing the next_run_date returned by one invocation as the return_date_
after argument of the next invocation of this procedure.

Syntax
DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING (
 calendar_string IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE,
 return_date_after IN TIMESTAMP WITH TIME ZONE,
 next_run_date OUT TIMESTAMP WITH TIME ZONE);

Parameters

Table 83–24 EVALUATE_CALENDAR_STRING Procedure Parameters

Parameter Description

calendar_
string

The calendar string to be evaluated.

start_date The date after which the repeat interval becomes valid. It can also be
used to fill in specific items that are missing from the calendar string.
Can optionally be NULL.

return_date_
after

With the start_date and the calendar string, the Scheduler has
sufficient information to determine all valid execution dates. By setting
this argument, the Scheduler knows which one of all possible matches
to return. When a NULL value is passed for this argument, the
Scheduler automatically fills in systimestamp as its value.

next_run_date The first timestamp that matches the calendar string and start date that
occurs after the value passed in for the return_date_after
argument.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-47

Examples
The following code fragment can be used to determine the next five dates a job will
run given a specific calendar string.

SET SERVEROUTPUT ON;
ALTER SESSION set NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

Session altered.

DECLARE
start_date TIMESTAMP;
return_date_after TIMESTAMP;
next_run_date TIMESTAMP;
BEGIN
start_date :=
 to_timestamp_tz('01-JAN-2003 10:00:00','DD-MON-YYYY HH24:MI:SS');
return_date_after := start_date;
FOR i IN 1..5 LOOP
 DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING(
 'FREQ=DAILY;BYHOUR=9;BYMINUTE=30;BYDAY=MON,TUE,WED,THU,FRI',
 start_date, return_date_after, next_run_date);
DBMS_OUTPUT.PUT_LINE('next_run_date: ' || next_run_date);
return_date_after := next_run_date;
END LOOP;
END;
/

next_run_date: 02-JAN-03 09.30.00.000000 AM
next_run_date: 03-JAN-03 09.30.00.000000 AM
next_run_date: 06-JAN-03 09.30.00.000000 AM
next_run_date: 07-JAN-03 09.30.00.000000 AM
next_run_date: 08-JAN-03 09.30.00.000000 AM

PL/SQL procedure successfully completed.

GENERATE_JOB_NAME Function

83-48 PL/SQL Packages and Types Reference

GENERATE_JOB_NAME Function

This function returns a unique name for a job. The name will be of the form
{prefix}N where N is a number from a sequence. If no prefix is specified, the
generated name will, by default, be JOB$_1, JOB$_2, JOB$_3, and so on. If
'SCOTT' is specified as the prefix, the name will be SCOTT1, SCOTT2, and so on.

Syntax
DBMS_SCHEDULER.GENERATE_JOB_NAME (
 prefix IN VARCHAR2 DEFAULT 'JOB$_') RETURN VARCHAR2;

Parameters
s

Usage Notes
If the prefix is explicitly set to NULL, the name will be just the sequence number. In
order to successfully use such numeric names, they must be surrounded by double
quotes throughout the DBMS_SCHEDULER calls. A prefix cannot be longer than 18
characters and cannot end with a digit.

Note that, even though the GENERATE_JOB_NAME function will never return the
same job name twice, there is a small chance that the returned name happens to
match an already existing database object.

Table 83–25 GENERATE_JOB_NAME Procedure Parameters

Parameter Description

prefix The name of the prefix being returned.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-49

GET_ATTRIBUTE Procedure

This procedure retrieves the value of an attribute of a Scheduler object. It is
overloaded to output values of the following types: VARCHAR2, TIMESTAMP WITH
TIMEZONE, BOOLEAN, PLS_INTEGER, and INTERVAL DAY TO SECOND.

Syntax
DBMS_SCHEDULER.GET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value OUT [VARCHAR2, TIMESTAMP WITH TIMEZONE,
 PLS_INTEGER, BOOLEAN, INTERVAL DAY TO SECOND]);

Parameters

Usage Notes
To run GET_ATTRIBUTE for a job class, you must have the MANAGE SCHEDULER
privilege or have EXECUTE privileges on the class. For a schedule, window, or a
window group, no privileges are necessary. Otherwise, you must be the owner of
the object or have ALTER or EXECUTE privileges on that object or have the CREATE
ANY JOB privilege.

Table 83–26 GET_ATTRIBUTE Procedure Parameters

Parameter Description

name The name of the object.

attribute The attribute being retrieved.

value The existing value of the attribute.

GET_SCHEDULER_ATTRIBUTE Procedure

83-50 PL/SQL Packages and Types Reference

GET_SCHEDULER_ATTRIBUTE Procedure

This procedure retrieves the value of a Scheduler attribute. The attributes you can
retrieve are max_job_slave_processes, log_history, and current_open_
window. The Scheduler attribute current_open_window can only be retrieved (it
can never be set) and it will contain the name of the currently active window, if any.

Syntax
DBMS_SCHEDULER.GET_SCHEDULER_ATTRIBUTE (
 attribute IN VARCHAR2,
 value OUT VARCHAR2);

Parameters

Usage Notes
To run GET_SCHEDULER_ATTRIBUTE, you must have the MANAGE SCHEDULER
privilege.

Table 83–27 GET_SCHEDULER_ATTRIBUTE Procedure Parameters

Parameter Description

attribute The name of the Scheduler attribute.

value The existing value of the attribute.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-51

OPEN_WINDOW Procedure

This procedure opens a window independent of its schedule. This window will
open and the resource plan associated with it, will take effect immediately for the
duration specified or for the normal duration of the window if no duration is given.
Only an enabled window can be manually opened.

Syntax
DBMS_SCHEDULER.OPEN_WINDOW (
 window_name IN VARCHAR2,
 duration IN INTERVAL DAY TO SECOND,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 83–28 OPEN_WINDOW Procedure Parameters

Parameter Description

window_name The name of the window.

duration The duration of the window. It is of type interval day to second. If it is
not specified, then the window will be opened for the regular duration as
specified in the window metadata.

force If force is set to FALSE, opening an already open window, will generate
an error.

If force is set to TRUE:

You can open a window that is already open. The window stays open for
the duration specified in the call, from the time the OPEN_WINDOW
command was issued. Consider an example to illustrate this. window1
was created with a duration of four hours. It has how been open for two
hours. If at this point you reopen window1 using the OPEN_WINDOW call
and do not specify a duration, then window1 will be open for another
four hours because it was created with that duration. If you specified a
duration of 30 minutes, the window will close in 30 minutes.

The Scheduler automatically closes any window that is open at that time,
even if it has a higher priority. For the duration of this manually opened
window, the Scheduler does not open any other scheduled windows even
if they have a higher priority.

OPEN_WINDOW Procedure

83-52 PL/SQL Packages and Types Reference

Usage Notes
If there are jobs running when the window opens, the resources allocated to them
might change due to the switch in resource plan.

Opening a window manually has no impact on regular scheduled runs of the
window. The next open time of the window is not updated, and will be as
determined by the regular scheduled opening.

When a window that was manually opened closes, the rules about overlapping
windows are applied to determine which other window should be opened at that
time if any at all.

A window can fail to open if the resource plan has been manually switched using
the ALTER SYSTEM statement with the force option.

Opening a window requires the MANAGE SCHEDULER privilege for that window.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-53

PURGE_LOG Procedure

By default, the Scheduler automatically purges all rows in the job log and window
log that are older than 30 days. The PURGE_LOG procedure is used to purge
additional rows from the job and window log.

Syntax
DBMS_SCHEDULER.PURGE_LOG (
 log_history IN PLS_INTEGER DEFAULT 0,
 which_log IN VARCHAR2 DEFAULT 'JOB_AND_WINDOW_LOG',
 job_name IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
The following will completely purge all rows from both the job log and the window
log:

DBMS_SCHEDULER.PURGE_LOG();

The following will purge all rows from the window log that are older than 5 days:

DBMS_SCHEDULER.PURGE_LOG(5, 'window_log');

The following will purge all rows from the window log that are older than 1 day
and all rows from the job log that are related to jobs in jobclass1 and are older
than 1 day:

DBMS_SCHEDULER>PURGE_LOG(1, 'job_and_window_log', 'sys.jobclass1');

Table 83–29 PURGE_LOG Procedure Parameters

Parameter Description

log_history This specifies how much history (in days) to keep. The valid range is 0
- 999. If set to 0, no history is kept.

which_log This specifies which type of log. Valid values for which_log are job_
log, window_log, and job_and_window_log.

job_name This specifies which job-specific entries must be purged from the jog
log. This can be a comma-delimited list of job names and job classes.
Whenever job_name has a value other than NULL, the which_log
argument implicitly includes the job log.

REMOVE_WINDOW_GROUP_MEMBER Procedure

83-54 PL/SQL Packages and Types Reference

REMOVE_WINDOW_GROUP_MEMBER Procedure

This procedure removes one or more windows from an existing window group.

Syntax
DBMS_SCHEDULER.REMOVE_WINDOW_GROUP_MEMBER (
 group_name IN VARCHAR2,
 window_list IN VARCHAR2);

Parameters

Usage Notes
If any of the windows specified is either invalid, does not exist, or is not a member
of the given group, the call fails. Removing a window from a group requires the
MANAGE SCHEDULER privilege.

Dropping an open window from a window group has no impact on running jobs
that has the window as its schedule since the jobs would only be stopped when a
window closes.

Table 83–30 REMOVE_WINDOW_GROUP_MEMBER Procedure Parameters

Parameter Description

group_name The name of the window group.

window_list The name of the window or windows.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-55

RESET_JOB_ARGUMENT_VALUE Procedures

This procedure resets (clears) the value previously set to an argument for a job.

RESET_JOB_ARGUMENT_VALUE is overloaded.

Syntax
Clears a previously set job argument value by argument position:

DBMS_SCHEDULER.RESET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER);

Clears a previously set job argument value by argument name:

DBMS_SCHEDULER.RESET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2);

Parameters

Usage Notes
If the corresponding program argument has no default value, the job will be
disabled. Resetting a program argument of a job belonging to another user requires
ALTER privileges on that job. Arguments can be specified by position or by name.

RESET_JOB_ARGUMENT_VALUE requires that you be the owner of the job or have
ALTER privileges on that job. You can also set a job argument value if you have the
CREATE ANY JOB privilege.

Table 83–31 RESET_JOB_ARGUMENT_VALUE Procedure Parameters

Parameter Description

job_name The name of the job being queried.

argument_
position

The position of the program argument being altered.

argument_name The name of the program argument being altered.

RUN_JOB Procedure

83-56 PL/SQL Packages and Types Reference

RUN_JOB Procedure

This procedure runs a job immediately.

Syntax
DBMS_SCHEDULER.RUN_JOB (
 job_name IN VARCHAR2,
 use_current_session IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
A job must be enabled for RUN_JOB to run. The job can be run in two different
modes. One is in the current user session. In this case, the call to RUN_JOB will
block until it has completed the job. Any errors that occur during the execution of
the job will be returned as errors to the RUN_JOB procedure. The other option is to
run the job immediately like a regular job. In this case, RUN_JOB returns
immediately and the job will be picked up by the coordinator and passed on to a job
slave for execution. The scheduler views and logs must be queried for the outcome
of the job.

Table 83–32 RUN_JOB Procedure Parameters

Parameter Description

job_name The name of the job being run.

use_current_
session

This specifies whether the job run should occur in the same session
as the one that the procedure was invoked from.

When use_current_session is set to TRUE:

-You can test a job and see any possible errors on the command line.

-run_count, last_start_date, last_run_duration, and
failure_count are not updated.

-RUN_JOB can be run in parallel with a regularly scheduled job run.

When use_current_session is set to FALSE:

-You need to check the job log to find error information.

-run_count, last_start_date, last_run_duration, and
failure_count are updated.

-RUN_JOB fails if a regularly scheduled job is running.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-57

Multiple user sessions can use RUN_JOB in their sessions simultaneously when
use_current_session is set to TRUE.

RUN_JOB requires that you be the owner of the job or have ALTER privileges on that
job. You can also run a job if you have the CREATE ANY JOB privilege.

SET_ATTRIBUTE Procedure

83-58 PL/SQL Packages and Types Reference

SET_ATTRIBUTE Procedure

This procedure changes an attribute of a Scheduler object. It is overloaded to accept
values of the following types: VARCHAR2, TIMESTAMP WITH TIMEZONE, BOOLEAN,
PLS_INTEGER, and INTERVAL DAY TO SECOND. To set an attribute to NULL, the
SET_ATTRIBUTE_NULL procedure should be used. What attributes can be set
depends on the object being altered. With the exception of the object name, all object
attributes can be changed.

SET_ATTRIBUTE is overloaded.

Syntax
DBMS_SCHEDULER.SET_ATTRIBUTE (
 name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN [VARCHAR2, TIMESTAMP WITH TIMEZONE,
 PLS_INTEGER, BOOLEAN, INTERVAL DAY TO SECOND]);

Parameters

Usage Notes
If an object is altered and it was in the enabled state, the Scheduler will first disable
it, make the change and then re-enable it. If any errors are encountered during the
enable process, the object is not re-enabled and an error is generated.

If an object is altered and it was in the disabled, it will remain disabled after it is
altered.

To run SET_ATTRIBUTE for a window, window group, or job class, you must have
the MANAGE SCHEDULER privilege. Otherwise, you must be the owner of the object

Table 83–33 SET_ATTRIBUTE Procedure Parameters

Parameter Description

name The name of the object.

attribute See Table 83–34, Table 83–35, Table 83–36, Table 83–37, Table 83–38, and
Table 83–38.

value The new value being set for the attribute. This cannot be NULL. To set an
attribute value to NULL, use the SET_ATTRIBUTE_NULL procedure.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-59

being altered or have ALTER privileges on that object or have the CREATE ANY JOB
privilege.

Job
If there is a running instance of the job when the SET_ATTRIBUTE call is made, it is
not affected by the call. The change is only seen in future runs of the job.

If any of the schedule attributes of a job are altered while the job is running, the
time of the next job run will be scheduled using the new schedule attributes.
Schedule attributes of a job include schedule_name, start_date, end_date,
and repeat_interval.

If any of the program attributes of a job are altered while the job is running, the new
program attributes will take effect the next time the job runs. Program attributes of
a job include program_name, job_action, job_type, and number_of_
arguments. This is also the case for job argument values that have been set.

Granting ALTER on a job will let a user alter all attributes of that job except its
program attributes (program_name, job_type, job_action, program_action,
and number_of_arguments) and will not allow a user to use a PL/SQL
expression to specify the schedule for a job.

We recommend you not to alter a job that was automatically created for you by the
database. Jobs that were created by the database have the column SYSTEM set to
TRUE in several views.

Program
If any currently running jobs use the program that is altered, they will continue to
run with the program definition prior to the alter. The job will run with the new
program definition the next time the job executes.

Schedule
If a schedule is altered, the change will not affect running jobs and open windows
that use this schedule. The change will only be in effect the next time the jobs runs
or the window opens.

Job Class
With the exception of the default job class, all job classes can be altered. To alter a
job class, you must have the MANAGE SCHEDULER privilege.

When a job class is altered, running jobs that belong to the class are not affected.
The change only takes effect for jobs that have not started running yet.

SET_ATTRIBUTE Procedure

83-60 PL/SQL Packages and Types Reference

Window
When a window is altered, it does not affect an active window. The changes only
take effect the next time the window opens.

To change resource plans, you must first set the RESOURCE_MANAGER_PLAN
initialization parameter in the init.ora file or issue an ALTER SYSTEM SET
RESOURCE_MANAGER_PLAN = my_plan statement before the window opens.

Job Attribute Values
Table 83–34 lists job attribute values.

Table 83–34 Job Attribute Values

Name Description

logging_
level

This attribute specifies how much information is logged. The three possible
options are:

DBMS_SCHEDULER.LOGGING_OFF

No logging will be performed for any jobs in this class.

DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler will write detailed information to the job log for all runs of
each job in this class.

DBMS_SCHEDULER.LOGGING_FULL

In addition to recording every run of a job, the Scheduler will record all
operations performed on all jobs in this class. In other words, every time a
job is created, enabled, disabled, altered, and so on will be recorded in the
log.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-61

restartable This attribute specifies whether a job can be restarted in case of failure. By
default, jobs are restartable and this attribute is set to TRUE. Setting this to
TRUE means that if a job fails while running, it will be restarted from the
beginning point of the job.

Note that setting this attribute to TRUE might lead to data inconsistencies
in some situations, for example, if data is committed within a job.

Retries on errors are not counted as regular runs. The run count or failure
count is not incremented until the job succeeds or has failed all its six
retries.

The restartable attribute is used by the Scheduler to determine whether to
retry the job not only on regular application errors, but after a database
malfunction as well. The Scheduler will retry the job a maximum of six
times. The first time, it will wait for one second and multiply this wait time
with a factor of 10 each time thereafter.

Both the run count and failure count are incremented by 1 if the job has
failed all its six retries. If the job immediately succeeds, or it succeeds on
one of its retries, run count is incremented by 1.

The Scheduler will stop retrying a job when:

-one of the retries succeeds

-all of its six retries have failed

-the next retry would occur after the next regularly scheduled run of the
job

The Scheduler no longer retries the job if the next scheduled retry is past
the next regularly scheduled run for repeating jobs.

max_
failures

This attribute specifies the number of times a job can fail on consecutive
scheduled runs before it is automatically disabled. Once a job is disabled, it
is no longer executed and its STATE is set to BROKEN in the *_
SCHEDULER_JOB views.

max_failures can be an integer between 1 to 1,000,000. By default, it is
set to NULL, which indicates that new instances of the job will be started
regardless of how many previous instances have failed.

max_runs This attribute specifies the maximum number of consecutive scheduled
runs of the job. Once max_runs is reached, the job is disabled and its state
is changed to COMPLETED.

max_runs can be an integer between 1 and 1,000,000. By default, it is set to
NULL, which means that it will repeat forever or until end_date or max_
failures is reached.

Table 83–34 (Cont.) Job Attribute Values

Name Description

SET_ATTRIBUTE Procedure

83-62 PL/SQL Packages and Types Reference

job_weight This attribute is for expert users of parallel technology only. If your job will
be using parallel technology, you can set the value of this attribute to the
degree of parallelism of your SQL inside the job.

job_weight has a range of 1-100, with 1 being the default

instance_
stickiness

This attribute should only be used for a database running in RAC mode. By
default, it is set to TRUE. If you set instance_stickiness to TRUE, jobs
start running on the instance with the lightest load and the Scheduler
thereafter attempts to run on the instance that it last ran on. If that instance
is either down or so overloaded that it will not start new jobs for a
significant period of time, another instance will run the job. If the interval
between runs is large, instance_stickiness will be ignored an the job
will be handled as if it were a non-sticky job.

If instance_stickiness is set to FALSE, each instance of the job runs
on the first instance available.

For non-RAC environments, this attribute is not useful because there is
only one instance.

stop_on_
window_
close

This attribute only applies if the schedule of a job is a window or a window
group. Setting this attribute to TRUE implies that the job should be stopped
once the associated window is closed. The job is stopped using the stop_
job procedure with force set to FALSE.

By default, stop_on_window_close is set to FALSE. Therefore, if you do
not set this attribute, the job will be allowed to continue after the window
closes.

Note that, although the job is allowed to continue, its resource allocation
will probably change because closing a window generally also implies a
change in resource plans.

job_
priority

This attribute specifies the priority of this job relative to other jobs in the
same class as this job. If multiple jobs within a class are scheduled to be
executed at the same time, the job priority determines the order in which
jobs from that class are picked up for execution by the job coordinator. It
can be a value from 1 through 5, with 1 being the first to be picked up for
job execution.

If no job priority is specified when creating a job, the default priority of 3 is
assigned to it.

Table 83–34 (Cont.) Job Attribute Values

Name Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-63

schedule_
limit

In heavily loaded systems, jobs are not always started at their scheduled
time. This attribute enables you to have the Scheduler not start a job at all if
the delay in starting the job is larger than the interval specified. It can be a
value of 1 minute to 99 days. For example, if a job was supposed to start at
noon and the schedule limit is set to 60 minutes, the job will not be run if it
has not started to run by 1PM.

If schedule_limit is not specified, the job is executed at some later date
as soon as there are resources available to run it. By default, this attribute is
set to null, which indicates that the job can be run at any time after its
scheduled time. A scheduled job run that is skipped because of this
attribute does not count against the number of runs and failures of the job.
An entry in the job log will be made to reflect the skipped run.

program_
name

The name of a program object to use with this job. If this is set, job_
action, job_type and number_of_arguments should be NULL.

job_action This is a string specifying the action. The possible values are:

PLSQL_BLOCK: a PLSQL anonymous block

STORED_PROCEDURE: name of the database stored procedure (C, Java or
PL/SQL), optionally qualified with a schema and/or package name).

EXECUTABLE: Name of an executable of shell script including the full path
name and any command-line flags to it.

If this is set, program_name should be NULL.

job_type The type of this job. Can be any of: PLSQL_BLOCK, STORED_PROCEDURE,
and EXECUTABLE.

If this is set, program_name should be NULL.

number_of_
arguments

The number of arguments if the program is inlined. If this is set, program_
name should be NULL.

schedule_
name

The name of a schedule or window or window group to use as the
schedule for this job. If this is set, end_date, start_date and repeat_
interval should all be NULL.

repeat_
interval

Either a PL/SQL function returning the next date on which to run, or
calendar syntax expression. If this is set, schedule_name should be NULL.

start_date The original date on which this job started or will be scheduled to start. If
this is set, schedule_name should be NULL.

end_date The date after which the job will no longer run. It will be dropped if auto_
drop is set or disabled with the state changed to COMPLETED if it is. If this
is set, schedule_name should be NULL.

Table 83–34 (Cont.) Job Attribute Values

Name Description

SET_ATTRIBUTE Procedure

83-64 PL/SQL Packages and Types Reference

Program Attribute Values
Table 83–35 lists program attribute values.

Job Class Values
Table 83–36 lists job class attribute values.

job_class The class this job is associated with.

comments An optional comment.

auto_drop Whether the job should be dropped after having completed.

Table 83–35 Program Attribute Values

Name Description

program_action This is a string specifying the action. The possible values are:

PLSQL_BLOCK: a PLSQL anonymous block

STORED_PROCEDURE: name of the database stored procedure (C,
Java or PL/SQL), optionally qualified with a schema and/or
package name).

EXECUTABLE: Full path name including the name of the operating
system executable or shell script.

program_type The type of program. This must be one of the following supported
program types: PLSQL_BLOCK, STORED_PROCEDURE, and
EXECUTABLE.

number_of_
arguments

The number of arguments of the program that can be set by any job
using it, these arguments must be defined before the program can
be enabled.

comments An optional comment. This can describe what the program does, or
give usage details.

Table 83–36 Job Class Attribute Values

Name Description

resource_
consumer_group

The resource consumer group a class is associated with. If resource_
consumer_group is set, service must be NULL.

Table 83–34 (Cont.) Job Attribute Values

Name Description

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-65

Window Attribute Values
Table 83–37 lists window attribute values.

service The service the job class belongs to. The default is NULL, which implies
the default service. This should be the name of the service database
object and not the service name as defined in tnsnames.ora. If
service is set, resource_consumer_group must be NULL.

logging_level This attribute specifies how much information is logged. The three
possible options are:

DBMS_SCHEDULER.LOGGING_OFF

No logging will be performed for any jobs in this class.

DBMS_SCHEDULER.LOGGING_RUNS

The Scheduler will write detailed information to the job log for all runs
of each job in this class.

DBMS_SCHEDULER.LOGGING_FULL

In addition to recording every run of a job, the Scheduler will record
all operations performed on all jobs in this class. In other words, every
time a job is created, enabled, disabled, altered, and so on will be
recorded in the log.

log_history This enables you to control the amount of logging the Scheduler
performs. To prevent the job log and the window log from growing
indiscriminately, the Scheduler has an attribute that specifies how
much history (in days) to keep. Once a day, the Scheduler will
automatically purge all log entries from both the job log as well as the
window log that are older than the specified history. The default is 30
days.

You can change the default by using the SET_SCHEDULER_
ATTRIBUTE procedure. For example, to change it to 90 days, issue the
following statement:

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE
('log_history','90');

The range of valid values is 1 through 999.

comments An optional comment about the class.

Table 83–36 (Cont.) Job Class Attribute Values

Name Description

SET_ATTRIBUTE Procedure

83-66 PL/SQL Packages and Types Reference

Program Window Group Values
Table 83–38 lists program window group values.

Schedule Attribute Values
Table 83–39 lists schedule attribute values.

Table 83–37 Window Attribute Values

Name Description

resource_plan The resource plan to be associated with a window. When the
window opens, the system will switch to using this resource plan.
When the window closes, the original resource plan will be restored.
If a resource plan has been made active with the force option, no
resource plan switch will occur.

window_priority The priority of the window. Must be one of LOW (default) or HIGH.

duration The duration of the window.

schedule_name The name of a schedule to use with this window. If this is set,
start_date, end_date, and repeat_interval must all be
NULL.

repeat_interval A string using the calendar syntax. PL/SQL date functions are not
allowed. If this is set, schedule_name must be NULL.

start_date The next date on which this window is scheduled to open. If this is
set, schedule_name must be NULL.

end_date The date after which the window will no longer open. If this is set,
schedule_name must be NULL.

comments An optional comment about the window.

Table 83–38 Window Group Attribute Values

Name Description

comments An optional comment about the window group.

Table 83–39 Schedule Attribute Values

Name Description

repeat_
interval

An expression using the calendar syntax.

comments An optional comment.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-67

end_date The cutoff date after which the schedule will not specify any dates.

start_date The start or reference date used by the calendar syntax.

Table 83–39 (Cont.) Schedule Attribute Values

Name Description

SET_ATTRIBUTE_NULL Procedure

83-68 PL/SQL Packages and Types Reference

SET_ATTRIBUTE_NULL Procedure

This procedure sets an attribute of a Scheduler object to NULL. What attributes can
be set depends on the object being altered. If the object is enabled, it will be disabled
before being altered and be reenabled afterward. If the object cannot be re-enabled,
an error is generated and the object will be left in a disabled state.

Syntax
DBMS_SCHEDULER.SET_ATTRIBUTE_NULL (
 name IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Usage Notes
To run SET_ATTRIBUTE_NULL for a window, window group, or job class, you
must have the MANAGE SCHEDULER privilege. Otherwise, you must be the owner of
the object being altered or have ALTER privileges on that object or have the CREATE
ANY JOB privilege.

Table 83–40 SET_ATTRIBUTE_NULL Procedure Parameters

Parameter Description

name The name of the object.

attribute The attribute being changed.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-69

SET_JOB_ANYDATA_VALUE Procedures

This procedure sets a value to an argument of the associated program for a job,
encapsulated in an AnyData object. It overrides any default value set for the
program argument. This does not affect whether the job is enabled or not. NULL is a
valid assignment for a program argument. Arguments can be specified by position
or by name. No type checking of the argument is done at any time by the Scheduler.

SET_JOB_ANYDATA_VALUE is overloaded.

Syntax
Sets a program argument by its position.

DBMS_SCHEDULER.SET_JOB_ANYDATA_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_value IN SYS.ANYDATA);

Sets a program argument by its name.

DBMS_SCHEDULER.SET_JOB_ANYDATA_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2,
 argument_value IN SYS.ANYDATA);

Parameters

Table 83–41 SET_JOB_ANYDATA_VALUE Procedure Parameters

Parameter Description

job_name The name of the job to be altered.

argument_name The name of the program argument being set.

argument_
position

The position of the program argument being set.

argument_value The new value to be assigned to the program argument,
encapsulated in an AnyData object.

SET_JOB_ANYDATA_VALUE Procedures

83-70 PL/SQL Packages and Types Reference

Usage Notes
SET_JOB_ANYDATA_VALUE requires that you be the owner of the job or have
ALTER privileges on that job. You can also set a job argument value if you have the
CREATE ANY JOB privilege.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-71

SET_JOB_ARGUMENT_VALUE Procedures

This procedure sets a value to an argument of the associated program for a job. It
overrides any default value set for the program argument. This does not affect
whether a job is enabled or not. NULL is a valid assignment for a program
argument. Arguments can be specified by position or by name. No type checking of
the argument is done at any time by the Scheduler.

SET_JOB_ARGUMENT_VALUE is overloaded.

Syntax
Sets an argument value by position:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_value IN VARCHAR2);

Sets an argument value by name:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name IN VARCHAR2,
 argument_name IN VARCHAR2,
 argument_value IN VARCHAR2);

Parameters

Table 83–42 SET_JOB_ARGUMENT_VALUE Procedure Parameters

Parameter Description

job_name The name of the job to be altered.

argument_name The name of the program argument being set.

argument_
position

The position of the program argument being set.

argument_value The new value to be set for the program argument. To set a
non-VARCHAR value, use the SET_JOB_ANYDATA_ARGUMENT_
VALUE procedure.

SET_JOB_ARGUMENT_VALUE Procedures

83-72 PL/SQL Packages and Types Reference

Usage Notes
SET_JOB_ARGUMENT_VALUE requires that you be the owner of the job or have
ALTER privileges on that job. You can also set a job argument value if you have the
CREATE ANY JOB privilege.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-73

SET_SCHEDULER_ATTRIBUTE Procedure

This procedure sets the value of a Scheduler attribute. This takes effect immediately
but the resulting changes may not be seen immediately. The attributes you can set
are default_timezone, max_job_slave_processes and log history.

Syntax
DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE (
 attribute IN VARCHAR2,
 value IN VARCHAR2);

SET_SCHEDULER_ATTRIBUTE Procedure

83-74 PL/SQL Packages and Types Reference

Parameters

Table 83–43 SET_SCHEDULER_ATTRIBUTE Procedure Parameters

Parameter Description

attribute The name of the Scheduler attribute. Possible values are:

■ default_timezone: It is very important that this attribute is set.
Whenever a repeat_interval is specified without setting the start_
date, the scheduler needs to know which time zone it must apply to
the repeat interval syntax. For example, if the repeat interval is
specified as

"FREQ=DAILY;BYHOUR=22"

the job will repeat every day at 10pm, but 10pm in which time zone?
If no start_date is specified the scheduler will pick up the time
zone from this default_timezone attribute. If you want your job
or window to follow daylight savings adjustments, you must set this
attribute to the proper region name. For instance, if your database
resides in Paris, you would set this to 'Europe/Warsaw'.

Daylight saving adjustments will not be followed if you specify an
absolute offset, for instance '-8:00' would only be correct for half of
the year in San Francisco. If no value is specified for this attribute,
the scheduler uses the time zone of systimestamp when the job or
window is enabled. This is always an absolute offset and will not
follow daylight savings adjustments.

■ log_history: This enables you to control the amount of logging
the Scheduler performs.

■ max_job_slave_processes: This enables you to set a maximum
number of slave processes for a particular system configuration and
load. The default value is NULL, and the valid range is 1-999.

Even though the Scheduler automatically determines what the
optimum number of slave processes is for a given system
configuration and load, you still might want to set a fixed limit on
the Scheduler. If this is the case, you can set this attribute.

Although the number set by max_job_slave_processes is a real
maximum, it does not mean the Scheduler will start the specified
number of slaves. For example, even though this attribute is set to 10,
the Scheduler might still determine that is should not start more than
3 slave processes. However, if it wants to start 15, but it is set to 10, it
will not start more than 10.

value The new value of the attribute.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-75

Usage Notes
To run SET_SCHEDULER_ATTRIBUTE, you must have the MANAGE SCHEDULER
privilege.

STOP_JOB Procedure

83-76 PL/SQL Packages and Types Reference

STOP_JOB Procedure

This procedure stops currently running jobs or all jobs in a job class. Any instance of
the job will be stopped. After stopping the job, the state of a one-time job will be set
to SUCCEEDED whereas the state of a repeating job will be set to SCHEDULED or
COMPLETED depending on whether the next run of the job is scheduled.

Syntax
DBMS_SCHEDULER.STOP_JOB (
 job_name IN VARCHAR2
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
STOP_JOB without the force option requires that you be the owner of the job or
have ALTER privileges on that job. You can also stop a job if you have the CREATE
ANY JOB or MANAGE SCHEDULER privilege.

STOP_JOB with the force option requires that have the MANAGE SCHEDULER
privilege.

Table 83–44 STOP_JOB Procedure Parameters

Parameter Description

job_name The name of the job or job class. Can be a comma-delimited list. For
a job class, the SYS schema should be specified.

If the name of a job class is specified, the jobs that belong to that job
class are stopped. The job class is not affected by this call.

force If force is set to FALSE, the Scheduler tries to gracefully stop the
job using an interrupt mechanism. This method gives control back
to the slave process, which can update the status of the job in the job
queue to stopped. If this fails, an error is returned.

If force is set to TRUE, the Scheduler will immediately terminate
the job slave. Oracle recommends that STOP_JOB with force set to
TRUE be used only after a STOP_JOB with force set to FALSE has
failed.

Use of the force option requires the MANAGE SCHEDULER system
privilege.

Setting force to TRUE is not supported for jobs of type executable.

Summary of DBMS_SCHEDULER Subprograms

DBMS_SCHEDULER 83-77

STOP_JOB Procedure

83-78 PL/SQL Packages and Types Reference

DBMS_SERVER_ALERT 84-1

84
DBMS_SERVER_ALERT

The DBMS_SERVER_ALERT package let you issue alerts when some threshold has
been violated. If the warning threshold is reached, this generates a severity level 5
alert. If the critical threshold is reached, this generates a severity level 1 alert.

The chapter contains the following topics:

■ Using DBMS_SERVER_ALERT

■ Object Types Defined as Constants

■ Relational Operators Defined as Constants

■ Supported Metrics

■ Summary of DBMS_SERVER_ALERT Subprograms

Using DBMS_SERVER_ALERT

84-2 PL/SQL Packages and Types Reference

Using DBMS_SERVER_ALERT

■ Object Types Defined as Constants

■ Relational Operators Defined as Constants

■ Supported Metrics

Object Types Defined as Constants

You can qualify the metrics by an individual object for the following object types.

Relational Operators Defined as Constants

You can specify a relational comparison operator to determine whether or not a
given metric's value violates the threshold setting. The server will support the
following operators.

Table 84–1 Object Types Defined as Constants

Constant Description

OBJECT_TYPE_SYSTEM Metrics collected on the system level for each instance.

OBJECT_TYPE_FILE Metrics collected on the file level. These are used for
AVERAGE_FILE_READ_TIME and AVERAGE_FILE_
WRITE_TIME metrics.

OBJECT_TYPE_SERVICE Metrics collected on the service level. Currently ELAPSED_
TIME_PER_CALL and CPU_TIME_PER_CALL are collected.

OBJECT_TYPE_TABLESPACE Metrics collected on the tablespace level. Currently only
TABLESPACE_PCT_FULL is collected.

OBJECT_TYPE_EVENT_CLASS Metrics collected on wait event class level. Currently
supported metrics are AVG_USERS_WAITING and DB_
TIME_WAITING.

OBJECT_TYPE_SESSION Metrics collected on the session level. Currently only
BLOCKED_USERS is collected. The threshold can only be
set at the instance level, which means that no object name
should be specified when setting the threshold for this type
of metric.

Using DBMS_SERVER_ALERT

DBMS_SERVER_ALERT 84-3

Supported Metrics

Table 84–2 Relational Operators Defines as Constants

Constant Description

OPERATOR_CONTAINS A metrics value contained in a list of threshold values is
considered a violation.

OPERATOR_DO_NOT_CHECK Will not apply default threshold to OBJECT_TYPE_
TABLESPACE.

OPERATOR_EQ A metrics value equal to the threshold one is
considered a violation.

OPERATOR_GE A metrics value greater or equal than the threshold is
considered a violation.

OPERATOR_GT A metrics value greater than the threshold is
considered a violation.

OPERATOR_LE A metrics value less or equal than the threshold is
considered a violation.

OPERATOR_LT A metrics value less than the threshold is considered a
violation.

OPERATOR_NE A metrics value not equal to the threshold one is
considered a violation.

Table 84–3 List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

SQL_SRV_RESPONSE_TIME Service Response (for each
execution)

Seconds

BUFFER_CACHE_HIT Buffer Cache Hit (%) % of cache accesses

LIBRARY_CACHE_HIT Library Cache Hit (%) % of cache accesses

LIBRARY_CACHE_MISS Library Cache Miss (%) % of cache accesses

MEMORY_SORTS_PCT Sorts in Memory (%) % of sorts

REDO_ALLOCATION_HIT Redo Log Allocation Hit % of redo allocations

TRANSACTION_RATE Number of Transactions (for each
second)

Transactions for each Second

PHYSICAL_READS_SEC Physical Reads (for each second) Reads for each Second

Supported Metrics

84-4 PL/SQL Packages and Types Reference

PHYSICAL_READS_TXN Physical Reads (for each
transaction)

Reads for each Transaction

PHYSICAL_WRITES_SEC Physical Writes (for each second) Writes for each Second

PHYSICAL_WRITES_TXN Physical Writes (for each
transaction)

Writes for each Transaction

PHYSICAL__READS_DIR_SEC Direct Physical Reads (for each
second)

Reads for each Second

PHYSICAL_READS_DIR_TXN Direct Physical Reads (for each
transaction)

Reads for each Transaction

PHYSICAL_WRITES_DIR_SEC Direct Physical Writes (for each
second)

Writes for each Second

PHYSICAL_WRITES_DIR_TXN Direct Physical Writes (for each
transaction)

Writes for each Transaction

PHYSICAL_READS_LOB_SEC Direct LOB Physical Reads (for each
second)

Reads for each Second

PHYSICAL_READS_LOB_TXN Direct LOB Physical Reads (for each
transaction)

Reads for each Transaction

PHYSICAL_WRITES_LOB_SEC Direct LOB Physical Writes (for
each second)

Writes for each Second

PHYSICAL_WRITES_LOB_TXN Direct LOB Physical Writes (for
each transaction)

Writes for each Transaction

REDO_GENERATED_SEC Redo Generated (for each second) Redo Bytes for each Second

REDO_GENERATED_TXN Redo Generated (for each
transaction)

Redo Bytes for each Transaction

DATABASE_WAIT_TIME Database Wait Time (%) % of all database time

DATABASE_CPU_TIME Database CPU Time (%) % of all database time

LOGONS_SEC Cumulative Logons (for each
second)

Logons for each Second

LOGONS_TXN Cumulative Logons (for each
transaction)

Logons for each Transaction

LOGONS_CURRENT Current Number of Logons Number of Logons

OPEN_CURSORS_SEC Cumulative Open Cursors (for each
second)

Cursors for each Second

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Using DBMS_SERVER_ALERT

DBMS_SERVER_ALERT 84-5

OPEN_CURSORS_TXN Cumulative Open Cursors (for each
transaction)

Cursors for each Transaction

OPEN_CURSORS_CURRENT Current Number of Cursors Number of Cursors

USER_COMMITS_SEC User Commits (for each second) Commits for each Second

USER_COMMITS_TXN User Commits (for each transaction) Commits for each Transaction

USER_ROLLBACKS_SEC User Rollbacks (for each second) Rollbacks for each Second

USER_ROLLBACKS_TXN User Rollbacks (for each
transaction)

Rollbacks for each Transaction

USER_CALLS_SEC User Calls (for each second) Calls for each Second

USER_CALLS_TXN User Calls (for each transaction) Calls for each Transaction

RECURSIVE_CALLS_SEC Recursive Calls (for each second) Calls for each Second

RECURSIVE_CALLS_TXN Recursive Calls (for each
transaction)

Calls for each Transaction

SESS_LOGICAL_READS_SEC Session Logical Reads (for each
second)

Reads for each Second

SESS_LOGICAL_READS_TXN Session Logical Reads (for each
transaction)

Reads for each Transaction

DBWR_CKPT_SEC DBWR Checkpoints (for each
second)

Checkpoints for each Second

LOG_SWITCH_SEC Background Checkpoints (for each
second)

Checkpoints for each Second

REDO_WRITES_SEC Redo Writes (for each second) Writes for each Second

REDO_WRITES_TXN Redo Writes (for each transaction) Writes for each Transaction

LONG_TABLE_SCANS_SEC Scans on Long Tables (for each
second)

Scans for each Second

LONG_TABLE_SCANS_TXN Scans on Long Tables (for each
transaction)

Scans for each Transaction

TOTAL_TABLE_SCANS_SEC Total Table Scans (for each second) Scans for each Second

TOTAL_TABLE_SCANS_TXN Total Table Scans (for each
transaction)

Scans for each Transaction

FULL_INDEX_SCANS_SEC Fast Full Index Scans (for each
second)

Scans for each Second

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Supported Metrics

84-6 PL/SQL Packages and Types Reference

FULL_INDEXE_SCANS_TXN Fast Full Index Scans (for each
transaction)

Scans for each Transaction

TOTAL_INDEX_SCANS_SEC Total Index Scans (for each second) Scans for each Second

TOTAL_INDEX_SCANS_TXN Total Index Scans (for each
transaction)

Scans for each Transaction

TOTAL_PARSES_SEC Total Parses (for each second) Parses for each Second

TOTAL_PARSES_TXN Total Parses(for each transaction) Parses for each Transaction

HARD_PARSES_SEC Hard Parses(for each second) Parses for each Second

HARD_PARSES_TXN Hard Parses(for each transaction) Parses for each Transaction

PARSE_FAILURES_SEC Parse Failures (for each second) Parses for each Second

PARSE_FAILURES_TXN Parse Failures (for each
transaction)

Parses for each Transaction

DISK_SORT_SEC Sorts to Disk (for each second) Sorts for each Second

DISK_SORT_TXN Sorts to Disk (for each transaction) Sorts for each Transaction

ROWS_PER_SORT Rows Processed for each Sort Rows for each Sort

EXECUTE_WITHOUT_PARSE Executes Performed Without
Parsing

% of all executes

SOFT_PARSE_PCT Soft Parse (%) % of all parses

CURSOR_CACHE_HIT Cursor Cache Hit (%) % of soft parses

USER_CALLS_PCT User Calls (%) % of all calls

TXN_COMMITTED_PCT Transactions Committed (%) % of all transactions

NETWORK_BYTES_SEC Network Bytes, for each second Bytes for each Second

RESPONSE_TXN Response (for each transaction) Seconds for each Transaction

DATA_DICT_HIT Data Dictionary Hit (%) % of dictionary accesses

DATA_DICT_MISS Data Dictionary Miss (%) % of dictionary accesses

SHARED_POOL_FREE_PCT Shared Pool Free(%) % of shared pool

AVERAGE_FILE_READ_TIME Average File Read Time Microseconds

AVERAGE_FILE_WRITE_TIME Average File Write Time Microseconds

DISK_IO Disk I/O Milliseconds

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Using DBMS_SERVER_ALERT

DBMS_SERVER_ALERT 84-7

PROCESS_LIMIT_PCT Process Limit Usage (%) % of maximum value

SESSION_LIMIT_PCT Session Limit Usage (%) % of maximum value

USER_LIMIT_PCT User Limit Usage (%) % of maximum value

AVG_USERS_WAITING Average Number of Users Waiting
on a Class of Wait Events

Count of sessions

DB_TIME_WAITING Percent of Database Time Spent
Waiting on a Class of Wait Events

% of Database Time

APPL_DESGN_WAIT_SCT Application Design Wait (by session
count)

Count of sessions

APPL_DESGN_WAIT_TIME Application Design Wait (by time) Microseconds

PHYS_DESGN_WAIT_SCT Physical Design Wait (by session
count)

Count of sessions

PHYS_DESGN_WAIT_TIME Physical Design Wait (by time) Microseconds

CONTENTION_WAIT_SCT Internal Contention Wait (by
session count)

Count of sessions

CONTENTION_WAIT_TIME Internal Contention Wait (by time) Microseconds

PSERVICE_WAIT_SCT Process Service Wait (by session
count)

Count of sessions

PSERVICE_WAIT_TIME Process Service Wait (by time) Microseconds

NETWORK_MSG_WAIT_SCT Network Message Wait (by session
count)

Count of sessions

NETWORK_MSG_WAIT_TIME Network Message Wait (by time) Microseconds

DISK_IO_WAIT_SCT Disk I/O Wait (by session count) Count of sessions

OS_SERVICE_WAIT_SCT Operating System Service Wait (by
session count)

Count of sessions

OS_SERVICE_WAIT_TIME Operating System Service Wait (by
time)

Microseconds

DBR_IO_LIMIT_WAIT_SCT Resource Mgr I/O Limit Wait (by
session count)

Count of sessions

DBR_IO_LIMIT_WAIT_TIME Resource Mgr I/O Limit Wait (by
time)

Microseconds

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Supported Metrics

84-8 PL/SQL Packages and Types Reference

DBR_CPU_LIMIT_WAIT_SCT Resource Mgr CPU Limit Wait (by
session count)

Count of sessions

DBR_CPU_LIMIT_WAIT_TIME Resource Mgr CPU Limit Wait (by
time)

Microseconds

DBR_USR_LIMIT_WAIT_SCT Resource Mgr User Limit Wait (by
session count)

Count of sessions

DBR_USR_LIMIT_WAIT_TIME Resource Mgr User Limit Wait (by
time)

Microseconds

OS_SCHED_CPU_WAIT_SCT Operating System Scheduler CPU
Wait (by session count)

Count of sessions

OS_SCHED_CPU__WAIT_TIME Operating System Scheduler CPU
Wait (by time)

Microseconds

CLUSTER_MSG_WAIT_SCT Cluster Messaging Wait (by session
count)

Count of sessions

CLUSTER_MSG_WAIT_TIME Cluster Messaging Wait (by time) Microseconds

OTHER_WAIT_SCT Other Waits (by session count) Count of sessions

OTHER_WAIT_TIME Other Waits (by time) Microseconds

ENQUEUE_TIMEOUTS_SEC Enqueue Timeouts (for each
second)

Timeouts for each Second

ENQUEUE_TIMEOUTS_TXN Enqueue Timeouts (for each
transaction)

Timeouts for each Transaction

ENQUEUE_WAITS_SEC Enqueue Waits (for each second) Waits for each Second

ENQUEUE_WAITS_TXN Enqueue Waits (for each
transaction)

Waits for each Transaction

ENQUEUE_DEADLOCKS_SEC Enqueue Deadlocks (for each
second)

Deadlocks for each Second

ENQUEUE_DEADLOCKS_TXN Enqueue Deadlocks (for each
transaction)

Deadlocks for each Transaction

ENQUEUE_REQUESTS_SEC Enqueue Requests (for each second) Requests for each Second

ENQUEUE_REQUESTS_TXN Enqueue Requests (for each
transaction)

Requests for each Transaction

DB_BLKGETS_SEC DB Block Gets (for each second) Gets for each Second

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Using DBMS_SERVER_ALERT

DBMS_SERVER_ALERT 84-9

DB_BLKGETS_TXN DB Block Gets (for each transaction) Gets for each Transaction

CONSISTENT_GETS_SEC Consistent Gets (for each second) Gets for each Second

CONSISTENT_GETS_TXN Consistent Gets (for each
transaction)

Gets for each Transaction

DB_BLKCHANGES_SEC DB Block Changes (for each second) Changes for each Second

DB_BLKCHANGES_TXN DB Block Changes (for each
transaction)

Changes for each Transaction

CONSISTENT_CHANGES_SEC Consistent Changes (for each
second)

Changes for each Second

CONSISTENT_CHANGES_TXN Consistent Changes (for each
transaction)

Changes for each Transaction

SESSION_CPU_SEC Database CPU (for each second) Microseconds for each Second

SESSION_CPU_TXN Database CPU (for each
transaction)

Microseconds for each Transaction

CR_BLOCKS_CREATED_SEC CR Blocks Created (for each
second)

Blocks for each Second

CR_BLOCKS_CREATED_TXN CR Blocks Created (for each
transaction)

Blocks for each Transaction

CR_RECORDS_APPLIED_SEC CR Undo Records Applied (for each
second)

Records for each Second

CR_RECORDS_APPLIED_TXN CR Undo Records Applied (for each
transaction)

Records for each Transaction

RB_RECORDS_APPLIED_SEC Rollback Undo Records Applied
(for each second)

Records for each Second

RB_RECORDS_APPLIED_TXN Rollback Undo Records Applied(for
each transaction)

Records for each Transaction

LEAF_NODE_SPLITS_SEC Leaf Node Splits (for each second) Splits for each Second

LEAF_NODE_SPLITS_TXN Leaf Node Splits (for each
transaction)

Splits for each Transaction

BRANCH_NODE_SPLITS_SEC Branch Node Splits (for each
second)

Splits for each Second

BRANCH_NODE_SPLITS_TXN Branch Node Splits (for each
transaction)

Splits for each Transaction

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Supported Metrics

84-10 PL/SQL Packages and Types Reference

GC_BLOCKS_CORRUPT Global Cache Blocks Corrupt Blocks

GC_BLOCKS_LOST Global Cache Blocks Lost Blocks

GC_AVG_CR_GET_TIME Global Cache CR Request Milliseconds

GC_AVG_CUR_GET_TIME Global Cache Current Request Milliseconds

PX_DOWNGRADED_SEC Downgraded Parallel Operations
(for each second)

Operations for each Second

PX_DOWNGRADED_25_SEC Downgraded to 25% and more (for
each second)

Operations for each Second

PX_DOWNGRADED_50_SEC Downgraded to 50% and more (for
each second)

Operations for each Second

PX_DOWNGRADED_75_SEC Downgraded to 75% and more (for
each second)

Operations for each Second

PX_DOWNGRADED_SER_SEC Downgraded to serial (for each
second)

Operations for each Second

BLOCKED_USERS Number of Users blocked by some
Session

Number of Users

PGA_CACHE_HIT PGA Cache Hit (%) % bytes processed in PGA

ELAPSED_TIME_PER_CALL Elapsed time for each user call for
each service

Microseconds for each call

CPU_TIME_PER_CALL CPU time for each user call for each
service

Microseconds for each call

TABLESPACE_PCT_FULL Tablespace space usage % full

Table 84–3 (Cont.) List of Supported Metrics

Metrics Name (Internal) Metrics Name (External) Units

Summary of DBMS_SERVER_ALERT Subprograms

DBMS_SERVER_ALERT 84-11

Summary of DBMS_SERVER_ALERT Subprograms

Table 84–4 DBMS_SERVER_ALERT Package Subprograms

Subprogram Description

EXPAND_MESSAGE Function
on page 84-12

Expands alert messages

GET_THRESHOLD Procedure
on page 84-13

Gets threshold settings for given metrics

SET_THRESHOLD Procedure on
page 84-14

Set warning and critical thresholds for given metrics

EXPAND_MESSAGE Function

84-12 PL/SQL Packages and Types Reference

EXPAND_MESSAGE Function

This function expands alert messages.

Syntax
DBMS_SERVER_ALERT.EXPAND_MESSAGE(
 user_language IN VARCHAR2,
 message_id IN NUMBER,
 argument_1 IN VARCHAR2,
 argument_2 IN VARCHAR2,
 argument_3 IN VARCHAR2,
 argument_4 IN VARCHAR2,
 argument_5 IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table 84–5 EXPAND_MESSAGE Procedure Parameters

Parameter Description

user_language The language of the current session.

message_id Id of the alert message

argument_1 The first argument in the alert message.

argument_2 The second argument in the alert message.

argument_3 The third argument in the alert message.

argument_4 The fourth argument in the alert message.

argument_5 The fifth argument in the alert message.

Summary of DBMS_SERVER_ALERT Subprograms

DBMS_SERVER_ALERT 84-13

GET_THRESHOLD Procedure

This procedure gets the threshold setting for given metrics.

Syntax
DBMS_SERVER_ALERT.GET_THRESHOLD(
 metrics_id IN NUMBER,
 warning_operator OUT NUMBER,
 warning_value OUT VARCHAR2,
 critical_operator OUT NUMBER,
 critical_value OUT VARCHAR2,
 observation_period OUT NUMBER,
 consecutive_occurrences OUT NUMBER,
 instance_name IN VARCHAR2,
 object_type IN NUMBER,
 object_name IN VARCHAR2);

Parameters

Table 84–6 GET_THRESHOLD Procedure Parameters

Parameter Description

metrics_id The internal name of the metrics.

warning_operator The operator for the comparing the actual value with the
warning threshold.

warning_value The warning threshold value.

critical_operator The operator for the comparing the actual value with the
critical threshold.

critical_value The critical threshold value.

observation_period The period at which the metrics values are computed and
verified against the threshold setting.

consecutive_
occurrences

The number of observation periods the metrics value should
violate the threshold value before the alert is issued.

instance_name The name of the instance for which the threshold is set. This is
NULL for database-wide alerts.

object_type Either OBJECT_TYPE_SYSTEM or OBJECT_TYPE_SERVICE.

object_name The name of the object.

SET_THRESHOLD Procedure

84-14 PL/SQL Packages and Types Reference

SET_THRESHOLD Procedure

This procedure will set warning and critical thresholds for given metrics.

Syntax
DBMS_SERVER_ALERT.SET_THRESHOLD(
 metrics_id IN NUMBER,
 warning_operator IN NUMBER,
 warning_value IN VARCHAR2,
 critical_operator IN NUMBER,
 critical_value IN VARCHAR2,
 observation_period IN NUMBER,
 consecutive_occurrences IN NUMBER,
 instance_name IN VARCHAR2,
 object_type IN NUMBER,
 object_name IN VARCHAR2);

Parameters

Table 84–7 SET_THRESHOLD Procedure Parameters

Parameter Description

metrics_id The internal name of the metrics.

warning_operator The operator for the comparing the actual value with the
warning threshold (such as OPERATOR_GE).

warning_value The warning threshold value. This is NULL if no warning
threshold is set. A list of values may be specified for
OPERATOR_CONTAINS.

critical_operator The operator for the comparing the actual value with the
critical threshold.

critical_value The critical threshold value. This is NULL if not set. A list of
values may be specified for OPERATOR_CONTAINS.

observation_period The period at which the metrics values are computed and
verified against the threshold setting. The valid range is 1 to 60
minutes.

consecutive_
occurrences

The number of observation periods the metrics value should
violate the threshold value before the alert is issued.

instance_name The name of the instance for which the threshold is set. This is
NULL for database-wide alerts.

Summary of DBMS_SERVER_ALERT Subprograms

DBMS_SERVER_ALERT 84-15

object_type See Object Types Defined as Constants on page 84-2.

object_name The name of the object. This is NULL for SYSTEM.

Table 84–7 (Cont.) SET_THRESHOLD Procedure Parameters

Parameter Description

SET_THRESHOLD Procedure

84-16 PL/SQL Packages and Types Reference

DBMS_SERVICE 85-1

85
DBMS_SERVICE

The DBMS_SERVICE package lets you create, delete, activate and deactivate
services for a single instance.

The chapter contains the following topics:

■ Using DBMS_SERVICE

■ Security Model

■ Summary of DBMS_SERVICE Subprograms

See Also:

■ Oracle Real Application Clusters Administrator's Guide for administering
services in Real Application C.lusters.

Using DBMS_SERVICE

85-2 PL/SQL Packages and Types Reference

Using DBMS_SERVICE

■ Security Model

Security Model

The client using this package should have the ALTER SYSTEM execution privilege
and the V$SESSION table read privilege.

Summary of DBMS_SERVICE Subprograms

DBMS_SERVICE 85-3

Summary of DBMS_SERVICE Subprograms

Table 85–1 DBMS_SERVICE Package Subprograms

Subprogram Description

CREATE_SERVICE Procedure
on page 85-4

Creates service

DELETE_SERVICE Procedure on
page 85-5

Deletes service

DISCONNECT_SESSION
Procedure on page 85-6

Disconnects service

START_SERVICE Procedure on
page 85-7

Activates service

STOP_SERVICE Procedure on
page 85-8

Stops service

CREATE_SERVICE Procedure

85-4 PL/SQL Packages and Types Reference

CREATE_SERVICE Procedure

This procedure creates a service name in the data dictionary. Services are also
created in the data dictionary implicitly when you set the service in the servive_
names parameter or by means of the ALTER SYSTEM SET service_names
command.

Syntax
DBMS_SERVICE.CREATE_SERVICE(
 service_name IN VARCHAR2,
 network_name IN VARCHAR2);

Parameters

Examples
DBMS_SERVICE.CREATE_SERVICE('ernie.us.oracle.com','ernie.us.oracle.com');

Table 85–2 CREATE_SERVICE Procedure Parameters

Parameter Description

service_name The name of the service limited to 64 characters in the Data
Dictionary.

network_name The network name of the service as used in SQLNet connect
descriptors for client connections.

Summary of DBMS_SERVICE Subprograms

DBMS_SERVICE 85-5

DELETE_SERVICE Procedure

This procedure deletes a service from the data dictionary.

Syntax
DBMS_SERVICE.DELETE_SERVICE(
 service_name IN VARCHAR2);

Parameters

Examples
DBMS_SERVICE.DELETE_SERVICE('ernie.us.oracle.com');

Table 85–3 DELETE_SERVICE Procedure Parameters

Parameter Description

service_name The name of the service limited to 64 characters in the Data
Dictionary.

DISCONNECT_SESSION Procedure

85-6 PL/SQL Packages and Types Reference

DISCONNECT_SESSION Procedure

This procedure disconnects sessions with the named service at the current instance.

Syntax
DBMS_SERVICE.DISCONNECT_SESSION(
 service_name IN VARCHAR2);

Parameters

Usage Notes
This procedure can be used in the context of a single instance as well as with Real
Application Clusters.

Examples
DBMS_SERVICE.DISCONNECT_SESSION('ernie.us.oracle.com');

This disconnects sessions with service_name 'ernie.us.oracle.com'.

Table 85–4 DISCONNECT_SESSION Procedure Parameters

Parameter Description

service_name The name of the service limited to 64 characters in the Data
Dictionary

Summary of DBMS_SERVICE Subprograms

DBMS_SERVICE 85-7

START_SERVICE Procedure

This procedure starts a service.

Syntax
DBMS_SERVICE.START_SERVICE(
 service_name IN VARCHAR2,
 instance_name IN VARCHAR2);

Parameters

Examples
DBMS_SERVICE.START_SERVICE('ernie.us.oracle.com');

Table 85–5 START_SERVICE Procedure Parameters

Parameter Description

service_name The name of the service limited to 64 characters in the Data
Dictionary.

instance_name The name of the instance where the service should be activated
(optional).

STOP_SERVICE Procedure

85-8 PL/SQL Packages and Types Reference

STOP_SERVICE Procedure

This procedure stops a service.

Syntax
DBMS_SERVICE.STOP_SERVICE(
 service_name IN VARCHAR2, I
 instance_name IN VARCHAR2);

Parameters

Examples
DBMS_SERVICE.STOP_SERVICE('ernie.us.oracle.com');

Table 85–6 STOP_SERVICE Procedure Parameters

Parameter Description

service_name The name of the service limited to 64 characters in the Data
Dictionary.

instance_name The name of the instance where the service should be stopped
(optional).

DBMS_SESSION 86-1

86
DBMS_SESSION

This package provides access to SQL ALTER SESSION and SET ROLE statements,
and other session information, from PL/SQL. You can use DBMS_SESSION to set
preferences and security levels.

This chapter contains the following topics:

■ Using DBMS_SESSION

■ Security Model

■ Operational Notes

■ Summary of DBMS_SESSION Subprograms

Using DBMS_SESSION

86-2 PL/SQL Packages and Types Reference

Using DBMS_SESSION

■ Security Model

■ Operational Notes

Security Model

This package runs with the privileges of the calling user, rather than the package
owner SYS.

Operational Notes

You should not attempt to turn close_cached_open_cursors on or off.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-3

Summary of DBMS_SESSION Subprograms

Table 86–1 DBMS_SESSION Package Subprograms

Subprogram Description

CLEAR_CONTEXT Procedure on
page 86-5

Clears the context

CLEAR_ALL_CONTEXT Procedure
on page 86-6

Clears all context information

CLEAR_IDENTIFIER Procedure on
page 86-7

Clears the identifier

CLOSE_DATABASE_LINK
Procedure on page 86-8

Closes database link

FREE_UNUSED_USER_MEMORY
Procedure on page 86-9

Lets you reclaim unused memory after performing
operations requiring large amounts of memory

IS_ROLE_ENABLED Function on
page 86-12

Determines if the named role is enabled for the
session.

IS_SESSION_ALIVE Function on
page 86-13

Determines if the specified session is active

LIST_CONTEXT Procedures on
page 86-14

Returns a list of active namespace and context for the
current session

MODIFY_PACKAGE_STATE
Procedure on page 86-15

Performs actions on the session state of PL/SQL
program units that are active in the session

RESET_PACKAGE Procedure on
page 86-21

Deinstantiates all packages in the session

SET_CONTEXT Procedure on
page 86-23

Sets or resets the value of a context attribute

SET_IDENTIFIER on page 86-25 Sets the identifier

SET_NLS Procedure on page 86-26 Sets Globalization Support (NLS)

SET_ROLE Procedure on
page 86-27

Sets role

SET_SQL_TRACE Procedure on
page 86-28

Turns tracing on or off

Summary of DBMS_SESSION Subprograms

86-4 PL/SQL Packages and Types Reference

SWITCH_CURRENT_
CONSUMER_GROUP Procedure
on page 86-29

Facilitates changing the current resource consumer
group of a user's current session

UNIQUE_SESSION_ID Function on
page 86-30

Returns an identifier that is unique for all sessions
currently connected to this database

Table 86–1 (Cont.) DBMS_SESSION Package Subprograms

Subprogram Description

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-5

CLEAR_CONTEXT Procedure

Syntax
DBMS_SESSION.CLEAR_CONTEXT
 namespace VARCHAR2,
 client_identifier VARCHAR2
 attribute VARCHAR2);

Parameters

Usage Notes
This procedure must be invoked directly or indirectly by the trusted package.

Table 86–2 CLEAR_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace in which the application context is to be cleared.
Required.

For a session-local context, namespace must be specified. If
namespace is defined as Session Local Context, then
client_identifier is optional since it is only associated with a
globally accessed context.

For a globally accessed context, namespace must be specified.
NULL is a valid value for client_identifier because a session
with no identifier set can see a context that looks like the
(namespace,attribute,value,username,null) set using
SET_CONTEXT.

client_
identifier

Applies to a global context and is optional for other types of
contexts; 64-byte maximum.

attribute The specific attribute in the namespace to be cleared. Optional. the
default is NULL. If you specify attribute as NULL, then
(namespace,attribute,value) for that namespace are cleared
from the session. If attribute is not specified, then all context
information that has the namespace and client_identifier
arguments is cleared.

CLEAR_ALL_CONTEXT Procedure

86-6 PL/SQL Packages and Types Reference

CLEAR_ALL_CONTEXT Procedure

Syntax
DBMS_SESSION.CLEAR_ALL_CONTEXT
 namespace VARCHAR2);

Parameters

Usage Notes
This procedure must be invoked directly or indirectly by the trusted package.

Table 86–3 CLEAR_ALL_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace where the application context information is to be
cleared. Required.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-7

CLEAR_IDENTIFIER Procedure

This procedure removes the set_client_id in the session.

Syntax
DBMS_SESSION.CLEAR_IDENTIFIER;

Usage Notes
This procedure is executable by public.

CLOSE_DATABASE_LINK Procedure

86-8 PL/SQL Packages and Types Reference

CLOSE_DATABASE_LINK Procedure

This procedure closes an open database link. It is equivalent to the following SQL
statement:

ALTER SESSION CLOSE DATABASE LINK <name>

Syntax
DBMS_SESSION.CLOSE_DATABASE_LINK (
 dblink VARCHAR2);

Parameters

Table 86–4 CLOSE_DATABASE_LINK Procedure Parameters

Parameter Description

dblink Name of the database link to close.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-9

FREE_UNUSED_USER_MEMORY Procedure

This procedure reclaims unused memory after performing operations requiring
large amounts of memory (more than 100K).

Examples of operations that use large amounts of memory include:

■ Large sorting where entire sort_area_size is used and sort_area_size is
hundreds of KB.

■ Compiling large PL/SQL packages, procedures, or functions.

■ Storing hundreds of KB of data within PL/SQL indexed tables.

You can monitor user memory by tracking the statistics "session UGA memory" and
"session PGA memory" in the v$sesstat or v$statname fixed views. Monitoring
these statistics also shows how much memory this procedure has freed.

Syntax
DBMS_SESSION.FREE_UNUSED_USER_MEMORY;

Return Values
The behavior of this procedure depends upon the configuration of the server
operating on behalf of the client:

■ Dedicated server: This returns unused PGA memory and session memory to
the operating system. Session memory is allocated from the PGA in this
configuration.

■ Shared server: This returns unused session memory to the shared_pool.
Session memory is allocated from the shared_pool in this configuration.

Usage Notes
In order to free memory using this procedure, the memory must not be in use.

After an operation allocates memory, only the same type of operation can reuse the
allocated memory. For example, after memory is allocated for sort, even if the sort is
complete and the memory is no longer in use, only another sort can reuse the

Note: This procedure should only be used in cases where memory
is at a premium. It should be used infrequently and judiciously.

FREE_UNUSED_USER_MEMORY Procedure

86-10 PL/SQL Packages and Types Reference

sort-allocated memory. For both sort and compilation, after the operation is
complete, the memory is no longer in use, and the user can call this procedure to
free the unused memory.

An indexed table implicitly allocates memory to store values assigned to the
indexed table's elements. Thus, the more elements in an indexed table, the more
memory the RDBMS allocates to the indexed table. As long as there are elements
within the indexed table, the memory associated with an indexed table is in use.

The scope of indexed tables determines how long their memory is in use. Indexed
tables declared globally are indexed tables declared in packages or package bodies.
They allocate memory from session memory. For an indexed table declared globally,
the memory remains in use for the lifetime of a user's login (lifetime of a user's
session), and is freed after the user disconnects from ORACLE.

Indexed tables declared locally are indexed tables declared within functions,
procedures, or anonymous blocks. These indexed tables allocate memory from PGA
memory. For an indexed table declared locally, the memory remains in use for as
long as the user is still running the procedure, function, or anonymous block in
which the indexed table is declared.After the procedure, function, or anonymous
block is finished running, the memory is then available for other locally declared
indexed tables to use (in other words, the memory is no longer in use).

Assigning an uninitialized, "empty" indexed table to an existing index table is a
method to explicitly re-initialize the indexed table and the memory associated with
the indexed table. After this operation, the memory associated with the indexed
table is no longer in use, making it available to be freed by calling this procedure.
This method is particularly useful on indexed tables declared globally which can
grow during the lifetime of a user's session, as long as the user no longer needs the
contents of the indexed table.

The memory rules associated with an indexed table's scope still apply; this method
and this procedure, however, allow users to intervene and to explicitly free the
memory associated with an indexed table.

Examples
The following PL/SQL illustrates the method and the use of procedure FREE_
UNUSED_USER_MEMORY.

CREATE PACKAGE foobar
 type number_idx_tbl is table of number indexed by binary_integer;

 store1_table number_idx_tbl; -- PL/SQL indexed table
 store2_table number_idx_tbl; -- PL/SQL indexed table

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-11

 store3_table number_idx_tbl; -- PL/SQL indexed table
 ...
END; -- end of foobar

DECLARE
 ...
 empty_table number_idx_tbl; -- uninitialized ("empty") version
BEGIN
 FOR i in 1..1000000 loop
 store1_table(i) := i; -- load data
 END LOOP;
 ...
 store1_table := empty_table; -- "truncate" the indexed table
 ...
 -
 dbms_session.free_unused_user_memory; -- give memory back to system

 store1_table(1) := 100; -- index tables still declared;
 store2_table(2) := 200; -- but truncated.
 ...
END;

IS_ROLE_ENABLED Function

86-12 PL/SQL Packages and Types Reference

IS_ROLE_ENABLED Function

This function determines if the named role is enabled for this session.

Syntax
DBMS_SESSION.IS_ROLE_ENABLED (
 rolename VARCHAR2)
 RETURN BOOLEAN;

Parameters

Return Values

Table 86–5 IS_ROLE_ENABLED Function Parameters

Parameter Description

rolename Name of the role.

Table 86–6 IS_ROLE_ENABLED Function Return Values

Return Description

is_role_enabled TRUE or FALSE, depending on whether the role is enabled.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-13

IS_SESSION_ALIVE Function

This function determines if the specified session is active.

Syntax
DBMS_SESSION.IS_SESSION_ALIVE (
 uniqueid VARCHAR2)
 RETURN BOOLEAN;

Parameters

Return Values

Table 86–7 IS_SESSION_ALIVE Function Parameters

Parameter Description

uniqueid Unique ID of the session: This is the same one as returned by
UNIQUE_SESSION_ID.

Table 86–8 IS_SESSION_ALIVE Function Return Values

Return Description

is_session_alive TRUE or FALSE, depending on whether the session is active.

LIST_CONTEXT Procedures

86-14 PL/SQL Packages and Types Reference

LIST_CONTEXT Procedures

This procedure returns a list of active namespaces and contexts for the current
session.

Syntax
TYPE AppCtxRecTyp IS RECORD (
 namespace VARCHAR2(30),
 attribute VARCHAR2(30),
 value VARCHAR2(256));

TYPE AppCtxTabTyp IS TABLE OF AppCtxRecTyp INDEX BY BINARY_INTEGER;

DBMS_SESSION.LIST_CONTEXT (
 list OUT AppCtxTabTyp,
 size OUT NUMBER);

Parameters

Return Values

Usage Notes
The context information in the list appears as a series of <namespace>
<attribute> <value>. Because list is a table type variable, its size is
dynamically adjusted to the size of returned list.

Table 86–9 LIST_CONTEXT Procedure Parameters

Parameter Description

list Buffer to store a list of application context set in the current session.

Table 86–10 LIST_CONTEXT Procedure Return Values

Return Description

list A list of (namespace, attribute, values) set in current session.

size Returns the number of entries in the buffer returned.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-15

MODIFY_PACKAGE_STATE Procedure

This procedure can be used to perform various actions (as specified by the action_
flags parameter) on the session state of all PL/SQL program units active in the
session. This takes effect after the PL/SQL call that made the current invocation
finishes running. The procedure uses the DBMS_SESSION constants listed in
Table 86–12.

Syntax
DBMS_SESSION.MODIFY_PACKAGE_STATE(
 action_flags IN PLS_INTEGER);

MODIFY_PACKAGE_STATE Procedure

86-16 PL/SQL Packages and Types Reference

Parameters

Table 86–11 MODIFY_PACKAGE_STATE Procedure Parameters

Parameter Description

action_flags Bit flags that determine the action taken on PL/SQL
program units:

DBMS_SESSION.FREE_ALL_RESOURCES (or 1)—frees
all memory associated with each of the previously run
PL/SQL programs from the session. Clears the current
values of any package globals and closes cached
cursors. On subsequent use, the PL/SQL program units
are reinstantiated and package globals are reinitialized.
Invoking MODIFY_PACKAGE_STATE with the DBMS_
SESSION.FREE_ALL_RESOURCES parameter provides
functionality identical to the DBMS_SESSION.RESET_
PACKAGE() interface.

DBMS_SESSION.REINITIALIZE (or 2)—reinitializes
packages without actually being freed and recreated
from scratch. Instead the package memory is reused. In
terms of program semantics, the DBMS_
SESSION.REINITIALIZE flag is similar to the DBMS_
SESSION.FREE_ALL_RESOURCES flag in that both
have the effect of reinitializing all packages.

However, DBMS_SESSION.REINITIALIZE should
exhibit better performance than the DBMS_
SESSION.FREE_ALL_RESOURCES option because:

■ Packages are reinitialized without actually being
freed and recreated from scratch. Instead the
package memory gets reused.

■ Any open cursors are closed, semantically
speaking. However, the cursor resource is not
actually freed. It is simply returned to the PL/SQL
cursor cache. The cursor cache is not flushed.
Hence, cursors corresponding to frequently
accessed static SQL in PL/SQL remains cached in
the PL/SQL cursor cache and the application does
not incur the overhead of opening, parsing, and
closing a new cursor for those statements on
subsequent use.

■ The session memory for PL/SQL modules without
global state (such as types, stored-procedures) will
not be freed and recreated.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-17

Usage Notes
See the parameter descriptions in Table 86–11 for the differences between the flags
and why DBMS_SESSION.REINITIALIZE exhibits better performance than DBMS_
SESSION.FREE_ALL_RESOURCES.

■ Reinitialization refers to the process of resetting all package variables to their
initial values and running the initialization block (if any) in the package bodies.
Consider the package:

 package P is
 n number;
 m number := P2.foo;
 d date := SYSDATE;
 cursor c is select * from emp;
 procedure bar;
 end P;
 /
 package body P is
 v varchar2(20) := 'hello';
 procedure bar is
 begin
 ...
 end;
 procedure init_pkg is
 begin

 end;
 begin
 -- initialization block
 init_pkg;
 ...
 ...
 end P;
 /

For the package P, reinitialization involves:

Table 86–12 Action_flags Constants for MODIFY_PACKAGE_STATE

Constant Description

FREE_ALL_
RESOURCES

PLS_INTEGER := 1

REINITIALIZE PLS_INTEGER := 2

MODIFY_PACKAGE_STATE Procedure

86-18 PL/SQL Packages and Types Reference

■ Setting P.n to NULL

■ Invoking function P2.foo and setting P.m to the value returned from
P2.foo

■ Setting P.d to the return value of SYSDATE built-in

■ Closing cursor P.c if it was previously opened

■ Setting P.v to 'hello'

■ Running the initialization block in the package body

■ The reinitialization for a package is done only if the package is actually
referenced subsequently. Furthermore, the packages are reinitialized in the
order in which they are referenced subsequently.

■ When using FREE_ALL_RESOURCES or REINITIALIZE, make sure that
resetting package variable values does not affect the application.

■ Because DBMS_SESSION.REINITIALIZE does not actually cause all the
package state to be freed, in some situations, the application could use
significantly more session memory than if the FREE_ALL_RESOURCES flag or
the RESET_PACKAGE procedure had been used. For instance, after performing
DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_
SESSION.REINITIALIZE), if the application does not refer to many of the
packages that were previously referenced, then the session memory for those
packages will remain until the end of the session (or until DBMS_
SESSION.RESET_PACKAGE is called).

■ Because the client-side PL/SQL code cannot reference remote package variables
or constants, you must explicitly use the values of the constants. For example,
DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_
SESSION.REINITIALIZE)does not compile on the client because it uses the
constant DBMS_SESSION.REINITIALIZE.

Instead, use DBMS_SESSION.MODIFY_PACKAGE_STATE(2) on the client,
because the argument is explicitly provided.

Examples
This example illustrates the use of DBMS_SESSION.MODIFY_PACKAGE_STATE.
Consider a package P with some global state (a cursor c and a number cnt). When
the package is first initialized, the package variable cnt is 0 and the cursor c is
CLOSED. Then, in the session, change the value of cnt to 111 and also execute an
OPEN operation on the cursor. If you call print_status to display the state of the
package, you see that cnt is 111 and that the cursor is OPEN. Next, call DBMS_

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-19

SESSION.MODIFY_PACKAGE_STATE. If you print the status of the package P again
using print_status, you see that cnt is 0 again and the cursor is CLOSED. If the
call to DBMS_SESSION.MODIFY_PACKAGE_STATE had not been made, then the
second print_status would have printed 111 and OPEN.

create or replace package P is
 cnt number := 0;
 cursor c is select * from emp;
 procedure print_status;
end P;
/
show errors;

create or replace package body P is
 procedure print_status is
 begin
 dbms_output.put_line('P.cnt = ' || cnt);
 if c%ISOPEN then
 dbms_output.put_line('P.c is OPEN');
 else
 dbms_output.put_line('P.c is CLOSED');
 end if;
 end;
end P;
/
show errors;

SQL> set serveroutput on;
SQL> begin
 2 P.cnt := 111;
 3 open p.c;
 4 P.print_status;
 5 end;
 6 /
P.cnt = 111
P.c is OPEN

PL/SQL procedure successfully completed.

SQL> begin
 2 dbms_session.modify_package_state(dbms_session.reinitialize);
 3 end;
 4 /

PL/SQL procedure successfully completed.

MODIFY_PACKAGE_STATE Procedure

86-20 PL/SQL Packages and Types Reference

SQL> set serveroutput on;
SQL>
SQL> begin
 2 P.print_status;
 3 end;
 4 /
P.cnt = 0
P.c is CLOSED

PL/SQL procedure successfully completed.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-21

RESET_PACKAGE Procedure

This procedure deinstantiates all packages in this session. It frees the package state.

Memory used for caching the execution state is associated with all PL/SQL
functions, procedures, and packages that were run in a session.

For packages, this collection of memory holds the current values of package
variables and controls the cache of cursors opened by the respective PL/SQL
programs. A call to RESET_PACKAGE frees the memory associated with each of the
previously run PL/SQL programs from the session, and, consequently, clears the
current values of any package globals and closes any cached cursors.

RESET_PACKAGE can also be used to reliably restart a failed program in a session. If
a program containing package variables fails, then it is hard to determine which
variables need to be reinitialized. RESET_PACKAGE guarantees that all package
variables are reset to their initial values.

Syntax
DBMS_SESSION.RESET_PACKAGE;

Usage Notes
Because the amount of memory consumed by all executed PL/SQL can become
large, you might use RESET_PACKAGE to trim down the session memory footprint
at certain points in your database application. However, make sure that resetting
package variable values will not affect the application. Also, remember that later
execution of programs that have lost their cached memory and cursors will perform
slower, because they need to re-create the freed memory and cursors.

RESET_PACKAGE does not free the memory, cursors, and package variables
immediately when called.

Note: See "MODIFY_PACKAGE_STATE Procedure" on
page 86-15. The MODIFY_PACKAGE_STATE interface, introduced in
Oracle9i, provides an equivalent of the RESET_PACKAGE capability.
It is an efficient, lighter-weight variant for reinitializing the state of
all PL/SQL packages in the session.

RESET_PACKAGE Procedure

86-22 PL/SQL Packages and Types Reference

For example, PL/SQL procedure P1 calls PL/SQL procedure P2, and P2 calls
RESET_PACKAGE. The RESET_PACKAGE effects do not occur until procedure P1
finishes execution (the PL/SQL call ends).

Examples
This SQL*Plus script runs a large program with many PL/SQL program units that
may or may not use global variables, but it doesn't need them beyond this
execution:

EXCECUTE large_plsql_program1;

To free up PL/SQL cached session memory:

EXECUTE DBMS_SESSION.RESET_PACKAGE;

To run another large program:

EXECUTE large_plsql_program2;

Note: RESET_PACKAGE only frees the memory, cursors, and
package variables after the PL/SQL call that made the invocation
finishes running.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-23

SET_CONTEXT Procedure

This procedure sets the context, of which there are four types: session local, globally
initialized, externally initialized, and globally accessed.

Of its five parameters, only the first three are required; the final two parameters are
optional, used only in globally accessed contexts. Further parameter information
appears in the parameter table and the usage notes.

Syntax
DBMS_SESSION.SET_CONTEXT (
 namespace VARCHAR2,
 attribute VARCHAR2,
 value VARCHAR2,
 username VARCHAR2,
 client_id VARCHAR2);

Parameters

Usage Notes
Note the following:

■ For 8i compatibility, only the first three parameters are used.

■ The first three parameters are required for all types of context.

Table 86–13 SET_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace of the application context to be set, limited to 30
bytes.

attribute The attribute of the application context to be set, limited to 30 bytes.

value The value of the application context to be set, limited to 4 kilobytes.

username The database username attribute of the application context.

Default: NULL

client_id The application-specific client_id attribute of the application
context (64-byte maximum).

Default: NULL

SET_CONTEXT Procedure

86-24 PL/SQL Packages and Types Reference

■ The username parameter must be a valid SQL identifier

■ The client_id parameter must be a string of at most 64 bytes. It is
case-sensitive and must match the argument provided for set_identifier.

■ If the namespace parameter is a global context namespace, then the username
parameter is matched against the current database user name in the session,
and the client_id parameter will be matched against the current client_id
in the session. If these parameters are not set, NULL is assumed, enabling any
user to see the context values.

■ This procedure must be invoked directly or indirectly by the trusted package

■ The caller of SET_CONTEXT must be in the calling stack of a procedure that
has been associated to the context namespace through a CREATE CONTEXT
statement. The checking of the calling stack does not cross a DBMS boundary.

■ No limit applies to the number of attributes that can be set in a namespace. An
attribute retains its value during the user's session unless it is reset by the user.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-25

SET_IDENTIFIER

This procedure sets the client ID in the session.

Syntax
DBMS_SESSION.SET_IDENTIFIER (
 client_id VARCHAR2);

Parameters

Usage Notes
Note the following:

■ SET_IDENTIFIER initializes the current session with a client identifier to
identify the associated global application context

■ client_id is case sensitive; it must match the client_id parameter in the
set_context

■ This procedure is executable by public

Table 86–14 SET_IDENTIFIER Procedure Parameters

Parameter Description

client_id The application-specific identifier of the current database session.

SET_NLS Procedure

86-26 PL/SQL Packages and Types Reference

SET_NLS Procedure

This procedure sets up your Globalization Support (NLS). It is equivalent to the
following SQL statement:

ALTER SESSION SET <nls_parameter> = <value>

Syntax
DBMS_SESSION.SET_NLS (
 param VARCHAR2,
 value VARCHAR2);

Parameters

Table 86–15 SET_NLS Procedure Parameters

Parameter Description

param Globalization Support parameter. The parameter name must begin
with 'NLS'.

value Parameter value.

If the parameter is a text literal, then it needs embedded
single-quotes. For example, "set_nls('nls_date_
format','''DD-MON-YY''')".

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-27

SET_ROLE Procedure

This procedure enables and disables roles. It is equivalent to the SET ROLE SQL
statement.

Syntax
DBMS_SESSION.SET_ROLE (
 role_cmd VARCHAR2);

Parameters

Table 86–16 SET_ROLE Procedure Parameters

Parameter Description

role_cmd This text is appended to "set role" and then run as SQL.

SET_SQL_TRACE Procedure

86-28 PL/SQL Packages and Types Reference

SET_SQL_TRACE Procedure

This procedure turns tracing on or off. It is equivalent to the following SQL
statement:

ALTER SESSION SET SQL_TRACE ...

Syntax
DBMS_SESSION.SET_SQL_TRACE (
 sql_trace boolean);

Parameters

Table 86–17 SET_SQL_TRACE Procedure Parameters

Parameter Description

sql_trace TRUE turns tracing on, FALSE turns tracing off.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-29

SWITCH_CURRENT_CONSUMER_GROUP Procedure

This procedure changes the current resource consumer group of a user's current
session.

This lets you switch to a consumer group if you have the switch privilege for that
particular group. If the caller is another procedure, then this enables the user to
switch to a consumer group for which the owner of that procedure has switch
privilege.

Syntax
DBMS_SESSION.switch_current_consumer_group (
 new_consumer_group IN VARCHAR2,
 old_consumer_group OUT VARCHAR2,
 initial_group_on_error IN BOOLEAN);

Parameters

Return Values
This procedure outputs the old consumer group of the user in the parameter old_
consumer_group.

Table 86–18 SWITCH_CURRENT_CONSUMER_GROUP Procedure Parameters

Parameter Description

new_consumer_group Name of consumer group to which you want to switch.

old_consumer_group Name of the consumer group from which you just switched
out.

initial_group_on_
error

If TRUE, then sets the current consumer group of the caller to
his/her initial consumer group in the event of an error.

Note: You can switch back to the old consumer group later using
the value returned in old_consumer_group.

UNIQUE_SESSION_ID Function

86-30 PL/SQL Packages and Types Reference

UNIQUE_SESSION_ID Function

This function returns an identifier that is unique for all sessions currently connected
to this database. Multiple calls to this function during the same session always
return the same result.

Syntax
DBMS_SESSION.UNIQUE_SESSION_ID
 RETURN VARCHAR2;

Pragmas
pragma restrict_references(unique_session_id,WNDS,RNDS,WNPS);

Return Values

Exceptions

Usage Notes
The owner of a procedure must have privileges on the group from which a user was
switched (old_consumer_group) in order to switch them back. There is one
exception: The procedure can always switch the user back to his/her initial
consumer group (skipping the privilege check).

By setting initial_group_on_error to TRUE, SWITCH_CURRENT_CONSUMER_
GROUP puts the current session into the default group, if it can't put it into the group

Table 86–19 UNIQUE_SESSION_ID Function Return Values

Return Description

unique_session_
id

Returns up to 24 bytes.

Table 86–20 SWITCH_CURRENT_CONSUMER_GROUP Procedure Exceptions

Exception Description

29368 Non-existent consumer group.

1031 Insufficient privileges.

29396 Cannot switch to OTHER_GROUPS consumer group.

Summary of DBMS_SESSION Subprograms

DBMS_SESSION 86-31

designated by new_consumer_group. The error associated with the attempt to
move a session into new_consumer_group is raised, even though the current
consumer group has been changed to the initial consumer group.

Examples
CREATE OR REPLACE PROCEDURE high_priority_task is
 old_group varchar2(30);
 prev_group varchar2(30);
 curr_user varchar2(30);
BEGIN
 -- switch invoker to privileged consumer group. If we fail to do so, an
 -- error will be thrown, but the consumer group will not change
 -- because 'initial_group_on_error' is set to FALSE

 dbms_session.switch_current_consumer_group('tkrogrp1', old_group, FALSE);
 -- set up exception handler (in the event of an error, we do not want to
 -- return to caller while leaving the session still in the privileged
 -- group)

 BEGIN
 -- perform some operations while under privileged group

 EXCEPTION
 WHEN OTHERS THEN
 -- It is possible that the procedure owner does not have privileges
 -- on old_group. 'initial_group_on_error' is set to TRUE to make sure
 -- that the user is moved out of the privileged group in such a
 -- situation

 dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
 RAISE;
 END;

 -- we've succeeded. Now switch to old_group, or if cannot do so, switch
 -- to caller's initial consumer group

 dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
END high_priority_task;
/

UNIQUE_SESSION_ID Function

86-32 PL/SQL Packages and Types Reference

DBMS_SHARED_POOL 87-1

87
DBMS_SHARED_POOL

The DBMS_SHARED_POOL package provides access to the shared pool, which is the
shared memory area where cursors and PL/SQL objects are stored. DBMS_SHARED_
POOL enables you to display the sizes of objects in the shared pool, and mark them
for keeping or unkeeping in order to reduce memory fragmentation.

This chapter contains the following topics:

■ Using DBMS_SHARED_POOL

■ Overview

■ Operational Notes

■ Summary of DBMS_SHARED_POOL Subprograms

Using DBMS_SHARED_POOL

87-2 PL/SQL Packages and Types Reference

Using DBMS_SHARED_POOL

■ Overview

■ Operational Notes

Overview

The procedures provided here may be useful when loading large PL/SQL objects.
When large PL/SQL objects are loaded, users response time is affected because of
the large number of smaller objects that need to be aged out from the shared pool to
make room (due to memory fragmentation). In some cases, there may be
insufficient memory to load the large objects.

DBMS_SHARED_POOL is also useful for frequently executed triggers. You may want
to keep compiled triggers on frequently used tables in the shared pool.

Additionally, DBMS_SHARED_POOL supports sequences. Sequence numbers are lost
when a sequence is aged out of the shared pool. DBMS_SHARED_POOL is useful for
keeping sequences in the shared pool and thus preventing the loss of sequence
numbers.

Operational Notes

To create DBMS_SHARED_POOL, run the DBMSPOOL.SQL script. The PRVTPOOL.PLB
script is automatically executed after DBMSPOOL.SQL runs. These scripts are not run
by CATPROC.SQL.

Summary of DBMS_SHARED_POOL Subprograms

DBMS_SHARED_POOL 87-3

Summary of DBMS_SHARED_POOL Subprograms

Table 87–1 DBMS_SHARED_POOL Package Subprograms

Subprogram Description

ABORTED_REQUEST_
THRESHOLD Procedure on
page 87-4

Sets the aborted request threshold for the shared pool

KEEP Procedure on page 87-5 Keeps an object in the shared pool

SIZES Procedure on page 87-7 Shows objects in the shared pool that are larger than the
specified size

UNKEEP Procedure on
page 87-8

Unkeeps the named object

ABORTED_REQUEST_THRESHOLD Procedure

87-4 PL/SQL Packages and Types Reference

ABORTED_REQUEST_THRESHOLD Procedure

This procedure sets the aborted request threshold for the shared pool.

Syntax
DBMS_SHARED_POOL.ABORTED_REQUEST_THRESHOLD (
 threshold_size NUMBER);

Parameters

Exceptions
An exception is raised if the threshold is not in the valid range.

Usage Notes
Usually, if a request cannot be satisfied on the free list, then the RDBMS tries to
reclaim memory by freeing objects from the LRU list and checking periodically to
see if the request can be fulfilled. After finishing this step, the RDBMS has
performed a near equivalent of an 'ALTER SYSTEM FLUSH SHARED_POOL'.

Because this impacts all users on the system, this procedure "localizes" the impact to
the process failing to find a piece of shared pool memory of size greater than
thresh_hold size. This user gets the 'out of memory' error without attempting to
search the LRU list.

Table 87–2 ABORTED_REQUEST_THRESHOLD Procedure Parameters

Parameter Description

threshold_size Size, in bytes, of a request which does not try to free unpinned
(not "unkeep-ed") memory within the shared pool. The range
of threshold_size is 5000 to ~2 GB inclusive.

Summary of DBMS_SHARED_POOL Subprograms

DBMS_SHARED_POOL 87-5

KEEP Procedure

This procedure keeps an object in the shared pool. Once an object has been kept in
the shared pool, it is not subject to aging out of the pool. This may be useful for
frequently used large objects. When large objects are brought into the shared pool,
several objects may need to be aged out to create a contiguous area large enough.

Syntax
DBMS_SHARED_POOL.KEEP (
 name VARCHAR2,
 flag CHAR DEFAULT 'P');

Parameters

Exceptions
An exception is raised if the named object cannot be found.

Table 87–3 KEEP Procedure Parameters

Parameter Description

name Name of the object to keep.

The value for this identifier is the concatenation of the address
and hash_value columns from the v$sqlarea view. This is
displayed by the SIZES procedure.

Currently, TABLE and VIEW objects may not be kept.

flag (Optional) If this is not specified, then the package assumes
that the first parameter is the name of a
package/procedure/function and resolves the name.

Set to 'P' or 'p' to fully specify that the input is the name of a
package/procedure/function.

Set to 'T' or 't' to specify that the input is the name of a type.

Set to 'R' or 'r' to specify that the input is the name of a trigger.

Set to 'Q' or 'q' to specify that the input is the name of a
sequence.

In case the first argument is a cursor address and hash-value,
the parameter should be set to any character except 'P' or 'p' or
'Q' or 'q' or 'R' or 'r' or 'T' or 't'.

KEEP Procedure

87-6 PL/SQL Packages and Types Reference

Usage Notes
There are two kinds of objects:

■ PL/SQL objects, triggers, sequences, and types which are specified by name

■ SQL cursor objects which are specified by a two-part number (indicating a
location in the shared pool).

For example:

DBMS_SHARED_POOL.KEEP('scott.hispackage')

This keeps package HISPACKAGE, owned by SCOTT. The names for PL/SQL objects
follow SQL rules for naming objects (for example, delimited identifiers and
multibyte names are allowed). A cursor can be kept by DBMS_SHARED_
POOL.KEEP('0034CDFF, 20348871'). The complete hexadecimal address must be in
the first 8 characters.

Summary of DBMS_SHARED_POOL Subprograms

DBMS_SHARED_POOL 87-7

SIZES Procedure

This procedure shows objects in the shared_pool that are larger than the specified
size. The name of the object is also given, which can be used as an argument to
either the KEEP or UNKEEP calls.

Syntax
DBMS_SHARED_POOL.SIZES (
 minsize NUMBER);

Parameters

Usage Notes
Issue the SQLDBA or SQLPLUS 'SET SERVEROUTPUT ON SIZE XXXXX' command
prior to using this procedure so that the results are displayed.

Table 87–4 SIZES Procedure Parameters

Parameter Description

minsize Size, in kilobytes, over which an object must be occupying in
the shared pool, in order for it to be displayed.

UNKEEP Procedure

87-8 PL/SQL Packages and Types Reference

UNKEEP Procedure

This procedure unkeeps the named object.

Syntax
DBMS_SHARED_POOL.UNKEEP (
 name VARCHAR2,
 flag CHAR DEFAULT 'P');

Parameters

Exceptions
An exception is raised if the named object cannot be found.

Caution: This procedure may not be supported in the future if
automatic mechanisms are implemented to make this unnecessary.

Table 87–5 UNKEEP Procedure Parameters

Parameter Description

name Name of the object to unkeep. See description of the name
object for the KEEP procedure.

flag See description of the flag parameter for the KEEP procedure.

DBMS_SPACE 88-1

88
DBMS_SPACE

The DBMS_SPACE package enables you to analyze segment growth and space
requirements.

This chapter contains the following topics:

■ Using DBMS_SPACE

■ Security Model

■ Summary of DBMS_SPACE Subprograms

Using DBMS_SPACE

88-2 PL/SQL Packages and Types Reference

Using DBMS_SPACE

■ Security Model

Security Model

This package runs with SYS privileges. The execution privilege is granted to
PUBLIC. Subprograms in this package run under the caller security. The user must
have ANALYZE privilege on the object.

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-3

Summary of DBMS_SPACE Subprograms

Table 88–1 DBMS_SPACE Package Subprograms

Subprogram Description

CREATE_INDEX_COST
Procedure on page 88-4

Determines the cost of creating an index on an existing table

CREATE_TABLE_COST
Procedures on page 88-5

Determines the size of the table given various attributes.

FREE_BLOCKS Procedure on
page 88-7

Returns information about free blocks in an object (table,
index, or cluster)

OBJECT_DEPENDENT_
SEGMENTS Function on
page 88-10

Returns the list of segments that are associated with the
object

OBJECT_GROWTH_TREND
Function on page 88-13

A table function where each row describes the space usage
of the object at a specific point in time

SPACE_USAGE Procedure on
page 88-15

Returns information about free blocks in a auto segment
space managed segment

UNUSED_SPACE Procedure
on page 88-18

Returns information about unused space in an object (table,
index, or cluster)

CREATE_INDEX_COST Procedure

88-4 PL/SQL Packages and Types Reference

CREATE_INDEX_COST Procedure

This procedure determines the cost of creating an index on an existing table. The
input is the DDL statement that will be used to create the index. The procedure will
output the storage required to create the index.

Syntax
DBMS_SPACE.CREATE_INDEX_COST (
 ddl IN VARCHAR2,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER,
 plan_table IN VARCHAR2 DEFAULT NULL);

Pragmas
pragma restrict_references(free_blocks,WNDS);

Parameters

Usage Notes
■ The table on which the index is created must already exist.

■ The computation of the index size depends on statistics gathered on the
segment.

■ It is imperative that the table must have been analyzed recently.

■ In the absence of correct statistics, the results may be inaccurate, although the
procedure will not raise any errors.

Table 88–2 CREATE_INDEX_COST Procedure ParametersS

Parameter Description

ddl The create index DDL statement

used_bytes The number of bytes representing the actual index data

alloc_bytes Size of the index when created in the tablespace

plan_table Which plan table to use, default NULL

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-5

CREATE_TABLE_COST Procedures

This procedure is used in capacity planning to determine the size of the table given
various attributes. The size of the object can vary widely based on the tablespace
storage attributes, tablespace block size, and so on. There are two overloads of this
procedure.

■ The first version takes the column information of the table as argument and
output the table size.

■ The second version takes the average row size of the table and outputs the table
size.

This procedure can be used on tablespace of dictionary managed and locally
managed extent management as well as manual and auto segment space
management.

Syntax
DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name IN VARCHAR2,
 avg_row_size IN NUMBER,
 row_count IN NUMBER,
 pct_free IN NUMBER,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER);

DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name IN VARCHAR2,
 colinfos IN CREATE_TABLE_COST_COLUMNS,
 row_count IN NUMBER,
 pct_free IN NUMBER,
 used_bytes OUT NUMBER,
 alloc_bytes OUT NUMBER);

CREATE TYPE create_table_cost_colinfo IS OBJECT (
 COL_TYPE VARCHAR(200),
 COL_SIZE NUMBER);

CREATE_TABLE_COST Procedures

88-6 PL/SQL Packages and Types Reference

Parameters

Usage Notes
■ The used_bytes represent the actual bytes used by the data. This includes the

overhead due to the block metadata, pctfree etc.

■ The alloc_bytes represent the size of the table when it is created in the
tablespace. This takes into account, the size of the extents in the tablespace and
tablespace extent management properties.

Table 88–3 FREE_BLOCKS Procedure Parameters

Parameter Description

tablespace_name The tablespace in which the object will be created. The default
is SYSTEM tablespace.

avg_row_size The anticipated average row size in the table.

colinfos The description of the columns.

row_count The anticipated number of rows in the table.

pct_free The percentage of free space in each block for future expansion
of existing rows due to updates.

used_bytes The space used by user data.

alloc_bytes The size of the object taking into account the tablespace extent
characteristics.

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-7

FREE_BLOCKS Procedure

This procedure returns information about free blocks in an object (table, index, or
cluster). See "SPACE_USAGE Procedure" for returning free block information in a
auto segment space managed segment.

Syntax
DBMS_SPACE.FREE_BLOCKS (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 freelist_group_id IN NUMBER,
 free_blks OUT NUMBER,
 scan_limit IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL);

Pragmas
pragma restrict_references(free_blocks,WNDS);

Parameters

Table 88–4 FREE_BLOCKS Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed.

segment_name Segment name of the segment to be analyzed.

FREE_BLOCKS Procedure

88-8 PL/SQL Packages and Types Reference

Examples

Example 1
The following declares the necessary bind variables and executes.

DBMS_SPACE.UNUSED_SPACE('SCOTT', 'EMP', 'TABLE', :total_blocks,
 :total_bytes,:unused_blocks, :unused_bytes, :lastextf,
 :last_extb, :lastusedblock);

This fills the unused space information for bind variables in EMP table in SCOTT
schema.

segment_type Type of the segment to be analyzed (TABLE, INDEX, or
CLUSTER):

TABLE

TABLE PARTITION

TABLE SUBPARTITION

INDEX

INDEX PARTITION

INDEX SUBPARTITION

CLUSTER

LOB

LOB PARTITION

LOB SUBPARTITION

freelist_group_id Freelist group (instance) whose free list size is to be computed.

free_blks Returns count of free blocks for the specified group.

scan_limit Maximum number of free list blocks to read (optional).

Use a scan limit of X you are interested only in the question,
"Do I have X blocks on the free list?"

partition_name Partition name of the segment to be analyzed.

This is only used for partitioned tables; the name of
subpartition should be used when partitioning is composite.

Table 88–4 (Cont.) FREE_BLOCKS Procedure Parameters

Parameter Description

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-9

Example 2
The following uses the CLUS cluster in SCOTT schema with 4 freelist groups. It
returns the number of blocks in freelist group 3 in CLUS.

DBMS_SPACE.FREE_BLOCKS('SCOTT', 'CLUS', 'CLUSTER', 3, :free_blocks);

Note: An error is raised if scan_limit is not a positive number.

OBJECT_DEPENDENT_SEGMENTS Function

88-10 PL/SQL Packages and Types Reference

OBJECT_DEPENDENT_SEGMENTS Function

This table function, given an object, returns the list of segments that are associated
with the object.

Syntax
DBMS_SPACE.OBJECT_DEPENDENT_SEGMENTS(
 objowner IN VARCHAR2,
 objname IN VARCHAR2,
 partname IN VARCHAR2,
 objtype IN NUMBER)
 RETURN dependent_segments_table PIPELINED;

Parameters

Table 88–5 OBJECT_DEPENDENT_SEGMENTS Function Parameters

Parameter Description

objowner The schema containing the object.

objname The name of the object.

partname The name of the partition.

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-11

Return Values
The content of one row of a dependent_segments_table:

TYPE object_dependent_segment IS RECORD (
 segment_owner VARCHAR2(100),
 segment_name VARCHAR2(100),
 segment_type VARCHAR2(100),
 tablespace_name VARCHAR2(100),
 partition_name VARCHAR2(100));

objtype Type of the object:

■ OBJECT_TYPE_TABLE
constant positive := 1;

■ OBJECT_TYPE_NESTED_TABLE
constant positive := 2;

■ OBJECT_TYPE_INDEX
constant positive := 3;

■ OBJECT_TYPE_CLUSTER
constant positive := 4;

■ OBJECT_TYPE_TABLE_PARTITION
constant positive := 7;

■ OBJECT_TYPE_INDEX_PARTITION
constant positive := 8;

■ OBJECT_TYPE_TABLE_SUBPARTITION
constant positive := 9;

■ OBJECT_TYPE_INDEX_SUBPARTITION
constant positive := 10;

■ OBJECT_TYPE_MV
constant positive := 13;

■ OBJECT_TYPE_MVLOG
constant positive := 14;

Table 88–6 OBJECT_DEPENDENT_SEGMENT Type Parameters

Parameter Description

segment_owner The schema containing the segment.

segment_name The name of the segment.

Table 88–5 (Cont.) OBJECT_DEPENDENT_SEGMENTS Function Parameters

Parameter Description

OBJECT_DEPENDENT_SEGMENTS Function

88-12 PL/SQL Packages and Types Reference

segmemnt_type The type of the segment, such as table, index or LOB.

partition_name The name of the partition, if any.

Table 88–6 (Cont.) OBJECT_DEPENDENT_SEGMENT Type Parameters

Parameter Description

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-13

OBJECT_GROWTH_TREND Function

This is a table function. The output will be in the form of one or more rows where
each row describes the space usage of the object at a specific point in time. Either
the space usage totals will be retrieved from Automatic Workload Repository
Facilities (AWRF), or the current space usage will be computed and combined with
space usage deltas retrieved from AWRF.

Syntax
DBMS_SPACE.OBJECT_GROWTH_TREND (
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL,
 end_time IN TIMESTAMP DEFAULT NULL,
 interval IN DSINTERVAL_UNCONSTRAINED DEFAULT NULL,
 skip_interpolated IN VARCHAR2 DEFAULT 'FALSE',
 timeout_seconds IN NUMBER DEFAULT NULL,
 single_datapoint_flag IN VARCHAR2 DEFAULT 'TRUE')
 RETURN object_growth_trend_table PIPELINED;

Parameters

Table 88–7 OBJECT_GROWTH_TREND Function Parameters

Parameter Description

object_owner The schema containing the object.

object_name The name of the object.

object_type The name of the object.

partition_name The name of the partition.

start_time Statistics generated after this time will be used in regenerating
the growth trend.

end_time Statistics generated until this time will be used in generating
the growth trend.

interval The interval at which to sample.

skip_interpolated Whether interpolation of missing values should be skipped.

OBJECT_GROWTH_TREND Function

88-14 PL/SQL Packages and Types Reference

Return Values
The object_growth_trend_row and object_growth_trend_table are used
by the OBJECT_GROWTH_TREND table function to describe its output.

TYPE object_growth_trend_row IS RECORD(
 timepoint TIMESTAMP,
 space_usage NUMBER,
 space_alloc NUMBER,
 quality VARCHAR(20));

TYPE object_growth_trend_table IS TABLE OF object_growth_trend_row;

timeout_seconds The timeout value for the function in seconds.

single_data_point_
flag

Whether in the absence of statistics the segment should be
sampled.

Table 88–8 OBJECT_GROWTH_TREND_ROW Type Parameters

Parameter Description

timepoint The time at which the statistic was recorded.

space_usage The size of the segment including overhead and unused space.

space_alloc The space used by data.

quality The quality of result: "GOOD", "INTERPOLATED",
"PROJECTION".

Table 88–7 (Cont.) OBJECT_GROWTH_TREND Function Parameters

Parameter Description

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-15

SPACE_USAGE Procedure

This procedure shows the space usage of data blocks under the segment High Water
Mark. The bitmap blocks, segment header, and extent map blocks are not accounted
for by this procedure. This procedure can only be used on tablespaces that are
created with auto segment space management.

Syntax
DBMS_SPACE.SPACE_USAGE(
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 unformatted_blocks OUT NUMBER,
 unformatted_bytes OUT NUMBER,
 fs1_blocks OUT NUMBER,
 fs1_bytes OUT NUMBER,
 fs2_blocks OUT NUMBER,
 fs2_bytes OUT NUMBER,
 fs3_blocks OUT NUMBER,
 fs3_bytes OUT NUMBER,
 fs4_blocks OUT NUMBER,
 fs4_bytes OUT NUMBER,
 full_blocks OUT NUMBER,
 full_bytes OUT NUMBER,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 88–9 SPACE_USAGE Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed

segment_name Name of the segment to be analyzed

partition_name Partition name of the segment to be analyzed

segment_type Type of the segment to be analyzed (TABLE, INDEX, or
CLUSTER)

unformatted_blocks Total number of blocks that are unformatted

unformatted bytes Total number of bytes that are unformatted

SPACE_USAGE Procedure

88-16 PL/SQL Packages and Types Reference

Examples
variable unf number;
variable unfb number;
variable fs1 number;
variable fs1b number;
variable fs2 number;
variable fs2b number;
variable fs3 number;
variable fs3b number;
variable fs4 number;
variable fs4b number;
variable full number;
variable fullb number;

begin
dbms_space.space_usage('U1','T',
 'TABLE',
 :unf, :unfb,
 :fs1, :fs1b,
 :fs2, :fs2b,
 :fs3, :fs3b,
 :fs4, :fs4b,
 :full, :fullb);
end;
/

fs1_blocks Number of blocks that has at least 0 to 25% free space

fs1_bytes Number of bytes that has at least 0 to 25% free space

fs2_blocks Number of blocks that has at least 25 to 50% free space

fs2_bytes Number of bytes that has at least 25 to 50% free space

fs3_blocks Number of blocks that has at least 50 to 75% free space

fs3_bytes Number of bytes that has at least 50 to 75% free space

fs4_blocks Number of blocks that has at least 75 to 100% free space

fs4_bytes Number of bytes that has at least 75 to 100% free space

ful1_blocks Total number of blocks that are full in the segment

full_bytes Total number of bytes that are full in the segment

Table 88–9 (Cont.) SPACE_USAGE Procedure Parameters

Parameter Description

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-17

print unf ;
print unfb ;
print fs4 ;
print fs4b;
print fs3 ;
print fs3b;
print fs2 ;
print fs2b;
print fs1 ;
print fs1b;
print full;
print fullb;

UNUSED_SPACE Procedure

88-18 PL/SQL Packages and Types Reference

UNUSED_SPACE Procedure

This procedure returns information about unused space in an object (table, index, or
cluster).

Syntax
DBMS_SPACE.UNUSED_SPACE (
 segment_owner IN VARCHAR2,
 segment_name IN VARCHAR2,
 segment_type IN VARCHAR2,
 total_blocks OUT NUMBER,
 total_bytes OUT NUMBER,
 unused_blocks OUT NUMBER,
 unused_bytes OUT NUMBER,
 last_used_extent_file_id OUT NUMBER,
 last_used_extent_block_id OUT NUMBER,
 last_used_block OUT NUMBER,
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 88–10 UNUSED_SPACE Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed.

segment_name Segment name of the segment to be analyzed.

Summary of DBMS_SPACE Subprograms

DBMS_SPACE 88-19

segment_type Type of the segment to be analyzed (TABLE, INDEX, or
CLUSTER):

■ TABLE

■ TABLE PARTITION

■ TABLE SUBPARTITION

■ INDEX

■ INDEX PARTITION

■ INDEX SUBPARTITION

■ CLUSTER

■ LOB

■ LOB PARTITION

■ LOB SUBPARTITION

total_blocks Returns total number of blocks in the segment.

total_bytes Returns total number of blocks in the segment, in bytes.

unused_blocks Returns number of blocks which are not used.

unused_bytes Returns, in bytes, number of blocks which are not used.

last_used_extent_
file_id

Returns the file ID of the last extent which contains data.

last_used_extent_
block_id

Returns the block ID of the last extent which contains data.

last_used_block Returns the last block within this extent which contains data.

partition_name Partition name of the segment to be analyzed.

This is only used for partitioned tables; the name of
subpartition should be used when partitioning is compose.

Table 88–10 UNUSED_SPACE Procedure Parameters

Parameter Description

UNUSED_SPACE Procedure

88-20 PL/SQL Packages and Types Reference

DBMS_SPACE_ADMIN 89-1

89
DBMS_SPACE_ADMIN

The DBMS_SPACE_ADMIN package provides functionality for locally managed
tablespaces.

This chapter contains the following topics:

■ Using DBMS_SPACE_ADMIN

■ Security Model

■ Constants

■ Operational Notes

■ Summary of DBMS_SPACE_ADMIN Subprograms

See Also: Oracle Database Administrator's Guide for an example
and description of using DBMS_SPACE_ADMIN.

Using DBMS_SPACE_ADMIN

89-2 PL/SQL Packages and Types Reference

Using DBMS_SPACE_ADMIN

■ Security Model

■ Constants

■ Operational Notes

Security Model

This package runs with SYS privileges; therefore, any user who has privilege to
execute the package can manipulate the bitmaps.

Constants

Table 89–1 DBMS_SPACE_ADMIN Constants

Constant Description

SEGMENT_VERIFY
Procedure

Verifies that the space owned by segment is
appropriately reflected in the bitmap as used.

SEGMENT_VERIFY_
EXTENTS_GLOBAL

Verifies that the space owned by segment is
appropriately reflected in the bitmap as used and that no
other segment claims any of this space to be used by it.

SEGMENT_MARK_CORRUPT Marks a temporary segment as corrupt whereby
facilitating its elimination from the dictionary (without
space reclamation).

SEGMENT_MARK_VALID Marks a corrupt temporary segment as valid. It is useful
when the corruption in the segment extent map or
elsewhere has been resolved and the segment can be
dropped normally.

SEGMENT_DUMP_EXTENT_
MAP

Dumps the extent map for a given segment.

TABLESPACE_VERIFY_
BITMAP

Verifies the bitmap of the tablespace with extent maps of
the segments in that tablespace to make sure everything
is consistent.

Using DBMS_SPACE_ADMIN

DBMS_SPACE_ADMIN 89-3

Operational Notes

Before you migrate the SYSTEM tablespace, you should migrate any
dictionary-managed tablespaces that you may want to use in read/write mode to
locally managed. After the SYSTEM tablespace is migrated, you cannot change
dictionary-managed tablespaces to read/write.

Before migrating the SYSTEM tablespace, the following conditions must be met.
These conditions are enforced by the TABLESPACE_MIGRATE_TO_LOCAL
procedure, except for the cold backup.

■ The database must have a default temporary tablespace that is not SYSTEM.

■ Dictionary-managed tablespaces cannot have any rollback segments.

■ A locally managed tablespace must have at least one online rollback segment. If
you are using automatic undo management, an undo tablespace must be online.

■ All tablespaces—except the tablespace containing the rollback segment or the
undo tablespace—must be read-only.

■ You must have a cold backup of the database.

■ The system must be in restricted mode.

TABLESPACE_EXTENT_
MAKE_FREE

Makes this range (extent) of space free in the bitmaps.

TABLESPACE_EXTENT_
MAKE_USED

Makes this range (extent) of space used in the bitmaps.

See Also:

■ Oracle Database Administrator's Guide

■ "TABLESPACE_MIGRATE_TO_LOCAL Procedure" on
page 89-13

Table 89–1 DBMS_SPACE_ADMIN Constants

Constant Description

Summary of DBMS_SPACE_ADMIN Subprograms

89-4 PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms

Table 89–2 DBMS_SPACE_ADMIN Package Subprograms

Subprogram Description

SEGMENT_CORRUPT Procedure
on page 89-5

Marks the segment corrupt or valid so that appropriate
error recovery can be done

SEGMENT_DROP_CORRUPT
Procedure on page 89-6

Drops a segment currently marked corrupt (without
reclaiming space)

SEGMENT_DUMP Procedure on
page 89-7

Dumps the segment header and extent maps of a given
segment

SEGMENT_VERIFY Procedure on
page 89-8

Verifies the consistency of the extent map of the
segment

TABLESPACE_FIX_BITMAPS
Procedure on page 89-10

Marks the appropriate DBA range (extent) as free or
used in bitmap

TABLESPACE_FIX_SEGMENT_
STATES Procedure on page 89-11

Fixes the state of the segments in a tablespace in which
migration was aborted

TABLESPACE_MIGRATE_
FROM_LOCAL Procedure on
page 89-12

Migrates a locally-managed tablespace to
dictionary-managed tablespace

TABLESPACE_MIGRATE_TO_
LOCAL Procedure on page 89-13

Migrates a tablespace from dictionary managed format
to locally managed format

TABLESPACE_REBUILD_
BITMAPS Procedure on
page 89-15

Rebuilds the appropriate bitmaps

TABLESPACE_REBUILD_
QUOTAS Procedure on page 89-16

Rebuilds quotas for given tablespace

TABLESPACE_RELOCATE_
BITMAPS Procedure on
page 89-17

Relocates the bitmaps to the destination specified

TABLESPACE_VERIFY Procedure
on page 89-19

Verifies that the bitmaps and extent maps for the
segments in the tablespace are in sync

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-5

SEGMENT_CORRUPT Procedure

This procedure marks the segment corrupt or valid so that appropriate error
recovery can be done. It cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_CORRUPT (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 corrupt_option IN POSITIVE DEFAULT SEGMENT_MARK_CORRUPT);

Parameters

Examples
The following example marks the segment as corrupt:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT('USERS', 4, 33, 3);

Alternately, the next example marks a corrupt segment valid:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT('USERS', 4, 33, 4);

Table 89–3 SEGMENT_CORRUPT Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

corrupt_option SEGMENT_MARK_CORRUPT (default) or SEGMENT_MARK_
VALID.

SEGMENT_DROP_CORRUPT Procedure

89-6 PL/SQL Packages and Types Reference

SEGMENT_DROP_CORRUPT Procedure

This procedure drops a segment currently marked corrupt (without reclaiming
space). For this to work, the segment should have been marked temporary. To mark a
corrupt segment as temporary, issue a DROP command on the segment.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE);

Parameters

Usage Notes
The procedure cannot be used on the SYSTEM tablespace.

The space for the segment is not released, and it must be fixed by using the
TABLESPACE_FIX_BITMAPS Procedure or the TABLESPACE_REBUILD_BITMAPS
Procedure.

Examples
EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT('USERS', 4, 33);

Table 89–4 SEGMENT_DROP_CORRUPT Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-7

SEGMENT_DUMP Procedure

This procedure dumps the segment header and extent map blocks of the given
segment.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_DUMP (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 dump_option IN POSITIVE DEFAULT SEGMENT_DUMP_EXTENT_MAP);

Parameters

Examples
EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DUMP('USERS', 4, 33);

Table 89–5 SEGMENT_DUMP Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

dump_option SEGMENT_DUMP_EXTENT_MAP.

SEGMENT_VERIFY Procedure

89-8 PL/SQL Packages and Types Reference

SEGMENT_VERIFY Procedure

This procedure verifies that the extent map of the segment is consistent with the
bitmap.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_VERIFY (
 tablespace_name IN VARCHAR2,
 header_relative_file IN POSITIVE,
 header_block IN POSITIVE,
 verify_option IN POSITIVE DEFAULT SEGMENT_VERIFY_EXTENTS);

Parameters

Usage Notes
Anomalies are output as dba-range, bitmap-block, bitmap-block-range,
anomaly-information, in the trace file for all dba-ranges found to have incorrect
space representation. The kinds of problems which would be reported are free space
not considered free, used space considered free, and the same space considered
used by multiple segments.

Examples
The following example verifies that the segment with segment header at relative file
number 4, block number 33, has its extent maps and bitmaps in sync.

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_VERIFY('USERS', 4, 33, 1);

Table 89–6 SEGMENT_VERIFY Procedure Parameters

Parameters Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

verify_option What kind of check to do: SEGMENT_VERIFY_EXTENTS or
SEGMENT_VERIFY_EXTENTS_GLOBAL.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-9

Note: All DBMS_SPACE_ADMIN package examples use the
tablespace USERS which contains SCOTT.EMP.

TABLESPACE_FIX_BITMAPS Procedure

89-10 PL/SQL Packages and Types Reference

TABLESPACE_FIX_BITMAPS Procedure

This procedure marks the appropriate DBA range (extent) as free or used in bitmap.
It cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS (
 tablespace_name IN VARCHAR2,
 dbarange_relative_file IN POSITIVE,
 dbarange_begin_block IN POSITIVE,
 dbarange_end_block IN POSITIVE,
 fix_option IN POSITIVE);

Parameters

Examples
The following example marks bits for 50 blocks for relative file number 4, beginning
at block number 33 and ending at 83, as USED in bitmaps.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS('USERS', 4, 33, 83, 7);

Alternately, specifying an option of 8 marks the bits FREE in bitmaps. The BEGIN
and END blocks should be in extent boundary and should be extent multiple.
Otherwise, an error is raised.

Table 89–7 TABLESPACE_FIX_BITMAPS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

dbarange_relative_
file

Relative file number of DBA range (extent).

dbarange_begin_block Block number of beginning of extent.

dbarange_end_block Block number (inclusive) of end of extent.

fix_option TABLESPACE_EXTENT_MAKE_FREE or TABLESPACE_
EXTENT_MAKE_USED.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-11

TABLESPACE_FIX_SEGMENT_STATES Procedure

Use this procedure to fix the state of the segments in a tablespace in which
migration was aborted. During tablespace migration to or from local, the segments
are put in a transient state. If migration is aborted, the segment states are corrected
by SMON when event 10906 is set. Database with segments is such a transient state
cannot be downgraded. The procedure can be used to fix the state of such segments.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_FIX_SEGMENT_STATES (
 tablespace_name IN VARCHAR);

Parameters

Usage Notes
The tablespace must be kept online and read/write when this procedure is called.

Examples
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_FIX_SEGMENT_STATES('TS1')

Table 89–8 TABLESPACE_FIX_SEGMENT_STATES Procedure Parameters

Parameter Name Purpose

tablespace_name Name of the tablespace whose segments need to be fixed.

TABLESPACE_MIGRATE_FROM_LOCAL Procedure

89-12 PL/SQL Packages and Types Reference

TABLESPACE_MIGRATE_FROM_LOCAL Procedure

This procedure migrates a locally-managed tablespace to a dictionary-managed
tablespace. You cannot use this procedure for SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL (
 tablespace_name IN VARCHAR2);

Parameter

Usage Notes
The tablespace must be kept online and read/write during migration. Migration of
temporary tablespaces and migration of SYSTEM tablespaces are not supported.

Examples
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL('USERS');

Table 89–9 TABLESPACE_MIGRATE_FROM_LOCAL Procedure Parameter

Parameter Description

tablespace_name Name of tablespace.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-13

TABLESPACE_MIGRATE_TO_LOCAL Procedure

Use this procedure to migrate the tablespace from a dictionary-managed format to a
locally managed format. Tablespaces migrated to locally managed format are user
managed.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL (
 tablespace_name IN VARCHAR,
 allocation_unit IN INTEGER,
 relative_fno IN INTGER);

Parameters

Usage Notes

The tablespace must be kept online and read/write during migration. Note that
temporary tablespaces cannot be migrated.

Allocation Unit may be specified optionally. The default is calculated by the system
based on the highest common divisor of all extents (used or free) for the tablespace.
This number is further trimmed based on the MINIMUM EXTENT for the tablespace
(5 if MINIMUM EXTENTT is not specified). Thus, the calculated value will not be
larger than the MINIMUM EXTENT for the tablespace. The last free extent in every
file will be ignored for GCD calculation. If you specify the unit size, it has to be a

Table 89–10 TABLESPACE_MIGRATE_TO_LOCAL Procedure Parameters

Parameter Name Purpose

tablespace_name Name of the tablespace to be migrated.

allocation_unit Unit size (which is the size of the smallest possible chunk of space
that can be allocated) in the tablespace.

relative_fno Relative File Number of the file where the bitmap blocks should be
placed (optional).

Note: Do not migrate the SYSTEM tablespace without a clear
understanding of the conditions that must be met. Refer to
Operational Notes on page 89-3.

TABLESPACE_MIGRATE_TO_LOCAL Procedure

89-14 PL/SQL Packages and Types Reference

factor of the UNIT size calculated by the system, otherwise an error message is
returned.

The Relative File Number parameter is used to place the bitmaps in a desired file. If
space is not found in the file, an error is issued. The datafile specified should be part
of the tablespace being migrated. If the datafile is not specified then the system will
choose a datafile in which to place the initial bitmap blocks. If space is not found for
the initial bitmaps, an error will be raised.

Examples
To migrate a tablespace 'TS1' with minimum extent size 1m, use

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL('TS1', 512, 2);

The bitmaps will be placed in file with relative file number 2.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-15

TABLESPACE_REBUILD_BITMAPS Procedure

This procedure rebuilds the appropriate bitmaps. If no bitmap block DBA is
specified, then it rebuilds all bitmaps for the given tablespace.

The procedure cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS (
 tablespace_name IN VARCHAR2,
 bitmap_relative_file IN POSITIVE DEFAULT NULL,
 bitmap_block IN POSITIVE DEFAULT NULL);

Parameters

Usage Notes

Examples
The following example rebuilds bitmaps for all the files in the USERS tablespace.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS('USERS');

Table 89–11 TABLESPACE_REBUILD_BITMAPS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

bitmap_relative_file Relative file number of bitmap block to rebuild.

bitmap_block Block number of bitmap block to rebuild.

Note: Only full rebuild is supported.

TABLESPACE_REBUILD_QUOTAS Procedure

89-16 PL/SQL Packages and Types Reference

TABLESPACE_REBUILD_QUOTAS Procedure

This procedure rebuilds quotas for the given tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS (
 tablespace_name IN VARCHAR2);

Parameters

Examples
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS('USERS');

Table 89–12 TABLESPACE_REBUILD_QUOTAS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-17

TABLESPACE_RELOCATE_BITMAPS Procedure

Use this procedure to relocate the bitmaps to the destination specified.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_RELOCATE_BITMAPS (
 tablespace_name IN VARCHAR,
 relative_fno IN NUMBER,
 block_number IN NUMBER);

Parameters

Usage Notes
Migration of a tablespace from dictionary managed to locally managed format
could result in the creation of SPACE HEADER segment that contains the bitmap
blocks. The SPACE HEADER segment is treated as user data. If the user wishes to
explicitly resize a file at or below the space header segment, an error is issued. Use
the tablespace_relocate_bitmaps command to move the control information
to a different destination and then resize the file.

This procedure cannot be used on the SYSTEM tablespace.

The tablespace must be kept online and read/write during relocation of bitmaps.
This can be done only on migrated locally managed tablespaces.

Examples
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_RELOCATE_BITMAPS('TS1', 3, 4);

Moves the bitmaps to file 3, block 4.

Table 89–13 TABLESPACE_RELOCATE_BITMAPS Procedure Parameters

Parameter Name Purpose

tablespace_name Name of Tablespace.

relative_fno Relative File Number of the destination file.

block_number Block Number of the destination dba.

TABLESPACE_RELOCATE_BITMAPS Procedure

89-18 PL/SQL Packages and Types Reference

Note: The source and the destination addresses should not
overlap. The destination block number is rounded down to the unit
boundary. If there is user data in that location an error is raised.

Summary of DBMS_SPACE_ADMIN Subprograms

DBMS_SPACE_ADMIN 89-19

TABLESPACE_VERIFY Procedure

This procedure verifies that the bitmaps and extent maps for the segments in the
tablespace are in sync.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_VERIFY (
 tablespace_name IN VARCHAR2,
 verify_option IN POSITIVE DEFAULT TABLESPACE_VERIFY_BITMAP);

Parameters

Examples
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_VERIFY('USERS');

Table 89–14 TABLESPACE_VERIFY Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

verify_option TABLESPACE_VERIFY_BITMAP.

TABLESPACE_VERIFY Procedure

89-20 PL/SQL Packages and Types Reference

DBMS_SQL 90-1

90
DBMS_SQL

The DBMS_SQL package provides an interface to use dynamic SQL to parse any data
manipulation language (DML) or data definition language (DDL) statement using
PL/SQL. For example, you can enter a DROP TABLE statement from within a stored
procedure by using the PARSE procedure supplied with the DBMS_SQL package.

This chapter contains the following topics:

■ Using DBMS_SQL

■ Overview

■ Security Model

■ Constants

■ Types

■ Exceptions

■ Operational Notes

■ Examples

■ Summary of DBMS_SQL Subprograms

See Also: For more information on native dynamic SQL, see
PL/SQL User's Guide and Reference.

For a comparison of DBMS_SQL and native dynamic SQL, see Oracle
Database Application Developer's Guide - Fundamentals.

Using DBMS_SQL

90-2 PL/SQL Packages and Types Reference

Using DBMS_SQL

■ Overview

■ Security Model

■ Constants

■ Types

■ Exceptions

■ Operational Notes

■ Examples

Overview

Oracle lets you to write stored procedures and anonymous PL/SQL blocks that use
dynamic SQL. Dynamic SQL statements are not embedded in your source program;
rather, they are stored in character strings that are input to, or built by, the program
at runtime. This enables you to create more general-purpose procedures. For
example, dynamic SQL lets you create a procedure that operates on a table whose
name is not known until runtime.

Native dynamic SQL is an alternative to DBMS_SQL that lets you place dynamic
SQL statements directly into PL/SQL blocks. In most situations, native dynamic
SQL is easier to use and performs better than DBMS_SQL. However, there are some
tasks that can only be performed using DBMS_SQL.

The ability to use dynamic SQL from within stored procedures generally follows the
model of the Oracle Call Interface (OCI).

PL/SQL differs somewhat from other common programming languages, such as C.
For example, addresses (also called pointers) are not user-visible in PL/SQL. As a
result, there are some differences between the Oracle Call Interface and the DBMS_
SQL package. These differences include the following:

■ The OCI uses bind by address, while the DBMS_SQL package uses bind by
value.

See Also: Oracle Call Interface Programmer's Guide

Using DBMS_SQL

DBMS_SQL 90-3

■ With DBMS_SQL you must call VARIABLE_VALUE to retrieve the value of an
OUT parameter for an anonymous block, and you must call COLUMN_VALUE
after fetching rows to actually retrieve the values of the columns in the rows
into your program.

■ The current release of the DBMS_SQL package does not provide CANCEL cursor
procedures.

■ Indicator variables are not required, because NULLs are fully supported as
values of a PL/SQL variable.

A sample usage of the DBMS_SQL package follows. For users of the Oracle Call
Interfaces, this code should seem fairly straightforward.

Security Model

DBMS_SQL is compiled with AUTHID CURRENT_USER.

Any DBMS_SQL subprograms called from an anonymous PL/SQL block are run
using the privileges of the current user.

Constants

v6 constant INTEGER := 0;
native constant INTEGER := 1;
v7 constant INTEGER := 2;

 Types

General Types

■ DESC_REC, DESC_TAB

■ VARCHAR2A, DESC_REC2

■ VARCHAR2_TABLE

Bulk SQL Types

■ BFILE_TABLE

See Also: For more information about invoking subprograms
using either Invoker or Definer Rights, see PL/SQL User's Guide and
Reference

Types

90-4 PL/SQL Packages and Types Reference

■ BINARY_DOUBLE_TABLE

■ BLOB_TABLE

■ CLOB_TABLE

■ DATE_TABLE

■ INTERVAL_DAY_TO_SECOND_TABLE

■ INTERVAL_YEAR_TO_MONTH_TABLE

■ NUMBER_TABLE

■ TIME_TABLE

■ TIME_WITH_TIME_ZONE_TABLE

■ TIMESTAMP_TABLE

■ TIMESTAMP_WITH_LTZ_TABLE

■ UROWID_TABLE

■ VARCHAR2_TABLE

BFILE_TABLE
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;

BINARY_DOUBLE_TABLE
TYPE binary_double_table IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;

BINARY_FLOAT_TABLE
TYPE binary_float_table IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;

BLOB_TABLE
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;

CLOB_TABLE
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;

DATE_TABLE
type date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;

Using DBMS_SQL

DBMS_SQL 90-5

INTERVAL_DAY_TO_SECOND_TABLE
 TYPE interval_day_to_second_Table IS TABLE OF
 dsinterval_unconstrained INDEX BY binary_integer;

INTERVAL_YEAR_TO_MONTH_TABLE
TYPE interval_year_to_month_table IS TABLE OF yminterval_unconstrained INDEX BY
BINARY_INTEGER;

DESC_REC, DESC_TAB
TYPE desc_rec IS RECORD (
 col_type BINARY_INTEGER := 0,
 col_max_len BINARY_INTEGER := 0,
 col_name VARCHAR2(32) := '',
 col_name_len BINARY_INTEGER := 0,
 col_schema_name VARCHAR2(32) := '',
 col_schema_name_len BINARY_INTEGER := 0,
 col_precision BINARY_INTEGER := 0,
 col_scale BINARY_INTEGER := 0,
 col_charsetid BINARY_INTEGER := 0,
 col_charsetform BINARY_INTEGER := 0,
 col_null_ok BOOLEAN := TRUE);
TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

NUMBER_TABLE
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

TIME_TABLE
TYPE time_table IS TABLE OF time_unconstrained INDEX BY BINARY_INTEGER;

TIME_WITH_TIME_ZONE_TABLE
TYPE time_with_time_zone_table IS TABLE OF TIME_TZ_UNCONSTRAINED INDEX
BY BINARY_INTEGER;

TIMESTAMP_TABLE
TYPE timestamp_table IS TABLE OF timestamp_unconstrained INDEX BY BINARY_
INTEGER;

TIMESTAMP_WITH_LTZ_TABLE
TYPE timestamp_with_ltz_table IS TABLE OF

Exceptions

90-6 PL/SQL Packages and Types Reference

 TIMESTAMP_LTZ_UNCONSTRAINED INDEX BY binary_integer;

UROWID_TABLE
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;

VARCHAR2_TABLE
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

VARCHAR2A, DESC_REC2
TYPE varchar2a IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;
 TYPE desc_rec2 IS RECORD (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32767) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE);
 TYPE desc_tab2 IS TABLE OF desc_rec2 INDEX BY BINARY_INTEGER;

VARCHAR2S
TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;

Exceptions

inconsistent_type EXCEPTION;
 pragma exception_init(inconsistent_type, -6562);

This exception is raised by the COLUMN_VALUE Procedure or the VARIABLE_
VALUE Procedures when the type of the given OUT parameter (for where to put the
requested value) is different from the type of the value.

Using DBMS_SQL

DBMS_SQL 90-7

Operational Notes

Execution Flow

 OPEN_CURSOR
To process a SQL statement, you must have an open cursor. When you call
the OPEN_CURSOR Function function, you receive a cursor ID number for the data
structure representing a valid cursor maintained by Oracle. These cursors are
distinct from cursors defined at the precompiler, OCI, or PL/SQL level, and are
used only by the DBMS_SQL package.

PARSE
Every SQL statement must be parsed by calling the PARSE Procedure. Parsing the
statement checks the statement's syntax and associates it with the cursor in your
program.

You can parse any DML or DDL statement. DDL statements are run on the parse,
which performs the implied commit.

The execution flow of DBMS_SQL is shown in Figure 90–1.

Note: When parsing a DDL statement to drop a package or a
procedure, a deadlock can occur if you're still using a procedure in
the package. After a call to a procedure, that procedure is
considered to be in use until execution has returned to the user
side. Any such deadlock timeouts after five minutes.

Operational Notes

90-8 PL/SQL Packages and Types Reference

Figure 90–1 DBMS_SQL Execution Flow

bind_variable

EXECUTE

variable_value

close_cursor

no

yes

yes

no

yes

no

open_cursor

PARSE

define_column

EXECUTE

fetch_rows

column_value

variable_value

query?

PL/SQL
block?

Use bind
variables?

Using DBMS_SQL

DBMS_SQL 90-9

BIND_VARIABLE or BIND_ARRAY
Many DML statements require that data in your program be input to Oracle. When
you define a SQL statement that contains input data to be supplied at runtime, you
must use placeholders in the SQL statement to mark where data must be supplied.

For each placeholder in the SQL statement, you must call one of the bind
procedures, the BIND_ARRAY Procedures on page 90-27 or the BIND_VARIABLE
Procedures on page 90-30, to supply the value of a variable in your program (or the
values of an array) to the placeholder. When the SQL statement is subsequently run,
Oracle uses the data that your program has placed in the output and input, or bind,
variables.

DBMS_SQL can run a DML statement multiple times — each time with a different
bind variable. The BIND_ARRAY procedure lets you bind a collection of scalars, each
value of which is used as an input variable once for each EXECUTE. This is similar
to the array interface supported by the OCI.

DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY
The columns of the row being selected in a SELECT statement are identified by their
relative positions as they appear in the select list, from left to right. For a query, you
must call one of the define procedures (DEFINE_COLUMN, DEFINE_COLUMN_LONG,
or DEFINE_ARRAY) to specify the variables that are to receive the SELECT values,
much the way an INTO clause does for a static query.

Use the DEFINE_COLUMN_LONG procedure to define LONG columns, in the same
way that DEFINE_COLUMN is used to define non-LONG columns. You must call
DEFINE_COLUMN_LONG before using the COLUMN_VALUE_LONG procedure to fetch
from the LONG column.

Use the DEFINE_ARRAY procedure to define a PL/SQL collection into which you
want to fetch rows in a single SELECT statement. DEFINE_ARRAY provides an
interface to fetch multiple rows at one fetch. You must call DEFINE_ARRAY before
using the COLUMN_VALUE procedure to fetch the rows.

EXECUTE
Call the EXECUTE function to run your SQL statement.

FETCH_ROWS or EXECUTE_AND_FETCH
The FETCH_ROWS function retrieves the rows that satisfy the query. Each successive
fetch retrieves another set of rows, until the fetch is unable to retrieve anymore
rows. Instead of calling EXECUTE and then FETCH_ROWS, you may find it more
efficient to call EXECUTE_AND_FETCH if you are calling EXECUTE for a single
execution.

Operational Notes

90-10 PL/SQL Packages and Types Reference

VARIABLE_VALUE, COLUMN_VALUE, or COLUMN_VALUE_LONG
For queries, call COLUMN_VALUE to determine the value of a column retrieved by
the FETCH_ROWS call. For anonymous blocks containing calls to PL/SQL
procedures or DML statements with returning clause, call VARIABLE_VALUE to
retrieve the values assigned to the output variables when statements were run.

To fetch just part of a LONG database column (which can be up to two gigabytes in
size), use the COLUMN_VALUE_LONG procedure. You can specify the offset (in bytes)
into the column value, and the number of bytes to fetch.

CLOSE_CURSOR
When you no longer need a cursor for a session, close the cursor by calling CLOSE_
CURSOR. If you are using an Oracle Open Gateway, then you may need to close
cursors at other times as well. Consult your Oracle Open Gateway documentation for
additional information.

If you neglect to close a cursor, then the memory used by that cursor remains
allocated even though it is no longer needed.

Processing Queries
If you are using dynamic SQL to process a query, then you must perform the
following steps:

1. Specify the variables that are to receive the values returned by the SELECT
statement by calling the DEFINE_COLUMN Procedure, the DEFINE_
COLUMN_LONG Procedure, or the DEFINE_ARRAY Procedure.

2. Run your SELECT statement by calling the EXECUTE Function.

3. Call the FETCH_ROWS Function (or EXECUTE_AND_FETCH) to retrieve the
rows that satisfied your query.

4. Call COLUMN_VALUE Procedure or COLUMN_VALUE_LONG Procedure to
determine the value of a column retrieved by the FETCH_ROWS Function for
your query. If you used anonymous blocks containing calls to PL/SQL
procedures, then you must call the VARIABLE_VALUE Procedures to retrieve
the values assigned to the output variables of these procedures.

Processing Updates, Inserts, and Deletes
If you are using dynamic SQL to process an INSERT, UPDATE, or DELETE, then you
must perform the following steps:

1. You must first run your INSERT, UPDATE, or DELETE statement by calling the
EXECUTE Function.

Using DBMS_SQL

DBMS_SQL 90-11

2. If statements have the returning clause, then you must call the VARIABLE_
VALUE Procedures to retrieve the values assigned to the output variables.

Locating Errors
There are additional functions in the DBMS_SQL package for obtaining information
about the last referenced cursor in the session. The values returned by these
functions are only meaningful immediately after a SQL statement is run. In
addition, some error-locating functions are only meaningful after certain DBMS_
SQL calls. For example, you call the LAST_ERROR_POSITION Function
immediately after a PARSE.

Examples

This section provides example procedures that make use of the DBMS_SQL package.

Example 1
This example does not require the use of dynamic SQL because the text of the
statement is known at compile time., but it illustrate the basic concept underlying
the package.

The DEMO procedure deletes all of the employees from the EMP table whose salaries
are greater than the salary that you specify when you run DEMO.

CREATE OR REPLACE PROCEDURE demo(salary IN NUMBER) AS
 cursor_name INTEGER;
 rows_processed INTEGER;
BEGIN
 cursor_name := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(cursor_name, 'DELETE FROM emp WHERE sal > :x',
 dbms_sql.native);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':x', salary);
 rows_processed := dbms_sql.execute(cursor_name);
 DBMS_SQL.close_cursor(cursor_name);
EXCEPTION
WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Example 2
The following sample procedure is passed a SQL statement, which it then parses
and runs:

Examples

90-12 PL/SQL Packages and Types Reference

CREATE OR REPLACE PROCEDURE exec(STRING IN varchar2) AS
 cursor_name INTEGER;
 ret INTEGER;
BEGIN
 cursor_name := DBMS_SQL.OPEN_CURSOR;

DDL statements are run by the parse call, which performs the implied commit.

 DBMS_SQL.PARSE(cursor_name, string, DBMS_SQL.native);
 ret := DBMS_SQL.EXECUTE(cursor_name);
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Creating such a procedure enables you to perform the following operations:

■ The SQL statement can be dynamically generated at runtime by the calling
program.

■ The SQL statement can be a DDL statement or a DML without binds.

For example, after creating this procedure, you could make the following call:

exec('create table acct(c1 integer)');

You could even call this procedure remotely, as shown in the following example.
This lets you perform remote DDL.

exec@hq.com('CREATE TABLE acct(c1 INTEGER)');

Example 3
The following sample procedure is passed the names of a source and a destination
table, and copies the rows from the source table to the destination table. This sample
procedure assumes that both the source and destination tables have the following
columns:

id of type NUMBER
name of type VARCHAR2(30)
birthdate of type DATE

This procedure does not specifically require the use of dynamic SQL; however, it
illustrates the concepts of this package.

CREATE OR REPLACE PROCEDURE copy (
 source IN VARCHAR2,
 destination IN VARCHAR2) IS
 id_var NUMBER;
 name_var VARCHAR2(30);

Using DBMS_SQL

DBMS_SQL 90-13

 birthdate_var DATE;
 source_cursor INTEGER;
 destination_cursor INTEGER;
 ignore INTEGER;
 BEGIN

 -- Prepare a cursor to select from the source table:
 source_cursor := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(source_cursor,
 'SELECT id, name, birthdate FROM ' || source,
 DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 1, id_var);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 2, name_var, 30);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 3, birthdate_var);
 ignore := DBMS_SQL.EXECUTE(source_cursor);

 -- Prepare a cursor to insert into the destination table:
 destination_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(destination_cursor,
 'INSERT INTO ' || destination ||
 ' VALUES (:id_bind, :name_bind, :birthdate_bind)',
 DBMS_SQL.native);

-- Fetch a row from the source table and insert it into the destination table:
 LOOP
 IF DBMS_SQL.FETCH_ROWS(source_cursor)>0 THEN
 -- get column values of the row
 DBMS_SQL.COLUMN_VALUE(source_cursor, 1, id_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 2, name_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 3, birthdate_var);

 -- Bind the row into the cursor that inserts into the destination table. You
 -- could alter this example to require the use of dynamic SQL by inserting an
 -- if condition before the bind.
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':id_bind', id_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':name_bind', name_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':birthdate_bind',
birthdate_var);
 ignore := DBMS_SQL.EXECUTE(destination_cursor);
 ELSE

 -- No more rows to copy:
 EXIT;
 END IF;
 END LOOP;

Examples

90-14 PL/SQL Packages and Types Reference

 -- Commit and close all cursors:
 COMMIT;
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 EXCEPTION
 WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(source_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 END IF;
 IF DBMS_SQL.IS_OPEN(destination_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 END IF;
 RAISE;
 END;
/

Examples 3, 4, and 5: Bulk DML
This series of examples shows how to use bulk array binds (table items) in the SQL
DML statements DELETE, INSERT, and UPDATE.

In a DELETE statement, for example, you could bind in an array in the WHERE clause
and have the statement be run for each element in the array:

declare
 stmt varchar2(200);
 dept_no_array dbms_sql.Number_Table;
 c number;
 dummy number;
begin
 dept_no_array(1) := 10; dept_no_array(2) := 20;
 dept_no_array(3) := 30; dept_no_array(4) := 40;
 dept_no_array(5) := 30; dept_no_array(6) := 40;
 stmt := 'delete from emp where deptno = :dept_array';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':dept_array', dept_no_array, 1, 4);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;

Using DBMS_SQL

DBMS_SQL 90-15

end;
/

In the preceding example, only elements 1 through 4 are used as specified by the
BIND_ARRAY call. Each element of the array potentially deletes a large number of
employees from the database.

Here is an example of a bulk INSERT statement:

declare
 stmt varchar2(200);
 empno_array dbms_sql.Number_Table;
 empname_array dbms_sql.Varchar2_Table;
 c number;
 dummy number;
begin
 for i in 0..9 loop
 empno_array(i) := 1000 + i;
 empname_array(I) := get_name(i);
 end loop;
 stmt := 'insert into emp values(:num_array, :name_array)';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':num_array', empno_array);
 dbms_sql.bind_array(c, ':name_array', empname_array);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

When the execute takes place, all 10 of the employees are inserted into the table.

Finally, here is an example of an bulk UPDATE statement.

declare
 stmt varchar2(200);
 emp_no_array dbms_sql.Number_Table;
 emp_addr_array dbms_sql.Varchar2_Table;
 c number;
 dummy number;

Examples

90-16 PL/SQL Packages and Types Reference

begin
 for i in 0..9 loop
 emp_no_array(i) := 1000 + i;
 emp_addr_array(I) := get_new_addr(i);
 end loop;
 stmt := 'update emp set ename = :name_array
 where empno = :num_array';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':num_array', empno_array);
 dbms_sql.bind_array(c, ':name_array', empname_array);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

When the EXECUTE Function call happens, the addresses of all employees are
updated at once. The two collections are always stepped in unison. If the WHERE
clause returns more than one row, then all those employees get the address the
addr_array happens to be pointing to at that time.

Examples 6 and 7: Defining an Array
The following examples show how to use the DEFINE_ARRAY procedure:

declare
 c number;
 d number;
 n_tab dbms_sql.Number_Table;
 indx number := -10;
begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'select n from t order by 1', dbms_sql);

 dbms_sql.define_array(c, 1, n_tab, 10, indx);

 d := dbms_sql.execute(c);
 loop
 d := dbms_sql.fetch_rows(c);

Using DBMS_SQL

DBMS_SQL 90-17

 dbms_sql.column_value(c, 1, n_tab);

 exit when d != 10;
 end loop;

 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

Each time the preceding example does a FETCH_ROWS Function call, it fetches 10
rows that are kept in DBMS_SQL buffers. When the COLUMN_VALUE Procedure
call is run, those rows move into the PL/SQL table specified (in this case n_tab), at
positions -10 to -1, as specified in the DEFINE statements. When the second batch is
fetched in the loop, the rows go to positions 0 to 9; and so on.

A current index into each array is maintained automatically. This index is initialized
to "indx" at EXECUTE and keeps getting updated every time a COLUMN_VALUE call
is made. If you reexecute at any point, then the current index for each DEFINE is
re-initialized to "indx".

In this way the entire result of the query is fetched into the table. When FETCH_
ROWS cannot fetch 10 rows, it returns the number of rows actually fetched (if no
rows could be fetched, then it returns zero) and exits the loop.

Here is another example of using the DEFINE_ARRAY procedure:

Consider a table MULTI_TAB defined as:

create table multi_tab (num number,
 dat1 date,
 var varchar2(24),
 dat2 date)

To select everything from this table and move it into four PL/SQL tables, you could
use the following simple program:

declare
 c number;
 d number;

Examples

90-18 PL/SQL Packages and Types Reference

 n_tab dbms_sql.Number_Table;
 d_tab1 dbms_sql.Date_Table;
 v_tab dbms_sql.Varchar2_Table;
 d_tab2 dbms_sql.Date_Table;
 indx number := 10;
begin

 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'select * from multi_tab order by 1', dbms_sql);

 dbms_sql.define_array(c, 1, n_tab, 5, indx);
 dbms_sql.define_array(c, 2, d_tab1, 5, indx);
 dbms_sql.define_array(c, 3, v_tab, 5, indx);
 dbms_sql.define_array(c, 4, d_tab2, 5, indx);

 d := dbms_sql.execute(c);

 loop
 d := dbms_sql.fetch_rows(c);

 dbms_sql.column_value(c, 1, n_tab);
 dbms_sql.column_value(c, 2, d_tab1);
 dbms_sql.column_value(c, 3, v_tab);
 dbms_sql.column_value(c, 4, d_tab2);

 exit when d != 5;
 end loop;

 dbms_sql.close_cursor(c);

/*

The four tables can be used for anything. One usage might be to use BIND_ARRAY
to move the rows to another table by using a query such as 'INSERT into SOME_T
values (:a, :b, :c, :d);

*/

exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

Using DBMS_SQL

DBMS_SQL 90-19

Example 8: Describe Columns
This can be used as a substitute to the SQL*Plus DESCRIBE call by using a SELECT
* query on the table that you want to describe.

declare
 c number;
 d number;
 col_cnt integer;
 f boolean;
 rec_tab dbms_sql.desc_tab;
 col_num number;
 procedure print_rec(rec in dbms_sql.desc_rec) is
 begin
 dbms_output.new_line;
 dbms_output.put_line('col_type = '
 || rec.col_type);
 dbms_output.put_line('col_maxlen = '
 || rec.col_max_len);
 dbms_output.put_line('col_name = '
 || rec.col_name);
 dbms_output.put_line('col_name_len = '
 || rec.col_name_len);
 dbms_output.put_line('col_schema_name = '
 || rec.col_schema_name);
 dbms_output.put_line('col_schema_name_len = '
 || rec.col_schema_name_len);
 dbms_output.put_line('col_precision = '
 || rec.col_precision);
 dbms_output.put_line('col_scale = '
 || rec.col_scale);
 dbms_output.put('col_null_ok = ');
 if (rec.col_null_ok) then
 dbms_output.put_line('true');
 else
 dbms_output.put_line('false');
 end if;
 end;
begin
 c := dbms_sql.open_cursor;

 dbms_sql.parse(c, 'select * from scott.bonus', dbms_sql);

 d := dbms_sql.execute(c);

 dbms_sql.describe_columns(c, col_cnt, rec_tab);

Examples

90-20 PL/SQL Packages and Types Reference

/*
 * Following loop could simply be for j in 1..col_cnt loop.
 * Here we are simply illustrating some of the PL/SQL table
 * features.
 */
 col_num := rec_tab.first;
 if (col_num is not null) then
 loop
 print_rec(rec_tab(col_num));
 col_num := rec_tab.next(col_num);
 exit when (col_num is null);
 end loop;
 end if;

 dbms_sql.close_cursor(c);
end;
/

Example 9: RETURNING clause The RETURNING clause was added to DML statements
in an earlier Oracle database release. With this clause, INSERT, UPDATE, and
DELETE statements can return values of expressions. These values are returned in
bind variables.

DBMS_SQL.BIND_VARIABLE is used to bind these outbinds if a single row is
inserted, updated, or deleted. If multiple rows are inserted, updated, or deleted,
then DBMS_SQL.BIND_ARRAY is used. DBMS_SQL.VARIABLE_VALUE must be called
to get the values in these bind variables.

i) Single row insert

 create or replace procedure single_Row_insert
 (c1 number, c2 number, r out number) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'insert into tab values (:bnd1, :bnd2) ' ||
 'returning c1*c2 into :bnd3', 2);

Note: This is similar to DBMS_SQL.VARIABLE_VALUE, which
must be called after running a PL/SQL block with an out-bind
inside DBMS_SQL.

Using DBMS_SQL

DBMS_SQL 90-21

 dbms_sql.bind_variable(c, 'bnd1', c1);
 dbms_sql.bind_variable(c, 'bnd2', c2);
 dbms_sql.bind_variable(c, 'bnd3', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd3', r); -- get value of outbind variable
 dbms_Sql.close_Cursor(c);
 end;
 /

ii) Single row update

 create or replace procedure single_Row_update
 (c1 number, c2 number, r out number) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'update tab set c1 = :bnd1, c2 = :bnd2 ' ||
 'where rownum < 2' ||
 'returning c1*c2 into :bnd3', 2);
 dbms_sql.bind_variable(c, 'bnd1', c1);
 dbms_sql.bind_variable(c, 'bnd2', c2);
 dbms_sql.bind_variable(c, 'bnd3', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd3', r);-- get value of outbind variable
 dbms_Sql.close_Cursor(c);
 end;
 /

iii) Single row delete

 create or replace procedure single_Row_Delete
 (c1 number, c2 number, r out number) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'delete from tab ' ||
 'where rownum < 2 ' ||
 'returning c1*c2 into :bnd3', 2);
 dbms_sql.bind_variable(c, 'bnd1', c1);
 dbms_sql.bind_variable(c, 'bnd2', c2);
 dbms_sql.bind_variable(c, 'bnd3', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd3', r);-- get value of outbind variable
 dbms_Sql.close_Cursor(c);

Examples

90-22 PL/SQL Packages and Types Reference

 end;
 /

iv) Multi-row insert

 create or replace procedure multi_Row_insert
 (c1 dbms_sql.number_table, c2 dbms_sql.number_table,
 r out dbms_sql.number_table) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'insert into tab values (:bnd1, :bnd2) ' ||
 'returning c1*c2 into :bnd3', 2);
 dbms_sql.bind_array(c, 'bnd1', c1);
 dbms_sql.bind_array(c, 'bnd2', c2);
 dbms_sql.bind_array(c, 'bnd3', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd3', r);-- get value of outbind variable
 dbms_Sql.close_Cursor(c);
 end;
 /

v) Multi row Update.

 create or replace procedure multi_Row_update
 (c1 number, c2 number, r out dbms_Sql.number_table) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'update tab set c1 = :bnd1 where c2 = :bnd2 ' ||
 'returning c1*c2 into :bnd3', 2);
 dbms_sql.bind_variable(c, 'bnd1', c1);
 dbms_sql.bind_variable(c, 'bnd2', c2);
 dbms_sql.bind_array(c, 'bnd3', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd3', r);-- get value of outbind variable
 dbms_Sql.close_Cursor(c);
 end;
 /

Using DBMS_SQL

DBMS_SQL 90-23

vi) Multi-row delete

 create or replace procedure multi_row_delete
 (c1 dbms_Sql.number_table,
 r out dbms_sql.number_table) is
 c number;
 n number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'delete from tab where c1 = :bnd1' ||
 'returning c1*c2 into :bnd2', 2);
 dbms_sql.bind_array(c, 'bnd1', c1);
 dbms_sql.bind_array(c, 'bnd2', r);
 n := dbms_sql.execute(c);
 dbms_sql.variable_value(c, 'bnd2', r);-- get value of outbind variable
 dbms_Sql.close_Cursor(c);
 end;
 /

vii) Out-bind in bulk PL/SQL

 create or replace foo (n number, square out number) is
 begin square := n * n; end;/

 create or replace procedure bulk_plsql
 (n dbms_sql.number_Table, square out dbms_sql.number_table) is
 c number;
 r number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'begin foo(:bnd1, :bnd2); end;', 2);
 dbms_sql.bind_array(c, 'bnd1', n);
 dbms_Sql.bind_Array(c, 'bnd2', square);
 r := dbms_sql.execute(c);
 dbms_Sql.variable_Value(c, 'bnd2', square);
 end;
 /

Note: bnd1 and bnd2 can be array as well. The value of the
expression for all the rows updated will be in bnd3. There is no way
of differentiating which rows got updated of each value of bnd1
and bnd2.

Examples

90-24 PL/SQL Packages and Types Reference

Note: DBMS_SQL.BIND_ARRAY of number_Table internally
binds a number. The number of times statement is run depends on
the number of elements in an inbind array.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-25

Summary of DBMS_SQL Subprograms

Table 90–1 DBMS_SQL Package Subprograms

Subprogram Description

BIND_ARRAY Procedures on
page 90-27

Binds a given value to a given collection

BIND_VARIABLE Procedures on
page 90-30

Binds a given value to a given variable

CLOSE_CURSOR Procedure on
page 90-35

Closes given cursor and frees memory

COLUMN_VALUE Procedure on
page 90-36

Returns value of the cursor element for a given position
in a cursor

COLUMN_VALUE_LONG
Procedure on page 90-39

Returns a selected part of a LONG column, that has been
defined using DEFINE_COLUMN_LONG

DEFINE_ARRAY Procedure on
page 90-40

Defines a collection to be selected from the given
cursor, used only with SELECT statements

DEFINE_COLUMN Procedure on
page 90-43

Defines a column to be selected from the given cursor,
used only with SELECT statements

DEFINE_COLUMN_LONG
Procedure on page 90-45

Defines a LONG column to be selected from the given
cursor, used only with SELECT statements

DESCRIBE_COLUMNS Procedure
on page 90-46

Describes the columns for a cursor opened and parsed
through DBMS_SQL

DESCRIBE_COLUMNS2
Procedure on page 90-47

Describes describes the specified column, an
alternative to DESCRIBE_COLUMNS Procedure

EXECUTE Function on page 90-48 Executes a given cursor

EXECUTE_AND_FETCH
Function on page 90-49

Executes a given cursor and fetch rows

FETCH_ROWS Function on
page 90-50

Fetches a row from a given cursor

IS_OPEN Function on page 90-51 Returns TRUE if given cursor is open

LAST_ERROR_POSITION
Function on page 90-52

Returns byte offset in the SQL statement text where the
error occurred

LAST_ROW_COUNT Function on
page 90-53

Returns cumulative count of the number of rows
fetched

Summary of DBMS_SQL Subprograms

90-26 PL/SQL Packages and Types Reference

LAST_ROW_ID Function on
page 90-54

Returns ROWID of last row processed

LAST_SQL_FUNCTION_CODE
Function on page 90-55

Returns SQL function code for statement

OPEN_CURSOR Function on
page 90-56

Returns cursor ID number of new cursor

PARSE Procedure on page 90-57 Parses given statement

VARIABLE_VALUE Procedures
on page 90-60

Returns value of named variable for given cursor

Table 90–1 (Cont.) DBMS_SQL Package Subprograms

Subprogram Description

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-27

BIND_ARRAY Procedures

This procedure binds a given value or set of values to a given variable in a cursor,
based on the name of the variable in the statement.

Syntax
DBMS_SQL.BIND_ARRAY (
 c IN INTEGER,
 name IN VARCHAR2,
 <table_variable> IN <datatype>
 [,index1 IN INTEGER,
 index2 IN INTEGER)]);
Where the <table_variable> and its corresponding <datatype> can be any one
of the following matching pairs:

<clob_tab> Clob_Table
<bflt_tab> Binary_Float_Table
<bdbl_tab> Binary_Double_Table
<blob_tab> Blob_Table
<bfile_tab> Bfile_Table
<date_tab> Date_Table
<num_tab> Number_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table

Notice that the BIND_ARRAY procedure is overloaded to accept different datatypes.

Parameters

Table 90–2 BIND_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind a value.

name Name of the collection in the statement.

table_variable Local variable that has been declared as <datatype>.

index1 Index for the table element that marks the lower bound of the range.

index2 Index for the table element that marks the upper bound of the range.

BIND_ARRAY Procedures

90-28 PL/SQL Packages and Types Reference

Usage Notes
The length of the bind variable name should be <=30 bytes.

For binding a range, the table must contain the elements that specify the range —
tab(index1) and tab(index2) — but the range does not have to be dense. Index1
must be less than or equal to index2. All elements between tab(index1) and
tab(index2) are used in the bind.

If you do not specify indexes in the bind call, and two different binds in a statement
specify tables that contain a different number of elements, then the number of
elements actually used is the minimum number between all tables. This is also the
case if you specify indexes — the minimum range is selected between the two
indexes for all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds
and the same value are used for each element of the collections in expression
evaluations (and so forth).

Bulk Array Binds
Bulk selects, inserts, updates, and deletes can enhance the performance of
applications by bundling many calls into one. The DBMS_SQL package lets you
work on collections of data using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are
like other relational tables and have no intrinsic ordering. But when a table item is
brought into the workspace (either by querying or by navigational access of
persistent data), or when it is created as the value of a PL/SQL variable or
parameter, its elements are given subscripts that can be used with array-style syntax
to get and set the values of elements.

The subscripts of these elements need not be dense, and can be any number
including negative numbers. For example, a table item can contain elements at
locations -10, 2, and 7 only.

When a table item is moved from transient workspace to persistent storage, the
subscripts are not stored; the table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL
buffers (the same as for all scalar types) and then the table is manipulated from the
local DBMS_SQL buffers. Therefore, if you change the table after the bind call, then
that change does not affect the way the execute acts.

See Also: "Examples 3, 4, and 5: Bulk DML" on page 90-14 for
examples of how to bind collections.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-29

Types for Scalar and LOB Collections
You can declare a local variable as one of the following table-item types, which are
defined as public types in DBMS_SQL.

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_Table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_MONTH_Table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE time_with_time_zone_table
 IS TABLE OF time_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_ltz_Table
 IS TABLE OF timestamp_ltz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_time_zone_Table
 IS TABLE OF timestamp_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

BIND_VARIABLE Procedures

90-30 PL/SQL Packages and Types Reference

BIND_VARIABLE Procedures

This procedures binds a given value or set of values to a given variable in a cursor,
based on the name of the variable in the statement.

Syntax
DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN <datatype>)

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_UNCONSTRAINED
TIME_TZ_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED

Notice that BIND_VARIABLE is overloaded to accept different datatypes.

The following syntax is also supported for BIND_VARIABLE. The square brackets []
indicate an optional parameter for the BIND_VARIABLE function.

DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN VARCHAR2 CHARACTER SET ANY_CS [,out_value_size IN
INTEGER]);

To bind CHAR, RAW, and ROWID data, you can use the following variations on the
syntax:

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-31

DBMS_SQL.BIND_VARIABLE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN CHAR CHARACTER SET ANY_CS [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN RAW [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN ROWID);

Pragmas
pragma restrict_references(bind_variable,WNDS);

Parameters

Usage Notes
If the variable is an IN or IN/OUT variable or an IN collection, then the given bind
value must be valid for the variable or array type. Bind values for OUT variables are
ignored.

See Also: Oracle Database Application Developer's Guide - Large
Objects

Table 90–3 BIND_VARIABLE Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind a value.

name Name of the variable in the statement.

value Value that you want to bind to the variable in the cursor.

For IN and IN/OUT variables, the value has the same type as the type
of the value being passed in for this parameter.

out_value_size Maximum expected OUT value size, in bytes, for the VARCHAR2, RAW,
CHAR OUT or IN/OUT variable.

If no size is given, then the length of the current value is used. This
parameter must be specified if the value parameter is not initialized.

BIND_VARIABLE Procedures

90-32 PL/SQL Packages and Types Reference

The bind variables or collections of a SQL statement are identified by their names.
When binding a value to a bind variable or bind array, the string identifying it in
the statement must contain a leading colon, as shown in the following example:

SELECT emp_name FROM emp WHERE SAL > :X;

For this example, the corresponding bind call would look similar to

BIND_VARIABLE(cursor_name, ':X', 3500);

or

BIND_VARIABLE (cursor_name, 'X', 3500);The length of the bind variable name
should be <=30 bytes.

The length of the bind variable name should be <=30 bytes.

For binding a range, the table must contain the elements that specify the range —
tab(index1) and tab(index2) — but the range does not have to be dense. Index1
must be less than or equal to index2. All elements between tab(index1) and
tab(index2) are used in the bind.

If you do not specify indexes in the bind call, and two different binds in a statement
specify tables that contain a different number of elements, then the number of
elements actually used is the minimum number between all tables. This is also the
case if you specify indexes — the minimum range is selected between the two
indexes for all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds
and the same value are used for each element of the collections in expression
evaluations (and so forth).

Bulk Array Binds
Bulk selects, inserts, updates, and deletes can enhance the performance of
applications by bundling many calls into one. The DBMS_SQL package lets you
work on collections of data using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are
like other relational tables and have no intrinsic ordering. But when a table item is
brought into the workspace (either by querying or by navigational access of
persistent data), or when it is created as the value of a PL/SQL variable or

See Also: "Examples 3, 4, and 5: Bulk DML" on page 90-14 for
examples of how to bind collections.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-33

parameter, its elements are given subscripts that can be used with array-style syntax
to get and set the values of elements.

The subscripts of these elements need not be dense, and can be any number
including negative numbers. For example, a table item can contain elements at
locations -10, 2, and 7 only.

When a table item is moved from transient workspace to persistent storage, the
subscripts are not stored; the table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL
buffers (the same as for all scalar types) and then the table is manipulated from the
local DBMS_SQL buffers. Therefore, if you change the table after the bind call, then
that change does not affect the way the execute acts.

Types for Scalar and LOB Collections
You can declare a local variable as one of the following table-item types, which are
defined as public types in DBMS_SQL.

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_Table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_MONTH_Table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE time_with_time_zone_table
 IS TABLE OF time_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_ltz_Table
 IS TABLE OF timestamp_ltz_unconstrained
 INDEX BY BINARY_INTEGER;

BIND_VARIABLE Procedures

90-34 PL/SQL Packages and Types Reference

TYPE timestamp_with_time_zone_Table
 IS TABLE OF timestamp_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-35

CLOSE_CURSOR Procedure

This procedure closes a given cursor.

Syntax
DBMS_SQL.CLOSE_CURSOR (
 c IN OUT INTEGER);

Pragmas
pragma restrict_references(close_cursor,RNDS,WNDS);

Parameters

Table 90–4 CLOSE_CURSOR Procedure Parameters

Parameter Mode Description

c IN ID number of the cursor that you want to close.

c OUT Cursor is set to null.

After you call CLOSE_CURSOR, the memory allocated to
the cursor is released and you can no longer fetch from
that cursor.

COLUMN_VALUE Procedure

90-36 PL/SQL Packages and Types Reference

COLUMN_VALUE Procedure

This procedure returns the value of the cursor element for a given position in a
given cursor. This procedure is used to access the data fetched by calling FETCH_
ROWS.

Syntax
DBMS_SQL.COLUMN_VALUE (
 c IN INTEGER,
 position IN INTEGER,
 value OUT <datatype>
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_TZ_UNCONSTRAINED
TIME_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED

<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Note: The square brackets [] indicate optional parameters.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-37

Pragmas
pragma restrict_references(column_value,RNDS,WNDS);

The following syntax is also supported for the COLUMN_VALUE procedure:

DBMS_SQL.COLUMN_VALUE(
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>);

Where the <table_variable> and its corresponding <datatype> can be any one
of these matching pairs:

<bdbl_tab> Binary_Double_Table
<bflt_tab> Binary_Float_Table
<bfile_tab> Bfile_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<date_tab> Date_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table
<num_tab> Number_Table
<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table

For columns containing CHAR, RAW, and ROWID data, you can use the following
variations on the syntax:

DBMS_SQL.COLUMN_VALUE_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 value OUT CHAR CHARACTER SET ANY_CS
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_RAW (
 c IN INTEGER,

See Also: Oracle Database Application Developer's Guide - Large
Objects

COLUMN_VALUE Procedure

90-38 PL/SQL Packages and Types Reference

 position IN INTEGER,
 value OUT RAW
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 value OUT ROWID
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

Parameters

Exceptions
inconsistent_type (ORA-06562) is raised if the type of the given OUT
parameter value is different from the actual type of the value. This type was the
given type when the column was defined by calling procedure DEFINE_COLUMN.

Table 90–5 COLUMN_VALUE Procedure Parameters

Parameter Description

c ID number of the cursor from which you are fetching the values.

position Relative position of the column in the cursor.

The first column in a statement has position 1.

value Returns the value at the specified column and row.

If the row number specified is greater than the total number of rows
fetched, then you receive an error message.

Oracle raises exception ORA-06562, inconsistent_type, if the type
of this output parameter differs from the actual type of the value, as
defined by the call to DEFINE_COLUMN.

table_
variable

Local variable that has been declared <datatype>.

column_error Returns any error code for the specified column value.

actual_length The actual length, before any truncation, of the value in the specified
column.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-39

COLUMN_VALUE_LONG Procedure

This procedure gets part of the value of a long column.

Syntax
DBMS_SQL.COLUMN_VALUE_LONG (
 c IN INTEGER,
 position IN INTEGER,
 length IN INTEGER,
 offset IN INTEGER,
 value OUT VARCHAR2,
 value_length OUT INTEGER);

Pragmas
pragma restrict_references(column_value_long,RNDS,WNDS);

Parameters

Table 90–6 COLUMN_VALUE_LONG Procedure Parameters

Parameter Description

c Cursor ID number of the cursor from which to get the value.

position Position of the column of which to get the value.

length Number of bytes of the long value to fetch.

offset Offset into the long field for start of fetch.

value Value of the column as a VARCHAR2.

value_length Number of bytes actually returned in value.

DEFINE_ARRAY Procedure

90-40 PL/SQL Packages and Types Reference

DEFINE_ARRAY Procedure

This procedure defines the collection for column into which you want to fetch rows
(with a FETCH_ROWS call). This procedure lets you do batch fetching of rows from a
single SELECT statement. A single fetch call brings over a number of rows into the
PL/SQL aggregate object.

When you fetch the rows, they are copied into DBMS_SQL buffers until you run a
COLUMN_VALUE call, at which time the rows are copied into the table that was
passed as an argument to the COLUMN_VALUE call.

Scalar and LOB Types for Collections
You can declare a local variable as one of the following table-item types, and then
fetch any number of rows into it using DBMS_SQL. (These are the same types as you
can specify for the BIND_ARRAY procedure.)

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE bfile_table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_Table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_MONTH_Table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE time_with_time_zone_table
 IS TABLE OF time_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_ltz_Table
 IS TABLE OF timestamp_ltz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_with_time_zone_Table

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-41

 IS TABLE OF timestamp_tz_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE urowid_table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Syntax
DBMS_SQL.DEFINE_ARRAY (
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>
 cnt IN INTEGER,
 lower_bnd IN INTEGER);

Where <table_variable> and its corresponding <datatype> can be any one of
the following matching pairs:

<clob_tab> Clob_Table
<bflt_tab> Binary_Float_Table
<bdbl_tab> Binary_Double_Table
<blob_tab> Blob_Table
<bfile_tab> Bfile_Table
<date_tab> Date_Table
<num_tab> Number_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table

Notice that DEFINE_ARRAY is overloaded to accept different datatypes.

Pragmas
pragma restrict_references(define_array,RNDS,WNDS);

The subsequent FETCH_ROWS call fetch "count" rows. When the COLUMN_VALUE
call is made, these rows are placed in positions indx, indx+1, indx+2, and so on.
While there are still rows coming, the user keeps issuing FETCH_ROWS/COLUMN_

DEFINE_ARRAY Procedure

90-42 PL/SQL Packages and Types Reference

VALUE calls. The rows keep accumulating in the table specified as an argument in
the COLUMN_VALUE call.

Parameters
<

The count (cnt) must be an integer greater than zero; otherwise an exception is
raised. The indx can be positive, negative, or zero. A query on which a DEFINE_
ARRAY call was issued cannot contain array binds.

Table 90–7 DEFINE_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind an array.

position Relative position of the column in the array being defined.

The first column in a statement has position 1.

table_variable Local variable that has been declared as <datatype>.

cnt Number of rows that must be fetched.

lower_bnd Results are copied into the collection, starting at this lower bound
index.

See Also: "Examples 6 and 7: Defining an Array" on page 90-16
for examples of how to define collections.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-43

DEFINE_COLUMN Procedure

This procedure defines a column to be selected from the given cursor. This
procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of
the statement in the given cursor. The type of the COLUMN value determines the type
of the column being defined.

Syntax
DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN <datatype>)

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_UNCONSTRAINED
TIME_TZ_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED

Notice that DEFINE_COLUMN is overloaded to accept different datatypes.

Pragmas
pragma restrict_references(define_column,RNDS,WNDS);

See Also: Oracle Database Application Developer's Guide - Large
Objects

DEFINE_COLUMN Procedure

90-44 PL/SQL Packages and Types Reference

The following syntax is also supported for the DEFINE_COLUMN procedure:

DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN VARCHAR2 CHARACTER SET ANY_CS,
 column_size IN INTEGER),
 urowid IN INTEGER;

To define columns with CHAR, RAW, and ROWID data, you can use the following
variations on the procedure syntax:

DBMS_SQL.DEFINE_COLUMN_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 column IN CHAR CHARACTER SET ANY_CS,
 column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_RAW (
 c IN INTEGER,
 position IN INTEGER,
 column IN RAW,
 column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 column IN ROWID);

Parameters

Table 90–8 DEFINE_COLUMN Procedure Parameters

Parameter Description

c ID number of the cursor for the row being defined to be selected.

position Relative position of the column in the row being defined.

The first column in a statement has position 1.

column Value of the column being defined.

The type of this value determines the type for the column being
defined.

column_size Maximum expected size of the column value, in bytes, for columns of
type VARCHAR2, CHAR, and RAW.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-45

DEFINE_COLUMN_LONG Procedure

This procedure defines a LONG column for a SELECT cursor. The column being
defined is identified by its relative position in the SELECT list of the statement for
the given cursor. The type of the COLUMN value determines the type of the column
being defined.

Syntax
DBMS_SQL.DEFINE_COLUMN_LONG (
 c IN INTEGER,
 position IN INTEGER);

Parameters

Table 90–9 DEFINE_COLUMN_LONG Procedure Parameters

Parameter Description

c ID number of the cursor for the row being defined to be selected.

position Relative position of the column in the row being defined.

The first column in a statement has position 1.

DESCRIBE_COLUMNS Procedure

90-46 PL/SQL Packages and Types Reference

DESCRIBE_COLUMNS Procedure

This procedure describes the columns for a cursor opened and parsed through
DBMS_SQL.

Syntax
DBMS_SQL.DESCRIBE_COLUMNS (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DESC_TAB);

Parameters

Table 90–10 DBMS_SQL.DESCRIBE_COLUMNS Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described.

col_cnt Number of columns in the select list of the query.

desc_t Table of DESC_REC, each DESC_REC describing a column in the query.

See Also: "Example 8: Describe Columns" on page 90-19
illustrates how to use DESCRIBE_COLUMNS.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-47

DESCRIBE_COLUMNS2 Procedure

This function describes the specified column. This is an alternative to DESCRIBE_
COLUMNS Procedure.

Syntax
DBMS_SQL.DESCRIBE_COLUMNS2 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_tab2 OUT DESC_TAB);

Pragmas
PRAGMA RESTRICT_REFERENCES(describe_columns2,WNDS);

Parameters

Table 90–11 DBMS_SQL.DESCRIBE_COLUMNS2 Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described.

col_cnt Number of columns in the select list of the query.

desc_tab2 The describe table to fill in with the description of each of the columns of
the query. This table is indexed from one to the number of elements in the
select list of the query.

EXECUTE Function

90-48 PL/SQL Packages and Types Reference

EXECUTE Function

This function executes a given cursor. This function accepts the ID number of the
cursor and returns the number of rows processed. The return value is only valid for
INSERT, UPDATE, and DELETE statements; for other types of statements, including
DDL, the return value is undefined and should be ignored.

Syntax
DBMS_SQL.EXECUTE (
 c IN INTEGER)
 RETURN INTEGER;

Parameters

Table 90–12 EXECUTE Function Parameters

Parameter Description

c Cursor ID number of the cursor to execute.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-49

EXECUTE_AND_FETCH Function

This function executes the given cursor and fetches rows. This function provides the
same functionality as calling EXECUTE and then calling FETCH_ROWS. Calling
EXECUTE_AND_FETCH instead, however, may reduce the number of network
round-trips when used against a remote database.

The EXECUTE_AND_FETCH function returns the number of rows actually fetched.

Syntax
DBMS_SQL.EXECUTE_AND_FETCH (
 c IN INTEGER,
 exact IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER;

Pragmas
pragma restrict_references(execute_and_fetch,WNDS);

Parameters

Table 90–13 EXECUTE_AND_FETCH Function Parameters

Parameter Description

c ID number of the cursor to execute and fetch.

exact Set to TRUE to raise an exception if the number of rows actually
matching the query differs from one.

Note: Oracle does not support the exact fetch TRUE option with
LONG columns.

Even if an exception is raised, the rows are still fetched and
available.

FETCH_ROWS Function

90-50 PL/SQL Packages and Types Reference

FETCH_ROWS Function

This function fetches a row from a given cursor. You can call FETCH_ROWS
repeatedly as long as there are rows remaining to be fetched. These rows are
retrieved into a buffer, and must be read by calling COLUMN_VALUE, for each
column, after each call to FETCH_ROWS.

The FETCH_ROWS function accepts the ID number of the cursor to fetch, and returns
the number of rows actually fetched.

Syntax
DBMS_SQL.FETCH_ROWS (
 c IN INTEGER)
 RETURN INTEGER;

Pragmas
pragma restrict_references(fetch_rows,WNDS);

Parameters

Table 90–14 FETCH_ROWS Function Parameters

Parameter Description

c ID number.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-51

IS_OPEN Function

This function checks to see if the given cursor is currently open.

Syntax
DBMS_SQL.IS_OPEN (
 c IN INTEGER)
 RETURN BOOLEAN;

Pragmas
pragma restrict_references(is_open,RNDS,WNDS);

Parameters

Return Values

Table 90–15 IS_OPEN Function Parameters

Parameter Description

c Cursor ID number of the cursor to check.

Table 90–16 I S_OPEN Function Return Values

Return Value Description

TRUE Given cursor is currently open.

FALSE Given cursor is currently not open.

LAST_ERROR_POSITION Function

90-52 PL/SQL Packages and Types Reference

LAST_ERROR_POSITION Function

This function returns the byte offset in the SQL statement text where the error
occurred. The first character in the SQL statement is at position 0.

Syntax
DBMS_SQL.LAST_ERROR_POSITION
 RETURN INTEGER;

Pragmas
pragma restrict_references(last_error_position,RNDS,WNDS);

Usage Notes
Call this function after a PARSE call, before any other DBMS_SQL procedures or
functions are called.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-53

LAST_ROW_COUNT Function

This function returns the cumulative count of the number of rows fetched.

Syntax
DBMS_SQL.LAST_ROW_COUNT
 RETURN INTEGER;

Pragmas
pragma restrict_references(last_row_count,RNDS,WNDS);

Usage Notes
Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call. If called
after an EXECUTE call, then the value returned is zero.

LAST_ROW_ID Function

90-54 PL/SQL Packages and Types Reference

LAST_ROW_ID Function

This function returns the ROWID of the last row processed.

Syntax
DBMS_SQL.LAST_ROW_ID
 RETURN ROWID;

Pragmas
pragma restrict_references(last_row_id,RNDS,WNDS);

Usage Notes
Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-55

LAST_SQL_FUNCTION_CODE Function

This function returns the SQL function code for the statement. These codes are
listed in the Oracle Call Interface Programmer's Guide.

Syntax
DBMS_SQL.LAST_SQL_FUNCTION_CODE
 RETURN INTEGER;

Pragmas
pragma restrict_references(last_sql_function_code,RNDS,WNDS);

Usage Notes
You should call this function immediately after the SQL statement is run; otherwise,
the return value is undefined.

OPEN_CURSOR Function

90-56 PL/SQL Packages and Types Reference

OPEN_CURSOR Function

This procedure opens a new cursor. When you no longer need this cursor, you must
close it explicitly by calling CLOSE_CURSOR.

You can use cursors to run the same SQL statement repeatedly or to run a new SQL
statement. When a cursor is reused, the contents of the corresponding cursor data
area are reset when the new SQL statement is parsed. It is never necessary to close
and reopen a cursor before reusing it.

Syntax
DBMS_SQL.OPEN_CURSOR
 RETURN INTEGER;

Pragmas
pragma restrict_references(open_cursor,RNDS,WNDS);

Return Values
This function returns the cursor ID number of the new cursor.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-57

PARSE Procedure

This procedure parses the given statement in the given cursor. All statements are
parsed immediately. In addition, DDL statements are run immediately when
parsed.

There are two versions of the PARSE procedure: one uses a VARCHAR2 statement as
an argument, and the other uses a VARCHAR2S (table of VARCHAR2) as an argument.

Syntax
DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2,
 language_flag IN INTEGER);

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2A,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER);

The PARSE procedure also supports the following syntax for large SQL statements:

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2S,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER);

Note: The procedure concatenates elements of a PL/SQL table
statement and parses the resulting string. You can use this
procedure to parse a statement that is longer than the limit for a
single VARCHAR2 variable by splitting up the statement.

PARSE Procedure

90-58 PL/SQL Packages and Types Reference

Parameters

Usage Notes

The size limit for parsing SQL statements with the preceding syntax is 32KB.

Table 90–17 PARSE Procedure Parameters

Parameter Description

c ID number of the cursor in which to parse the statement.

statement SQL statement to be parsed.

Unlike PL/SQL statements, your SQL statement should not include
a final semicolon. For example:

DBMS_SQL.PARSE(cursor1, 'BEGIN proc; END;', 2);

DBMS_SQL.PARSE(cursor1, 'INSERT INTO tab values(1)', 2);

lb Lower bound for elements in the statement.

ub Upper bound for elements in the statement.

lfflg If TRUE, then insert a linefeed after each element on concatenation.

language_flag Determines how Oracle handles the SQL statement. The following
options are recognized:

■ V6 (or 0) specifies version 6 behavior.

■ NATIVE (or 1) specifies normal behavior for the database to
which the program is connected.

■ V7 (or 2) specifies Oracle database version 7 behavior.

Note: Using DBMS_SQL to dynamically run DDL statements can
result in the program hanging. For example, a call to a procedure in
a package results in the package being locked until the execution
returns to the user side. Any operation that results in a conflicting
lock, such as dynamically trying to drop the package before the first
lock is released, results in a hang.

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-59

Examples
To parse SQL statements larger than 32 KB, DBMS_SQL makes use of PL/SQL tables
to pass a table of strings to the PARSE procedure. These strings are concatenated
and then passed on to the Oracle server.

You can declare a local variable as the VARCHAR2S table-item type, and then use the
PARSE procedure to parse a large SQL statement as VARCHAR2S.

The definition of the VARCHAR2S datatype is:

TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;

Exceptions
If you create a type/procedure/function/package using DBMS_SQL that has
compilation warnings, an ORA-24344 exception is raised, and the procedure is still
created.

Note: Because client-side code cannot reference remote package
variables or constants, you must explicitly use the values of the
constants.

For example, the following code does not compile on the client:

DBMS_SQL.PARSE(cur_hdl, stmt_str, dbms_sql.V7); -- uses constant
dbms_sql.V7

The following code works on the client, because the argument is
explicitly provided:

DBMS_SQL.PARSE(cur_hdl, stmt_str, 2); -- compiles on the client

VARIABLE_VALUE Procedures

90-60 PL/SQL Packages and Types Reference

VARIABLE_VALUE Procedures

This procedure returns the value of the named variable for a given cursor. It is used
to return the values of bind variables inside PL/SQL blocks or DML statements
with returning clause.

Syntax
DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT <datatype>);

Where <datatype> can be any one of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BFILE
BLOB
CLOB CHARACTER SET ANY_CS
DATE
DSINTERVAL_UNCONSTRAINED
NUMBER
TIME_TZ_UNCONSTRAINED
TIME_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_UNCONSTRAINED
UROWID
VARCHAR2 CHARACTER SET ANY_CS
YMINTERVAL_UNCONSTRAINED

The following syntax is also supported for the VARIABLE_VALUE procedure:

DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 <table_variable> IN <datatype>);

Where the <table_variable> and its corresponding <datatype> can be any one
of these matching pairs:

<bdbl_tab> Binary_Double_Table
<bflt_tab> Binary_Float_Table
<bfile_tab> Bfile_Table

Summary of DBMS_SQL Subprograms

DBMS_SQL 90-61

<blob_tab> Blob_Table
<clob_tab> Clob_Table
<date_tab> Date_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table
<num_tab> Number_Table
<tm_tab> Time_Table
<ttz_tab> Time_With_Time_Zone_Table
<tms_tab> Timestamp_Table
<tstz_tab> Timestamp_With_ltz_Table;
<tstz_tab> Timestamp_With_Time_Zone_Table
<urowid_tab> Urowid_Table
<vchr2_tab> Varchar2_Table

For variables containing CHAR, RAW, and ROWID data, you can use the following
variations on the syntax:

DBMS_SQL.VARIABLE_VALUE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT CHAR CHARACTER SET ANY_CS);

DBMS_SQL.VARIABLE_VALUE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT RAW);

DBMS_SQL.VARIABLE_VALUE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT ROWID);

Pragmas
pragma restrict_references(variable_value,RNDS,WNDS);

VARIABLE_VALUE Procedures

90-62 PL/SQL Packages and Types Reference

Parameters

Table 90–18 VARIABLE_VALUE Procedure Parameters

Parameter Description

c ID number of the cursor from which to get the values.

name Name of the variable for which you are retrieving the value.

value Returns the value of the variable for the specified position.

Oracle raises exception ORA-06562, inconsistent_type, if the
type of this output parameter differs from the actual type of the value,
as defined by the call to BIND_VARIABLE.

position Relative position of the column in the cursor.

The first column in a statement has position 1.

DBMS_SQLTUNE 91-1

91
DBMS_SQLTUNE

The DBMS_SQLTUNE package provides the interface to tune SQL statements.

The chapter contains the following topics:

■ Using DBMS_SQLTUNE

■ Overview

■ Types

■ Operational Notes

■ Summary of DBMS_SQLTUNE Subprograms

Using DBMS_SQLTUNE

91-2 PL/SQL Packages and Types Reference

Using DBMS_SQLTUNE

■ Overview

■ Types

■ Operational Notes

Overview

SQL Tuning Sets is a new object for capturing SQL workload information. SQL
Tuning Sets provide a common infrastructure for dealing with SQL workloads and
simplify tuning of a large number of SQL statements.

SQL Tuning Sets store SQL statements along with

■ The execution context, such as the parsing schema name and bind values.

■ Execution statistics such as average elapsed time and execution count.

SQL Tuning Sets can be created by filtering or ranking SQL statements from several
sources:

■ The cursor cache.

■ AWR selecting top SQL statements executed during some prior interval

■ A user-defined workload.

■ Other SQL Tuning Sets.

Types

■ SqlSet_cursor

SqlSet_cursor
This defines a cursor type for SQL statements with their related data. This type is
mainly used by the LOAD_SQLSET procedure as an argument to populate a SqlSet
from a possible data source. See the LOAD_SQLSET Procedure on page 91-21 for
more details.

 It is important to keep in mind that this cursor is weakly defined.

Using DBMS_SQLTUNE

DBMS_SQLTUNE 91-3

Operational Notes

Under normal mode, the Cost Based Optimizer (CBO) produces the best possible
execution plan with whatever information is currently available for the query. It
does not have time to gather additional information that might improve the plan
because the CBO has to generate an execution plan in a fraction of a second under
normal mode. However, in the Plan Tuning Analysis mode, the CBO has time to
gather additional information for the query, in the form of a SQL Profile, and this
profile allows the generation of a superior execution plan that is well tuned.

In the Plan Tuning Analysis mode, the CBO collects the SQL Profile for the query
automatically and the DBA can then decide whether to activate the profile or not.
Once activated, the CBO uses the SQL Profile under normal mode to generate the
well-tuned plan, that is superior to the original.

Note that SQL Profile is stored persistently in data dictionary, and hence this form
of tuning does not require any application code changes.

Summary of DBMS_SQLTUNE Subprograms

91-4 PL/SQL Packages and Types Reference

Summary of DBMS_SQLTUNE Subprograms

Table 91–1 DBMS_SQLTUNE Package Subprograms

Subprogram Description

ACCEPT_SQL_PROFILE
Procedure on page 91-6

Create a SQL Profile for the specified tuning task

ADD_SQLSET_REFERENCE
Function on page 91-8

Adds a new reference to an existing SqlSet to indicate its
use by a client

ALTER_SQL_PROFILE
Procedure on page 91-9

Alters specific attributes of an existing SQL Profile object

CANCEL_TUNING_TASK
Procedure on page 91-10

Cancels the currently executing tuning task

CREATE_SQLSET Procedure on
page 91-11

Creates a SqlSet object in the database

CREATE_TUNING_TASK
Functions on page 91-12

Prepares the tuning of a single statement or SqlSet

DELETE_SQLSET Procedure on
page 91-15

Deletes a set of SQL statements from a SqlSet

DROP_SQL_PROFILE
Procedure on page 91-16

Drops the named SQL Profile from the database

DROP_SQLSET Procedure on
page 91-17

Drops a SqlSet if it is not active

DROP_TUNING_TASK
Procedure on page 91-18

Drops a SQL tuning task

EXECUTE_TUNING_TASK
Procedure on page 91-19

Executes a previously created tuning task

INTERRUPT_TUNING_TASK
Procedure on page 91-20

Interrupts the currently executing tuning task to allow
access intermediate result data

LOAD_SQLSET Procedure on
page 91-21

Populates the SqlSet with a set of selected SQL

REMOVE_SQLSET_
REFERENCE Procedure on
page 91-22

Deactivates a SqlSet to indicate it is no longer used by
the client

REPORT_TUNING_TASK
Function on page 91-23

Displays the results of a tuning task

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-5

RESET_TUNING_TASK
Procedure on page 91-24

Resets the currently executing tuning task to its initial
state

RESUME_TUNING_TASK
Procedure on page 91-25

Resumes a previously interrupted tuning task

SELECT_SQLSET Function on
page 91-26

Collects SQL statements from the cursor cache

SELECT_WORKLOAD_
REPOSITORY Functions on
page 91-27

Collects SQL statements from workload repository

UPDATE_SQLSET Procedures
on page 91-29

Updates whether selected string fields for a SQL
statement in a SqlSet or the set numerical attributes of a
SQL in a SqlSet

Table 91–1 (Cont.) DBMS_SQLTUNE Package Subprograms (Cont.)

Subprogram Description

ACCEPT_SQL_PROFILE Procedure

91-6 PL/SQL Packages and Types Reference

ACCEPT_SQL_PROFILE Procedure

This procedure accepts a SQL Profile recommended by the SQL Tuning Advisor.
The SQL text is normalized for matching purposes though it is stored in the data
dictionary in de-normalized form for readability. SQL text is provided through a
reference to the SQL Tuning task. If the referenced SQL statement doesn't exist, an
error is reported.

Syntax
DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name IN VARCHAR2,
 object_id IN NUMBER := NULL,
 name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 category IN VARCHAR2 := NULL);

Parameters

Table 91–2 ACCEPT_SQL_PROFILE Procedure Parameters

Parameter Description

task_name The (mandatory) name of the SQL tuning task.

object_id The (optional) identifier of the framework object representing
the SQL statement associated with the tuning task.

name The name of the SQL Profile. It cannot contain double
quotation marks. The name is case sensitive. If not specified,
the system will generate a unique name for the SQL Profile.

description A user specified string describing the purpose of the SQL
Profile. The maximum size is 500 characters.

category This is the category name which must match the value of the
SQLTUNE_CATEGORY parameter in a session for the session to
use this SQL Profile. It defaults to the value "DEFAULT". This is
also the default of the SQLTUNE_CATEGORY parameter. The
category must be a valid Oracle identifier. The category name
specified is always converted to upper case. The combination
of the normalized SQL text and category name create a unique
key for a SQL Profile. An ACCEPT_SQL_PROFILE will fail if
this combination is duplicated.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-7

Usage Notes
 The "CREATE ANY SQL PROFILE" privilege is required.

ADD_SQLSET_REFERENCE Function

91-8 PL/SQL Packages and Types Reference

ADD_SQLSET_REFERENCE Function

This procedure adds a new reference to an existing SqlSet to indicate its use by a
client.

Syntax
DBMS_SQLTUNE.ADD_SQLSET_REFERENCE (
 sqlset_name IN VARCHAR2,
 description IN VARCHAR2 := NULL)
 RETURN NUMBER;

Parameters

Return Values
The identifier of the added reference.

Table 91–3 ADD_SQLSET_REFERENCE Function Parameters

Parameter Description

sqlset_name The SqlSet name.

description The description of the usage of SqlSet.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-9

ALTER_SQL_PROFILE Procedure

This procedure alters specific attributes of an existing SQL Profile object. The
following attributes can be altered (using these attribute names):

■ "STATUS" can be set to "ENABLED" or "DISABLED"

■ "NAME" can be reset to a valid name which must be a valid Oracle identifier and
must be unique.

■ "DESCRIPTION" can be set to any string of size no more than 500 characters

■ "CATEGORY" can be reset to a valid category name which must be a valid Oracle
identifier and must be unique when combined with normalized SQL text)

Syntax
DBMS_SQLTUNE.ALTER_SQL_PROFILE (
 name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Usage Notes
Requires the "ALTER ANY SQL PROFILE" privilege.

Table 91–4 ALTER_SQL_PROFILE Procedure Parameters

Parameter Description

name The (mandatory) name of the existing SQL Profile to alter

attribute_name The (mandatory) attribute name to alter (case insensitive)
using valid attribute names.

value The (mandatory) new value of the attribute using valid
attribute values.

CANCEL_TUNING_TASK Procedure

91-10 PL/SQL Packages and Types Reference

CANCEL_TUNING_TASK Procedure

This procedure cancels the currently executing tuning task. All intermediate result
data is deleted.

Syntax
DBMS_SQLTUNE.CANCEL_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–5 CANCEL_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the task to execute.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-11

CREATE_SQLSET Procedure

This procedure creates a SqlSet object in the database.

Syntax
DBMS_SQLTUNE.CREATE_SQLSET (
 sqlset_name IN VARCHAR2,
 description IN VARCHAR2 := NULL);

Parameters

Table 91–6 CREATE_SQLSET Procedure Parameters

Parameter Description

sqlset_name The SqlSet name.

description The description of the SqlSet.

CREATE_TUNING_TASK Functions

91-12 PL/SQL Packages and Types Reference

CREATE_TUNING_TASK Functions

You can use different forms of this function to:

■ Prepare the tuning of a single statement given its text.

■ Prepare the tuning of a single statement from the Cursor Cache given its
identifier.

■ Prepare the tuning of a single statement from the workload repository given a
range of snapshot identifiers.

■ Prepare the tuning of a SqlSet.

In all cases, the function mainly creates an advisor task and sets its parameters.

Syntax
DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text IN CLOB,
 bind_list IN sql_binds := NULL,
 user_name IN VARCHAR2 := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-13

RETURN VARCHAR2;

DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 rank1 IN VARCHAR2 := NULL,
 rank2 IN VARCHAR2 := NULL,
 rank3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 scope IN VARCHAR2 := SCOPE_COMPREHENSIVE,
 time_limit IN NUMBER := TIME_LIMIT_DEFAULT,
 task_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL)
RETURN VARCHAR2;

Parameters

Table 91–7 CREATE_TUNING_TASK Function Parameters

Parameter Description

sql_text The text of a SQL statement.

begin_snap Begin snapshot identifier.

end_snap End snapshot identifier.

sql_id The identifier of a SQL statement.

bind_list A a set of bind values.

plan_hash_value The hash value of the SQL execution plan.

sqlset_name The SqlSet name.

basic_filter The SQL predicate to filter the SQL from the STS.

object_filter The object filter.

rankn An order-by clause on the selected SQL.

result_percentage A percentage on the sum of a ranking measure

result_limit The top L(imit) SQL from the (filtered/ranked) SQL.

user_name The username for whom the statement or SQL set is to be
tuned.

scope Tuning scope (limited/comprehensive).

CREATE_TUNING_TASK Functions

91-14 PL/SQL Packages and Types Reference

Return Values
A SQL tune task identifier.

time_limit The maximum duration in seconds for the tuning session.

task_name An optional tuning task name.

description A description of the SQL tuning session to a maximum of 256
characters.

Table 91–7 (Cont.) CREATE_TUNING_TASK Function Parameters

Parameter Description

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-15

DELETE_SQLSET Procedure

This procedure deletes a set of SQL statements from a SqlSet.

Syntax
DBMS_SQLTUNE.DELETE_SQLSET (
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL);

Parameters

Table 91–8 DELETE_SQLSET Procedure Parameters

Parameter Description

sqlset_name The SqlSet name

basic_filter The QL predicate to filter the SQL from the SqlSet. This basic
filter is used as a where clause on the SqlSet content to select a
desired subset of SQL from the Tuning Set.

DROP_SQL_PROFILE Procedure

91-16 PL/SQL Packages and Types Reference

DROP_SQL_PROFILE Procedure

This procedure drops the named SQL Profile from the database.

Syntax
DBMS_SQLTUNE.DROP_SQL_PROFILE (
 name IN VARCHAR2,
 ignore IN BOOLEAN := FALSE);

Parameters

Usage Notes
Requires the "DROP ANY SQL PROFILE" privilege.

Table 91–9 DROP_SQL_PROFILE Procedure Parameters

Parameter Description

name The (mandatory) name of SQL Profile to be dropped. The
name is case sensitive.

ignore Ignores errors due to object not existing.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-17

DROP_SQLSET Procedure

This procedure drops a SqlSet if it is not active.

Syntax
DBMS_SQLTUNE.DROP_SQLSET (
 sqlset_name IN VARCHAR2;

Parameters

Usage Notes
You cannot drop a SqlSet when it is referenced by one or more clients (for example,
SQL tune advisor).

Table 91–10 DROP_SQLSET Procedure Parameters

Parameter Description

sqlset_name The SqlSet name.

DROP_TUNING_TASK Procedure

91-18 PL/SQL Packages and Types Reference

DROP_TUNING_TASK Procedure

This procedure drops a SQL tuning task.The task and all its result data are deleted.

Syntax
DBMS_SQLTUNE.DROP_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–11 DROP_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the current task.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-19

EXECUTE_TUNING_TASK Procedure

This procedures executes a previously created tuning task.

Syntax
DBMS_SQLTUNE.EXECUTE_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–12 EXECUTE_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the task to execute.

INTERRUPT_TUNING_TASK Procedure

91-20 PL/SQL Packages and Types Reference

INTERRUPT_TUNING_TASK Procedure

This procedure interrupts the currently executing tuning task and access
intermediate result data.

Syntax
DBMS_SQLTUNE.INTERRUPT_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–13 INTERRUPT_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the current task.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-21

LOAD_SQLSET Procedure

This procedure populates the SqlSet with a set of selected SQL.

Syntax
DBMS_SQLTUNE.LOAD_SQLSET (
 sqlset_name IN VARCHAR2,
 populate_cursor IN SqlSet_cursor);

Parameters

Usage Notes
This procedure returns an error when sqlset_name is invalid, or a corresponding
SqlSet does not exist, or the populate_cursor is incorrect and cannot be
executed.

Table 91–14 LOAD_SQLSET Procedure Parameters

Parameter Description

sqlset_name The SqlSet name.

populate_cursor The cursor reference from which to populate.

REMOVE_SQLSET_REFERENCE Procedure

91-22 PL/SQL Packages and Types Reference

REMOVE_SQLSET_REFERENCE Procedure

This procedure deactivates a SqlSet to indicate it is no longer used by the client.

Syntax
DBMS_SQLTUNE.REMOVE_SQLSET_REFERENCE (
 sqlset_name IN VARCHAR2,
 reference_id IN NUMBER);

Parameters

Table 91–15 REMOVE_SQLSET_REFERENCE Procedure Parameters

Parameter Description

sqlset_name The SqlSet name.

reference_id The identifier of the reference to remove.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-23

REPORT_TUNING_TASK Function

This procedure displays the results of a tuning task.

Syntax
DBMS_SQLTUNE.REPORT_TUNING_TASK(
 task_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL,
 result_limit IN NUMBER := NULL,
 plan_format IN VARCHAR2 := FORMAT_TYPICAL,
 rec_format IN VARCHAR2 := FORMAT_TYPICAL)
RETURN CLOB;

Parameters

Return Values
A text report.

Table 91–16 REPORT_TUNING_TASK Function Parameters

Parameter Description

task_name The identifier of the task to report. If the task ID is not given by
the caller, the function will generate a report for the results of
the last tuning task run by the user.

object_id The identifier of the advisor framework object that represents a
given statement in the SqlSet.

result_limit The number of statements in a SqlSet for which a report is
generated.

plan_format The format of the explain plans displayed in the report.
Possible values are TYPICAL, BASIC, ALL and SERIAL.

rec_format The format of the recommendations displayed in the report.
Possible values are TYPICAL and BASIC.

RESET_TUNING_TASK Procedure

91-24 PL/SQL Packages and Types Reference

RESET_TUNING_TASK Procedure

This procedure resets the currently executing tuning task to its initial state. All
intermediate result data is deleted.

Syntax
DBMS_SQLTUNE.RESET_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–17 RESET_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the current task.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-25

RESUME_TUNING_TASK Procedure

This procedure resumes a previously interrupted tuning task.

Syntax
DBMS_SQLTUNE.RESUME_TUNING_TASK(
 task_name IN VARCHAR2);

Parameters

Table 91–18 RESUME_TUNING_TASK Procedure Parameters

Parameter Description

task_name The identifier of the current task.

SELECT_SQLSET Function

91-26 PL/SQL Packages and Types Reference

SELECT_SQLSET Function

This function collects SQL statements from the cursor cache.

Syntax
DBMS_SQLTUNE.SELECT_SQLSET (
 sqlset_name IN VARCHAR2,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL)
 RETURN sys.sqlset PIPELINED;

Parameters

Return Values
This function returns a sqlset object.

Table 91–19 SELECT_SQLSET Procedure Parameters

Parameter Description

sqlset_name The SqlSet name.

basic_filter The SQL predicate to filter the SQL from the cursor cache.

object_filter Specifies the objects that should exist in the object list of
selected SQL from the cursor cache.

ranking_measure(n) An order-by clause on the selected SQL.

result_percentage A percentage on the sum of a ranking measure.

result_limit The top L(imit) SQL from the (filtered) source ranked by the
ranking measure.

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-27

SELECT_WORKLOAD_REPOSITORY Functions

This function collects SQL statements from the workload repository. The
overloaded forms let you:

■ Collect SQL statements from all snapshots between begin_snap and end_
snap.

■ Collect SQL statements from a workload repository baseline.

Syntax
DBMS_SQLTUNE.SELECT_WORKLAOD_REPOSITORY (
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL)
 RETURN sys.sqlset PIPELINED;

DBMS_SQLTUNE.SELECT_WORKLAOD REPOSITORY (
 begin_snap IN NUMBER,
 end_snap IN NUMBER,
 basic_filter IN VARCHAR2 := NULL,
 object_filter IN VARCHAR2 := NULL,
 ranking_measure1 IN VARCHAR2 := NULL,
 ranking_measure2 IN VARCHAR2 := NULL,
 ranking_measure3 IN VARCHAR2 := NULL,
 result_percentage IN NUMBER := 1,
 result_limit IN NUMBER := NULL)
 RETURN sys.sqlset PIPELINED;

Parameters

Table 91–20 SELECT_WORKLOAD_REPOSITORY Procedure Parameters

Parameter Description

begin_snap Begin snapshot.

end_snap End snapshot.

SELECT_WORKLOAD_REPOSITORY Functions

91-28 PL/SQL Packages and Types Reference

Return Values
This function returns a sqlset object.

baseline_name The name of the baseline period.

basic_filter The SQL predicate to filter the SQL from the serf.

object_filter Specifies the objects that should exist in the object list of
selected SQL from the swrf.

ranking_measure(n) An order-by clause on the selected SQL.

result_percentage A percentage on the sum of a ranking measure.

result_limit The top L(imit) SQL from the (filtered) source ranked by the
ranking measure.

Table 91–20 (Cont.) SELECT_WORKLOAD_REPOSITORY Procedure Parameters

Parameter Description

Summary of DBMS_SQLTUNE Subprograms

DBMS_SQLTUNE 91-29

UPDATE_SQLSET Procedures

There are two forms of this procedure:

■ You use the first form of the procedure to update selected string fields for a SQL
statement in a SqlSet, specifically to update the MODULE and ACTION fields.

■ You use the second form of the procedure to update the set numerical attributes
of a SQL in a SqlSet, specifically PRIORITY and PARSING_SCHEMA_ID.

Syntax
DBMS_SQLTUNE.UPDATE_SQLSET (
 sqlset_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2 := NULL);

DBMS_SQLTUNE.UPDATE_SQLSET (
 sqlset_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN NUMBER := NULL);

Parameters

Table 91–21 UPDATE_SQLSET Function Parameters

Parameter Description

sqlset_name The SqlSet name.

sql_id The identifier of the statement to update.

attribute_name The name of the attribute to modify.

attribute_value The new value of the attribute.

UPDATE_SQLSET Procedures

91-30 PL/SQL Packages and Types Reference

DBMS_STAT_FUNCS 92-1

92
DBMS_STAT_FUNCS

The DBMS_STAT_FUNCS package provides statistical functions.

This chapter contains the following topic:

■ Summary of DBMS_STAT_FUNCS Subprograms

Summary of DBMS_STAT_FUNCS Subprograms

92-2 PL/SQL Packages and Types Reference

Summary of DBMS_STAT_FUNCS Subprograms

Table 92–1 DBMS_STAT_FUNCS Package Subprograms

Subprogram Description

EXPONENTIAL_DIST_FIT
Procedure on page 92-3

Tests how well a sample of values fits an exponential
distribution

NORMAL_DIST_FIT
Procedure on page 92-4

Tests how well a sample of values fits a normal distribution

POISSON_DIST_FIT
Procedure on page 92-5

Tests how well a sample of values fits a Poisson distribution

SUMMARY Procedure on
page 92-6

Summarizes a numerical column of a table

UNIFORM_DIST_FIT
Procedure on page 92-8

Tests how well a sample of values fits a uniform distribution

WEIBULL_DIST_FIT
Procedure on page 92-9

Tests how well a sample of values fits a Weibull distribution

Summary of DBMS_STAT_FUNCS Subprograms

DBMS_STAT_FUNCS 92-3

EXPONENTIAL_DIST_FIT Procedure

This procedure tests how well a sample of values fits an exponential distribution.

Syntax
DBMS_STAT_FUNCS.EXPONENTIAL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 lambda IN NUMBER,
 mu IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 92–2 EXPONENTIAL_DIST_FIT Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table against which to run the test.

test_type The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_
SMIRNOV' or 'ANDERSON_DARLING'.

lambda The scale parameter.

mu The location parameter.

sig The goodness of fit value, based on test type. A small value
indicates a significant difference between the sample and the
exponential distribution. A number close to 1 indicates a close
match.

NORMAL_DIST_FIT Procedure

92-4 PL/SQL Packages and Types Reference

NORMAL_DIST_FIT Procedure

This procedure tests how well a sample of values fits a normal distribution.

Syntax
DBMS_STAT_FUNCS.NORMAL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'SHAPIRO_WILKS',
 mean IN NUMBER,
 stdev IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 92–3 NORMAL_DIST_FIT Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table against which to run the test.

test_type The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_
SMIRNOV', 'ANDERSON_DARLING' or 'SHAPIRO_WILKS'.

mean The mean of the distribution against which to compare.

stdev The standard deviation of the distribution against which to
compare.

sig The goodness of fit value, based on test type. A small value
indicates a significant difference between the sample and the
normal distribution. A number close to 1 indicates a close
match.

Summary of DBMS_STAT_FUNCS Subprograms

DBMS_STAT_FUNCS 92-5

POISSON_DIST_FIT Procedure

This procedure tests how well a sample of values fits a Poisson distribution.

Syntax
DBMS_STAT_FUNCS.POISSON_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 lambda IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 92–4 POISSON_DIST_FIT Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table against which to run the test.

test_type The type of test to use: 'KOLMOGOROV_SMIRNOV' or
'ANDERSON_DARLING'.

lambda The lambda parameter is the shape parameter.

sig The goodness of fit value, based on test type. A small value
indicates a significant difference between the sample and the
Poisson distribution. A number close to 1 indicates a close
match.

SUMMARY Procedure

92-6 PL/SQL Packages and Types Reference

SUMMARY Procedure

This procedure summarizes the numerical column specified in the columnname of
tablename. The summary is returned as a Summary Type. Note that most of the
output of SUMMARY can be obtained with currently available SQL.

Syntax
DBMS_STAT_FUNCS.SUMMARY (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 sigma_value IN NUMBER DEFAULT 3,
 s OUT SummaryType);

Parameters

Definition of SummaryType
TYPE n_arr IS VARRAY(5) of NUMBER;
TYPE num_table IS TABLE of NUMBER;
TYPE summaryType IS RECORD (
 count NUMBER,
 min NUMBER,
 max NUMBER,
 range NUMBER,
 mean NUMBER,
 cmode num_table,
 variance NUMBER,
 stddev NUMBER,

Table 92–5 SUMMARY Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table to be summarized.

sigma_value The number of sigmas for the set of extreme values, defaults to
3.

s The Record containing summary information about given
column.

Summary of DBMS_STAT_FUNCS Subprograms

DBMS_STAT_FUNCS 92-7

 quantile_5 NUMBER,
 quantile_25 NUMBER,
 median NUMBER,
 quantile_75 NUMBER,
 quantile_95 NUMBER,
 plus_x_sigma NUMBER,
 minus_x_sigma NUMBER,
 extreme_values num_table,
 top_5_values n_arr,
 bottom_5_values n_arr);

UNIFORM_DIST_FIT Procedure

92-8 PL/SQL Packages and Types Reference

UNIFORM_DIST_FIT Procedure

This procedure tests well a sample of values fits a uniform distribution.

Syntax
DBMS_STAT_FUNCS.UNIFORM_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 var_type IN VARCHAR2 DEFAULT 'CONTINUOUS',
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 paramA IN NUMBER,
 paramB IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 92–6 UNIFORM_DIST_FIT Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table against which to run the test.

var_type The type of distribution: 'CONTINUOUS' (the default) or
'DISCRETE'

test_type The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_
SMIRNOV' or 'ANDERSON_DARLING'.

paramA Parameter A estimated from the sample (the location
parameter).

paramB Parameter B estimated from the sample (the scale parameter).

sig The goodness of fit value, based on test type. A small value
indicates a significant difference between the sample and the
uniform distribution. A number close to 1 indicates a close
match.

Summary of DBMS_STAT_FUNCS Subprograms

DBMS_STAT_FUNCS 92-9

WEIBULL_DIST_FIT Procedure

This procedure tests how well a sample of values fits a Weibull distribution.

Syntax
DBMS_STAT_FUNCS.WEIBULL_DIST_FIT (
 ownername IN VARCHAR2,
 tablename IN VARCHAR2,
 columnname IN VARCHAR2,
 test_type IN VARCHAR2 DEFAULT 'KOLMOGOROV_SMIRNOV',
 alpha IN NUMBER,
 mu IN NUMBER,
 beta IN NUMBER,
 sig OUT NUMBER);

Parameters

Table 92–7 WEIBULL_DIST_FIT Procedure Parameters

Parameter Description

ownername The schema where the table resides.

tablename The table where the column resides.

columnname The column of the table against which to run the test.

test_type The type of test to use: 'CHI_SQUARED', 'KOLMOGOROV_
SMIRNOV' or 'ANDERSON_DARLING'.

alpha The scale parameter.

mu The location parameter.

beta The slope/shape parameter.

sig The goodness of fit value, based on test type. A small value
indicates a significant difference between the sample and the
Weibull distribution. A number close to 1 indicates a close
match.

WEIBULL_DIST_FIT Procedure

92-10 PL/SQL Packages and Types Reference

DBMS_STATS 93-1

93
DBMS_STATS

With the DBMS_STATS package you can view and modify optimizer statistics
gathered for database objects.

This chapter contains the following topics:

■ Using DBMS_STATS

■ Overview

■ Types

■ Constants

■ Operational Notes

■ Deprecated Subprograms

■ Examples

■ Summary of DBMS_STATS Subprograms

Using DBMS_STATS

93-2 PL/SQL Packages and Types Reference

Using DBMS_STATS

■ Overview

■ Types

■ Constants

■ Operational Notes

■ Deprecated Subprograms

■ Examples

Overview

The statistics to be viewed or modified can reside in the dictionary or in a table
created in the user's schema for this purpose. You can also collect and manage
user-defined statistics for tables and domain indexes using this package. For
example, if the DELETE_COLUMN_STATS procedure is invoked on a column for
which an association is defined, user-defined statistics for that column are deleted
in addition to deletion of the standard statistics.

Only statistics stored in the dictionary have an impact on the cost-based optimizer.
You can also use DBMS_STATS to gather statistics in parallel

Types

Types for the minimum and maximum values and histogram endpoints include:

TYPE numarray IS VARRAY(256) OF NUMBER;
TYPE datearray IS VARRAY(256) OF DATE;
TYPE chararray IS VARRAY(256) OF VARCHAR2(4000);
TYPE rawarray IS VARRAY(256) OF RAW(2000);
TYPE fltarray IS VARRAY(256) OF BINARY_FLOAT;
TYPE dblarray IS VARRAY(256) OF BINARY_DOUBLE;

TYPE StatRec IS RECORD (
 epc NUMBER,
 minval RAW(2000),
 maxval RAW(2000),
 bkvals NUMARRAY,
 novals NUMARRAY);

Using DBMS_STATS

DBMS_STATS 93-3

Types for listing stale tables include:

TYPE ObjectElem IS RECORD (
 ownname VARCHAR2(30), -- owner
 objtype VARCHAR2(6), -- 'TABLE' or 'INDEX'
 objname VARCHAR2(30), -- table/index
 partname VARCHAR2(30), -- partition
 subpartname VARCHAR2(30), -- subpartition
 confidence NUMBER); -- not used
type ObjectTab is TABLE of ObjectElem;

Constants

Use the following constant to indicate that auto-sample size algorithms should be
used:

AUTO_SAMPLE_SIZE CONSTANT NUMBER;

The constant used to determine the system default degree of parallelism, based on
the initialization parameters, is:

DEFAULT_DEGREE CONSTANT NUMBER;

Use the following constant to let Oracle select the degree of parallelism based on
size of the object, number of CPUs and initialization parameters:

AUTO_DEGREE CONSTANT NUMBER;

Use the following constant to let Oracle decide whether to collect statistics for
indexes or not:

AUTO_CASCADE CONSTANT BOOLEAN;

Use the following constant to let oracle decide when to invalidate dependent
cursors.

AUTO_INVALIDATE CONSTANT BOOLEAN

Operational Notes

The DBMS_STATS subprograms perform the following general operations:

■ Setting, Getting or Deleting Statistics

Operational Notes

93-4 PL/SQL Packages and Types Reference

■ Deleting Statistics

■ Transferring Statistics

■ Gathering Optimizer Statistics

■ Locking or Unlocking Statistics

■ Restoring and Purging Statistics History

■ Setting, Getting or Deleting Statistics

Most of the DBMS_STATS procedures include the three parameters statown,
stattab, and statid. These parameters allow you to store statistics in your own
tables (outside of the dictionary), which does not affect the optimizer. Therefore,
you can maintain and experiment with sets of statistics.

The stattab parameter specifies the name of a table in which to hold statistics,
and it is assumed that it resides in the same schema as the object for which statistics
are collected (unless the statown parameter is specified). You can create multiple
tables with different stattab identifiers to hold separate sets of statistics.

Additionally, you can maintain different sets of statistics within a single stattab
by using the statid parameter, which avoids cluttering the user's schema.

For the SET and GET procedures, if stattab is not provided (that is, NULL), then
the operation works directly on the dictionary statistics; therefore, you do not need
to create these statistics tables if they only plan to modify the dictionary directly.
However, if stattab is not NULL, then the SET or GET operation works on the
specified user statistics table, and not the dictionary.

You can change the default values of some of the parameters of DBMS_STATS
procedures using the SET_PARAM Procedure.

Most of the procedures in this package commit the current transaction, perform the
operation, and then commit again.

Setting, Getting or Deleting Statistics
When a DBMS_STATS subprogram modifies or deletes the statistics for an object, all
the dependent cursors are invalidated by default and corresponding statements are
subject to recompilation next time so that the new statistics have immediate effects.
This behavior can be altered with the no_invalidate argument.

Use the following procedures to store and retrieve individual column-related,
index-related, and table-related statistics:

PREPARE_COLUMN_VALUES

Using DBMS_STATS

DBMS_STATS 93-5

SET_COLUMN_STATS
SET_INDEX_STATS
SET_SYSTEM_STATS
SET_TABLE_STATS

In the special versions of the SET_*_STATS procedures for setting user-defined
statistics, the following, if provided, are stored in the dictionary or external statistics
table:

■ User-defined statistics (extstats)

■ The statistics type schema name (statsschema)

■ The statistics type name (statsname)

The user-defined statistics and the corresponding statistics type are inserted into the
USTATS$ dictionary table. You can specify user-defined statistics without specifying
the statistics type name.

CONVERT_RAW_VALUE
GET_COLUMN_STATS
GET_INDEX_STATS
GET_SYSTEM_STATS
GET_TABLE_STATS

The special versions of the GET_*_STATS procedures return user-defined statistics
and the statistics type owner and name as OUT arguments corresponding to the
schema object specified. If user-defined statistics are not collected, NULL values are
returned.

Deleting Statistics
The DELETE_* procedures delete both user-defined statistics and the standard
statistics for the given schema object.

DELETE_COLUMN_STATS
DELETE_DATABASE_STATS
DELETE_DICTIONARY_STATS
DELETE_FIXED_OBJECTS_STATS
DELETE_INDEX_STATS
DELETE_SCHEMA_STATS
DELETE_SYSTEM_STATS
DELETE_TABLE_STATS

Operational Notes

93-6 PL/SQL Packages and Types Reference

Transferring Statistics
Use the following procedures to transfer statistics from the dictionary to a user
statistics table (export_*) and from a user statistics table to the dictionary
(import_*):

CREATE_STAT_TABLE
DROP_STAT_TABLE

CREATE_STAT_TABLE can hold user-defined statistics and the statistics type object
number.

EXPORT_COLUMN_STATS
EXPORT_DATABASE_STATS
EXPORT_DICTIONARY_STATS
EXPORT_FIXED_OBJECTS_STATS
EXPORT_INDEX_STATS
EXPORT_SCHEMA_STATS
EXPORT_SYSTEM_STATS
EXPORT_TABLE_STATS

IMPORT_COLUMN_STATS
IMPORT_DICTIONARY_STATS
IMPORT_FIXED_OBJECTS_STATS
IMPORT_INDEX_STATS
IMPORT_SCHEMA_STATS
IMPORT_SYSTEM_STATS
IMPORT_TABLE_STATS

The IMPORT_* procedures retrieve statistics, including user-defined statistics, from
the stattab table and store them in the dictionary. Because the SET_*_STATS and
GET_*_STATS interfaces are supported for user-defined statistics, user-defined
statistics can be copied to another database using this interface.

Gathering Optimizer Statistics
Use the following procedures to gather certain classes of optimizer statistics, with
possible performance improvements over the ANALYZE command:

GATHER_DATABASE_STATS
GATHER_DICTIONARY_STATS
GATHER_FIXED_OBJECTS_STATS
GATHER_INDEX_STATS
GATHER_SCHEMA_STATS
GATHER_SYSTEM_STATS
GATHER_TABLE_STATS

Using DBMS_STATS

DBMS_STATS 93-7

The GATHER_* procedures also collect user-defined statistics for columns and
domain indexes.

The statown, stattab, and statid parameters instruct the package to back up
current statistics in the specified table before gathering new statistics.

Oracle also provides the following procedure for generating statistics for derived
objects when you have sufficient statistics on related objects:

GENERATE_STATS

Locking or Unlocking Statistics
Use the following procedures to lock and unlock statistics on objects.

LOCK_TABLE_STATS
LOCK_SCHEMA_STATS

UNLOCK_TABLE_STATS
UNLOCK_SCHEMA_STATS

The LOCK* procedures either freeze the current set of the statistics or to keep the
statistics empty (uncollected).When statistics on a table are locked, all the statistics
depending on the table, including table statistics, column statistics, histograms and
statistics on all dependent indexes, are considered to be locked.

Restoring and Purging Statistics History
Use the following procedures to restore statistics as of a specified timestamp. This is
useful in case newly collected statistics leads to some sub-optimal execution plans
and the administrator wants to revert to the previous set of statistics.

RESTORE_TABLE_STATS
RESTORE_SCHEMA_STATS
RESTORE_DATABASE_STATS
RESTORE_FIXED_OBJECTS_STATS
RESTORE_DICTIONARY_STATS
RESTORE_SYSTEM_STATS

Whenever statistics in dictionary are modified, old versions of statistics are saved
automatically for future restoring. The old statistics are purged automatically at
regular intervals based on the statistics history retention setting and the time of the
recent analysis of the system. Retention is configurable using the ALTER_STATS_
HISTORY_RETENTION procedure.

Deprecated Subprograms

93-8 PL/SQL Packages and Types Reference

The other DBMS_STATS procedures related to restoring statistics are:

■ PURGE_STATS: This procedure lets you manually purge old versions beyond a
time stamp.

■ GET_STATS_HISTORY_RENTENTION: This function gets the current statistics
history retention value.

■ GET_STATS_HISTORY_AVAILABILTY: This function gets the oldest time
stamp where statistics history is available. Users cannot restore statistics to a
time stamp older than the oldest time stamp.

User-Defined Statistics
DBMS_STATS supports operations on user-defined statistics. When a domain index
or column is associated with a statistics type (using the associate statement),
operations on the index or column manipulate user-defined statistics. For example,
gathering statistics for a domain index (for which an association with a statistics
type exists) using the GATHER_INDEX_STATS interface invokes the user-defined
statistics collection method of the associated statistics type. Similarly, delete,
transfer, import, and export operations manipulate user-defined statistics.

SET and GET operations for user-defined statistics are also supported using a
special version of the SET and GET interfaces for columns and indexes.

Deprecated Subprograms

The following subprograms are obsolete with Release 10g:

■ ALTER_DATABASE_TAB_MONITORING Procedure

■ ALTER_SCHEMA_TAB_MONITORING Procedure

In earlier releases, you could use these subprograms to operate on statistics. These
subprograms are now non-operational because Oracle performs their functions
automatically.

Examples

■ Saving Original Statistics and Gathering New Statistics

■ Gathering Daytime System Statistics

Using DBMS_STATS

DBMS_STATS 93-9

Saving Original Statistics and Gathering New Statistics
Assume many modifications have been made to the employees table since the last
time statistics were gathered. To ensure that the cost-based optimizer is still picking
the best plan, statistics should be gathered once again; however, the user is
concerned that new statistics will cause the optimizer to choose bad plans when the
current ones are acceptable. The user can do the following:

BEGIN
 DBMS_STATS.CREATE_STAT_TABLE ('hr', 'savestats');
 DBMS_STATS.GATHER_TABLE_STATS ('hr', 'employees', stattab => 'savestats');
END;

This operation gathers new statistics on the employees table, but first saves the
original statistics in a user statistics table: hr.savestats.

If the user believes that the new statistics are causing the optimizer to generate poor
plans, then the original statistics can be restored as follows:

BEGIN
 DBMS_STATS.DELETE_TABLE_STATS ('hr', 'employees');
 DBMS_STATS.IMPORT_TABLE_STATS ('hr', 'employees', stattab => 'savestats');
END;

Gathering Daytime System Statistics
Assume that you want to perform database application processing OLTP
transactions during the day and run reports at night.

To collect daytime system statistics, gather statistics for 720 minutes. Store the
statistics in the MYSTATS table.

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 interval => 720,
 stattab => 'mystats',
 statid => 'OLTP');
END;

To collect nighttime system statistics, gather statistics for 720 minutes. Store the
statistics in the MYSTATS table.

BEGIN
 DBMS_STATS.GATHER_SYSTEM_STATS (
 interval => 720,
 stattab => 'mystats',
 statid => 'OLAP');

Examples

93-10 PL/SQL Packages and Types Reference

END;

Update the dictionary with the gathered statistics.

VARIABLE jobno number;
BEGIN
 DBMS_JOB.SUBMIT (:jobno, 'DBMS_STATS.IMPORT_SYSTEM_STATS
 (''mystats'',''OLTP'');'
 sysdate, 'sysdate + 1');
 COMMIT;
END;

BEGIN
 DBMS_JOB.SUBMIT (:jobno, 'DBMS_STATS.IMPORT_SYSTEM_STATS
 (''mystats'',''OLAP'');'
 sysdate + 0.5, 'sysdate + 1');
 COMMIT;
END;

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-11

Summary of DBMS_STATS Subprograms

Table 93–1 DBMS_STATS Package Subprograms

Subprogram Description

ALTER_DATABASE_TAB_
MONITORING Procedure on
page 93-16

Enables or disables the DML monitoring feature of all
tables in the database, except for snapshot logs and the
tables, which monitoring does not support [See
Deprecated Subprograms on page 93-8]

ALTER_SCHEMA_TAB_
MONITORING Procedure on
page 93-17

Enables or disables the DML monitoring feature of all
tables in the schema, except for snapshot logs and the
tables, which monitoring does not support [See
Deprecated Subprograms on page 93-8]

ALTER_STATS_HISTORY_
RETENTION Procedure on
page 93-18

Changes the statistics history retention value

CONVERT_RAW_VALUE
Procedures on page 93-19

Convert the internal representation of a minimum or
maximum value into a datatype-specific value

CONVERT_RAW_VALUE_
NVARCHAR Procedure on
page 93-20

Convert the internal representation of a minimum or
maximum value into a datatype-specific value

CONVERT_RAW_VALUE_
ROWID Procedure on page 93-21

Convert the internal representation of a minimum or
maximum value into a datatype-specific value

CREATE_STAT_TABLE Procedure
on page 93-22

Creates a table with name stattab in ownname's
schema which is capable of holding statistics

DELETE_COLUMN_STATS
Procedure on page 93-23

Deletes column-related statistics

DELETE_DATABASE_STATS
Procedure on page 93-25

Deletes statistics for the entire database

DELETE_DICTIONARY_STATS
Procedure on page 93-26

Deletes statistics for all dictionary schemas ('SYS',
'SYSTEM' and RDBMS component schemas)

DELETE_FIXED_OBJECTS_
STATS Procedure on page 93-25

Deletes statistics of all fixed tables

DELETE_INDEX_STATS
Procedure on page 93-29

Deletes index-related statistics

DELETE_SCHEMA_STATS
Procedure on page 93-31

Deletes schema-related statistics

Summary of DBMS_STATS Subprograms

93-12 PL/SQL Packages and Types Reference

DELETE_SYSTEM_STATS
Procedure on page 93-32

Deletes system statistics

DELETE_TABLE_STATS
Procedure on page 93-33

Deletes table-related statistics

DROP_STAT_TABLE Procedure
on page 93-35

Drops a user statistics table created by CREATE_STAT_
TABLE

EXPORT_COLUMN_STATS
Procedure on page 93-36

Retrieves statistics for a particular column and stores
them in the user statistics table identified by stattab

EXPORT_DATABASE_STATS
Procedure on page 93-37

Retrieves statistics for all objects in the database and
stores them in the user statistics table identified by
statown.stattab

EXPORT_DICTIONARY_STATS
Procedure on page 93-38

Retrieves statistics for all dictionary schemas ('SYS',
'SYSTEM' and RDBMS component schemas) and stores
them in the user statistics table identified by stattab

EXPORT_FIXED_OBJECTS_
STATS Procedure on page 93-39

Retrieves statistics for fixed tables and stores them in
the user statistics table identified by stattab

EXPORT_INDEX_STATS
Procedure on page 93-40

Retrieves statistics for a particular index and stores
them in the user statistics table identified by stattab

EXPORT_SCHEMA_STATS
Procedure on page 93-41

Retrieves statistics for all objects in the schema
identified by ownname and stores them in the user
statistics table identified by stattab

EXPORT_SYSTEM_STATS
Procedure on page 93-42

Retrieves system statistics and stores them in the user
statistics table

EXPORT_TABLE_STATS
Procedure on page 93-43

Retrieves statistics for a particular table and stores
them in the user statistics table

FLUSH_DATABASE_
MONITORING_INFO Procedure
on page 93-44

Flushes in-memory monitoring information for all the
tables to the dictionary

GATHER_DATABASE_STATS
Procedures on page 93-45

Gathers statistics for all objects in the database

GATHER_DICTIONARY_STATS
Procedure on page 93-45

Gathers statistics for dictionary schemas 'SYS',
'SYSTEM' and schemas of RDBMS components

GATHER_FIXED_OBJECTS_
STATS Procedure on page 93-55

Gathers statistics of fixed objects

Table 93–1 (Cont.) DBMS_STATS Package Subprograms

Subprogram Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-13

GATHER_INDEX_STATS
Procedure on page 93-56

Gathers index statistics

GATHER_SCHEMA_STATS
Procedures on page 93-59

Gathers statistics for all objects in a schema

GATHER_SYSTEM_STATS
Procedure on page 93-64

Gathers system statistics

GATHER_TABLE_STATS
Procedure on page 93-67

Gathers table and column (and index) statistics

GENERATE_STATS Procedure on
page 93-71

Generates object statistics from previously collected
statistics of related objects

GET_COLUMN_STATS
Procedures on page 93-72

Gets all column-related information

GET_INDEX_STATS Procedures
on page 93-74

Gets all index-related information

GET_PARAM Function on
page 93-78

Gets the default value of parameters of DBMS_STATS
procedures

GET_STATS_HISTORY_
AVAILABILITY Function on
page 93-79

Gets the oldest timestamp where statistics history
is available

GET_STATS_HISTORY_
RETENTION Function on
page 93-80

Returns the current retention value

GET_SYSTEM_STATS Procedure
on page 93-81

Gets system statistics from stattab, or from the
dictionary if stattab is NULL

GET_TABLE_STATS Procedure on
page 93-84

Gets all table-related information

IMPORT_COLUMN_STATS
Procedure on page 93-86

Retrieves statistics for a particular column from the
user statistics table identified by stattab and stores
them in the dictionary

"IMPORT_DATABASE_STATS
Procedure" on page 93-88

Retrieves statistics for all objects in the database from
the user statistics table and stores them in the
dictionary

"IMPORT_DICTIONARY_STATS
Procedure" on page 93-90

Retrieves statistics for all dictionary schemas ('SYS',
'SYSTEM' and RDBMS component schemas) from the
user statistics table and stores them in the dictionary

Table 93–1 (Cont.) DBMS_STATS Package Subprograms

Subprogram Description

Summary of DBMS_STATS Subprograms

93-14 PL/SQL Packages and Types Reference

IMPORT_FIXED_OBJECTS_
STATS Procedure on page 93-92

Retrieves statistics for fixed tables from the user
statistics table identified by stattab and stores them
in the dictionary

IMPORT_INDEX_STATS
Procedure on page 93-94

Retrieves statistics for a particular index from the user
statistics table identified by stattab and stores them
in the dictionary

IMPORT_SCHEMA_STATS
Procedure on page 93-96

Retrieves statistics for all objects in the schema
identified by ownname from the user statistics table and
stores them in the dictionary

IMPORT_SYSTEM_STATS
Procedure on page 93-98

Retrieves system statistics from the user statistics table
and stores them in the dictionary

IMPORT_TABLE_STATS
Procedure on page 93-99

Retrieves statistics for a particular table from the user
statistics table identified by stattab and stores them
in the dictionary

LOCK_SCHEMA_STATS
Procedure on page 93-101

Locks the statistics of all tables of a schema

LOCK_TABLE_STATS Procedure
on page 93-102

Locks the statistics on the table

PREPARE_COLUMN_VALUES
Procedures on page 93-103

Converts user-specified minimum, maximum, and
histogram endpoint datatype-specific values into
Oracle's internal representation for future storage using
the SET_COLUMN_STATS Procedures

PREPARE_COLUMN_VALUES_
NVARCHAR2 Procedure on
page 93-106

Converts user-specified minimum, maximum, and
histogram endpoint datatype-specific values into
Oracle's internal representation for future storage using
the SET_COLUMN_STATS Procedures

PREPARE_COLUMN_VALUES_
ROWID Procedure on page 93-108

Converts user-specified minimum, maximum, and
histogram endpoint datatype-specific values into
Oracle's internal representation for future storage using
the SET_COLUMN_STATS Procedures

PURGE_STATS Procedure on
page 93-110

Purges old versions of statistics saved in the dictionary

RESTORE_DATBASE_STATS
Procedure on page 93-111

Restores statistics of all tables of the database as of a
specified timestamp

RESTORE_DICTIONARY_STATS
Procedure on page 93-112

Restores statistics of all dictionary tables (tables of
'SYS', 'SYSTEM' and RDBMS component schemas) as of
a specified timestamp

Table 93–1 (Cont.) DBMS_STATS Package Subprograms

Subprogram Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-15

RESTORE_FIXED_OBJECTS_
STATS Procedure on page 93-113

Restores statistics of all fixed tables as of a specified
timestamp

RESTORE_SCHEMA_STATS
Procedure on page 93-114

Restores statistics of all tables of a schema as of a
specified timestamp

RESTORE_SYSTEM_STATS
Procedure on page 93-115

Restores statistics of all tables of a schema as of a
specified timestamp

RESTORE_TABLE_STATS
Procedure on page 93-116

Restores statistics of a table as of a specified timestamp
(as_of_timestamp), as well as statistics of associated
indexes and columns

SET_COLUMN_STATS
Procedures on page 93-117

Sets column-related information

SET_INDEX_STATS Procedures
on page 93-120

Sets index-related information

SET_PARAM Procedure on
page 93-124

Sets default values for parameters of DBMS_STATS
procedures

SET_SYSTEM_STATS Procedure
on page 93-126

Sets system statistics

SET_TABLE_STATS Procedure on
page 93-129

Sets table-related information

UNLOCK_SCHEMA_STATS
Procedure on page 93-132

Unlocks the statistics on all the table in a schema

UNLOCK_TABLE_STATS
Procedure on page 93-133

Unlocks the statistics on the table

UPGRADE_STAT_TABLE
Procedure on page 93-134

Upgrades user statistics on an older table

Table 93–1 (Cont.) DBMS_STATS Package Subprograms

Subprogram Description

ALTER_DATABASE_TAB_MONITORING Procedure

93-16 PL/SQL Packages and Types Reference

ALTER_DATABASE_TAB_MONITORING Procedure

This procedure enables or disables the DML monitoring feature of all the tables in
the schema, except for snapshot logs and the tables, which monitoring does not
support. Using this procedure is equivalent to issuing ALTER
TABLE...MONITORING (or NOMONITORING) individually.

Syntax
DBMS_STATS.ALTER_DATABASE_TAB_MONITORING (
 monitoring BOOLEAN DEFAULT TRUE,
 sysobjs BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes

Exceptions
ORA-20000: Insufficient privileges.

Note: See Deprecated Subprograms on page 93-8.

Table 93–2 ALTER_DATABASE_TAB_MONITORING Procedure Parameters

Parameter Description

monitoring Enables monitoring if true, and disables monitoring if false.

sysobjs If true, changes monitoring on the dictionary objects.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-17

ALTER_SCHEMA_TAB_MONITORING Procedure

This procedure enables or disables the DML monitoring feature of all the tables in
the schema, except for snapshot logs and the tables, which monitoring does not
support. Using this procedure is equivalent to issuing ALTER
TABLE...MONITORING (or NOMONITORING) individually.

Syntax
DBMS_STATS.ALTER_SCHEMA_TAB_MONITORING (
 ownname VARCHAR2 DEFAULT NULL,
 monitoring BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
You should enable monitoring if you use GATHER_DATABASE_STATS or GATHER_
SCHEMA_STATS with the GATHER AUTO or GATHER STALE options.

Exceptions
ORA-20000: Insufficient privileges.

Note: See Deprecated Subprograms on page 93-8.

Table 93–3 ALTER_SCHEMA_TAB_MONITORING Procedure Parameters

Parameter Description

ownname The name of the schema. (NULL means the current schema.)

monitoring Enables monitoring if true, and disables monitoring if false.

ALTER_STATS_HISTORY_RETENTION Procedure

93-18 PL/SQL Packages and Types Reference

ALTER_STATS_HISTORY_RETENTION Procedure

This procedure changes the statistics history retention value. Statistics history
retention is used by both the automatic purge and PURGE_STATS Procedure.

Syntax
DBMS_STATS.ALTER_STATS_HISTORY_RETENTION (
 retention IN NUMBER);

Parameters

Usage Notes
To run this procedure, you must have the SYSDBA or both ANALYZE ANY
DICTIONARY and ANALYZE ANY system privilege.

Exceptions
ORA-20000: Insufficient privileges.

Table 93–4 ALTER_STATS_HISTORY_RETENTION Procedure Parameters

Parameter Description

retention The retention time in days. The statistics history will be
retained for at least these many number of days.The valid
range is [1,365000]. Also you can use the following values for
special purposes:

■ 0 - old statistics are never saved. The automatic purge will
delete all statistics history

■ 1 - statistics history is never purged by automatic purge.

■ NULL - change statistics history retention to default value

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-19

CONVERT_RAW_VALUE Procedures

This procedure converts the internal representation of a minimum or maximum
value into a datatype-specific value. The minval and maxval fields of the StatRec
structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are
appropriate values for input.

Syntax
DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT BINARY_FLOAT);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT BINARY_DOUBLE);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT DATE);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT NUMBER);

DBMS_STATS.CONVERT_RAW_VALUE (
 rawval RAW,
 resval OUT VARCHAR2);

Pragmas
pragma restrict_references(convert_raw_value, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 93–5 CONVERT_RAW_VALUE Procedure Parameters

Parameter Description

rawval The raw representation of a column minimum or maximum
datatype-specific output parameters.

resval The converted, type-specific value.

CONVERT_RAW_VALUE_NVARCHAR Procedure

93-20 PL/SQL Packages and Types Reference

CONVERT_RAW_VALUE_NVARCHAR Procedure

This procedure converts the internal representation of a minimum or maximum
value into a datatype-specific value. The minval and maxval fields of the StatRec
structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are
appropriate values for input.

Syntax
DBMS_STATS.CONVERT_RAW_VALUE_NVARCHAR (
 rawval RAW,
 resval OUT NVARCHAR2);

Pragmas
pragma restrict_references(convert_raw_value_nvarchar, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 93–6 CONVERT_RAW_VALUE_NVARCHAR Procedure Parameters

Parameter Description

rawval The raw representation of a column minimum or maximum
datatype-specific output parameters.

resval The converted, type-specific value.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-21

CONVERT_RAW_VALUE_ROWID Procedure

This procedure converts the internal representation of a minimum or maximum
value into a datatype-specific value. The minval and maxval fields of the StatRec
structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are
appropriate values for input.

Syntax
DBMS_STATS.CONVERT_RAW_VALUE_ROWID (
 rawval RAW,
 resval OUT ROWID);

Pragmas
pragma restrict_references(convert_raw_value_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 93–7 CONVERT_RAW_VALUE_ROWID Procedure Parameters

Parameter Description

rawval The raw representation of a column minimum or maximum
datatype-specific output parameters.

resval The converted, type-specific value.

CREATE_STAT_TABLE Procedure

93-22 PL/SQL Packages and Types Reference

CREATE_STAT_TABLE Procedure

This procedure creates a table with name stattab in ownname's schema which is
capable of holding statistics. The columns and types that compose this table are not
relevant as it should be accessed solely through the procedures in this package.

Syntax
DBMS_STATS.CREATE_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2,
 tblspace VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Table already exists or insufficient privileges.

ORA-20001: Tablespace does not exist.

Table 93–8 CREATE_STAT_TABLE Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab Name of the table to create. This value should be passed as the
stattab parameter to other procedures when the user does
not want to modify the dictionary statistics directly.

tblspace Tablespace in which to create the statistics tables. If none is
specified, then they are created in the user's default tablespace.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-23

DELETE_COLUMN_STATS Procedure

This procedure deletes column-related statistics.

Syntax
DBMS_STATS.DELETE_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–9 DELETE_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition for which to delete the statistics. If
the table is partitioned and if partname is NULL, then global
column statistics are deleted.

stattab User statistics table identifier describing from where to delete
the statistics. If stattab is NULL, then the statistics are deleted
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the table is partitioned and if partname is NULL, then
setting this to true causes the deletion of statistics for this
column for all underlying partitions as well.

statown Schema containing stattab (if different than ownname).

DELETE_COLUMN_STATS Procedure

93-24 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20005: Object statistics are locked.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When value of this argument is TRUE, deletes column statistics
even if locked.

Table 93–9 (Cont.) DELETE_COLUMN_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-25

DELETE_DATABASE_STATS Procedure

This procedure deletes statistics for all the tables in a database.

Syntax
DBMS_STATS.DELETE_DATABASE_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–10 DELETE_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing from where to delete
the statistics. If stattab is NULL, then the statistics are deleted
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

statown Schema containing stattab. If stattab is not NULL and if
statown is NULL, then it is assumed that every schema in the
database contains a user statistics table with the name
stattab.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When the value of this argument is TRUE, deletes statistics of
tables in a database even if they are locked.

DELETE_DICTIONARY_STATS Procedure

93-26 PL/SQL Packages and Types Reference

DELETE_DICTIONARY_STATS Procedure

This procedure deletes statistics for all dictionary schemas ('SYS', 'SYSTEM' and
RDBMS component schemas).

Syntax
DBMS_STATS.DELETE_DICTIONARY_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–11 DELETE_DICTIONARY_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing from where to delete
the statistics. If stattab is NULL, then the statistics are deleted
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

statown Schema containing stattab. If stattab is not NULL and if
statown is NULL, then it is assumed that every schema in the
database contains a user statistics table with the name
stattab.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.)Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When the value of this argument is TRUE, deletes statistics of
tables in a database even if they are locked.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-27

Usage Notes
You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY
system privilege to execute this procedure.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table, may need to upgrade it.

DELETE_FIXED_OBJECTS_STATS Procedure

93-28 PL/SQL Packages and Types Reference

DELETE_FIXED_OBJECTS_STATS Procedure

This procedure deletes statistics of all fixed tables.

Syntax
DBMS_STATS.DELETE_FIXED_OBJECTS_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to
execute this procedure.

Exceptions
ORA-20000: Insufficient privileges.

ORA-20002: Bad user statistics table, may need to upgrade it.

Table 93–12 DELETE_FIXED_OBJECTS_STATS Procedure Parameters

Parameter Description

stattab The user statistics table identifier describing from where to
delete the current statistics. If stattab is NULL, the statistics
will be deleted directly in the dictionary.

statid The (optional) identifier to associate with these statistics within
stattab. This only applies if stattab is not NULL.

statown The schema containing stattab (if different from ownname).

no_invalidate Does not invalidate the dependent cursors if set to TRUE. Use
DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when
to invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

force Ignores the statistics lock on objects and deletes the statistics if
set to TRUE.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-29

DELETE_INDEX_STATS Procedure

This procedure deletes index-related statistics.

Syntax
DBMS_STATS.DELETE_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–13 DELETE_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition for which to delete the statistics. If
the index is partitioned and if partname is NULL, then index
statistics are deleted at the global level.

stattab User statistics table identifier describing from where to delete
the statistics. If stattab is NULL, then the statistics are deleted
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the index is partitioned and if partname is NULL, then
setting this to TRUE causes the deletion of statistics for this
index for all underlying partitions as well.

statown Schema containing stattab (if different than ownname).

DELETE_INDEX_STATS Procedure

93-30 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20005: Object statistics are locked.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When value of this argument is TRUE, deletes index statistics
even if locked.

Table 93–13 (Cont.) DELETE_INDEX_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-31

DELETE_SCHEMA_STATS Procedure

This procedure deletes statistics for an entire schema.

Syntax
DBMS_STATS.DELETE_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges

Table 93–14 DELETE_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User statistics table identifier describing from where to delete
the statistics. If stattab is NULL, then the statistics are deleted
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When value of this argument is TRUE, deletes statistics of
tables in a schema even if locked.

DELETE_SYSTEM_STATS Procedure

93-32 PL/SQL Packages and Types Reference

DELETE_SYSTEM_STATS Procedure

This procedure deletes workload statistics (collected using the 'INTERVAL' or
'START' and 'STOP' options) and resets the default to noworkload statistics
(collected using 'NOWORKLOAD' option) if stattab is not specified. If stattab is
specified, the subprogram deletes all system statistics with the associated statid
from the stattab.

Syntax
DBMS_STATS.DELETE_SYSTEM_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table; may need to be upgraded.

Table 93–15 DELETE_SYSTEM_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user statistics table where the statistics will be
saved.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user's
schema.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-33

DELETE_TABLE_STATS Procedure

This procedure deletes table-related statistics.

Syntax
DBMS_STATS.DELETE_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 cascade_parts BOOLEAN DEFAULT TRUE,
 cascade_columns BOOLEAN DEFAULT TRUE,
 cascade_indexes BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–16 DELETE_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User statistics table identifier describing from where to retrieve
the statistics. If stattab is NULL, then the statistics are
retrieved directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the table is partitioned and if partname is NULL, then
setting this to TRUE causes the deletion of statistics for this
table for all underlying partitions as well.

cascade_columns Indicates that DELETE_COLUMN_STATS should be called for all
underlying columns (passing the cascade_parts parameter).

DELETE_TABLE_STATS Procedure

93-34 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20005: Object statistics are locked.

cascade_indexes Indicates that DELETE_INDEX_STATS should be called for all
underlying indexes (passing the cascade_parts parameter).

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force When value of this argument is TRUE, deletes table statistics
even if locked.

Table 93–16 (Cont.) DELETE_TABLE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-35

DROP_STAT_TABLE Procedure

This procedure drops a user statistics table.

Syntax
DBMS_STATS.DROP_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2);

Parameters

Exceptions
ORA-20000: Table does not exists or insufficient privileges.

Table 93–17 DROP_STAT_TABLE Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User statistics table identifier.

EXPORT_COLUMN_STATS Procedure

93-36 PL/SQL Packages and Types Reference

EXPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column and stores them in the
user statistics table identified by stattab.

Syntax
DBMS_STATS.EXPORT_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–18 EXPORT_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition column statistics
are exported.

stattab User statistics table identifier describing where to store the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-37

EXPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database and stores them in
the user statistics tables identified by statown.stattab.

Syntax
DBMS_STATS.EXPORT_DATABASE_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–19 EXPORT_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing where to store the
statistics

statid Identifier (optional) to associate with these statistics within
stattab

statown Schema containing stattab. If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab.

EXPORT_DICTIONARY_STATS Procedure

93-38 PL/SQL Packages and Types Reference

EXPORT_DICTIONARY_STATS Procedure

This procedure retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and
RDBMS component schemas) and stores them in the user statistics table identified
by stattab.

Syntax
DBMS_STATS.EXPORT_DICTIONARY_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
You must have the SYSDBA or ANALYZE ANY DICTIONARY and ANALYZE ANY
system privilege to execute this procedure.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table, may need to upgrade it.

Table 93–20 EXPORT_DICTIONARY_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing where to store the
statistics

statid Identifier (optional) to associate with these statistics within
stattab

statown Schema containing stattab. If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-39

EXPORT_FIXED_OBJECTS_STATS Procedure

This procedure retrieves statistics for fixed tables and stores them in the user
statistics table identified by stattab.

Syntax
DBMS_STATS.EXPORT_FIXED_OBJECTS_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table, may need to upgrade it.

Table 93–21 EXPORT_FIXED_OBJECTS_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing where to store the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different from ownname).

EXPORT_INDEX_STATS Procedure

93-40 PL/SQL Packages and Types Reference

EXPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index and stores them in the user
statistics table identified by stattab.

Syntax
DBMS_STATS.EXPORT_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–22 EXPORT_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition. If the index is partitioned and if
partname is NULL, then global and partition index statistics
are exported.

stattab User statistics table identifier describing where to store the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-41

EXPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by
ownname and stores them in the user statistics tables identified by stattab.

Syntax
DBMS_STATS.EXPORT_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–23 EXPORT_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User statistics table identifier describing where to store the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

EXPORT_SYSTEM_STATS Procedure

93-42 PL/SQL Packages and Types Reference

EXPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics and stores them in the user statistics table,
identified by stattab.

Syntax
DBMS_STATS.EXPORT_SYSTEM_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table; may need to be upgraded.

ORA-20003: Unable to export system statistics.

Table 93–24 EXPORT_SYSTEM_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user statistics table that describes where the
statistics will be stored.

statid Optional identifier associated with the statistics stored from
the stattab.

statown The schema containing stattab, if different from the user's
schema.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-43

EXPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table and stores them in the user
statistics table. Cascade results in all index and column statistics associated with the
specified table being exported as well.

Syntax
DBMS_STATS.EXPORT_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 cascade BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

Table 93–25 EXPORT_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition table statistics are
exported.

stattab User statistics table identifier describing where to store the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

cascade If true, then column and index statistics for this table are also
exported.

statown Schema containing stattab (if different than ownname).

FLUSH_DATABASE_MONITORING_INFO Procedure

93-44 PL/SQL Packages and Types Reference

FLUSH_DATABASE_MONITORING_INFO Procedure

This procedure flushes in-memory monitoring information for all tables in the
dictionary. Corresponding entries in the *_TAB_MODIFICATIONS views are
updated immediately, without waiting for the Oracle database to flush them
periodically. This procedure is useful when you need up-to-date information in
those views. Because the GATHER_*_STATS procedures internally flush monitoring
information, it is not necessary to run this procedure before gathering the statistics.

Syntax
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO;

Exceptions
ORA-20000: Insufficient privileges.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-45

GATHER_DATABASE_STATS Procedures

This procedure gathers statistics for all objects in the database.

Syntax
DBMS_STATS.GATHER_DATABASE_STATS (
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 objlist OUT ObjectTab,
 statown VARCHAR2 DEFAULT NULL,
 gather_sys BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

DBMS_STATS.GATHER_DATABASE_STATS (
 estimate_percent NUMBER DEFAULT to_estimate_percent_type

(get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 statown VARCHAR2 DEFAULT NULL,
 gather_sys BOOLEAN DEFAULT FALSE,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

GATHER_DATABASE_STATS Procedures

93-46 PL/SQL Packages and Types Reference

Parameters

Table 93–26 GATHER_DATABASE_STATS Procedure Parameters

Parameter Description

estimate_percent Percentage of rows to estimate (NULL means compute): The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
appropriate sample size for good statistics. This is the
default.The default value can be changed using the SET_
PARAM Procedure...

block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

■ FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

■ FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...], where size_clause is defined
as size_clause := SIZE {integer | REPEAT |
AUTO | SKEWONLY}

■ integer—Number of histogram buckets. Must be in the
range [1,254].

■ REPEAT—Collects histograms only on the columns that
already have histograms.

■ AUTO—Oracle determines the columns to collect
histograms based on data distribution and the workload of
the columns.

■ SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.

The default is FOR ALL COLUMNS SIZE AUTO.The default
value can be changed using the SET_PARAM Procedure.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-47

degree Degree of parallelism. The default for degree is NULL. The
default value can be changed using the SET_PARAM
Procedure. NULL means use the table default value specified
by the DEGREE clause in the CREATE TABLE or ALTER TABLE
statement. Use the constant DBMS_STATS.DEFAULT_DEGREE
to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of
parallelism automatically. This is either 1 (serial execution) or
DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the
object.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

'ALL' - gathers all (subpartition, partition, and global)
statistics

'AUTO'- determines the granularity based on the partitioning
type, and collects the global, partition level and subpartition
level statistics if the subpartitioning method is LIST, and the
global and partition level only otherwise. This is the default
value.

'DEFAULT' - gathers global and partition-level statistics. This
option is obsolete, and while currently supported, it is
included in the documentation for legacy reasons only. You
should use the 'GLOBAL AND PARTITION' for this
functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition
level statistics. No subpartition level statistics are gathered
even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

cascade Gather statistics on the indexes as well. Index statistics
gathering is not parallelized. Using this option is equivalent to
running the GATHER_INDEX_STATS Procedure on each of
the indexes in the database in addition to gathering table and
column statistics. Use the constant DBMS_STATS.AUTO_
CASCADE to have Oracle determine whether index statistics to
be collected or not. This is the default. The default value can be
changed using the SET_PARAM Procedure.

Table 93–26 (Cont.) GATHER_DATABASE_STATS Procedure Parameters

Parameter Description

GATHER_DATABASE_STATS Procedures

93-48 PL/SQL Packages and Types Reference

stattab User statistics table identifier describing where to save the
current statistics.

The statistics table is assumed to reside in the same schema as
the object being analyzed, so there must be one such table in
each schema to use this option.

statid Identifier (optional) to associate with these statistics within
stattab.

options Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically.
Oracle implicitly determines which objects need new statistics,
and determines how to gather those statistics. When GATHER
AUTO is specified, the only additional valid parameters are
stattab, statid, objlist and statown; all other
parameter settings are ignored. Returns a list of processed
objects.

GATHER STALE: Gathers statistics on stale objects as
determined by looking at the *_tab_modifications views.
Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently
have no statistics. Return a list of objects found to have no
statistics.

LIST AUTO: Returns a list of objects to be processed with
GATHER AUTO.

LIST STALE: Returns a list of stale objects as determined by
looking at the *_tab_modifications views.

LIST EMPTY: Returns a list of objects which currently have no
statistics.

objlist List of objects found to be stale or empty.

statown Schema containing stattab (if different than ownname).

gather_sys Gathers statistics on the objects owned by the 'SYS' user.

Table 93–26 (Cont.) GATHER_DATABASE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-49

Usage Notes
Statistics for external tables are not collected by this procedure.

Exceptions
ORA-20000: Insufficient privileges.

ORA-20001: Bad input value.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the objects for which statistics are being
gathered. (The statements corresponding to those cursors are
not recompiled until they are gone or invalidated.) Cannot be
used with the cascade option. This option has no effect when
an index is picked up as a target because GATHER_INDEX_
STATS does not support this option. Use DBMS_STATS.AUTO_
INVALIDATE. to have Oracle decide when to invalidate
dependent cursors. This is the default. The default can be
changed using the SET_PARAM Procedure.

Table 93–26 (Cont.) GATHER_DATABASE_STATS Procedure Parameters

Parameter Description

GATHER_DICTIONARY_STATS Procedure

93-50 PL/SQL Packages and Types Reference

GATHER_DICTIONARY_STATS Procedure

This procedure gathers statistics for dictionary schemas 'SYS', 'SYSTEM' and
schemas of RDBMS components.

Syntax
DBMS_STATS.GATHER_DICTIONARY_STATS (
 comp_id VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER AUTO',
 objlist OUT ObjectTab,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

Parameters

Table 93–27 GATHER_DICTIONARY_STATS Procedure Parameters

Parameter Description

comp_id The component id of the schema to analyze (NULL will result in
analyzing schemas of all RDBMS components).Please refer to
comp_id column of DBA_REGISTRY view. The procedure
always gather statistics on 'SYS' and 'SYSTEM' schemas
regardless of this argument.

estimate_percent Percentage of rows to estimate (NULL means compute). The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
appropriate sample size for good statistics. This is the
default.The default value can be changed using the SET_
PARAM Procedure.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-51

block_sample Determines whether or not to use random block sampling
instead of random row sampling. Random block sampling is
more efficient, but if the data is not randomly distributed on
disk then the sample values may be somewhat correlated. Only
pertinent when performing estimate statistics.

method_opt The method options of the following format:

size_clause := SIZE [integer | auto | skewonly
| repeat]

where integer is between 1 and 254 FOR ALL [INDEXED |
HIDDEN] COLUMNS [size_clause]. This value will be
passed to all of the individual tables. The default is FOR ALL
COLUMNS SIZE AUTO.The default value can be changed using
the SET_PARAM Procedure.

degree Degree of parallelism. The default for degree is NULL. The
default value can be changed using the SET_PARAM
Procedure. NULL means use of table default value that was
specified by the DEGREE clause in the CREATE or ALTER
INDEX statement. Use the constant DBMS_STATS.DEFAULT_
DEGREE for the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of
parallelism automatically. This is either 1 (serial execution) or
DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the
object.

Table 93–27 (Cont.) GATHER_DICTIONARY_STATS Procedure Parameters

Parameter Description

GATHER_DICTIONARY_STATS Procedure

93-52 PL/SQL Packages and Types Reference

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

'ALL' - gathers all (subpartition, partition, and global)
statistics

'AUTO'- determines the granularity based on the partitioning
type, and collects the global, partition level and subpartition
level statistics if the subpartitioning method is LIST, and the
global and partition level only otherwise. This is the default
value.

'DEFAULT' - gathers global and partition-level statistics. This
option is obsolete, and while currently supported, it is
included in the documentation for legacy reasons only. You
should use the 'GLOBAL AND PARTITION' for this
functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition
level statistics. No subpartition level statistics are gathered
even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

cascade Gathers statistics on indexes also.Index statistics gathering will
not be parallelized. Using this option is equivalent to running
the GATHER_INDEX_STATS Procedure on each of the
indexes in the schema in addition to gathering table and
column statistics. Use the constant DBMS_STATS.AUTO_
CASCADE to have Oracle determine whether index statistics to
be collected or not. This is the default.The default value can be
changed using the SET_PARAM Procedure.

stattab User statistics table identifier describing where to save the
current statistics.

statid The (optional) identifier to associate with these statistics within
stattab.

Table 93–27 (Cont.) GATHER_DICTIONARY_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-53

Usage Notes
You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY
system privilege to execute this procedure.

Exceptions
ORA-20000: Index does not exist or insufficient privileges.

options Further specification of objects for which to gather statistics:

■ 'GATHER' - gathers statistics on all objects in the schema

■ 'GATHER AUTO' - gathers all necessary statistics
automatically. Oracle implicitly determines which objects
need new statistics and determines how to gather those
statistics. When 'GATHER AUTO' is specified, the only
additional valid parameters are comp_id, stattab,
statidandstatown; all other parameter settings will be
ignored. Also, returns a list of objects processed.

■ 'GATHER STALE' - gathers statistics on stale objects as
determined by looking at the *_tab_modifications views.
Also, returns a list of objects found to be stale.

■ 'GATHER EMPTY' - gathers statistics on objects which
currently have no statistics. Also, returns a list of objects
found to have no statistics.

■ 'LIST AUTO' - returns list of objects to be processed with
'GATHER AUTO'

■ 'LIST STALE' - returns list of stale objects as determined
by looking at the *_tab_modifications views

■ 'LIST EMPTY' - returns list of objects which currently have
no statistics

objlist The list of objects found to be stale or empty.

statown The schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE. When 'CASCADE' option is specified, this does not
apply to certain types of indexes described with regard to the
GATHER_INDEX_STATS Procedure. Use DBMS_
STATS.AUTO_INVALIDATE. to have Oracle decide when to
invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

Table 93–27 (Cont.) GATHER_DICTIONARY_STATS Procedure Parameters

Parameter Description

GATHER_DICTIONARY_STATS Procedure

93-54 PL/SQL Packages and Types Reference

ORA-20001: Bad input value.

ORA-20002: Bad user statistics table, may need to upgrade it.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-55

GATHER_FIXED_OBJECTS_STATS Procedure

This procedure gathers statistics for all fixed objects (dynamic performance tables).

Syntax
DBMS_STATS.GATHER_FIXED_OBJECTS_STATS (
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

Parameters

Usage Notes
You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to
execute this procedure.

Exceptions
ORA-20000: Insufficient privileges.

ORA-20001: Bad input value.

ORA-20002: Bad user statistics table, may need to upgrade it.

Table 93–28 GATHER_FIXED_OBJECTS_STATS Procedure Parameters

Parameter Description

stattab The user statistics table identifier describing where to save the
current statistics.

statid The (optional) identifier to associate with these statistics within
stattab.

statown The schema containing stattab (if different from ownname).

no_invalidate Does not invalidate the dependent cursors if set to TRUE. Use
DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when
to invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

GATHER_INDEX_STATS Procedure

93-56 PL/SQL Packages and Types Reference

GATHER_INDEX_STATS Procedure

This procedure gathers index statistics. It attempts to parallelize as much of the
work as possible. Restrictions are described in the individual parameters. This
operation will not parallelize with certain types of indexes, including cluster
indexes, domain indexes, and bitmap join indexes. The granularity and no_
invalidate arguments are not relevant to these types of indexes.

Syntax
DBMS_STATS.GATHER_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type
 (get_param('ESTIMATE_PERCENT')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

Parameters

Table 93–29 GATHER_INDEX_STATS Procedure Parameters

Parameter Description

ownname Schema of index to analyze.

indname Name of index.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means compute). The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
appropriate sample size for good statistics. This is the
default.The default value can be changed using the SET_
PARAM Procedure.

stattab User statistics table identifier describing where to save the
current statistics.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-57

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

degree Degree of parallelism. The default for degree is NULL. The
default value can be changed using the SET_PARAM
Procedure. NULL means use of table default value that was
specified by the DEGREE clause in the CREATE/ALTER INDEX
statement. Use the constant DBMS_STATS.DEFAULT_DEGREE
for the default value based on the initialization parameters.
The AUTO_DEGREE value determines the degree of parallelism
automatically. This is either 1 (serial execution) or DEFAULT_
DEGREE (the system default value based on number of CPUs
and initialization parameters) according to size of the object.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

'ALL' - gathers all (subpartition, partition, and global)
statistics

'AUTO'- determines the granularity based on the partitioning
type, and collects the global, partition level and subpartition
level statistics if the subpartitioning method is LIST, and the
global and partition level only otherwise. This is the default
value.

'DEFAULT' - gathers global and partition-level statistics. This
option is obsolete, and while currently supported, it is
included in the documentation for legacy reasons only. You
should use the 'GLOBAL AND PARTITION' for this
functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition
level statistics. No subpartition level statistics are gathered
even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE. Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

Table 93–29 (Cont.) GATHER_INDEX_STATS Procedure Parameters

Parameter Description

GATHER_INDEX_STATS Procedure

93-58 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Index does not exist or insufficient privileges.

ORA-20001: Bad input value.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-59

GATHER_SCHEMA_STATS Procedures

This procedure gathers statistics for all objects in a schema.

Syntax
DBMS_STATS.GATHER_SCHEMA_STATS (
 ownname VARCHAR2,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type

(get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

DBMS_STATS.GATHER_SCHEMA_STATS (
 ownname VARCHAR2,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type

(get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 options VARCHAR2 DEFAULT 'GATHER',
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

GATHER_SCHEMA_STATS Procedures

93-60 PL/SQL Packages and Types Reference

Parameters

Table 93–30 GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Schema to analyze (NULL means current schema).

estimate_percent Percentage of rows to estimate (NULL means compute): The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
appropriate sample size for good statistics. This is the
default.The default value can be changed using the SET_
PARAM Procedure.

block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

■ FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

■ FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...], where size_clause is defined as size_
clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

■ integer—Number of histogram buckets. Must be in the
range [1,254].

■ REPEAT—Collects histograms only on the columns that
already have histograms.

■ AUTO—Oracle determines the columns to collect
histograms based on data distribution and the workload of
the columns.

■ SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.

The default is FOR ALL COLUMNS SIZE AUTO.The default
value can be changed using the SET_PARAM Procedure.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-61

degree Degree of parallelism. The default for degree is NULL. The
default value can be changed using the SET_PARAM
Procedure. NULL means use the table default value specified
by the DEGREE clause in the CREATE TABLE or ALTER TABLE
statement. Use the constant DBMS_STATS.DEFAULT_DEGREE
to specify the default value based on the initialization
parameters.The AUTO_DEGREE value determines the degree of
parallelism automatically. This is either 1 (serial execution) or
DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the
object.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

'ALL' - gathers all (subpartition, partition, and global)
statistics

'AUTO'- determines the granularity based on the partitioning
type, and collects the global, partition level and subpartition
level statistics if the subpartitioning method is LIST, and the
global and partition level only otherwise. This is the default
value.

'DEFAULT' - gathers global and partition-level statistics. This
option is obsolete, and while currently supported, it is
included in the documentation for legacy reasons only. You
should use the 'GLOBAL AND PARTITION' for this
functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition
level statistics. No subpartition level statistics are gathered
even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

cascade Gather statistics on the indexes as well.Index statistics
gathering is not parallelized. Using this option is equivalent to
running the GATHER_INDEX_STATS Procedure on each of
the indexes in the schema in addition to gathering table and
column statistics. Use the constant DBMS_STATS.AUTO_
CASCADE to have Oracle determine whether index statistics to
be collected or not. This is the default. The default value can be
changed using the SET_PARAM Procedure.

Table 93–30 (Cont.) GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description

GATHER_SCHEMA_STATS Procedures

93-62 PL/SQL Packages and Types Reference

stattab User statistics table identifier describing where to save the
current statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

options Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically.
Oracle implicitly determines which objects need new statistics,
and determines how to gather those statistics. When GATHER
AUTO is specified, the only additional valid parameters are
ownname, stattab, statid, objlist and statown; all
other parameter settings are ignored. Returns a list of
processed objects.

GATHER STALE: Gathers statistics on stale objects as
determined by looking at the *_tab_modifications views.
Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently
have no statistics. also, return a list of objects found to have no
statistics.

LIST AUTO: Returns a list of objects to be processed with
GATHER AUTO.

LIST STALE: Returns list of stale objects as determined by
looking at the *_tab_modifications views.

LIST EMPTY: Returns list of objects which currently have no
statistics.

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the objects for which statistics are being
gathered. (The statements corresponding to those cursors are
not recompiled until they are gone or invalidated.) Cannot be
used with the cascade option because GATHER_INDEX_
STATS does not support the cascade option. This option has
no effect when an index is picked up as a target because
GATHER_INDEX_STATS does not support this option.Use
DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when
to invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

Table 93–30 (Cont.) GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-63

Usage Notes
DBMS_STATS.GATHER_SCHEMA_STATS generates differing sampling rates on
partitioned tables when you use the auto_sample_size constant. DBMS_STATS
tries to determine an adequate sample size for each type of statistic, which is
different for each table or column (and each partition, if partitioned). It starts with a
sampling rate to get approximately 5000 rows and examines the result based on
statistical equations. This process is repeated with increased sampling rate for
unsatisfactory results.

 In general, the number of distinct values column statistics requires the highest
sampling rate among the others, especially when each distinct value repeats a small
number of times.

When you use a specific value for the sampling percentage, DBMS_STATS honors it
except for when:

■ The result is less than 2500 rows (too small a sample) and

■ The specified percentage is more than the certain percentage.

Statistics for external tables are not collected by this procedure.

Exceptions
ORA-20000: Schema does not exist or insufficient privileges.

ORA-20001: Bad input value.

GATHER_SYSTEM_STATS Procedure

93-64 PL/SQL Packages and Types Reference

GATHER_SYSTEM_STATS Procedure

This procedure gathers system statistics.

Syntax
DBMS_STATS.GATHER_SYSTEM_STATS (
 gathering_mode VARCHAR2 DEFAULT 'NOWORKLOAD',
 interval INTEGER DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-65

Parameters

Table 93–31 GATHER_SYSTEM_STATS Procedure Parameters

Parameter Description

gathering_mode Mode values are:

NOWORKLOAD: Will capture characteristics of the I/O system.
Gathering may take a few minutes and depends on the size of
the database. During this period Oracle will estimate the
average read seek time and transfer speed for the I/O system.
This mode is suitable for the all workloads. Oracle
recommends to run GATHER_SYSTEM_STATS ('noworkload')
after creation of the database and tablespaces. To fine tune
system statistics for the workload use 'START' and 'STOP' or
'INTERVAL' options. If you gather both 'NOWORKLOAD' and
workload specific (statistics collected using 'INTERVAL' or
'START' and 'STOP'), the workload statistics will be used by
optimizer. Collected components: cpuspeednw, ioseektim,
iotfrspeed.

INTERVAL: Captures system activity during a specified
interval. This works in combination with the interval
parameter. You should provide an interval value in minutes,
after which system statistics are created or updated in the
dictionary or stattab. You can use GATHER_SYSTEM_STATS
(gathering_mode=>'STOP') to stop gathering earlier than
scheduled. Collected components: maxthr, slavethr,
cpuspeed, sreadtim, mreadtim, mbrc.

START | STOP: Captures system activity during specified start
and stop times and refreshes the dictionary or stattab with
statistics for the elapsed period. Interval value is ignored.
Collected components: maxthr, slavethr, cpuspeed,
sreadtim, mreadtim, mbrc.

interval Time, in minutes, to gather statistics. This parameter applies
only when gathering_mode='INTERVAL'.

stattab Identifier of the user statistics table where the statistics will be
saved.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user's
schema.

GATHER_SYSTEM_STATS Procedure

93-66 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid input value.

ORA-20002: Bad user statistics table; may need to be upgraded.

ORA-20003: Unable to gather system statistics.

ORA-20004: Error in the INTERVAL mode: system parameter job_queue_
processes must be >0.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-67

GATHER_TABLE_STATS Procedure

This procedure gathers table and column (and index) statistics. It attempts to
parallelize as much of the work as possible, but there are some restrictions as
described in the individual parameters.

Syntax
DBMS_STATS.GATHER_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 estimate_percent NUMBER DEFAULT to_estimate_percent_type

(get_param('ESTIMATE_PERCENT')),
 block_sample BOOLEAN DEFAULT FALSE,
 method_opt VARCHAR2 DEFAULT get_param('METHOD_OPT'),
 degree NUMBER DEFAULT to_degree_type(get_param('DEGREE')),
 granularity VARCHAR2 DEFAULT 'AUTO',
 cascade BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')),
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')));

Parameters

Table 93–32 GATHER_TABLE_STATS Procedure Parameters

Parameter Description

ownname Schema of table to analyze.

tabname Name of table.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means compute) The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
appropriate sample size for good statistics. This is the
default.The default value can be changed using the SET_
PARAM Procedure.

GATHER_TABLE_STATS Procedure

93-68 PL/SQL Packages and Types Reference

block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

■ FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

■ FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...], where size_clause is defined as: size_
clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

■ integer—Number of histogram buckets. Must be in the
range [1,254].

■ REPEAT—Collects histograms only on the columns that
already have histograms.

■ AUTO—Oracle determines the columns to collect
histograms based on data distribution and the workload of
the columns.

■ SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.

The default is FOR ALL COLUMNS SIZE AUTO.The default
value can be changed using the SET_PARAM Procedure.

degree Degree of parallelism. The default for degree is NULL. The
default value can be changed using the SET_PARAM
Procedure NULL means use the table default value specified
by the DEGREE clause in the CREATE TABLE or ALTER TABLE
statement. Use the constant DBMS_STATS.DEFAULT_DEGREE
to specify the default value based on the initialization
parameters. The AUTO_DEGREE value determines the degree of
parallelism automatically. This is either 1 (serial execution) or
DEFAULT_DEGREE (the system default value based on number
of CPUs and initialization parameters) according to size of the
object.

Table 93–32 (Cont.) GATHER_TABLE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-69

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

'ALL' - gathers all (subpartition, partition, and global)
statistics

'AUTO'- determines the granularity based on the partitioning
type, and collects the global, partition level and subpartition
level statistics if the subpartitioning method is LIST, and the
global and partition level only otherwise. This is the default
value.

'DEFAULT' - gathers global and partition-level statistics. This
option is obsolete, and while currently supported, it is
included in the documentation for legacy reasons only. You
should use the 'GLOBAL AND PARTITION' for this
functionality. Note that the default value is now 'AUTO'.

'GLOBAL' - gathers global statistics

'GLOBAL AND PARTITION' - gathers the global and partition
level statistics. No subpartition level statistics are gathered
even if it is a composite partitioned object.

'PARTITION '- gathers partition-level statistics

'SUBPARTITION' - gathers subpartition-level statistics.

cascade Gather statistics on the indexes for this table. Index statistics
gathering is not parallelized. Using this option is equivalent to
running the GATHER_INDEX_STATS Procedure on each of
the table's indexes. Use the constant DBMS_STATS.AUTO_
CASCADE to have Oracle determine whether index statistics to
be collected or not. This is the default. The default value can be
changed using the SET_PARAM Procedure.

stattab User statistics table identifier describing where to save the
current statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

Table 93–32 (Cont.) GATHER_TABLE_STATS Procedure Parameters

Parameter Description

GATHER_TABLE_STATS Procedure

93-70 PL/SQL Packages and Types Reference

Usage Notes
This operation does not parallelize if the user does not have select privilege on the
table being analyzed.

Exceptions
ORA-20000: Table does not exist or insufficient privileges.

ORA-20001: Bad input value.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Cannot be used with the cascade option because
GATHER_INDEX_STATS does not support the cascade option.
Use DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide
when to invalidate dependent cursors. This is the default. The
default can be changed using the SET_PARAM Procedure.

Table 93–32 (Cont.) GATHER_TABLE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-71

GENERATE_STATS Procedure

This procedure generates object statistics from previously collected statistics of
related objects. The currently supported objects are b-tree and bitmap indexes.

Syntax
DBMS_STATS.GENERATE_STATS (
 ownname VARCHAR2,
 objname VARCHAR2,
 organized NUMBER DEFAULT 7);

Parameters

Usage Notes
For fully populated schemas, the gather procedures should be used instead when
more accurate statistics are desired.

Exceptions
ORA-20000: Unsupported object type of object does not exist.

ORA-20001: Invalid option or invalid statistics.

Table 93–33 GENERATE_STATS Procedure Parameters

Parameter Description

ownname Schema of object.

objname Name of object.

organized Amount of ordering associated between the index and its
underlying table. A heavily organized index would have
consecutive index keys referring to consecutive rows on disk
for the table (the same block). A heavily disorganized index
would have consecutive keys referencing different table blocks
on disk.

This parameter is only used for b-tree indexes. The number can
be in the range of 0-10, with 0 representing a completely
organized index and 10 a completely disorganized one.

GET_COLUMN_STATS Procedures

93-72 PL/SQL Packages and Types Reference

GET_COLUMN_STATS Procedures

These procedures gets all column-related information. In the form of this procedure
that deals with user-defined statistics, the statistics type returned is the type stored,
in addition to the user-defined statistics.

Syntax
DBMS_STATS.GET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 distcnt OUT NUMBER,
 density OUT NUMBER,
 nullcnt OUT NUMBER,
 srec OUT StatRec,
 avgclen OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL);

Use the following for user-defined statistics:

DBMS_STATS.GET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats OUT RAW,
 stattypown OUT VARCHAR2 DEFAULT NULL,
 stattypname OUT VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Table 93–34 GET_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-73

Exceptions
ORA-20000: Object does not exist or insufficient privileges or no statistics have
been stored for requested object.

colname Name of the column.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User statistics table identifier describing from where to retrieve
the statistics. If stattab is NULL, then the statistics are
retrieved directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

distcnt Number of distinct values.

density Column density.

nullcnt Number of NULLs.

srec Structure holding internal representation of column minimum,
maximum, and histogram values.

avgclen Average length of the column (in bytes).

statown Schema containing stattab (if different than ownname).

Table 93–34 (Cont.) GET_COLUMN_STATS Procedure Parameters

Parameter Description

GET_INDEX_STATS Procedures

93-74 PL/SQL Packages and Types Reference

GET_INDEX_STATS Procedures

These procedures get all index-related information. In the form of this procedure
that deals with user-defined statistics, the statistics type returned is the type stored,
in addition to the user-defined statistics.

Syntax
DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numlblks OUT NUMBER,
 numdist OUT NUMBER,
 avglblk OUT NUMBER,
 avgdblk OUT NUMBER,
 clstfct OUT NUMBER,
 indlevel OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numlblks OUT NUMBER,
 numdist OUT NUMBER,
 avglblk OUT NUMBER,
 avgdblk OUT NUMBER,
 clstfct OUT NUMBER,
 indlevel OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 guessq OUT NUMBER,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Use the following for user-defined statistics:

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-75

DBMS_STATS.GET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats OUT RAW,
 stattypown OUT VARCHAR2 DEFAULT NULL,
 stattypname OUT VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Parameters

Table 93–35 GET_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition for which to get the statistics. If the
index is partitioned and if partname is NULL, then the
statistics are retrieved for the global index level.

stattab User statistics table identifier describing from where to retrieve
the statistics. If stattab is NULL, then the statistics are
retrieved directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

numrows Number of rows in the index (partition).

numlblks Number of leaf blocks in the index (partition).

numdist Number of distinct keys in the index (partition).

avglblk Average integral number of leaf blocks in which each distinct
key appears for this index (partition).

avgdblk Average integral number of data blocks in the table pointed to
by a distinct key for this index (partition).

GET_INDEX_STATS Procedures

93-76 PL/SQL Packages and Types Reference

Usage Notes
■ The Optimizer uses the cached data to estimate number of cached blocks for

index or statistics table access. The total cost of the operation will be combined
from the I/O cost of reading not cached blocks from disk, the CPU cost of
getting cached blocks from the buffer cache, and the CPU cost of processing the
data.

■ Oracle maintains cachedblk and cachehit at all times but uses
correspondent caching statistics for optimization as part of the table and index
statistics only when the user calls DBMS_STATS.GATHER_
[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or
DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent
the user from utilizing inaccurate and unreliable data, the optimizer will
compute a 'confidence factor' for each cachehit and a cachedblk for each
object. If the 'confidence factor' for the value meets confidence criteria, this
value will be used, otherwise the defaults will be used.

■ The automatic maintenance algorithm for object caching statistics assumes that
there is only one major workload for the system and adjusts statistics to this
workload, ignoring other "minor" workloads. If this is not the case, you must
use manual mode for maintaining object caching statistics.

■ The object caching statistics maintenance algorithm for auto mode prevents you
from using statistics in the following situations

– When not enough data has been analyzed, such as when an object has been
recently create

clstfct Clustering factor for the index (partition).

indlevel Height of the index (partition).

statown Schema containing stattab (if different than ownname).

guessq Guess quality for the index (partition).

cachedblk The average number of blocks in the buffer cache for the
segment (index/table/index partition/table partition).

cachehit The average cache hit ratio for the segment (index/table/index
partition/table partition).

Table 93–35 (Cont.) GET_INDEX_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-77

– When the system does not have one major workload resulting in averages
not corresponding to real values.

Exceptions
ORA-20000: Object does not exist or insufficient privileges or no statistics have
been stored for requested object.

GET_PARAM Function

93-78 PL/SQL Packages and Types Reference

GET_PARAM Function

This function returns the default value of parameters of DBMS_STATS procedures.

Syntax
DBMS_STATS.GET_PARAM (
 pname IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Exceptions
ORA-20001: Invalid input values

Table 93–36 GET_PARAM Function Parameters

Parameter Description

pname The parameter name.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-79

GET_STATS_HISTORY_AVAILABILITY Function

This function returns oldest timestamp where statistics history is available.Users
cannot restore statistics to a timestamp older than this one.

Syntax
DBMS_STATS.GET_STATS_HISTORY_AVAILABILITY
 RETURN TIMESTAMP WITH TIMEZONE;

GET_STATS_HISTORY_RETENTION Function

93-80 PL/SQL Packages and Types Reference

GET_STATS_HISTORY_RETENTION Function

This function returns the current retention value.

Syntax
DBMS_STATS.GET_STATS_HISTORY_RETENTION
 RETURN NUMBER;

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-81

GET_SYSTEM_STATS Procedure

This procedure gets system statistics from stattab, or from the dictionary if
stattab is NULL.

Syntax
DBMS_STATS.GET_SYSTEM_STATS (
 status OUT VARCHAR2,
 dstart OUT DATE,
 dstop OUT DATE,
 pname VARCHAR2,
 pvalue OUT NUMBER,
 stattab IN VARCHAR2 DEFAULT NULL,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 93–37 GET_SYSTEM_STATS Procedure Parameters

Parameter Description

status Output is one of the following:

COMPLETED:

AUTOGATHERING:

MANUALGATHERING:

BADSTATS:

dstart Date when statistics gathering started.

If status = MANUALGATHERING, the start date is returned.

dstop Date when statistics gathering stopped.

■ If status = COMPLETE, the finish date is returned.

■ If status = AUTOGATHERING, the future finish date is
returned.

■ If status = BADSTATS, the must-finished-by date is
returned.

GET_SYSTEM_STATS Procedure

93-82 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20002: Bad user statistics table; may need to be upgraded.

pname The parameter name to get, which can have one of the
following values:

■ iotfrspeed - I/O transfer speed in bytes for each
millisecond

■ ioseektim - seek time + latency time + operating system
overhead time, in milliseconds

■ sreadtim - average time to read single block (random
read), in milliseconds

■ mreadtim - average time to read an mbrc block at once
(sequential read), in milliseconds

■ cpuspeed - average number of CPU cycles for each
second, in millions, captured for the workload (statistics
collected using 'INTERVAL' or 'START' and 'STOP'
options)

■ cpuspeednw - average number of CPU cycles for each
second, in millions, captured for the noworkload (statistics
collected using 'NOWORKLOAD' option.

■ mbrc - average multiblock read count for sequential read,
in blocks

■ maxthr - maximum I/O system throughput, in
bytes/second

■ slavethr - average slave I/O throughput, in
bytes/second

pvalue The parameter value to get.

stattab Identifier of the user statistics table where the statistics will be
obtained. If stattab is null, the statistics will be obtained from
the dictionary.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user's
schema.

Table 93–37 (Cont.) GET_SYSTEM_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-83

ORA-20003: Unable to gather system statistics.

ORA-20004: Parameter does not exist.

GET_TABLE_STATS Procedure

93-84 PL/SQL Packages and Types Reference

GET_TABLE_STATS Procedure

This procedure gets all table-related information.

Syntax
DBMS_STATS.GET_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows OUT NUMBER,
 numblks OUT NUMBER,
 avgrlen OUT NUMBER,
 statown VARCHAR2 DEFAULT NULL,
 cachedblk OUT NUMBER,
 cachehit OUT NUMBER);

Parameters

Table 93–38 GET_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User statistics table identifier describing from where to retrieve
the statistics. If stattab is NULL, then the statistics are
retrieved directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

numrows Number of rows in the table (partition).

numblks Number of blocks the table (partition) occupies.

avgrlen Average row length for the table (partition).

statown Schema containing stattab (if different than ownname).

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-85

Usage Notes
■ The Optimizer uses the cached data to estimate number of cached blocks for

index or statistics table access. The total cost of the operation will be combined
from the I/O cost of reading not cached blocks from disk, the CPU cost of
getting cached blocks from the buffer cache, and the CPU cost of processing the
data.

■ Oracle maintains cachedblk and cachehit at all times but uses
correspondent caching statistics for optimization as part of the table and index
statistics only when the user calls DBMS_STATS.GATHER_
[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or
DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent
the user from utilizing inaccurate and unreliable data, the optimizer will
compute a 'confidence factor' for each cachehit and a cachedblk for each
object. If the 'confidence factor' for the value meets confidence criteria, this
value will be used, otherwise the defaults will be used.

■ The automatic maintenance algorithm for object caching statistics assumes that
there is only one major workload for the system and adjusts statistics to this
workload, ignoring other "minor" workloads. If this is not the case, you must
use manual mode for maintaining object caching statistics.

■ The object caching statistics maintenance algorithm for auto mode prevents you
from using statistics in the following situations

– When not enough data has been analyzed, such as when an object has been
recently create

– When the system does not have one major workload resulting in averages
not corresponding to real values.

Exceptions
ORA-20000: Object does not exist or insufficient privileges or no statistics have
been stored for requested object

cachedblk

cachehit

Table 93–38 (Cont.) GET_TABLE_STATS Procedure Parameters

Parameter Description

IMPORT_COLUMN_STATS Procedure

93-86 PL/SQL Packages and Types Reference

IMPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column from the user statistics
table identified by stattab and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–39 IMPORT_COLUMN_STATS Procedure Parameters

Parameter Description

ownname The name of the schema.

tabname The name of the table to which this column belongs.

colname The name of the column.

partname The name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition column statistics
are imported.

stattab The user statistics table identifier describing from where to
retrieve the statistics.

statid The (optional) identifier to associate with these statistics within
stattab.

statown The schema containing stattab (if different than ownname).

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-87

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

ORA-20005: Object statistics are locked.

no_invalidate If set to FALSE, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they expire or are
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force If set to TRUE, imports statistics even if statistics are locked.

Table 93–39 (Cont.) IMPORT_COLUMN_STATS Procedure Parameters

Parameter Description

IMPORT_DATABASE_STATS Procedure

93-88 PL/SQL Packages and Types Reference

IMPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database from the user
statistics table(s) and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_DATABASE_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–40 IMPORT_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab. If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the objects to which the statistics are being
imported. (The statements corresponding to those cursors are
not recompiled until they are gone or invalidated.) Use DBMS_
STATS.AUTO_INVALIDATE. to have Oracle decide when to
invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

force Overrides statistics locked at the object (table) level:

■ TRUE - Ignores the statistics lock and imports the statistics.

■ FALSE - The statistics will be imported only if they are not
locked.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-89

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

IMPORT_DICTIONARY_STATS Procedure

93-90 PL/SQL Packages and Types Reference

IMPORT_DICTIONARY_STATS Procedure

This procedure retrieves statistics for all dictionary schemas ('SYS', 'SYSTEM' and
RDBMS component schemas) from the user statistics table and stores them in the
dictionary.

Syntax
DBMS_STATS.IMPORT_DICTIONARY_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You must have the SYSDBA or both ANALYZE ANY DICTIONARY and ANALYZE ANY
system privilege to execute this procedure.

Table 93–41 IMPORT_DICTIONARY_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid The (optional) identifier to associate with these statistics within
stattab.

statown The schema containing stattab (if different from current
schema).

no_invalidate Do not invalidate the dependent cursors if set to TRUE. Use
DBMS_STATS.AUTO_INVALIDATE. to have Oracle decide when
to invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

force Overrides statistics locked at the object (table) level:

■ TRUE - Ignores the statistics lock and imports the statistics.

■ FALSE - The statistics will be imported only if there is no
lock.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-91

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

ORA-20002: Bad user statistics table, may need to upgrade it.

IMPORT_FIXED_OBJECTS_STATS Procedure

93-92 PL/SQL Packages and Types Reference

IMPORT_FIXED_OBJECTS_STATS Procedure

This procedure retrieves statistics for fixed tables from the user statistics table(s)
and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_FIXED_OBJECTS_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–42 IMPORT_FIXED_OBJECTS_STATS Procedure Parameters

Parameter Description

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab. If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the objects to which the statistics are being
imported. (The statements corresponding to those cursors are
not recompiled until they are gone or invalidated.) Use DBMS_
STATS.AUTO_INVALIDATE. to have Oracle decide when to
invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

force Overrides statistics lock:

■ TRUE - Ignores the statistics lock and imports the statistics

■ FALSE - The statistics will be imported only if there is no
lock

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-93

Usage Notes
You must have the SYSDBA or ANALYZE ANY DICTIONARY system privilege to
execute this procedure.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

ORA-20002: Bad user statistics table, may need to upgrade it.

IMPORT_INDEX_STATS Procedure

93-94 PL/SQL Packages and Types Reference

IMPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index from the user statistics table
identified by stattab and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–43 IMPORT_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition. If the index is partitioned and if
partname is NULL, then global and partition index statistics
are imported.

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-95

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

ORA-20005: Object statistics are locked.

force Imports statistics even if index statistics are locked.

Table 93–43 (Cont.) IMPORT_INDEX_STATS Procedure Parameters

Parameter Description

IMPORT_SCHEMA_STATS Procedure

93-96 PL/SQL Packages and Types Reference

IMPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by
ownname from the user statistics table and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_SCHEMA_STATS (
 ownname VARCHAR2,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULTto_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–44 IMPORT_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the objects to which the statistics are being
imported. (The statements corresponding to those cursors are
not recompiled until they are gone or invalidated.) Use DBMS_
STATS.AUTO_INVALIDATE. to have Oracle decide when to
invalidate dependent cursors. This is the default. The default
can be changed using the SET_PARAM Procedure.

force Overrides statistics locked at the object (table) level:

■ TRUE - Ignores the statistics lock and imports the statistics.

■ FALSE - The statistics will be imported only if there is no
lock.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-97

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

IMPORT_SYSTEM_STATS Procedure

93-98 PL/SQL Packages and Types Reference

IMPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics from the user statistics table, identified by
stattab, and stores the statistics in the dictionary.

Syntax
DBMS_STATS.IMPORT_SYSTEM_STATS (
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

ORA-20002: Bad user statistics table; may need to be upgraded.

ORA-20003: Unable to import system statistics.

Table 93–45 IMPORT_SYSTEM_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user statistics table where the statistics will be
retrieved.

statid Optional identifier associated with the statistics retrieved from
the stattab.

statown The schema containing stattab, if different from the user's
schema.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-99

IMPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table from the user statistics table
identified by stattab and stores them in the dictionary. Cascade results in all
index and column statistics associated with the specified table being imported as
well.

Syntax
DBMS_STATS.IMPORT_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2,
 statid VARCHAR2 DEFAULT NULL,
 cascade BOOLEAN DEFAULT TRUE,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–46 IMPORT_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition table statistics are
imported.

stattab User statistics table identifier describing from where to retrieve
the statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

cascade If true, then column and index statistics for this table are also
imported.

statown Schema containing stattab (if different than ownname).

IMPORT_TABLE_STATS Procedure

93-100 PL/SQL Packages and Types Reference

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values in the user statistics table.

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force Imports statistics even if table statistics are locked.

Table 93–46 (Cont.) IMPORT_TABLE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-101

LOCK_SCHEMA_STATS Procedure

This procedure locks the statistics of all tables of a schema.

Syntax
DBMS_STATS.LOCK_SCHEMA_STATS (
 ownname VARCHAR2);

Parameters

Usage Notes
See "Usage Notes" for LOCK_TABLE_STATS Procedure.

Table 93–47 LOCK_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname The name of the schema to lock.

LOCK_TABLE_STATS Procedure

93-102 PL/SQL Packages and Types Reference

LOCK_TABLE_STATS Procedure

This procedure locks the statistics on the table.

Syntax
DBMS_STATS.LOCK_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2);

Parameters

Usage Notes
■ When statistics on a table are locked, all the statistics depending on the table,

including table statistics, column statistics, histograms and statistics on all
dependent indexes, are considered to be locked.

■ The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify
statistics in the dictionary of an individual table, index or column will raise an
error if statistics of the object is locked.

■ Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS)
will skip modifying the statistics of an object if it is locked. Many procedures
have force argument to override the lock.

■ This procedure either freezes the current set of the statistics keeps the statistics
empty (uncollected) to use Dynamic Sampling.

■ The locked or unlocked state is not exported along with the table statistics when
using EXPORT_*_STATS procedures.

Table 93–48 LOCK_TABLE_STATS Procedure Parameters

Parameter Description

ownname The name of the schema.

tabname The name of the table.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-103

PREPARE_COLUMN_VALUES Procedures

These procedures convert user-specified minimum, maximum, and histogram
endpoint datatype-specific values into Oracle's internal representation for future
storage using SET_COLUMN_STATS.

Syntax
DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 charvals CHARARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 datevals DATEARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 dblvals DBLARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 fltvals FLTARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 numvals NUMARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
 srec IN OUT StatRec,
 rawvals RAWARRAY);

Pragmas
pragma restrict_references(prepare_column_values, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(prepare_column_values_nvarchar, WNDS, RNDS, WNPS,
RNPS);
pragma restrict_references(prepare_column_values_rowid, WNDS, RNDS, WNPS, RNPS);

PREPARE_COLUMN_VALUES Procedures

93-104 PL/SQL Packages and Types Reference

Parameters

Datatype-specific input parameters (use one) are shown in Table 93–50.

Table 93–49 PREPARE_COLUMN_VALUES Procedure Parameters

Parameter Description

srec.epc Number of values specified in charvals, datevals,
dblvals, fltvals, numvals, or rawvals. This value must
be between 2 and 256, inclusive, and it should be set to 2 for
procedures which do not allow histogram information
(nvarchar and rowid).

The first corresponding array entry should hold the minimum
value for the column, and the last entry should hold the
maximum. If there are more than two entries, then all the
others hold the remaining height-balanced or frequency
histogram endpoint values (with in-between values ordered
from next-smallest to next-largest). This value may be adjusted
to account for compression, so the returned value should be
left as is for a call to SET_COLUMN_STATS.

srec.bkvals If you want a frequency distribution, then this array contains
the number of occurrences of each distinct value specified in
charvals, datevals, dblvals, fltvals, numvals, or
rawvals. Otherwise, it is merely an output parameter, and it
must be set to NULL when this procedure is called.

Table 93–50 Datatype-Specific Input Parameters

Type Description

charvals The array of values when the column type is
character-based. Up to the first 32 bytes of each string
should be provided. Arrays must have between 2 and
256 entries, inclusive. If the datatype is fixed CHAR, the
strings must be space-padded to 15 characters for correct
normalization.

datevals The array of values when the column type is date-based.

dblvals The array of values when the column type is
double-based.

fltvals The array of values when the column type is float-based.

numvals The array of values when the column type is
numeric-based.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-105

Output Parameters

Exceptions
ORA-20001: Invalid or inconsistent input values.

rawvals The array of values when the column type is RAW. Up to
the first 32 bytes of each strings should be provided.

nvmin, nvmax The minimum and maximum values when the column
type is national character set based. No histogram
information can be provided for a column of this type. If
the datatype is fixed CHAR, the strings must be
space-padded to 15 characters for correct normalization.

rwmin, rwmax The minimum and maximum values when the column
type is rowid. No histogram information is provided for
a column of this type.

Table 93–51 PREPARE_COLUMN_VALUES Procedure Output Parameters

Parameter Description

srec.minval Internal representation of the minimum suitable for use in a
call to SET_COLUMN_STATS.

srec.maxval Internal representation of the maximum suitable for use in a
call to SET_COLUMN_STATS.

srec.bkvals Array suitable for use in a call to SET_COLUMN_STATS.

srec.novals Array suitable for use in a call to SET_COLUMN_STATS.

Table 93–50 (Cont.) Datatype-Specific Input Parameters

Type Description

PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure

93-106 PL/SQL Packages and Types Reference

PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure

This procedure converts user-specified minimum, maximum, and histogram
endpoint datatype-specific values into Oracle's internal representation for future
storage using SET_COLUMN_STATS.

Syntax
DBMS_STATS.PREPARE_COLUMN_VALUES_NVARCHAR2 (
 srec IN OUT StatRec,
 nvmin NVARCHAR2,
 nvmax NVARCHAR2);

Pragmas
pragma restrict_references(prepare_column_values_nvarchar, WNDS, RNDS, WNPS,
RNPS);

Parameters

Datatype-specific input parameters (use one) are shown in Table 93–50.

Table 93–52 PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure Parameters

Parameter Description

srec.epc Number of values specified in charvals, datevals,
dblvals, fltvals, numvals, or rawvals. This value must
be between 2 and 256, inclusive, and it should be set to 2 for
procedures which do not allow histogram information
(nvarchar and rowid).

The first corresponding array entry should hold the minimum
value for the column, and the last entry should hold the
maximum. If there are more than two entries, then all the
others hold the remaining height-balanced or frequency
histogram endpoint values (with in-between values ordered
from next-smallest to next-largest). This value may be adjusted
to account for compression, so the returned value should be
left as is for a call to SET_COLUMN_STATS.

srec.bkvals If you want a frequency distribution, then this array contains
the number of occurrences of each distinct value specified in
charvals, datevals, dblvals, fltvals, numvals, or
rawvals. Otherwise, it is merely an output parameter, and it
must be set to NULL when this procedure is called.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-107

Output Parameters

Exceptions
ORA-20001: Invalid or inconsistent input values.

Table 93–53 Datatype-Specific Input Parameters

Type Description

nvmin, nvmax The minimum and maximum values when the column
type is national character set based. No histogram
information can be provided for a column of this type. If
the datatype is fixed CHAR, the strings must be
space-padded to 15 characters for correct normalization.

Table 93–54 PREPARE_COLUMN_VALUES Procedure Output Parameters

Parameter Description

srec.minval Internal representation of the minimum suitable for use in a
call to SET_COLUMN_STATS.

srec.maxval Internal representation of the maximum suitable for use in a
call to SET_COLUMN_STATS.

srec.bkvals Array suitable for use in a call to SET_COLUMN_STATS.

srec.novals Array suitable for use in a call to SET_COLUMN_STATS.

PREPARE_COLUMN_VALUES_ROWID Procedure

93-108 PL/SQL Packages and Types Reference

PREPARE_COLUMN_VALUES_ROWID Procedure

This procedure converts user-specified minimum, maximum, and histogram
endpoint datatype-specific values into Oracle's internal representation for future
storage using SET_COLUMN_STATS.

Syntax
DBMS_STATS.PREPARE_COLUMN_VALUES_ROWID (
 srec IN OUT StatRec,
 rwmin ROWID,
 rwmax ROWID);

Pragmas
pragma restrict_references(prepare_column_values_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Datatype-specific input parameters (use one) are shown in Table 93–50.

Table 93–55 PREPARE_COLUMN_VALUES_ROWID Procedure Parameters

Parameter Description

srec.epc Number of values specified in charvals, datevals,
dblvals, fltvals, numvals, or rawvals. This value must
be between 2 and 256, inclusive, and it should be set to 2 for
procedures which do not allow histogram information
(nvarchar and rowid).

The first corresponding array entry should hold the minimum
value for the column, and the last entry should hold the
maximum. If there are more than two entries, then all the
others hold the remaining height-balanced or frequency
histogram endpoint values (with in-between values ordered
from next-smallest to next-largest). This value may be adjusted
to account for compression, so the returned value should be
left as is for a call to SET_COLUMN_STATS.

srec.bkvals If you want a frequency distribution, then this array contains
the number of occurrences of each distinct value specified in
charvals, datevals, dblvals, fltvals, numvals, or
rawvals. Otherwise, it is merely an output parameter, and it
must be set to NULL when this procedure is called.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-109

Output Parameters

Exceptions
ORA-20001: Invalid or inconsistent input values.

Table 93–56 Datatype-Specific Input Parameters

Type Description

rwmin, rwmax The minimum and maximum values when the column
type is rowid. No histogram information is provided for
a column of this type.

Table 93–57 PREPARE_COLUMN_VALUES Procedure Output Parameters

Parameter Description

srec.minval Internal representation of the minimum suitable for use in a
call to SET_COLUMN_STATS.

srec.maxval Internal representation of the maximum suitable for use in a
call to SET_COLUMN_STATS.

srec.bkvals Array suitable for use in a call to SET_COLUMN_STATS.

srec.novals Array suitable for use in a call to SET_COLUMN_STATS.

PURGE_STATS Procedure

93-110 PL/SQL Packages and Types Reference

PURGE_STATS Procedure

This procedure purges old versions of statistics saved in the dictionary. To run this
procedure, you must have the SYSDBA or both ANALYZE ANY DICTIONARY and
ANALYZE ANY system privilege.

Syntax
DBMS_STATS.PURGE_STATS(
 before_timestamp TIMESTAMP WITH TIME ZONE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

Table 93–58 PURGE_STATS Procedure Parameters

Parameter Description

before_timestamp Versions of statistics saved before this timestamp are purged. If
NULL, it uses the purging policy used by automatic purge. The
automatic purge deletes all history older than the older of
(current time - statistics history retention) and (time of recent
analyze in the system - 1). The statistics history retention value
can be changed using ALTER_STATS_HISTORY_RETENTION
Procedure.The default is 31 days.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-111

RESTORE_DATBASE_STATS Procedure

This procedure restores statistics of all tables of the database as of a specified
timestamp (as_of_timestamp).

Syntax
DBMS_STATS.RESTORE_DATABSE_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–59 RESTORE_DATBASE_STATS Procedure Parameters

Parameter Description

as_of_timestamp The timestamp to which to restore statistics.

force Restores statistics even if their statistics are locked.

RESTORE_DICTIONARY_STATS Procedure

93-112 PL/SQL Packages and Types Reference

RESTORE_DICTIONARY_STATS Procedure

This procedure restores statistics of all dictionary tables (tables of 'SYS', 'SYSTEM'
and RDBMS component schemas) as of a specified timestamp (as_of_
timestamp).

Syntax
DBMS_STATS.RESTORE_DICTIONARY_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
To run this procedure, you must have the SYSDBA or both ANALYZE ANY
DICTIONARY and ANALYZE ANY system privilege.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–60 RESTORE_DICTIONARY_STATS Procedure Parameters

Parameter Description

as_of_timestamp The timestamp to which to restore statistics.

force Restores statistics even if their statistics are locked.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-113

RESTORE_FIXED_OBJECTS_STATS Procedure

This procedure restores statistics of all fixed tables as of a specified timestamp (as_
of_timestamp).

Syntax
DBMS_STATS.RESTORE_FIXED_OBJECTS_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
To run this procedure, you must have the SYSDBA or ANALYZE ANY DICTIONARY
system privilege.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–61 RESTORE_FIXED_OBJECTS_STATS Procedure Parameters

Parameter Description

as_of_timestamp The timestamp to which to restore statistics.

force Restores statistics even if their statistics are locked.

RESTORE_SCHEMA_STATS Procedure

93-114 PL/SQL Packages and Types Reference

RESTORE_SCHEMA_STATS Procedure

This procedure restores statistics of all tables of a schema as of a specified
timestamp (as_of_timestamp).

Syntax
DBMS_STATS.RESTORE_SCHEMA_STATS(
 ownname VARCHAR2,
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 force BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–62 RESTORE_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname The schema of the tables for which the statistics are to be
restored.

as_of_timestamp The timestamp to which to restore statistics.

force Restores statistics even if their statistics are locked.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-115

RESTORE_SYSTEM_STATS Procedure

This procedure restores system statistics as of a specified timestamp (as_of_
timestamp).

Syntax
DBMS_STATS.RESTORE_SCHEMA_STATS(
 as_of_timestamp TIMESTAMP WITH TIME ZONE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–63 RESTORE_SYSTEM_STATS Procedure Parameters

Parameter Description

as_of_timestamp The timestamp to which to restore statistics.

RESTORE_TABLE_STATS Procedure

93-116 PL/SQL Packages and Types Reference

RESTORE_TABLE_STATS Procedure

This procedure restores statistics of a table as of a specified timestamp (as_of_
timestamp). The procedure will restore statistics of associated indexes and
columns as well. If the table statistics were locked at the specified timestamp the
procedure will lock the statistics. The procedure will not restore user defined
statistics.

Syntax
DBMS_STATS.RESTORE_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 as_of_timestamp TIMESTAMP WITH TIME ZONE,
 restore_cluster_index BOOLEAN DEFAULT FALSE,
 force BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent values.

ORA-20006: Unable to restore statistics, statistics history not available.

Table 93–64 RESTORE_TABLE_STATS Procedure Parameters

Parameter Description

ownname The schema of the table for which the statistics are to be
restored.

tabname The table name.

as_of_timestamp The timestamp to which to restore statistics.

restore_cluster_
index

If the table is part of a cluster, restore statistics of the cluster
index if set to TRUE.

force Restores statistics even if the table statistics are locked. If the
table statistics were not locked at the specified timestamp, it
unlocks the statistics.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-117

SET_COLUMN_STATS Procedures

This procedure sets column-related information. In the version of this procedure
that deals with user-defined statistics, the statistics type specified is the type to store
in the dictionary, in addition to the actual user-defined statistics. If this statistics
type is NULL, the statistics type associated with the index or column is stored.

Syntax
DBMS_STATS.SET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 distcnt NUMBER DEFAULT NULL,
 density NUMBER DEFAULT NULL,
 nullcnt NUMBER DEFAULT NULL,
 srec StatRec DEFAULT NULL,
 avgclen NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

Use the following for user-defined statistics:

DBMS_STATS.SET_COLUMN_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 colname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats RAW,
 stattypown VARCHAR2 DEFAULT NULL,
 stattypname VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 force BOOLEAN DEFAULT FALSE);

SET_COLUMN_STATS Procedures

93-118 PL/SQL Packages and Types Reference

Parameters

Table 93–65 SET_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition in which to store the statistics. If
the table is partitioned and partname is NULL, then the
statistics are stored at the global table level.

stattab User statistics table identifier describing where to store the
statistics. If stattab is NULL, then the statistics are stored
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

distcnt Number of distinct values.

density Column density. If this value is NULL and if distcnt is not
NULL, then density is derived from distcnt.

nullcnt Number of NULLs.

srec StatRec structure filled in by a call to PREPARE_COLUMN_
VALUES or GET_COLUMN_STATS.

avgclen Average length for the column (in bytes).

flags For internal Oracle use (should be left as NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

force Sets the values even if statistics of the column are locked.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-119

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or inconsistent input values.

ORA-20005: Object statistics are locked.

SET_INDEX_STATS Procedures

93-120 PL/SQL Packages and Types Reference

SET_INDEX_STATS Procedures

These procedures set index-related information. In the version of this procedure
that deals with user-defined statistics, the statistics type specified is the type to store
in the dictionary, in addition to the actual user-defined statistics. If this statistics
type is NULL, the statistics type associated with the index or column is stored.

Syntax
DBMS_STATS.SET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows NUMBER DEFAULT NULL,
 numlblks NUMBER DEFAULT NULL,
 numdist NUMBER DEFAULT NULL,
 avglblk NUMBER DEFAULT NULL,
 avgdblk NUMBER DEFAULT NULL,
 clstfct NUMBER DEFAULT NULL,
 indlevel NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(
 get_param('NO_INVALIDATE')),
 guessq NUMBER DEFAULT NULL,
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Use the following for user-defined statistics:

DBMS_STATS.SET_INDEX_STATS (
 ownname VARCHAR2,
 indname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 ext_stats RAW,
 stattypown VARCHAR2 DEFAULT NULL,
 stattypname VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type(

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-121

 get_param('NO_INVALIDATE')),
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–66 SET_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition in which to store the statistics. If
the index is partitioned and if partname is NULL, then the
statistics are stored at the global index level.

stattab User statistics table identifier describing where to store the
statistics. If stattab is NULL, then the statistics are stored
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

numrows Number of rows in the index (partition).

numlblks Number of leaf blocks in the index (partition).

numdist Number of distinct keys in the index (partition).

avglblk Average integral number of leaf blocks in which each distinct
key appears for this index (partition). If not provided, then this
value is derived from numlblks and numdist.

avgdblk Average integral number of data blocks in the table pointed to
by a distinct key for this index (partition). If not provided, then
this value is derived from clstfct and numdist.

clstfct See clustering_factor column of the all_indexes view
for a description.

indlevel Height of the index (partition).

flags For internal Oracle use (should be left as NULL).

SET_INDEX_STATS Procedures

93-122 PL/SQL Packages and Types Reference

Usage Notes
■ The Optimizer uses the cached data to estimate number of cached blocks for

index or statistics table access. The total cost of the operation will be combined
from the I/O cost of reading not cached blocks from disk, the CPU cost of
getting cached blocks from the buffer cache, and the CPU cost of processing the
data.

■ Oracle maintains cachedblk and cachehit at all times but uses
correspondent caching statistics for optimization as part of the table and index
statistics only when the user calls DBMS_STATS.GATHER_
[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or
DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent
the user from utilizing inaccurate and unreliable data, the optimizer will
compute a 'confidence factor' for each cachehit and a cachedblk for each
object. If the 'confidence factor' for the value meets confidence criteria, this
value will be used, otherwise the defaults will be used.

■ The automatic maintenance algorithm for object caching statistics assumes that
there is only one major workload for the system and adjusts statistics to this
workload, ignoring other "minor" workloads. If this is not the case, you must
use manual mode for maintaining object caching statistics.

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

guessq Guess quality. See the pct_direct_access column of the
all_indexes view for a description.

cachedblk The average number of blocks in the buffer cache for the
segment (index/table/index partition/table partition).

cachehit The average cache hit ratio for the segment (index/table/index
partition/table partition).

force Sets the values even if statistics of the index are locked.

Table 93–66 (Cont.) SET_INDEX_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-123

■ The object caching statistics maintenance algorithm for auto mode prevents you
from using statistics in the following situations

– When not enough data has been analyzed, such as when an object has been
recently create

– When the system does not have one major workload resulting in averages
not corresponding to real values.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid input value.

ORA-20005: Object statistics are locked.

SET_PARAM Procedure

93-124 PL/SQL Packages and Types Reference

SET_PARAM Procedure

This procedure sets default values for parameters of DBMS_STATS procedures. You
can use the GET_PARAM Function to get the current default value of a parameter.

Syntax
DBMS_STATS.SET_PARAM (
 pname IN VARCHAR2,
 pval IN VARCHAR2);

Parameters

Usage Notes
To run this procedure, you must have the SYSDBA or both the ANALYZE ANY
DICTIONARY and ANALYZE ANY system privileges.

Note that both arguments are of type VARCHAR2 and the values need to be enclosed
in quotes.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid or illegal input value.

Table 93–67 SET_PARAM Procedure Parameters

Parameter Description

pname The parameter name The default value for following
parameters can be set.

■ CASCADE - The default value for CASCADE set by SET_
PARAM is not used by export/import procedures.It is used
only by gather procedures.

■ DEGREE

■ ESTIMATE_PERCENT

■ METHOD_OPT

■ NO_INVALIDATE

pval The parameter value. If NULL is specified, it will set the oracle
default value.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-125

Examples
dbms_stats.set_param('CASCADE','DBMS_STATS.AUTO_CASCADE');
dbms_stats.set_param('ESTIMATE_PERCENT','5');
dbms_stats.set_param('DEGREE','NULL');

SET_SYSTEM_STATS Procedure

93-126 PL/SQL Packages and Types Reference

SET_SYSTEM_STATS Procedure

This procedure sets systems statistics.

Syntax
DBMS_STATS.SET_SYSTEM_STATS (
 pname VARCHAR2,
 pvalue NUMBER,
 stattab IN VARCHAR2 DEFAULT NULL,
 statid IN VARCHAR2 DEFAULT NULL,
 statown IN VARCHAR2 DEFAULT NULL);

Parameters

Table 93–68 SET_SYSTEM_STATS Procedure Parameters

Parameter Description

pname The parameter name to get, which can have one of the
following values:

■ iotfrspeed—I/O transfer speed in bytes for each
millisecond

■ ioseektim - seek time + latency time + operating system
overhead time, in milliseconds

■ sreadtim - average time to read single block (random
read), in milliseconds

■ mreadtim - average time to read an mbrc block at once
(sequential read), in milliseconds

■ cpuspeed - average number of CPU cycles for each
second, in millions, captured for the workload (statistics
collected using 'INTERVAL' or 'START' and 'STOP' options)

■ cpuspeednw - average number of CPU cycles for each
second, in millions, captured for the noworkload (statistics
collected using 'NOWORKLOAD' option.

■ mbrc - average multiblock read count for sequential read,
in blocks

■ maxthr - maximum I/O system throughput, in
bytes/second

■ slavethr - average slave I/O throughput, in
bytes/second

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-127

Usage Notes
■ The Optimizer uses the cached data to estimate number of cached blocks for

index or statistics table access. The total cost of the operation will be combined
from the I/O cost of reading not cached blocks from disk, the CPU cost of
getting cached blocks from the buffer cache, and the CPU cost of processing the
data.

■ Oracle maintains cachedblk and cachehit at all times but uses
correspondent caching statistics for optimization as part of the table and index
statistics only when the user calls DBMS_STATS.GATHER_
[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or
DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent
the user from utilizing inaccurate and unreliable data, the optimizer will
compute a 'confidence factor' for each cachehit and a cachedblk for each
object. If the 'confidence factor' for the value meets confidence criteria, this
value will be used, otherwise the defaults will be used.

■ The automatic maintenance algorithm for object caching statistics assumes that
there is only one major workload for the system and adjusts statistics to this
workload, ignoring other "minor" workloads. If this is not the case, you must
use manual mode for maintaining object caching statistics.

■ The object caching statistics maintenance algorithm for auto mode prevents you
from using statistics in the following situations

pvalue Parameter value to get.

stattab Identifier of the user statistics table where the statistics will be
obtained. If stattab is null, the statistics will be obtained from
the dictionary.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user's
schema.

cachedblk The average number of blocks in the buffer cache for the
segment (index/table/index partition/table partition).

cachehit The average cache hit ratio for the segment (index/table/index
partition/table partition).

Table 93–68 (Cont.) SET_SYSTEM_STATS Procedure Parameters

Parameter Description

SET_SYSTEM_STATS Procedure

93-128 PL/SQL Packages and Types Reference

– When not enough data has been analyzed, such as when an object has been
recently create

– When the system does not have one major workload resulting in averages
not corresponding to real values.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid input value.

ORA-20002: Bad user statistics table; may need to be upgraded.

ORA-20003: Unable to set system statistics.

ORA-20004: Parameter does not exist.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-129

SET_TABLE_STATS Procedure

This procedure sets table-related information.

Syntax
DBMS_STATS.SET_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 partname VARCHAR2 DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 numrows NUMBER DEFAULT NULL,
 numblks NUMBER DEFAULT NULL,
 avgrlen NUMBER DEFAULT NULL,
 flags NUMBER DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL,
 no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (
 get_param('NO_INVALIDATE')),
 cachedblk NUMBER DEFAULT NULL,
 cachehit NUMBER DEFUALT NULL,
 force BOOLEAN DEFAULT FALSE);

Parameters

Table 93–69 SET_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition in which to store the statistics. If
the table is partitioned and partname is NULL, then the
statistics are stored at the global table level.

stattab User statistics table identifier describing where to store the
statistics. If stattab is NULL, then the statistics are stored
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

numrows Number of rows in the table (partition).

numblks Number of blocks the table (partition) occupies.

SET_TABLE_STATS Procedure

93-130 PL/SQL Packages and Types Reference

Usage Notes
■ The Optimizer uses the cached data to estimate number of cached blocks for

index or statistics table access. The total cost of the operation will be combined
from the I/O cost of reading not cached blocks from disk, the CPU cost of
getting cached blocks from the buffer cache, and the CPU cost of processing the
data.

■ Oracle maintains cachedblk and cachehit at all times but uses
correspondent caching statistics for optimization as part of the table and index
statistics only when the user calls DBMS_STATS.GATHER_
[TABLE/INDEX/SCHEMA/DATABASE]_STATS procedure for auto mode or
DBMS_STATS.GATHER_SYSTEM_STATS for manual mode. In order to prevent
the user from utilizing inaccurate and unreliable data, the optimizer will
compute a 'confidence factor' for each cachehit and a cachedblk for each
object. If the 'confidence factor' for the value meets confidence criteria, this
value will be used, otherwise the defaults will be used.

■ The automatic maintenance algorithm for object caching statistics assumes that
there is only one major workload for the system and adjusts statistics to this
workload, ignoring other "minor" workloads. If this is not the case, you must
use manual mode for maintaining object caching statistics.

avgrlen Average row length for the table (partition).

flags For internal Oracle use (should be left as NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate If set to the default, does not invalidate the shared cursors
dependent on the table. (The statements corresponding to
those cursors are not recompiled until they are gone or
invalidated.) Use DBMS_STATS.AUTO_INVALIDATE. to have
Oracle decide when to invalidate dependent cursors. This is
the default. The default can be changed using the SET_PARAM
Procedure.

cachedblk The average number of blocks in the buffer cache for the
segment (index/table/index partition/table partition).

cachehit The average cache hit ratio for the segment (index/table/index
partition/table partition).

force Sets the values even if statistics of the table are locked.

Table 93–69 (Cont.) SET_TABLE_STATS Procedure Parameters

Parameter Description

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-131

■ The object caching statistics maintenance algorithm for auto mode prevents you
from using statistics in the following situations

– When not enough data has been analyzed, such as when an object has been
recently create

– When the system does not have one major workload resulting in averages
not corresponding to real values.

Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid input value.

ORA-20005: Object statistics are locked.

UNLOCK_SCHEMA_STATS Procedure

93-132 PL/SQL Packages and Types Reference

UNLOCK_SCHEMA_STATS Procedure

This procedure unlocks the statistics on all the tables in schema.

Syntax
DBMS_STATS.UNLOCK_SCHEMA_STATS (
 ownname VARCHAR2);

Parameters

Usage Notes
■ When statistics on a table is locked, all the statistics depending on the table,

including table statistics, column statistics, histograms and statistics on all
dependent indexes, are considered to be locked.

■ The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify
statistics in the dictionary of an individual table, index or column will raise an
error if statistics of the object is locked.

■ Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS)
will skip modifying the statistics of an object if it is locked. Many procedures
have force argument to override the lock.

Table 93–70 UNLOCK_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname The name of the schema.

Summary of DBMS_STATS Subprograms

DBMS_STATS 93-133

UNLOCK_TABLE_STATS Procedure

This procedure unlocks the statistics on the table.

Syntax
DBMS_STATS.UNLOCK_TABLE_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2);

Parameters

Usage Notes
■ When statistics on a table is locked, all the statistics depending on the table,

including table statistics, column statistics, histograms and statistics on all
dependent indexes, are considered to be locked.

■ The SET_*, DELETE_*, IMPORT_*, GATHER_* procedures that modify
statistics in the dictionary of an individual table, index or column will raise an
error if statistics of the object is locked.

■ Procedures that operates on multiple objects (such as GATHER_SCHEMA_STATS)
will skip modifying the statistics of an object if it is locked. Many procedures
have force argument to override the lock.

Table 93–71 UNLOCK_TABLE_STATS Procedure Parameters

Parameter Description

ownname The name of the schema.

tabname The name of the table.

UPGRADE_STAT_TABLE Procedure

93-134 PL/SQL Packages and Types Reference

UPGRADE_STAT_TABLE Procedure

This procedure upgrades a user statistics table from an older version.

Syntax
DBMS_STATS.UPGRADE_STAT_TABLE (
 ownname VARCHAR2,
 stattab VARCHAR2);

Parameters

Exceptions
ORA-20000: Unable to upgrade table.

Table 93–72 UPGRADE_STAT_TABLE Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab Name of the table.

DBMS_STORAGE_MAP 94-1

94
DBMS_STORAGE_MAP

With the DBMS_STORAGE_MAP package, you can communicate with the Oracle
background process FMON to invoke mapping operations that populate mapping
views. FMON communicates with operating and storage system vendor-supplied
mapping libraries.

This chapter contains the following topics:

■ Using DBMS_STORAGE_MAP

■ Overview

■ Operational Notes

■ Summary of DBMS_STORAGE_MAP Subprograms

Using DBMS_STORAGE_MAP

94-2 PL/SQL Packages and Types Reference

Using DBMS_STORAGE_MAP

■ Overview

■ Operational Notes

Overview

The following terminology and descriptions will help you understand the DBMS_
STORAGE_MAP API:

■ Mapping libraries

Mapping libraries help you map the components of I/O processing stack
elements. Examples of I/O processing components include files, logical
volumes, and storage array I/O targets. The mapping libraries are identified in
filemap.ora.

■ Mapping files

A mapping file is a mapping structure that describes a file. It provides a set of
attributes, including file size, number of extents that the file is composed of, and
file type.

■ Mapping elements and sub-elements

A mapping element is the abstract mapping structure that describes a storage
component within the I/O stack. Examples of elements include mirrors, stripes,
partitions, raid5, concatenated elements, and disks—structures that are the
mapping building blocks. A mapping sub-element describes the link between
an element and the next elements in the I/O mapping stack

■ Mapping file extents

A mapping file extent describes a contiguous chunk of blocks residing on one
element. This includes the device offset, the extent size, the file offset, the type
(data or parity), and the name of the element where the extent resides. In the
case of a raw device or volume, the file is composed of only one file extent
component. A mapping file extent is different from Oracle extents.

Using DBMS_STORAGE_MAP

DBMS_STORAGE_MAP 94-3

Operational Notes

For MAP_ELEMENT, MAP_FILE, and MAP_ALL: Invoking these functions when
mapping information already exists will refresh the mapping if configuration IDs
are supported. If configuration IDs are not supported, then invoking these functions
again will rebuild the mapping.

See Also:

■ Oracle Database Administrator's Guide for more information

■ Oracle Database Reference for V$MAP views, including V$MAP_
FILE, V$MAP_ELEMENT, V$MAP_SUBELEMENT, V$MAP_FILE_
EXTENT

See Also: Oracle Database Administrator's Guide for a discussion of
the configuration ID, an attribute of the element or file that is
changed.

Summary of DBMS_STORAGE_MAP Subprograms

94-4 PL/SQL Packages and Types Reference

Summary of DBMS_STORAGE_MAP Subprograms

Table 94–1 DBMS_STORAGE_MAP Package Subprograms

Subprogram Description

DROP_ALL Function on
page 94-5

Drops all mapping information in the shared memory of the
instance

DROP_ELEMENT
Function on page 94-6

Drops the mapping information for the element defined by
elemname

DROP_FILE Function on
page 94-7

Drops the file mapping information defined by filename

LOCK_MAP Procedure on
page 94-8

Locks the mapping information in the shared memory of the
instance

MAP_ALL Function on
page 94-9

Builds the entire mapping information for all types of Oracle
files (except archive logs), including all directed acyclic graph
(DAG) elements

MAP_ELEMENT Function
on page 94-10

Builds mapping information for the element identified by
elemname

MAP_FILE Function on
page 94-11

Builds mapping information for the file identified by
filename

MAP_OBJECT Function
on page 94-13

Builds the mapping information for the Oracle object identified
by the object name, owner, and type

RESTORE Function on
page 94-14

Loads the entire mapping information from the data dictionary
into the shared memory of the instance

SAVE Function on
page 94-15

Saves information needed to regenerate the entire mapping
into the data dictionary

UNLOCK_MAP
Procedure on page 94-16

Unlocks the mapping information in the shared memory of the
instance.

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-5

DROP_ALL Function

This function drops all mapping information in the shared memory of the instance.

Syntax
DBMS_STORAGE_MAP.DROP_ALL(
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 94–2 DROP_ALL Function Parameters

Parameter Description

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

DROP_ELEMENT Function

94-6 PL/SQL Packages and Types Reference

DROP_ELEMENT Function

This function drops the mapping information for the element defined by
elemname.

Syntax
DBMS_STORAGE_MAP.DROP_ELEMENT(
 elemname IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 94–3 DROP_ELEMENT Function Parameters

Parameter Description

elemname The element for which mapping information is dropped.

cascade If TRUE, then DROP_ELEMENT is invoked recursively on all
elements of the DAG defined by elemname, if possible.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-7

DROP_FILE Function

This function drops the file mapping information defined by filename.

Syntax
DBMS_STORAGE_MAP.DROP_FILE(
 filename IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

z

Table 94–4 DROP_FILE Function Parameters

Parameter Description

filename The file for which file mapping information is dropped.

cascade If TRUE, then the mapping DAGs for the elements where the
file resides are also dropped, if possible.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

LOCK_MAP Procedure

94-8 PL/SQL Packages and Types Reference

LOCK_MAP Procedure

This procedure locks the mapping information in the shared memory of the
instance. This is useful when you need a consistent snapshot of the V$MAP tables.
Without locking the mapping information, V$MAP_ELEMENT and V$MAP_
SUBELEMENT, for example, may be inconsistent.

Syntax
DBMS_STORAGE_MAP.LOCK_MAP;

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-9

MAP_ALL Function

This function builds the entire mapping information for all types of Oracle files
(except archive logs), including all directed acyclic graph (DAG) elements. It obtains
the latest mapping information because it explicitly synchronizes all mapping
libraries.

Syntax
DBMS_STORAGE_MAP.MAP_ALL(
 max_num_fileext IN NUMBER DEFAULT 100,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
 You must explicitly call MAP_ALL in a cold startup scenario.

Table 94–5 MAP_ALL Function Parameters

Parameter Description

max_num_fileext Defines the maximum number of file extents to be mapped.
This limits the amount of memory used when mapping file
extents. The default value is 100; max_num_fileextent is an
overloaded argument.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

MAP_ELEMENT Function

94-10 PL/SQL Packages and Types Reference

MAP_ELEMENT Function

This function builds mapping information for the element identified by elemname.
It may not obtain the latest mapping information if the element being mapped, or
any one of the elements within its I/O stack (if cascade is TRUE), is owned by a
library that must be explicitly synchronized.

Syntax
DBMS_STORAGE_MAP.MAP_ELEMENT(
 elemname IN VARCHAR2,
 cascade IN BOOLEAN,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 94–6 MAP_ELEMENT Function Parameters

Parameter Description

elemname The element for which mapping information is built.

cascade If TRUE, all elements within the elemname I/O stack DAG are
mapped.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-11

MAP_FILE Function

This function builds mapping information for the file identified by filename. Use
this function if the mapping of one particular file has changed. The Oracle database
server does not have to rebuild the entire mapping.

Syntax
DBMS_STORAGE_MAP.MAP_FILE(
 filename IN VARCHAR2,
 filetype IN VARCHAR2,
 cascade IN BOOLEAN,
 max_num_fileextent IN NUMBER DEFAULT 100,
 dictionary_update IN BOOLEAN DEFAULT TRUE);

Parameters

Table 94–7 MAP_FILE Function Parameters

Parameter Description

filename The file for which mapping information is built.

filetype Defines the type of the file to be mapped. It can be
"DATAFILE", "SPFILE", "TEMPFILE",
"CONTROLFILE", "LOGFILE", or "ARCHIVEFILE".

cascade Should be TRUE only if a storage reconfiguration occurred. For
all other instances, such as file resizing (either through an
ALTER SYSTEM command or DML operations on extended
files), cascade can be set to FALSE because the mapping
changes are limited to the file extents only.

If TRUE, mapping DAGs are also built for the elements where
the file resides.

max_num_fileextent Defines the maximum number of file extents to be mapped.
This limits the amount of memory used when mapping file
extents. The default value is 100; max_num_fileextent is an
overloaded argument.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

MAP_FILE Function

94-12 PL/SQL Packages and Types Reference

Usage Notes
This function may not obtain the latest mapping information if the file being
mapped, or any one of the elements within its I/O stack (if cascade is TRUE), is
owned by a library that must be explicitly synchronized.

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-13

MAP_OBJECT Function

This function builds the mapping information for the Oracle object identified by the
object name, owner, and type.

Syntax
DBMS_STORAGE_MAP.MAP_OBJECT(
 objname IN VARCHAR2,
 owner IN VARCHAR2,
 objtype IN VARCHAR2);

Parameters

Table 94–8 MAP_OBJECT Function Parameters

Parameter Description

objname The name of the object.

owner The owner of the object.

objtype The type of the object.

RESTORE Function

94-14 PL/SQL Packages and Types Reference

RESTORE Function

This function loads the entire mapping information from the data dictionary into
the shared memory of the instance. You can invoke RESTORE only after a SAVE
operation. You must explicitly call RESTORE in a warm startup scenario.

Syntax
DBMS_STORAGE_MAP.RESTORE;

Summary of DBMS_STORAGE_MAP Subprograms

DBMS_STORAGE_MAP 94-15

SAVE Function

This function saves information needed to regenerate the entire mapping into the
data dictionary.

Syntax
DBMS_STORAGE_MAP.SAVE;

UNLOCK_MAP Procedure

94-16 PL/SQL Packages and Types Reference

UNLOCK_MAP Procedure

This procedure unlocks the mapping information in the shared memory of the
instance.

Syntax
DBMS_STORAGE_MAP.UNLOCK_MAP;

DBMS_STREAMS 95-1

95
DBMS_STREAMS

The DBMS_STREAMS package, one of a set of Streams packages, provides interfaces to
convert SYS.AnyData objects into logical change record (LCR) objects, to return
information about Streams attributes and Streams clients, and to annotate redo
entries generated by a session with a binary tag. This tag affects the behavior of a
capture process, a propagation, or an apply process whose rules include
specifications for these binary tags in redo entries or LCRs.

This chapter contains the following topics:

■ Using DBMS_STREAMS

■ Security Model

■ Summary of DBMS_STREAMS Subprograms

See Also: Oracle Streams Concepts and Administration and Oracle
Streams Replication Administrator's Guide for more information about
this package and Streams

Using DBMS_STREAMS

95-2 PL/SQL Packages and Types Reference

Using DBMS_STREAMS

■ Security Model

Security Model

PUBLIC is granted EXECUTE privilege on this package.

Summary of DBMS_STREAMS Subprograms

DBMS_STREAMS 95-3

Summary of DBMS_STREAMS Subprograms

Table 95–1 DBMS_STREAMS Package Subprograms

Subprogram Description

COMPATIBLE_10_1 Function on
page 95-4

Returns the
DBMS_STREAMS.COMPATIBLE_10_1 constant

COMPATIBLE_9_2 Function on page 95-5 Returns the
DBMS_STREAMS.COMPATIBLE_9_2 constant

CONVERT_ANYDATA_TO_LCR_DDL
Function on page 95-6

Converts a SYS.AnyData object to a
SYS.LCR$_DDL_RECORD object

CONVERT_ANYDATA_TO_LCR_ROW
Function on page 95-7

Converts a SYS.AnyData object to a
SYS.LCR$_ROW_RECORD object

GET_INFORMATION Function on
page 95-8

Returns information about various Streams
attributes

GET_STREAMS_NAME Function on
page 95-9

Returns the name of the invoker

GET_STREAMS_TYPE Function on
page 95-10

Returns the type of the invoker

GET_TAG Function on page 95-11 Gets the binary tag for all redo entries
generated by the current session

SET_TAG Procedure on page 95-12 Sets the binary tag for all redo entries
subsequently generated by the current session

COMPATIBLE_10_1 Function

95-4 PL/SQL Packages and Types Reference

COMPATIBLE_10_1 Function

This function returns the DBMS_STREAMS.COMPATIBLE_10_1 constant.

Syntax
DBMS_STREAMS.COMPATIBLE_10_1
 RETURN INTEGER;

Usage Notes
You can use this function with the GET_COMPATIBLE member function for LCRs to
specify behavior based on compatibility.

The constant value returned by this function corresponds to 10.1.0 compatibility in
a database. You control the compatibility of an Oracle database using the
COMPATIBLE initialization parameter.

See Also:

■ "GET_COMPATIBLE Member Function" on page 174-35

■ Oracle Streams Concepts and Administration for information
about creating rules that discard changes that are not
supported by Streams

■ Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization
parameter

Summary of DBMS_STREAMS Subprograms

DBMS_STREAMS 95-5

COMPATIBLE_9_2 Function

This function returns the DBMS_STREAMS.COMPATIBLE_9_2 constant.

Syntax
DBMS_STREAMS.COMPATIBLE_9_2
 RETURN INTEGER;

Usage Notes
You may use this function with the GET_COMPATIBLE member function for LCRs
to specify behavior based on compatibility.

The constant value returned by this function corresponds to 9.2.0 compatibility in a
database. You control the compatibility of an Oracle database using the
COMPATIBLE initialization parameter.

See Also:

■ "GET_COMPATIBLE Member Function" on page 174-35

■ Oracle Streams Concepts and Administration for information
about creating rules that discard changes that are not
supported by Streams

■ Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization
parameter

CONVERT_ANYDATA_TO_LCR_DDL Function

95-6 PL/SQL Packages and Types Reference

CONVERT_ANYDATA_TO_LCR_DDL Function

This function converts a SYS.AnyData object into a SYS.LCR$_DDL_RECORD
object.

Syntax
DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_DDL(
 source IN SYS.AnyData)
 RETURN SYS.LCR$_DDL_RECORD;

Parameters

Usage Notes
You can use this function in a transformation created by the
CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Use the
transformation you create when you add a subscriber for propagation of DDL LCRs
from a SYS.AnyData queue to a SYS.LCR$_DDL_RECORD typed queue.

Table 95–2 CONVERT_ANYDATA_TO_LCR_DDL Function Parameter

Parameter Description

source The SYS.AnyData object to be converted. If this object is not a
DDL LCR, then an exception is raised.

See Also: Oracle Streams Concepts and Administration for more
information about this function

Summary of DBMS_STREAMS Subprograms

DBMS_STREAMS 95-7

CONVERT_ANYDATA_TO_LCR_ROW Function

This function converts a SYS.AnyData object into a SYS.LCR$_ROW_RECORD
object.

Syntax
DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_ROW(
 source IN SYS.AnyData)
 RETURN SYS.LCR$_ROW_RECORD;

Parameters

Usage Notes
You can use this function in a transformation created by the
CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Use the
transformation you create when you add a subscriber for propagation of row LCRs
from a SYS.AnyData queue to a SYS.LCR$_ROW_RECORD typed queue.

Table 95–3 CONVERT_ANYDATA_TO_LCR_ROW Function Parameter

Parameter Description

source The SYS.AnyData object to be converted. If this object is not a
row LCR, then an exception is raised.

See Also: Oracle Streams Concepts and Administration for more
information about this function

GET_INFORMATION Function

95-8 PL/SQL Packages and Types Reference

GET_INFORMATION Function

This function returns information about various Streams attributes.

Syntax
DBMS_STREAMS.GET_INFORMATION(
 name IN VARCHAR2)
 RETURN SYS.AnyData;

Parameters

Table 95–4 GET_INFORMATION Function Parameter

Parameter Description

name The type of information you want to retrieve. Currently, the following names
are available:

■ SENDER: Returns the name of the sender for the current LCR (from its AQ
message properties). This function is called inside an apply handler. An
apply handler is a DML handler, a DDL handler, an error handler, or a
message handler. Returns NULL if called outside of an apply handler. The
return value is to be interpreted as a VARCHAR2.

■ CONSTRAINT_NAME: Returns the name of the constraint that was violated
for an LCR that raised an error. This function is called inside a DML
handler or error handler for an apply process. Returns NULL if called
outside of a DML handler or error handler. The return value is to be
interpreted as a VARCHAR2.

Summary of DBMS_STREAMS Subprograms

DBMS_STREAMS 95-9

GET_STREAMS_NAME Function

This function gets the Streams name of the invoker if the invoker is one of the
following Streams types:

■ CAPTURE

■ APPLY

■ ERROR_EXECUTION

If the invoker is not one of these types, then this function returns a NULL.

Syntax
DBMS_STREAMS.GET_STREAMS_NAME
 RETURN VARCHAR2;

Usage Notes
You can use this function in rule conditions, rule-based transformations, apply
handlers, and error handlers. For example, if you use one error handler for multiple
apply processes, then you can use the GET_STREAMS_NAME function to determine
the name of the apply process that raised the error.

GET_STREAMS_TYPE Function

95-10 PL/SQL Packages and Types Reference

GET_STREAMS_TYPE Function

This function gets the Streams type of the invoker and returns one of the following
types:

■ CAPTURE

■ APPLY

■ ERROR_EXECUTION

If the invoker is not one of these types, then this function returns a NULL.

Syntax
DBMS_STREAMS.GET_STREAMS_TYPE
 RETURN VARCHAR2;

Usage Notes
This function can be used in rule conditions, rule-based transformations, apply
handlers, and error handlers. For example, you can use the GET_STREAMS_TYPE
function to instruct a DML handler to operate differently if it is processing events
from the error queue (ERROR_EXECUTION type) instead of the apply process queue
(APPLY type).

Summary of DBMS_STREAMS Subprograms

DBMS_STREAMS 95-11

GET_TAG Function

This function gets the binary tag for all redo entries generated by the current
session.

Syntax
DBMS_STREAMS.GET_TAG()
 RETURN RAW;

Examples
The following example illustrates how to display the current LCR tag as output:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2000);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the value by querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

See Also: Oracle Streams Replication Administrator's Guide for more
information about tags

SET_TAG Procedure

95-12 PL/SQL Packages and Types Reference

SET_TAG Procedure

This procedure sets the binary tag for all redo entries subsequently generated by the
current session. Each redo entry generated by DML or DDL statements in the
current session will have this tag. This procedure affects only the current session.

Syntax
DBMS_STREAMS.SET_TAG(
 tag IN RAW DEFAULT NULL);

Parameter

Usage Notes
To set the tag to the hexadecimal value of '17' in the current session, run the
following procedure:

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

Note: This procedure is not transactional. That is, the effects of
SET_TAG cannot be rolled back.

See Also: Oracle Streams Replication Administrator's Guide for more
information about tags

Table 95–5 SET_TAG Procedure Parameter

Parameter Description

tag The binary tag for all subsequent redo entries generated by the current
session. A raw value is a sequence of bytes, and a byte is a sequence of bits.

By default, the tag for a session is NULL.

The size limit for a tag value is 2000 bytes.

DBMS_STREAMS_ADM 96-1

96
DBMS_STREAMS_ADM

The DBMS_STREAMS_ADM package, one of a set of Streams packages, provides
administrative interfaces for adding and removing simple rules for capture,
propagation, apply, and dequeue at the table, schema, and database level.

This chapter contains the following topics:

■ Using DBMS_STREAMS_ADM

■ Overview

■ Rules

■ Users

■ Summary of DBMS_STREAMS_ADM Subprograms

See Also:

■ Oracle Streams Concepts and Administration and Oracle Streams
Replication Administrator's Guide for more information about
this package and Streams

■ Chapter 82, "DBMS_RULE_ADM"

Using DBMS_STREAMS_ADM

96-2 PL/SQL Packages and Types Reference

Using DBMS_STREAMS_ADM

■ Overview

■ Rules

■ Users

Overview

The DBMS_STREAMS_ADM package, one of a set of Streams packages, provides
administrative interfaces for adding and removing simple rules for capture,
propagation, apply, and dequeue at the table, schema, and database level. These
rules support logical change records (LCRs), which include row LCRs and data
definition language (DDL) LCRs. This package also contains subprograms for
creating message rules for specific message types. This package also contains
subprograms for creating queues and for managing Streams metadata, such as data
dictionary information.

If you require more sophisticated rules, then you can use the DBMS_RULE_ADM
package.

Rules

Streams clients include capture processes, propagations, apply processes, and
messaging clients. Some of the procedures in the DBMS_STREAMS_ADM package add
rules to the rule sets of Streams clients. The rules may pertain to changes in the redo
log, to logical change records (LCRs), or to user messages.

An LCR represents either a row change that results from a data manipulation
language (DML) change or a data definition language (DDL) change. An LCR that
represents a row change is a row LCR, and an LCR that represents a DDL change is
a DDL LCR. LCRs either may represent changes in the redo record that were
captured by a capture process, or they may represent changes created by a user or
application. User messages are custom messages that are based on a user-defined
types and created by users or applications.

For all of the procedures except the ones that create subset rules, you use the
inclusion_rule parameter to specify the type of rule set (either positive or
negative) for the created rules. If the Streams client does not have a rule set of the

Using DBMS_STREAMS_ADM

DBMS_STREAMS_ADM 96-3

specified type, then a rule set is created automatically, and the rules are added to the
rule set. Other rules in an existing rule set for the Streams client are not affected.
Additional rules can be added to a rule set using either the DBMS_STREAMS_ADM
package or the DBMS_RULE_ADM package. If a Streams client has both a positive
and a negative rule set, then the negative rule set is always evaluated first.

The following sections describe each type of rule in detail:

■ Capture Process Rules for Changes in the Redo Log

■ Propagation Rules for LCRs

■ Propagation Rules for User Messages

■ Apply Process Rules for LCRs

■ Apply Process Rules for User Messages

■ Messaging Client Rules for LCRs

■ Messaging Client Rules for User Messages

Capture Process Rules for Changes in the Redo Log
The following procedures add rules to a rule set of a capture process when you
specify capture for the streams_type parameter:

■ The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates
to TRUE for all changes made to a source database. See "ADD_GLOBAL_RULES
Procedures" on page 96-19.

■ The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates
to TRUE for changes made to a specified schema. See "ADD_SCHEMA_RULES
Procedures" on page 96-39.

■ The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates
to TRUE for DML changes made to a subset of rows in a specified table. See
"ADD_SUBSET_RULES Procedures" on page 96-52.

■ The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates
to TRUE for changes made to a specified table. See "ADD_TABLE_RULES
Procedures" on page 96-63.

If one of these procedures adds rules to the positive rule set for a capture process,
then the capture process captures row changes resulting from DML changes, or

See Also: Oracle Streams Concepts and Administration for more
information about how rules are used in Streams

Rules

96-4 PL/SQL Packages and Types Reference

DDL changes, or both from a source database and enqueues these changes into the
specified queue. If one of these procedures adds rules to the negative rule set for a
capture process, then the capture process discards row changes, or DDL changes, or
both from a source database.

A capture process can capture changes locally at a source database or remotely at a
downstream database. Therefore, for capture process rules, you should execute this
procedure either at the source database or at a downstream database.

If the capture process is a local capture process, or if the capture process is a
downstream capture process that uses a database link to the source database, then
these procedures automatically prepare the appropriate database objects for
instantiation:

■ ADD_GLOBAL_RULES invokes the PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package at the source database.

■ ADD_SCHEMA_RULES invokes the PREPARE_SCHEMA_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package at the source database.

■ ADD_SUBSET_RULES and ADD_TABLE_RULES invoke the PREPARE_TABLE_
INSTANTIATION procedure in the DBMS_CAPTURE_ADM package at the source
database.

If the capture process is a downstream capture process that does not use a database
link to the source database, then you must prepare the appropriate objects for
instantiation manually at the source database.

If one of these procedures is executed at a downstream database, then you specify
the source database using the source_database parameter, and the specified
capture process must exist. The procedure cannot create a capture process if it is run
at a downstream database. You can create a capture process at a downstream
database using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM
package.

Propagation Rules for LCRs
The following procedures add propagation rules to a rule set of a propagation:

See Also: "Summary of DBMS_CAPTURE_ADM Subprograms"
on page 19-2 for more information about the CREATE_CAPTURE
procedure and the procedures that prepare database objects for
instantiation

Using DBMS_STREAMS_ADM

DBMS_STREAMS_ADM 96-5

■ The ADD_GLOBAL_PROPAGATION_RULES procedure adds rules whose rule
condition evaluates to TRUE for all LCRs in a source queue. See "ADD_
GLOBAL_PROPAGATION_RULES Procedures" on page 96-14.

■ The ADD_SCHEMA_PROPAGATION_RULES procedure adds rules whose rule
condition evaluates to TRUE for LCRs in a source queue containing changes
made to a specified schema. See "ADD_SCHEMA_PROPAGATION_RULES
Procedures" on page 96-34.

■ The ADD_SUBSET_PROPAGATION_RULES procedure adds rules whose rule
condition evaluates to TRUE for row LCRs in a source queue containing the
results of DML changes made to a subset of rows in a specified table. See
"ADD_SUBSET_PROPAGATION_RULES Procedures" on page 96-46.

■ The ADD_TABLE_PROPAGATION_RULES procedure adds rules whose rule
condition evaluates to TRUE for LCRs in a source queue containing changes
made to a specified table. See "ADD_TABLE_PROPAGATION_RULES
Procedure" on page 96-58.

If one of these procedures adds rules to the positive rule set for the propagation,
then the rules specify that the propagation propagates LCRs in a source queue to a
destination queue. If one of these procedures adds rules to the negative rule set for
the propagation, then the rules specify that the propagation discards LCRs in a
source queue. When you create rules with one of these procedures, and you specify
a value for the source_databse parameter, then the rules include conditions for
the specified source database.

Propagation Rules for User Messages
The ADD_MESSAGE_PROPAGATION_RULE procedure adds a message rule to a rule
set of a propagation. If this procedure adds a rule to the positive rule set for the
propagation, then the rule specifies that the propagation propagates the
user-enqueued messages of a specific message type that evaluate to TRUE for the
rule condition in a source queue to a destination queue. If this procedure adds a
rule to the negative rule set for the propagation, then the rule specifies that the
propagation discards the user-enqueued messages of a specific message type that
evaluate to TRUE for the rule condition in a source queue. This procedure generates
a rule name for the rule.

See Also: "ADD_MESSAGE_PROPAGATION_RULE Procedures"
on page 96-26

Rules

96-6 PL/SQL Packages and Types Reference

Apply Process Rules for LCRs
The following procedures add rules to a rule set of an apply process when you
specify apply for the streams_type parameter:

■ The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates
to TRUE for all LCRs in the apply process queue. See "ADD_GLOBAL_RULES
Procedures" on page 96-19.

■ The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates
to TRUE for LCRs in the apply process queue containing changes made to a
specified schema. See "ADD_SCHEMA_RULES Procedures" on page 96-39.

■ The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates
to TRUE for row LCRs in the apply process queue containing the results of DML
changes made to a subset of rows in a specified table. See "ADD_SUBSET_
RULES Procedures" on page 96-52.

■ The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates
to TRUE for LCRs in the apply process queue containing changes made to a
specified table. See "ADD_TABLE_RULES Procedures" on page 96-63.

If one of these procedures adds rules to the positive rule set for the apply process,
then the rules specify that the apply process applies LCRs in its queue. If one of
these procedures adds rules to the negative rule set for the apply process, then the
rules specify that the apply process discards LCRs in its queue. For apply process
rules, you should execute these procedures at the destination database.

An apply process can apply captured LCRs from only one source database. If one of
these procedures creates an apply process, then specify the source database for the
apply process using the source_database parameter. If the source_database
parameter is NULL, and one of these procedures creates an apply process, then the
source database name of the first LCR received by the apply process is used for the
source database.

The rules in the apply process rule sets determine which events are dequeued by
the apply process. When you create rules with one of these procedures, and you
specify a value for the source_databse parameter, then the rules include
conditions for the specified source database. If the apply process dequeues an LCR
with a source database that is different than the source database for the apply
process, then an error is raised. In addition, when adding rules to an existing apply
process, the database specified in the source_database parameter cannot be
different than the source database for the apply process. You can determine the
source database for an apply process by querying the DBA_APPLY_PROGRESS data
dictionary view.

Using DBMS_STREAMS_ADM

DBMS_STREAMS_ADM 96-7

Changes applied by an apply process created by one of these procedures generate
tags in the redo log at the destination database with a value of '00' (double zero).
You can use the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter
the tag value after the apply process is created, if necessary.

An apply process created by one of these procedures can apply events only at the
local database and can apply only captured events. To create an apply process that
applies events at a remote database or an apply process that applies user-enqueued
events, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

You also can use the DBMS_APPLY_ADM.CREATE_APPLY procedure to specify
nondefault values for the apply_captured, apply_user, apply_database_
link, and apply_tag parameters when you run that procedure. You can use one
of the procedures in the DBMS_STREAMS_ADM package to add rules to a rule set
used by the apply process after you create it.

Apply Process Rules for User Messages
The ADD_MESSAGE_RULE procedure adds a message rule to a rule set of an apply
process when you specify apply for the streams_type parameter. For an apply
process rule, you should execute this procedure at the destination database.

If this procedure adds a rule to the positive rule set for an apply process, then the
apply process dequeues user-enqueued messages of a specific message type that
satisfy the apply process rule and sends these messages to its message handler. If no
message handler is specified for the apply process, then use the ALTER_APPLY
procedure in the DBMS_APPLY_ADM package to set the message handler. If this
procedure adds a rule to the negative rule set for an apply process, then the apply
process discards user-enqueued messages of a specific message type that satisfy the
apply process rule.

Messaging Client Rules for LCRs
The following procedures add rules to a rule set of a messaging client when you
specify dequeue for the streams_type parameter:

See Also: "ALTER_APPLY Procedure" on page 15-4 and
"CREATE_APPLY Procedure" on page 15-14

See Also:

■ "ADD_MESSAGE_RULE Procedures" on page 96-30

■ "ALTER_APPLY Procedure" on page 15-4

Users

96-8 PL/SQL Packages and Types Reference

■ The ADD_GLOBAL_RULES procedure adds rules whose rule condition evaluates
to TRUE for all LCRs in the messaging client queue. See "ADD_GLOBAL_
RULES Procedures" on page 96-19.

■ The ADD_SCHEMA_RULES procedure adds rules whose rule condition evaluates
to TRUE for LCRs in the messaging client queue containing changes made to a
specified schema. See "ADD_SCHEMA_RULES Procedures" on page 96-39.

■ The ADD_SUBSET_RULES procedure adds rules whose rule condition evaluates
to TRUE for row LCRs in the messaging client queue containing the results of
DML changes made to a subset of rows in a specified table. See "ADD_
SUBSET_RULES Procedures" on page 96-52.

■ The ADD_TABLE_RULES procedure adds rules whose rule condition evaluates
to TRUE for LCRs in the messaging client queue containing changes made to a
specified table. See "ADD_TABLE_RULES Procedures" on page 96-63.

If one of these procedures adds rules to the positive rule set for a messaging client,
then the messaging client can dequeue user-enqueued row LCRs, or DDL LCRs, or
both that originated at the source database matching the source_database
parameter. If one of these procedures adds rules to the negative rule set for a
messaging client, then the messaging client discards user-enqueued row LCRs, or
DDL LCRs, or both that originated at the source database matching the source_
database parameter. You should execute these procedures at the database where
you want to dequeue the events with the messaging client.

Messaging Client Rules for User Messages
The ADD_MESSAGE_RULE procedure adds a message rule to a rule set of a
messaging client when you specify dequeue for the streams_type parameter.
You should execute this procedure at the database that will dequeue messages.

If this procedure adds a rule to the positive rule set for a messaging client, then the
messaging client dequeues user-enqueued messages of a specific message type that
satisfy the message rule. If this procedure adds a rule to the negative rule set for a
messaging client, then the messaging client discards user-enqueued messages of a
specific message type that satisfy the message rule.

Users

A user is associated with each Streams client. The following sections describe these
users.

See Also: "ADD_MESSAGE_RULE Procedures" on page 96-30

Using DBMS_STREAMS_ADM

DBMS_STREAMS_ADM 96-9

Capture User
The following procedures can create a capture process:

■ ADD_GLOBAL_RULES Procedures

■ ADD_SCHEMA_RULES Procedures

■ ADD_SUBSET_RULES Procedures

■ ADD_TABLE_RULES Procedures

If one of these procedures creates a capture process, then it configures the current
user as the capture_user. This user captures changes that satisfy the capture
process rule sets. This user must have the necessary privileges to capture changes.
The procedure grants the capture user enqueue privilege on the queue used by the
capture process and configures the user as a secure queue user of the queue.

Propagation User
The following procedures can create a propagation:

■ ADD_GLOBAL_PROPAGATION_RULES Procedures

■ ADD_MESSAGE_PROPAGATION_RULE Procedures

■ ADD_SCHEMA_PROPAGATION_RULES Procedures

■ ADD_SUBSET_PROPAGATION_RULES Procedures

■ ADD_TABLE_PROPAGATION_RULES Procedure

When a propagation is created, a propagation job is created also if one does not
exist for the database link used by the propagation. If a propagation job is created
when one of these procedures is run, then the user who runs the procedure owns
the propagation job.

See Also: "CREATE_CAPTURE Procedure" on page 19-16 for
information about the privileges required to capture changes

Note: The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

See Also: "CREATE_PROPAGATION Procedure" on page 65-6 for
more information about the required privileges

Users

96-10 PL/SQL Packages and Types Reference

Apply User
The following procedures can create an apply process:

■ ADD_GLOBAL_RULES Procedures

■ ADD_MESSAGE_RULE Procedures

■ ADD_SCHEMA_RULES Procedures

■ ADD_SUBSET_RULES Procedures

■ ADD_TABLE_RULES Procedures

If one of these procedures creates an apply process, then it configures the current
user as the apply_user. This user applies changes that satisfy the apply process
rule sets and runs user-defined apply handlers. This user must have the necessary
privileges to apply changes. The procedure grants the apply user dequeue privilege
on the queue used by the apply process and configures the user as a secure queue
user of the queue.

Messaging Client User
The following procedures can create a messaging client:

■ ADD_GLOBAL_RULES Procedures

■ ADD_MESSAGE_RULE Procedures

■ ADD_SCHEMA_RULES Procedures

■ ADD_SUBSET_RULES Procedures

■ ADD_TABLE_RULES Procedures

If one of these procedures creates a messaging client, then the user who runs this
procedure is granted the privileges to dequeue from the queue using the messaging
client. The procedure configures this user as a secure queue user of the queue, and
only this user can use the messaging client.

See Also: "CREATE_APPLY Procedure" on page 15-14 for
information about the privileges required to apply changes (refer to
the apply_user parameter)

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-11

Summary of DBMS_STREAMS_ADM Subprograms

Table 96–1 DBMS_STREAMS_ADM Package Subprograms

Subprogram Description

ADD_GLOBAL_PROPAGATION_RULES
Procedures on page 96-14

Either adds global rules to the positive rule set
for a propagation, or adds global rules to the
negative rule set for a propagation, and
creates the specified propagation if it does not
exist

ADD_GLOBAL_RULES Procedures on
page 96-19

Adds global rules to either the positive or
negative rule set of a capture process, apply
process, or messaging client, and creates the
specified capture process, apply process, or
messaging client if it does not exist

ADD_MESSAGE_PROPAGATION_RULE
Procedures on page 96-26

Either adds a message rule to the positive rule
set for a propagation, or adds a message rule
to the negative rule set for a propagation, and
creates the specified propagation if it does not
exist

ADD_MESSAGE_RULE Procedures on
page 96-30

Adds a message rule to either the positive or
negative rule set of an apply process or
messaging client, and creates the specified
apply process or messaging client if it does not
exist

ADD_SCHEMA_PROPAGATION_RULES
Procedures on page 96-34

Either adds schema rules to the positive rule
set for a propagation, or adds schema rules to
the negative rule set for a propagation, and
creates the specified propagation if it does not
exist

ADD_SCHEMA_RULES Procedures on
page 96-39

Adds schema rules to either the positive or
negative rule set of a capture process, apply
process, or messaging client, and creates the
specified capture process, apply process, or
messaging client if it does not exist

ADD_SUBSET_PROPAGATION_RULES
Procedures on page 96-46

Adds subset rules to the positive rule set for a
propagation, and creates the specified
propagation if it does not exist

Summary of DBMS_STREAMS_ADM Subprograms

96-12 PL/SQL Packages and Types Reference

ADD_SUBSET_RULES Procedures on
page 96-52

Adds subset rules to the positive rule set of a
capture process, apply process, or messaging
client, and creates the specified capture
process, apply process, or messaging client if
it does not exist

ADD_TABLE_PROPAGATION_RULES
Procedure on page 96-58

Either adds table rules to the positive rule set
for a propagation, or adds table rules to the
negative rule set for a propagation, and
creates the specified propagation if it does not
exist

ADD_TABLE_RULES Procedures on
page 96-63

Adds table rules to either the positive or
negative rule set of a capture process, apply
process, or messaging client, and creates the
specified capture process, apply process, or
messaging client if it does not exist

GET_SCN_MAPPING Procedure on
page 96-70

Gets information about the system change
number (SCN) values to use for Streams
capture and apply processes in a Streams
replication environment

MAINTAIN_SIMPLE_TABLESPACE
Procedure on page 96-72

Clones a simple tablespace from a source
database at a destination database and uses
Streams to maintain this tablespace at both
databases

MAINTAIN_TABLESPACES Procedure on
page 96-78

Clones a set of tablespaces from a source
database at a destination database and uses
Streams to maintain these tablespaces at both
databases

PURGE_SOURCE_CATALOG Procedure
on page 96-92

Removes all Streams data dictionary
information at the local database for the
specified object

REMOVE_QUEUE Procedure on
page 96-94

Removes the specified SYS.AnyData queue

REMOVE_RULE Procedure on page 96-96 Removes the specified rule or all rules from
the rule set associated with the specified
capture process, apply process, or propagation

REMOVE_STREAMS_CONFIGURATION
Procedure on page 96-98

Removes the Streams configuration at the
local database.

Table 96–1 (Cont.) DBMS_STREAMS_ADM Package Subprograms

Subprogram Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-13

SET_MESSAGE_NOTIFICATION
Procedure on page 96-100

Sets a notification for messages that can be
dequeued by a specified Streams messaging
client from a specified queue

SET_RULE_TRANSFORM_FUNCTION
Procedure on page 96-105

Sets or removes the transformation function
name for a rule-based transformation

SET_UP_QUEUE Procedure on page 96-107 Creates a queue table and a queue for use with
the capture, propagate, and apply
functionality of Streams

Note: All procedures commit unless specified otherwise.

Table 96–1 (Cont.) DBMS_STREAMS_ADM Package Subprograms

Subprogram Description

ADD_GLOBAL_PROPAGATION_RULES Procedures

96-14 PL/SQL Packages and Types Reference

ADD_GLOBAL_PROPAGATION_RULES Procedures

These procedures either add global rules to the positive rule set for a propagation,
or add global rules to the negative rule set for a propagation, and create the
specified propagation if it does not exist.

Syntax
DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

Table 96–2 ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

Parameter Description

streams_name The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then it is created
automatically.

If NULL and a propagation exists for the same source queue
and destination queue (including database link), then this
propagation is used.

If NULL and no propagation exists for the same source
queue and destination queue (including database link), then
a propagation is created automatically with a
system-generated name.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-15

source_queue_name The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue, and the queue must be SYS.AnyData
type.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the
default.

destination_queue_name The name of the destination queue, including a database
link, specified as [schema_name.]queue_
name[@dblink_name], if the destination queue is in a
remote database. The queue must be SYS.AnyData type.

For example, to specify a destination queue named
streams_queue in the strmadmin schema and use a
database link named dbs2.net, enter
strmadmin.streams_queue@dbs2.net for this
parameter.

If the schema is not specified, then the current user is the
default.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If true, then creates a rule for DML changes. If false, then
does not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a rule for DDL changes. If false, then
does not create a DDL rule. NULL is not permitted.

Table 96–2 (Cont.) ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_GLOBAL_PROPAGATION_RULES Procedures

96-16 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added
to the generated rules. Therefore, these rules can evaluate to
TRUE regardless of whether an LCR has a non-NULL tag. If
the rules are added to the positive rule set for the
propagation, then an LCR is always considered for
propagation, regardless of whether it has a non-NULL tag. If
the rules are added to a positive rule set, then setting this
parameter to true is appropriate for a full (for example,
standby) copy of a database. If the rules are added to the
negative rule set for the propagation, then whether an LCR
is discarded does not depend on the LCR's tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if an LCR has a
NULL Streams tag. If the rules are added to the positive rule
set for the propagation, then an LCR is considered for
propagation only when the LCR contains a NULL tag. If the
rules are added to a positive rule set, then setting this
parameter to false may be appropriate in
update-anywhere configurations to avoid sending a change
back to its source database. If the rules are added to the
negative rule set for the propagation, then an LCR can be
discarded only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

source_database The global name of the source database. The source
database is where the changes originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle recommends that you specify a source database for
propagation rules.

dml_rule_name If include_dml is true, then contains the DML rule
name.

If include_dml is false, then contains a NULL.

Table 96–2 (Cont.) ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-17

Usage Notes
This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to
the positive rule set for the propagation.

If inclusion_rule is false, then the rules are added to
the negative rule set for the propagation.

In either case, the system creates the rule set if it does not
exist.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the global rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following
condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you
are specifying an LCR member subprogram that is
dependent on the LCR type (row or DDL), then make sure
this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that
is valid only for row LCRs, then specify true for the
include_dml parameter and false for the include_ddl
parameter. If you specify an LCR member subprogram that
is valid only for DDL LCRs, then specify false for the
include_dml parameter and true for the include_ddl
parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–2 (Cont.) ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_GLOBAL_PROPAGATION_RULES Procedures

96-18 PL/SQL Packages and Types Reference

the database name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the database name plus the sequence number is
too long, then the database name is truncated. The overloaded ADD_GLOBAL_
PROPAGATION_RULES procedure generates the rule names for DML and DDL
changes. A propagation uses the rules created for filtering.

If no propagation job exists for the database link specified in the destination_
queue_name parameter when this procedure is run, then a propagation job is
created for use by the propagation. If a propagation job already exists for the
specified database link, then the propagation uses the existing propagation job.

This procedure also configures propagation using the current user, and establish a
default propagation schedule. Only one propagation is allowed between the source
queue and destination queue.

Examples
The following is an example of a global rule condition that may be created for DML
changes:

:dml.get_source_database_name() = 'DBS1.NET' AND :dml.is_null_tag() = 'Y'

Note:

■ Currently, a single propagation job propagates all events that
use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

■ For a propagation to work properly, the owner of the source
queue must have the necessary privileges to propagate events.

See Also:

■ "Rules" on page 96-2 and "Propagation Rules for LCRs" on
page 96-4 for more information about the rules created by this
procedure

■ "Propagation User" on page 96-9

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-19

ADD_GLOBAL_RULES Procedures

These procedures add rules to a rule set of one of the following types of Streams
clients:

■ Capture process rules for capturing changes to an entire database when the
streams_type parameter is set to capture. See "Capture Process Rules for
Changes in the Redo Log" on page 96-3 for more information about these rules.

■ Apply process rules for applying all logical change records (LCRs) in a queue
when the streams_type parameter is set to apply. The rules may specify that
the LCRs must be from a particular source database. See "Apply Process Rules
for LCRs" on page 96-6 for more information about these rules.

■ Messaging client rules for dequeuing all user-enqueued LCRs from a queue
when the streams_type parameter is set to dequeue. The rules may specify
that the LCRs must be from a particular source database. See "Messaging Client
Rules for LCRs" on page 96-7 for more information about these rules.

Syntax
DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

ADD_GLOBAL_RULES Procedures

96-20 PL/SQL Packages and Types Reference

Parameters

Table 96–3 ADD_GLOBAL_RULES Procedure Parameters

Parameter Description

streams_type The type of Streams client:

■ Specify capture for a capture process.

■ Specify apply for an apply process.

■ Specify dequeue for a messaging client.

streams_name The name of the capture process, apply process, or messaging
client. Do not specify an owner.

If the specified Streams client does not exist, then it is created
automatically.

If NULL, if streams_type is capture or dequeue, and if one
relevant capture process or messaging client for the queue exists,
then the relevant Streams client is used. If no relevant Streams
client exists for the queue, then a Streams client is created
automatically with a system-generated name. If NULL and
multiple Streams clients of the specified streams_type for the
queue exist, then an error is raised.

If NULL, if streams_type is apply, and if one relevant apply
process exists, then the relevant apply process is used. The
relevant apply process is identified in one of the following ways:

■ If one existing apply process has the source database
specified in source_database and uses the queue
specified in queue_name, then this apply process is used.

■ If source_database is NULL and one existing apply
process is using the queue specified in queue_name, then
this apply process is used.

If NULL and no relevant apply process exists, then an apply
process is created automatically with a system-generated name.
If NULL and multiple relevant apply processes exist, then an error
is raised.

An apply process and a messaging client cannot have the same
name.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-21

queue_name The name of the local queue, specified as [schema_
name.]queue_name. The current database must contain the
queue, and the queue must be SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for
this parameter. If the schema is not specified, then the current
user is the default.

For capture process rules, this is the queue into which a capture
process enqueues events. For apply process rules, this is the
queue from which an apply process dequeues events. For
messaging client rules, this is the queue from which a messaging
client dequeues events.

include_dml If true, then creates a rule for DML changes. If false, then does
not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a rule for DDL changes. If false, then does
not create a DDL rule. NULL is not permitted.

Table 96–3 (Cont.) ADD_GLOBAL_RULES Procedure Parameters

Parameter Description

ADD_GLOBAL_RULES Procedures

96-22 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added to the
generated rules. Therefore, these rules can evaluate to TRUE
regardless of whether a redo entry or LCR has a non-NULL tag. If
the rules are added to the positive rule set for the process, then a
redo entry is always considered for capture, and an LCR is
always considered for apply, regardless of whether the redo
entry or LCR has a non-NULL tag. If the rules are added to a
positive rule set, then setting this parameter to true is
appropriate for a full (for example, standby) copy of a database.
If the rules are added to the negative rule set for the process, then
whether a redo entry or LCR is discarded does not depend on the
tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if a redo entry or LCR
has a NULL Streams tag. If the rules are added to the positive rule
set for the process, then a redo entry is considered for capture,
and an LCR is considered for apply, only when the redo entry or
LCR contains a NULL tag. If the rules are added to a positive rule
set, then setting this parameter to false may be appropriate in
update-anywhere configurations to avoid sending a change back
to its source database. If the rules are added to the negative rule
set for the process, then a redo entry or LCR can be discarded
only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

Table 96–3 (Cont.) ADD_GLOBAL_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-23

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture process rules, specify NULL or the global name of the
local database if you are creating a capture process locally at the
source database. If you are creating a capture process at a
downstream database, then specify the source database of the
changes that will be captured.

For apply process rules, specify the source database of the
changes that will be applied by the apply process. The source
database is the database where the changes originated. If an
apply process applies captured events, then the apply process
can apply events from only one capture process at one source
database.

For messaging client rules, specify NULL if you do not want the
rules created by this procedure to have a condition for the source
database. Specify a source database if you want the rules created
by this procedure to have a condition for the source database.
The source database is part of the information in an LCR, and
user-constructed LCRs may or may not have this information.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is true, then contains the DML rule name.

If include_dml is false, then contains a NULL.

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to the
positive rule set for the Streams client.

If inclusion_rule is false, then the rules are added to the
negative rule set for the Streams client.

In either case, the system creates the rule set if it does not exist.

Table 96–3 (Cont.) ADD_GLOBAL_RULES Procedure Parameters

Parameter Description

ADD_GLOBAL_RULES Procedures

96-24 PL/SQL Packages and Types Reference

Usage Notes
This procedure creates the specified capture process, apply process, or messaging
client if it does not exist.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the database name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the database name plus the sequence number is
too long, then the database name is truncated. The overloaded ADD_GLOBAL_
RULES procedure generates the rule names for DML and DDL changes. A capture
process, apply process, or messaging client uses the rules created for filtering.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the global rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you are
specifying an LCR member subprogram that is dependent on the
LCR type (row or DDL), then make sure this procedure only
generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is
valid only for row LCRs, then specify true for the include_
dml parameter and false for the include_ddl parameter. If
you specify an LCR member subprogram that is valid only for
DDL LCRs, then specify false for the include_dml parameter
and true for the include_ddl parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–3 (Cont.) ADD_GLOBAL_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-25

Examples
The following is an example of a global rule condition that may be created for DML
changes:

:dml.get_source_database_name() = 'DBS1.NET' AND :dml.is_null_tag() = 'Y'

See Also:

■ "Rules" on page 96-2

■ "Users" on page 96-8

ADD_MESSAGE_PROPAGATION_RULE Procedures

96-26 PL/SQL Packages and Types Reference

ADD_MESSAGE_PROPAGATION_RULE Procedures

These procedures add a message rule to the positive rule set for a propagation, or
add a message rule to the negative rule set for a propagation, and create the
specified propagation if it does not exist.

Syntax
DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 rule_name OUT VARCHAR2);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains the OUT parameter rule_name, and the other does not.

Table 96–4 ADD_MESSAGE_PROPAGATION_RULE Procedure Parameters

Parameter Description

message_type The type of the message. If the type is not an Oracle built-in
type, then specified as [schema_name.]type_name. If the
schema is not specified, then the current user is the default.

For example, to specify a type named usr_msg in the
strmadmin schema, enter strmadmin.usr_msg for this
parameter.

rule_condition The rule condition for this message type. The rule variable
name specified in the rule condition must be the following:

:msg

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-27

streams_name The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then it is created
automatically.

If NULL and a propagation exists for the same source queue
and destination queue (including database link), then this
propagation is used.

If NULL and no propagation exists for the same source
queue and destination queue (including database link), then
a propagation is created automatically with a
system-generated name.

source_queue_name The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue, and the queue must be SYS.AnyData
type.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the
default.

destination_queue_name The name of the destination queue, including a database
link, specified as [schema_name.]queue_
name[@dblink_name], if the destination queue is in a
remote database. The queue must be SYS.AnyData type.

For example, to specify a destination queue named
streams_queue in the strmadmin schema and use a
database link named dbs2.net, enter
strmadmin.streams_queue@dbs2.net for this
parameter.

If the schema is not specified, then the current user is the
default.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

Table 96–4 (Cont.) ADD_MESSAGE_PROPAGATION_RULE Procedure Parameters

Parameter Description

ADD_MESSAGE_PROPAGATION_RULE Procedures

96-28 PL/SQL Packages and Types Reference

Usage Notes
When you use this procedure to create a rule set for a message rule, the new rule set
does not have an evaluation context. If no evaluation context exists for the specified
message type, then this procedure creates a new evaluation context and associates it
with the new rule. The evaluation context also has a system-generated name. If you
create new rules that use an existing message type, then the new rules use the
existing evaluation context for the message type.

If no propagation job exists for the database link specified in the destination_
queue_name parameter when this procedure is run, then a propagation job is
created for use by the propagation. If a propagation job already exists for the
specified database link, then the propagation uses the existing propagation job.

This procedure also configures propagation using the current user, and establishes a
default propagation schedule. Only one propagation is allowed between the source
queue and destination queue.

inclusion_rule If inclusion_rule is true, then the rule is added to the
positive rule set for the propagation.

If inclusion_rule is false, then the rule is added to the
negative rule set for the propagation.

In either case, the system creates the rule set if it does not
exist.

rule_name Contains the rule name

Note:

■ Currently, a single propagation job propagates all events that
use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

■ For a propagation to work properly, the owner of the source
queue must have the necessary privileges to propagate events.

Table 96–4 (Cont.) ADD_MESSAGE_PROPAGATION_RULE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-29

Examples
Suppose the message type is usr_msg, and that this type has the following
attributes: source_dbname, owner, name, and message. Given this type, the
following rule condition may be specified:

':msg.source_dbname = ''DBS1.NET'' AND ' || ':msg.owner = ''HR'' AND ' ||
':msg.name = ''EMPLOYEES'''

This rule condition evaluates to TRUE if a user-enqueued message of type usr_msg
has dbs1.net for its source_dbname attribute, hr for its owner attribute, and
employees for its name attribute.

See Also:

■ "Rules" on page 96-2 and "Propagation Rules for User
Messages" on page 96-5 for more information about the rules
created by this procedure

■ "Propagation User" on page 96-9

Note: The quotation marks in the preceding example are all single
quotation marks.

ADD_MESSAGE_RULE Procedures

96-30 PL/SQL Packages and Types Reference

ADD_MESSAGE_RULE Procedures

These procedures a message rule to a rule set of one of the following types of
Streams clients:

■ Apply process rule for dequeuing user-enqueued messages of a specific
message type from a queue when the streams_type parameter is set to
apply. See "Apply Process Rules for User Messages" on page 96-7 for more
information about such rules.

■ Messaging client rule dequeuing user-enqueued messages of a specific message
type from a queue when the streams_type parameter is set to dequeue. See
"Messaging Client Rules for User Messages" on page 96-8 for more information
about such rules.

Syntax
DBMS_STREAMS_ADM.ADD_MESSAGE_RULE(
 message_type IN VARCHAR2,
 rule_condition IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 inclusion_rule IN BOOLEAN DEFAULT true,
 rule_name OUT VARCHAR2);

Note: This procedure is overloaded. One version of this procedure
contains the OUT parameter rule_name, and the other does not.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-31

Parameters

Table 96–5 ADD_MESSAGE_RULE Procedure Parameters

Parameter Description

message_type The type of the message. If the type is not an Oracle built-in type,
then specified as [schema_name.]type_name. If the schema is not
specified, then the current user is the default.

For example, to specify a type named usr_msg in the strmadmin
schema, enter strmadmin.usr_msg for this parameter.

rule_condition The rule condition for the message type. The rule variable name
specified in the rule condition must be the following:

:msg

streams_type The type of message consumer, either apply for apply process or
dequeue for messaging client

streams_name The name of the Streams apply process or messaging client.

If the specified streams_type is apply, then specify the name of
the apply process. Do not specify an owner. If the specified apply
process does not exist, then it is created automatically with a
system-generated name.

If the specified streams_type is dequeue, then specify the
messaging client. For example, if the user strmadmin is the
messaging client, then specify strmadmin.

If NULL and a relevant apply process or messaging client for the
queue exists, then the relevant apply process or messaging client is
used. If NULL and multiple relevant apply processes or messaging
clients for the queue exist, then an error is raised.

If NULL and no Streams client of the specified streams_type exists
for the queue, then an apply process or messaging client is created
automatically with a system-generated name.

An apply process and a messaging client cannot have the same
name.

ADD_MESSAGE_RULE Procedures

96-32 PL/SQL Packages and Types Reference

Usage Notes
If an apply process rule is added, then this procedure creates the apply process if it
does not exist. An apply process created by this procedure can apply only
user-enqueued messages, and dequeued messages are sent to the message handler
for the apply process. If a messaging client rule is added, then this procedure
creates a messaging client if it does not exist.

When you use this procedure to create a rule set for a message rule, the new rule set
does not have an evaluation context. If no evaluation context exists for the specified
message type, then this procedure creates a new evaluation context and associates it
with the new rule. The evaluation context also has a system-generated name. If you
create new rules that use an existing message type, then the new rules use the
existing evaluation context for the message type.

queue_name The name of the local queue from which messages will be dequeued,
specified as [schema_name.]queue_name. The current database
must contain the queue, and the queue must be SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for this
parameter. If the schema is not specified, then the current user is the
default.

inclusion_rule If inclusion_rule is true, then the rule is added to the positive
rule set for the apply process or messaging client.

If inclusion_rule is false, then the rule is added to the negative
rule set for the apply process or messaging client.

In either case, the system creates the rule set if it does not exist.

rule_name Contains the rule name

See Also:

■ "Rules" on page 96-2

■ "Users" on page 96-8

■ "ALTER_APPLY Procedure" on page 15-4 for more information
about setting a message handler for an apply process

Table 96–5 (Cont.) ADD_MESSAGE_RULE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-33

Examples
You specify the condition for this rule using the rule_condition parameter. For
example, suppose the message type is usr_msg, and that this type has the
following attributes: source_dbname, owner, name, and message. Given this
type, the following rule condition may be specified:

':msg.source_dbname = ''DBS1.NET'' AND ' || ':msg.owner = ''HR'' AND ' ||
':msg.name = ''EMPLOYEES'''

Note: The quotation marks in the preceding example are all single
quotation marks.

ADD_SCHEMA_PROPAGATION_RULES Procedures

96-34 PL/SQL Packages and Types Reference

ADD_SCHEMA_PROPAGATION_RULES Procedures

These procedures either add schema rules to the positive rule set for a propagation,
or add schema rules to the negative rule set for a propagation, and create the
specified propagation if it does not exist.

Syntax
DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

Table 96–6 ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

Parameter Description

schema_name The name of the schema. For example, hr.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-35

streams_name The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then it is created
automatically.

If NULL and a propagation exists for the same source queue
and destination queue (including database link), then this
propagation is used.

If NULL and no propagation exists for the same source
queue and destination queue (including database link), then
a propagation is created automatically with a
system-generated name.

source_queue_name The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue, and the queue must be SYS.AnyData
type.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the
default.

destination_queue_name The name of the destination queue, including a database
link, specified as [schema_name.]queue_
name[@dblink_name], if the destination queue is in a
remote database. The queue must be SYS.AnyData type.

For example, to specify a destination queue named
streams_queue in the strmadmin schema and use a
database link named dbs2.net, enter
strmadmin.streams_queue@dbs2.net for this
parameter.

If the schema is not specified, then the current user is the
default.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If true, then creates a rule for DML changes. If false, then
does not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a rule for DDL changes. If false, then
does not create a DDL rule. NULL is not permitted.

Table 96–6 (Cont.) ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_SCHEMA_PROPAGATION_RULES Procedures

96-36 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added
to the generated rules. Therefore, these rules can evaluate to
TRUE regardless of whether an LCR has a non-NULL tag. If
the rules are added to the positive rule set for the
propagation, then an LCR is always considered for
propagation, regardless of whether it has a non-NULL tag. If
the rules are added to a positive rule set, then setting this
parameter to true is appropriate for a full (for example,
standby) copy of a database. If the rules are added to the
negative rule set for the propagation, then whether an LCR
is discarded does not depend on the LCR's tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if an LCR has a
NULL Streams tag. If the rules are added to the positive rule
set for the propagation, then an LCR is considered for
propagation only when the LCR contains a NULL tag. If the
rules are added to a positive rule set, then setting this
parameter to false may be appropriate in
update-anywhere configurations to avoid sending a change
back to its source database. If the rules are added to the
negative rule set for the propagation, then an LCR can be
discarded only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide
for more information about tags

source_database The global name of the source database. The source
database is where the change originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle recommends that you specify a source database for
propagation rules.

dml_rule_name If include_dml is true, then contains the DML rule
name.

If include_dml is false, then contains a NULL.

Table 96–6 (Cont.) ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-37

Usage Notes
This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the schema name with a sequence number appended to it. The sequence number is

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to
the positive rule set for the propagation.

If inclusion_rule is false, then the rules are added to
the negative rule set for the propagation.

In either case, the system creates the rule set if it does not
exist.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the schema rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following
condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you
are specifying an LCR member subprogram that is
dependent on the LCR type (row or DDL), then make sure
this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that
is valid only for row LCRs, then specify true for the
include_dml parameter and false for the include_ddl
parameter. If you specify an LCR member subprogram that
is valid only for DDL LCRs, then specify false for the
include_dml parameter and true for the include_ddl
parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–6 (Cont.) ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_SCHEMA_PROPAGATION_RULES Procedures

96-38 PL/SQL Packages and Types Reference

used to avoid naming conflicts. If the schema name plus the sequence number is too
long, then the schema name is truncated. For the overloaded ADD_SCHEMA_
PROPAGATION_RULES procedure this generates the rule names for DML and DDL
changes. A propagation uses the rules created for filtering.

If no propagation job exists for the database link specified in the destination_
queue_name parameter when this procedure is run, then a propagation job is
created for use by the propagation. If a propagation job already exists for the
specified database link, then the propagation uses the existing propagation job.

This procedure also configures propagation using the current user, and establishes a
default propagation schedule. Only one propagation is allowed between the source
queue and the destination queue.

Examples
The following is an example of a schema rule condition that may be created for
DML changes:

:dml.get_object_owner() = 'HR' AND :dml.is_null_tag() = 'Y'
AND :dml.get_source_database_name() = 'DBS1.NET'

Note:

■ Currently, a single propagation job propagates all events that
use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

■ For a propagation to work properly, the owner of the source
queue must have the necessary privileges to propagate events.

See Also:

■ "Rules" on page 96-2 and "Propagation Rules for LCRs" on
page 96-4 for more information about the rules created by this
procedure

■ "Propagation User" on page 96-9

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-39

ADD_SCHEMA_RULES Procedures

These procedures add rules to a rule set of one of the following types of Streams
clients:

■ Capture process rules for capturing changes to a specified schema when the
streams_type parameter is set to capture. See "Capture Process Rules for
Changes in the Redo Log" on page 96-3 for more information about these rules.

■ Apply process rules for applying logical change records (LCRs) in a queue that
contain changes to a specified schema when the streams_type parameter is
set to apply. The rules may specify that the LCRs must be from a particular
source database. See "Apply Process Rules for LCRs" on page 96-6 for more
information about these rules.

■ Messaging client rules for dequeuing user-enqueued LCRs from a queue that
contain changes to a specified schema when the streams_type parameter is
set to dequeue. The rules may specify that the LCRs must be from a particular
source database. See "Messaging Client Rules for LCRs" on page 96-7 for more
information about these rules.

Syntax
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

ADD_SCHEMA_RULES Procedures

96-40 PL/SQL Packages and Types Reference

Parameters

Table 96–7 ADD_SCHEMA_RULES Procedure Parameters

Parameter Description

schema_name The name of the schema. For example, hr.

You can specify a schema that does not yet exist, because Streams
does not validate the existence of the schema.

streams_type The type of Streams client:

■ Specify capture for a capture process.

■ Specify apply for an apply process.

■ Specify dequeue for a messaging client.

streams_name The name of the capture process, apply process, or messaging
client. Do not specify an owner.

If the specified Streams client does not exist, then it is created
automatically.

If NULL, if streams_type is capture or dequeue, and if one
relevant capture process or messaging client for the queue exists,
then the relevant Streams client is used. If no relevant Streams
client exists for the queue, then a Streams client is created
automatically with a system-generated name. If NULL and
multiple Streams clients of the specified streams_type for the
queue exist, then an error is raised.

If NULL, if streams_type is apply, and if one relevant apply
process exists, then the relevant apply process is used. The
relevant apply process is identified in one of the following ways:

■ If one existing apply process has the source database
specified in source_database and uses the queue
specified in queue_name, then this apply process is used.

■ If source_database is NULL and one existing apply
process is using the queue specified in queue_name, then
this apply process is used.

If NULL and no relevant apply process exists, then an apply
process is created automatically with a system-generated name.
If NULL and multiple relevant apply processes exist, then an error
is raised.

An apply process and a messaging client cannot have the same
name.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-41

queue_name The name of the local queue, specified as [schema_
name.]queue_name. The current database must contain the
queue, and the queue must be SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for
this parameter. If the schema is not specified, then the current
user is the default.

For capture process rules, this is the queue into which a capture
process enqueues events. For apply process rules, this is the
queue from which an apply process dequeues events. For
messaging client rules, this is the queue from which a messaging
client dequeues events.

include_dml If true, then creates a rule for DML changes. If false, then does
not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a rule for DDL changes. If false, then does
not create a DDL rule. NULL is not permitted.

Table 96–7 (Cont.) ADD_SCHEMA_RULES Procedure Parameters

Parameter Description

ADD_SCHEMA_RULES Procedures

96-42 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added to the
generated rules. Therefore, these rules can evaluate to TRUE
regardless of whether a redo entry or LCR has a non-NULL tag. If
the rules are added to the positive rule set for the process, then a
redo entry is always considered for capture, and an LCR is
always considered for apply, regardless of whether the redo
entry or LCR has a non-NULL tag. If the rules are added to a
positive rule set, then setting this parameter to true is
appropriate for a full (for example, standby) copy of a database.
If the rules are added to the negative rule set for the process, then
whether a redo entry or LCR is discarded does not depend on the
tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if a redo entry or LCR
has a NULL Streams tag. If the rules are added to the positive rule
set for the process, then a redo entry is considered for capture,
and an LCR is considered for apply, only when the redo entry or
LCR contains a NULL tag. If the rules are added to a positive rule
set, then setting this parameter to false may be appropriate in
update-anywhere configurations to avoid sending a change back
to its source database. If the rules are added to the negative rule
set for the process, then a redo entry or LCR can be discarded
only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

Table 96–7 (Cont.) ADD_SCHEMA_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-43

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture process rules, specify NULL or the global name of the
local database if you are creating a capture process locally at the
source database. If you are creating a capture process at a
downstream database, then specify the source database of the
changes that will be captured.

For apply process rules, specify the source database of the
changes that will be applied by the apply process. The source
database is the database where the changes originated. If an
apply process applies captured events, then the apply process
can apply events from only one capture process at one source
database.

For messaging client rules, specify NULL if you do not want the
rules created by this procedure to have a condition for the source
database. Specify a source database if you want the rules created
by this procedure to have a condition for the source database.
The source database is part of the information in an LCR, and
user-constructed LCRs may or may not have this information.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is true, then contains the DML rule name.

If include_dml is false, then contains a NULL.

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to the
positive rule set for the Streams client.

If inclusion_rule is false, then the rules are added to the
negative rule set for the Streams client.

In either case, the system creates the rule set if it does not exist.

Table 96–7 (Cont.) ADD_SCHEMA_RULES Procedure Parameters

Parameter Description

ADD_SCHEMA_RULES Procedures

96-44 PL/SQL Packages and Types Reference

Usage Notes
This procedure creates the specified capture process, apply process, or messaging
client if it does not exist.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the schema name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the schema name plus the sequence number is too
long, then the schema name is truncated. The overloaded ADD_SCHEMA_RULES
procedure generates the rule names for DML and DDL changes. A capture process,
apply process, or messaging client uses the rules created for filtering.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the schema rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you are
specifying an LCR member subprogram that is dependent on the
LCR type (row or DDL), then make sure this procedure only
generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is
valid only for row LCRs, then specify true for the include_
dml parameter and false for the include_ddl parameter. If
you specify an LCR member subprogram that is valid only for
DDL LCRs, then specify false for the include_dml parameter
and true for the include_ddl parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–7 (Cont.) ADD_SCHEMA_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-45

Examples
The following is an example of a schema rule condition that may be created for
DML changes:

:dml.get_object_owner() = 'HR' AND :dml.is_null_tag() = 'Y'

See Also:

■ "Rules" on page 96-2

■ "Users" on page 96-8

ADD_SUBSET_PROPAGATION_RULES Procedures

96-46 PL/SQL Packages and Types Reference

ADD_SUBSET_PROPAGATION_RULES Procedures

These procedures add propagation rules that propagate the logical change records
(LCRs) related to a subset of the rows in the specified table in a source queue to a
destination queue, and creates the specified propagation if it does not exist. They
also configure propagation using the current user and establishes a default
propagation schedule. The procedures enables propagation of LCRs for the
specified table, subject to filtering conditions.

Syntax
DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 insert_rule_name OUT VARCHAR2,
 update_rule_name OUT VARCHAR2,
 delete_rule_name OUT VARCHAR2);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains three OUT parameters, and the other does not.

Table 96–8 ADD_SUBSET_PROPAGATION_RULES Procedure Parameters

Parameter Description

table_name The name of the table specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.

The specified table must exist in the same database as the
propagation. Also, the specified table cannot have any LOB,
LONG, or LONG RAW columns currently or in the future.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-47

dml_condition The subset condition. You specify this condition similar to
the way you specify conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table
where the salary is greater than 4000 and the job_id is
SA_MAN, enter the following as the condition:

' salary > 4000 and job_id = ''SA_MAN'' '

Note: The quotation marks in the preceding example are all
single quotation marks.

streams_name The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then it is created
automatically.

If NULL and a propagation exists for the same source queue
and destination queue (including database link), then this
propagation is used.

If NULL and no propagation exists for the same source
queue and destination queue (including database link), then
a propagation is created automatically with a
system-generated name.

source_queue_name The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue, and the queue must be SYS.AnyData
type.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the
default.

Table 96–8 (Cont.) ADD_SUBSET_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_SUBSET_PROPAGATION_RULES Procedures

96-48 PL/SQL Packages and Types Reference

destination_queue_name The name of the destination queue, including a database
link, specified as [schema_name.]queue_
name[@dblink_name], if the destination queue is in a
remote database. The queue must be SYS.AnyData type.

For example, to specify a destination queue named
streams_queue in the strmadmin schema and use a
database link named dbs2.net, enter
strmadmin.streams_queue@dbs2.net for this
parameter.

If the schema is not specified, then the current user is the
default.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_tagged_lcr If true, then an LCR is always considered for propagation,
regardless of whether it has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a
database.

If false, then an LCR is considered for propagation only
when the LCR contains a NULL tag. A setting of false is
often specified in update-anywhere configurations to avoid
sending a change back to its source database.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

source_database The global name of the source database. The source
database is where the change originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle recommends that you specify a source database for
propagation rules.

insert_rule_name Contains the system-generated INSERT rule name. This rule
handles inserts, as well as updates that must be converted
into inserts.

Table 96–8 (Cont.) ADD_SUBSET_PROPAGATION_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-49

Usage Notes
Only one propagation is allowed between the source queue and the destination
queue.

Running this procedure generates three rules for the specified propagation: one for
INSERT statements, one for UPDATE statements, and one for DELETE statements.
For INSERT and DELETE statements, only row LCRs that satisfy the condition
specified for the dml_condition parameter are propagated. For UPDATE
statements, the following variations are possible:

■ If both the new and old values in a row LCR satisfy the specified dml_
condition, then the row LCR is propagated without any changes.

■ If neither the new or old values in a row LCR satisfy the specified dml_
condition, then the row LCR is not propagated.

■ If the old values for a row LCR satisfy the specified dml_condition, but the
new values do not, then the update row LCR is converted into a delete row
LCR.

■ If the new values for a row LCR satisfy the specified dml_condition, but the
old values do not, then the update row LCR is converted to an insert row LCR.

When an update is converted into an insert or a delete, it is called row migration.

A propagation uses the rules created for filtering. If the propagation does not have a
positive rule set, then a positive rule set is created automatically, and the rules for
propagating changes to the table are added to the positive rule set. A subset rule
can be added to positive rule set only, not to a negative rule set. Other rules in an
existing positive rule set for the propagation are not affected. Additional rules can
be added using either the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM
package.

Rules for INSERT, UPDATE, and DELETE statements are created automatically when
you run this procedure, and these rules are given a system-generated rule name.

update_rule_name Contains the system-generated UPDATE rule name. This rule
handles updates that remain updates.

delete_rule_name Contains the system-generated DELETE rule name. This rule
handles deletes, as well as updates that must be converted
into deletes

Table 96–8 (Cont.) ADD_SUBSET_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_SUBSET_PROPAGATION_RULES Procedures

96-50 PL/SQL Packages and Types Reference

The system-generated rule name is the table name with a sequence number
appended to it. The sequence number is used to avoid naming conflicts. If the table
name plus the sequence number is too long, then the table name is truncated. The
ADD_SUBSET_RULES procedure is overloaded, and the system-generated rule
names for INSERT, UPDATE, and DELETE statements are returned.

When you create propagation subset rules for a table, you should create an
unconditional supplemental log group at the source database with all the columns
in the table. Supplemental logging is required if an update must be converted to an
insert. The propagation rule must have all the column values to be able to perform
this conversion correctly.

For a propagation to work properly, the owner of the source queue must have the
necessary privileges to propagate events.

If no propagation job exists for the database link specified in the destination_
queue_name parameter when this procedure is run, then a propagation job is
created for use by the propagation. If a propagation job already exists for the
specified database link, then the propagation uses the existing propagation job.

Attention: Subset rules should only reside in positive rule sets.
You should not add subset rules to negative rule sets. Doing so may
have unpredictable results because row migration would not be
performed on LCRs that are not discarded by the negative rule set.

Note: Currently, a single propagation job propagates all events
that use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

See Also:

■ "Rules" on page 96-2 and "Propagation Rules for LCRs" on
page 96-4 for more information about the rules created by this
procedure

■ "Propagation User" on page 96-9

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-51

Examples
The following is an example of a rule condition that may be created for filtering a
row LCR containing an update operation when the dml_condition is region_
id = 2 and the table_name is hr.regions:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'REGIONS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() = 'UPDATE' AND (:dml.get_
value('NEW','"REGION_ID"') IS NOT NULL) AND (:dml.get_value('OLD','"REGION_ID"')
IS NOT NULL) AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) AND
(:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

ADD_SUBSET_RULES Procedures

96-52 PL/SQL Packages and Types Reference

ADD_SUBSET_RULES Procedures

These procedures add rules to a rule set of one of the following types of Streams
clients:

■ Capture process rules for capturing changes to a subset of rows in a specified
table when the streams_type parameter is set to capture. See "Capture
Process Rules for Changes in the Redo Log" on page 96-3 for more information
about these rules.

■ Apply process rules for applying logical change records (LCRs) in a queue that
contain changes to a subset of rows in a specified table when the streams_
type parameter is set to apply. The rules may specify that the LCRs must be
from a particular source database. See "Apply Process Rules for LCRs" on
page 96-6 for more information about these rules.

■ Messaging client rules for dequeuing user-enqueued LCRs from a queue that
contain changes to a subset of rows in a specified table when the streams_
type parameter is set to dequeue. The rules may specify that the LCRs must
be from a particular source database. See "Messaging Client Rules for LCRs" on
page 96-7 for more information about these rules.

Syntax
DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name IN VARCHAR2,
 dml_condition IN VARCHAR2,
 streams_type IN VARCHAR2 DEFAULT 'apply',
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 insert_rule_name OUT VARCHAR2,
 update_rule_name OUT VARCHAR2,
 delete_rule_name OUT VARCHAR2);

Note: This procedure is overloaded. One version of this procedure
contains three OUT parameters, and the other does not.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-53

Parameters

Table 96–9 ADD_SUBSET_RULES Procedure Parameters

Parameter Description

table_name The name of the table specified as [schema_name.]object_
name. For example, hr.employees. If the schema is not
specified, then the current user is the default.

The specified table must exist in the same database as the
capture process, apply process, or messaging client. Also, the
specified table cannot have any LOB, LONG, or LONG RAW
columns currently or in the future.

dml_condition The subset condition. You specify this condition similar to the
way you specify conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table where
the salary is greater than 4000 and the job_id is SA_MAN,
enter the following as the condition:

' salary > 4000 and job_id = ''SA_MAN'' '

Note: The quotation marks in the preceding example are all
single quotation marks.

streams_type The type of Streams client:

■ Specify capture for a capture process.

■ Specify apply for an apply process.

■ Specify dequeue for a messaging client.

ADD_SUBSET_RULES Procedures

96-54 PL/SQL Packages and Types Reference

streams_name The name of the capture process, apply process, or messaging
client. Do not specify an owner.

If the specified Streams client does not exist, then it is created
automatically.

If NULL, if streams_type is capture or dequeue, and if one
relevant capture process or messaging client for the queue exists,
then the relevant Streams client is used. If no relevant Streams
client exists for the queue, then a Streams client is created
automatically with a system-generated name. If NULL and
multiple Streams clients of the specified streams_type for the
queue exist, then an error is raised.

If NULL, if streams_type is apply, and if one relevant apply
process exists, then the relevant apply process is used. The
relevant apply process is identified in one of the following ways:

■ If one existing apply process has the source database
specified in source_database and uses the queue
specified in queue_name, then this apply process is used.

■ If source_database is NULL and one existing apply
process is using the queue specified in queue_name, then
this apply process is used.

If NULL and no relevant apply process exists, then an apply
process is created automatically with a system-generated name.
If NULL and multiple relevant apply processes exist, then an
error is raised.

An apply process and a messaging client cannot have the same
name.

queue_name The name of the local queue, specified as [schema_
name.]queue_name. The current database must contain the
queue, and the queue must be SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for
this parameter. If the schema is not specified, then the current
user is the default.

For capture process rules, this is the queue into which a capture
process enqueues events. For apply process rules, this is the
queue from which an apply process dequeues events. For
messaging client rules, this is the queue from which a messaging
client dequeues events.

Table 96–9 (Cont.) ADD_SUBSET_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-55

include_tagged_lcr If true, then a redo entry is always considered for capture and
an LCR is always considered for apply or dequeue, regardless of
whether redo entry or LCR has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a database.

If false, then a redo entry is considered for capture and an
LCR is considered for apply or dequeue only when the redo
entry or the LCR contains a NULL tag. A setting of false is
often specified in update-anywhere configurations to avoid
sending a change back to its source database.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture process rules, specify NULL or the global name of the
local database if you are creating a capture process locally at the
source database. If you are creating a capture process at a
downstream database, then specify the source database of the
changes that will be captured.

For apply process rules, specify the source database of the
changes that will be applied by the apply process. The source
database is the database where the changes originated. If an
apply process applies captured events, then the apply process
can apply events from only one capture process at one source
database.

For messaging client rules, specify NULL if you do not want the
rules created by this procedure to have a condition for the
source database. Specify a source database if you want the rules
created by this procedure to have a condition for the source
database. The source database is part of the information in an
LCR, and user-constructed LCRs may or may not have this
information.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

insert_rule_name Contains the system-generated INSERT rule name. This rule
handles inserts, as well as updates that must be converted into
inserts.

Table 96–9 (Cont.) ADD_SUBSET_RULES Procedure Parameters

Parameter Description

ADD_SUBSET_RULES Procedures

96-56 PL/SQL Packages and Types Reference

Usage Notes
This procedure creates the specified capture process, apply process, or messaging
client if it does not exist.

Running this procedure generates three rules for the specified capture process,
apply process, or messaging client: one for INSERT statements, one for UPDATE
statements, and one for DELETE statements. For INSERT and DELETE statements,
only DML changes that satisfy the condition specified for the dml_condition
parameter are captured, applied, or dequeued. For UPDATE statements, the
following variations are possible:

■ If both the new and old values in a DML change satisfy the specified dml_
condition, then the DML change is captured, applied, or dequeued without
any changes.

■ If neither the new or old values in a DML change satisfy the specified dml_
condition, then the DML change is not captured, applied, or dequeued.

■ If the old values for a DML change satisfy the specified dml_condition, but
the new values do not, then the DML change is converted into a delete.

■ If the new values for a DML change satisfy the specified dml_condition, but
the old values do not, then the DML change is converted to an insert.

When an update is converted into an insert or a delete, it is called row migration.

A capture process, apply process, or messaging client uses the rules created for
filtering. If the Streams client does not have a positive rule set, then a positive rule
set is created automatically, and the rules for the table are added to the positive rule
set. A subset rule can be added to positive rule set only, not to a negative rule set.
Other rules in an existing rule set for the process are not affected. Additional rules
can be added using either the DBMS_STREAMS_ADM package or the DBMS_RULE_
ADM package.

Rules for INSERT, UPDATE, and DELETE statements are created automatically when
you run this procedure, and these rules are given a system-generated rule name.

update_rule_name Contains the system-generated UPDATE rule name. This rule
handles updates that remain updates.

delete_rule_name Contains the system-generated DELETE rule name. This rule
handles deletes, as well as updates that must be converted into
deletes

Table 96–9 (Cont.) ADD_SUBSET_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-57

The system-generated rule name is the table name with a sequence number
appended to it. The sequence number is used to avoid naming conflicts. If the table
name plus the sequence number is too long, then the table name is truncated. The
ADD_SUBSET_RULES procedure is overloaded, and the system-generated rule
names for INSERT, UPDATE, and DELETE statements are returned.

Examples
The following is an example of a rule condition that may be created for filtering
DML changes containing an update operation when the dml_condition is
region_id = 2 and the table_name is hr.regions:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'REGIONS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() = 'UPDATE' AND (:dml.get_
value('NEW','"REGION_ID"') IS NOT NULL) AND (:dml.get_value('OLD','"REGION_ID"')
IS NOT NULL) AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) AND
(:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

Attention: Subset rules should only reside in positive rule sets.
You should not add subset rules to negative rule sets. Doing so may
have unpredictable results because row migration would not be
performed on LCRs that are not discarded by the negative rule set.

See Also:

■ "Rules" on page 96-2

■ "Users" on page 96-8

ADD_TABLE_PROPAGATION_RULES Procedure

96-58 PL/SQL Packages and Types Reference

ADD_TABLE_PROPAGATION_RULES Procedure

These procedures add table rules to the positive rule set for a propagation, or add
table rules to the negative rule set for a propagation, and create the specified
propagation if it does not exist.

Syntax
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 source_queue_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2,
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

Table 96–10 ADD_TABLE_PROPAGATION_RULES Procedure Parameters

Parameter Description

table_name The name of the table specified as [schema_
name.]object_name. For example, hr.employees. If the
schema is not specified, then the current user is the default.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-59

streams_name The name of the propagation. Do not specify an owner.

If the specified propagation does not exist, then it is created
automatically.

If NULL and a propagation exists for the same source queue
and destination queue (including database link), then this
propagation is used.

If NULL and no propagation exists for the same source
queue and destination queue (including database link), then
a propagation is created automatically with a
system-generated name.

source_queue_name The name of the source queue, specified as [schema_
name.]queue_name. The current database must contain
the source queue, and the queue must be SYS.AnyData
type.

For example, to specify a source queue named streams_
queue in the strmadmin schema, enter
strmadmin.streams_queue for this parameter.

If the schema is not specified, then the current user is the
default.

destination_queue_name The name of the destination queue, including a database
link, specified as [schema_name.]queue_
name[@dblink_name], if the destination queue is in a
remote database. The queue must be SYS.AnyData type.

For example, to specify a destination queue named
streams_queue in the strmadmin schema and use a
database link named dbs2.net, enter
strmadmin.streams_queue@dbs2.net for this
parameter.

If the schema is not specified, then the current user is the
default.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If true, then creates a rule for DML changes. If false, then
does not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a rule for DDL changes. If false, then
does not create a DDL rule. NULL is not permitted.

Table 96–10 (Cont.) ADD_TABLE_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_TABLE_PROPAGATION_RULES Procedure

96-60 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added
to the generated rules. Therefore, these rules can evaluate to
TRUE regardless of whether an LCR has a non-NULL tag. If
the rules are added to the positive rule set for the
propagation, then an LCR is always considered for
propagation, regardless of whether it has a non-NULL tag. If
the rules are added to a positive rule set, then setting this
parameter to true is appropriate for a full (for example,
standby) copy of a database. If the rules are added to the
negative rule set for the propagation, then whether an LCR
is discarded does not depend on the LCR's tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if an LCR has a
NULL Streams tag. If the rules are added to the positive rule
set for the propagation, then an LCR is considered for
propagation only when the LCR contains a NULL tag. If the
rules are added to a positive rule set, then setting this
parameter to false may be appropriate in
update-anywhere configurations to avoid sending a change
back to its source database. If the rules are added to the
negative rule set for the propagation, then an LCR can be
discarded only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

source_database The global name of the source database. The source
database is where the change originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle recommends that you specify a source database for
propagation rules.

dml_rule_name If include_dml is true, then contains the DML rule
name.

If include_dml is false, then contains a NULL.

Table 96–10 (Cont.) ADD_TABLE_PROPAGATION_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-61

Usage Notes
This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the table name with a sequence number appended to it. The sequence number is

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to
the positive rule set for the propagation.

If inclusion_rule is false, then the rules are added to
the negative rule set for the propagation.

In either case, the system creates the rule set if it does not
exist.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the table rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following
condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you
are specifying an LCR member subprogram that is
dependent on the LCR type (row or DDL), then make sure
this procedure only generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that
is valid only for row LCRs, then specify true for the
include_dml parameter and false for the include_ddl
parameter. If you specify an LCR member subprogram that
is valid only for DDL LCRs, then specify false for the
include_dml parameter and true for the include_ddl
parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–10 (Cont.) ADD_TABLE_PROPAGATION_RULES Procedure Parameters

Parameter Description

ADD_TABLE_PROPAGATION_RULES Procedure

96-62 PL/SQL Packages and Types Reference

used to avoid naming conflicts. If the table name plus the sequence number is too
long, then the table name is truncated. The overloaded ADD_TABLE_
PROPAGATION_RULES procedure generates the rule names for DML and DDL
changes. A propagation uses the rules created for filtering.

If no propagation job exists for the database link specified in the destination_
queue_name parameter when this procedure is run, then a propagation job is
created for use by the propagation. If a propagation job already exists for the
specified database link, then the propagation uses the existing propagation job.

This procedure also configures propagation using the current user, and establishes a
default propagation schedule. Only one propagation is allowed between the source
queue and the destination queue.

Examples
The following is an example of a table rule condition that may be created for
filtering DML statements:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'LOCATIONS'
AND :dml.is_null_tag() = 'Y' AND :dml.get_source_database_name() = 'DBS1.NET'

Note:

■ Currently, a single propagation job propagates all events that
use a particular database link, even if the database link is used
by multiple propagations to propagate events to multiple
destination queues.

■ For a propagation to work properly, the owner of the source
queue must have the necessary privileges to propagate events.

See Also:

■ "Rules" on page 96-2 and "Propagation Rules for LCRs" on
page 96-4 for more information about the rules created by this
procedure

■ "Users" on page 96-8

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-63

ADD_TABLE_RULES Procedures

These procedures add rules to a rule set of one of the following types of Streams
clients:

■ Capture process rules for capturing changes to a specified table when the
streams_type parameter is set to capture. See "Capture Process Rules for
Changes in the Redo Log" on page 96-3 for more information about these rules.

■ Apply process rules for applying logical change records (LCRs) in a queue that
contain changes to a specified table when the streams_type parameter is set
to apply. The rules may specify that the LCRs must be from a particular source
database. See "Apply Process Rules for LCRs" on page 96-6 for more
information about these rules.

■ Messaging client rules for dequeuing user-enqueued LCRs from a queue that
contain changes to a specified table when the streams_type parameter is set
to dequeue. The rules may specify that the LCRs must be from a particular
source database. See "Messaging Client Rules for LCRs" on page 96-7 for more
information about these rules.

Syntax
DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 include_dml IN BOOLEAN DEFAULT true,
 include_ddl IN BOOLEAN DEFAULT false,
 include_tagged_lcr IN BOOLEAN DEFAULT false,
 source_database IN VARCHAR2 DEFAULT NULL,
 dml_rule_name OUT VARCHAR2,
 ddl_rule_name OUT VARCHAR2,
 inclusion_rule IN BOOLEAN DEFAULT true,
 and_condition IN VARCHAR2 DEFAULT NULL);

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

ADD_TABLE_RULES Procedures

96-64 PL/SQL Packages and Types Reference

Parameters

Table 96–11 ADD_TABLE_RULES Procedure Parameters

Parameter Description

table_name The name of the table specified as [schema_name.]object_
name. For example, hr.employees. If the schema is not
specified, then the current user is the default.

You can specify a table that does not yet exist, because Streams
does not validate the existence of the table.

streams_type The type of Streams client:

■ Specify capture for a capture process.

■ Specify apply for an apply process.

■ Specify dequeue for a messaging client.

streams_name The name of the capture process, apply process, or messaging
client. Do not specify an owner.

If the specified Streams client does not exist, then it is created
automatically.

If NULL, if streams_type is capture or dequeue, and if one
relevant capture process or messaging client for the queue exists,
then the relevant Streams client is used. If no relevant Streams
client exists for the queue, then a Streams client is created
automatically with a system-generated name. If NULL and
multiple Streams clients of the specified streams_type for the
queue exist, then an error is raised.

If NULL, if streams_type is apply, and if one relevant apply
process exists, then the relevant apply process is used. The
relevant apply process is identified in one of the following ways:

■ If one existing apply process has the source database
specified in source_database and uses the queue
specified in queue_name, then this apply process is used.

■ If source_database is NULL and one existing apply
process is using the queue specified in queue_name, then
this apply process is used.

If NULL and no relevant apply process exists, then an apply
process is created automatically with a system-generated name.
If NULL and multiple relevant apply processes exist, then an
error is raised.

An apply process and a messaging client cannot have the same
name.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-65

queue_name The name of the local queue, specified as [schema_
name.]queue_name. The current database must contain the
queue, and the queue must be SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for
this parameter. If the schema is not specified, then the current
user is the default.

For capture process rules, this is the queue into which a capture
process enqueues events. For apply process rules, this is the
queue from which an apply process dequeues events. For
messaging client rules, this is the queue from which a messaging
client dequeues events.

include_dml If true, then creates a DML rule for DML changes. If false,
then does not create a DML rule. NULL is not permitted.

include_ddl If true, then creates a DDL rule for DDL changes. If false,
then does not create a DDL rule. NULL is not permitted.

Table 96–11 (Cont.) ADD_TABLE_RULES Procedure Parameters

Parameter Description

ADD_TABLE_RULES Procedures

96-66 PL/SQL Packages and Types Reference

include_tagged_lcr If true, then no condition regarding Streams tags is added to
the generated rules. Therefore, these rules can evaluate to TRUE
regardless of whether a redo entry or LCR has a non-NULL tag. If
the rules are added to the positive rule set for the process, then a
redo entry is always considered for capture, and an LCR is
always considered for apply, regardless of whether the redo
entry or LCR has a non-NULL tag. If the rules are added to a
positive rule set, then setting this parameter to true is
appropriate for a full (for example, standby) copy of a database.
If the rules are added to the negative rule set for the process,
then whether a redo entry or LCR is discarded does not depend
on the tag.

If false, then adds a condition to each generated rule that
causes the rule to evaluate to TRUE only if a redo entry or LCR
has a NULL Streams tag. If the rules are added to the positive
rule set for the process, then a redo entry is considered for
capture, and an LCR is considered for apply, only when the redo
entry or LCR contains a NULL tag. If the rules are added to a
positive rule set, then setting this parameter to false may be
appropriate in update-anywhere configurations to avoid
sending a change back to its source database. If the rules are
added to the negative rule set for the process, then a redo entry
or LCR can be discarded only if it has a NULL tag.

In most cases, specify true for this parameter if the
inclusion_rule parameter is set to false.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

Table 96–11 (Cont.) ADD_TABLE_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-67

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture process rules, specify NULL or the global name of the
local database if you are creating a capture process locally at the
source database. If you are creating a capture process at a
downstream database, then specify the source database of the
changes that will be captured.

For apply process rules, specify the source database of the
changes that will be applied by the apply process. The source
database is the database where the changes originated. If an
apply process applies captured events, then the apply process
can apply events from only one capture process at one source
database.

For messaging client rules, specify NULL if you do not want the
rules created by this procedure to have a condition for the
source database. Specify a source database if you want the rules
created by this procedure to have a condition for the source
database. The source database is part of the information in an
LCR, and user-constructed LCRs may or may not have this
information.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is true, then contains the DML rule name.

If include_dml is false, then contains a NULL.

ddl_rule_name If include_ddl is true, then contains the DDL rule name.

If include_ddl is false, then contains a NULL.

inclusion_rule If inclusion_rule is true, then the rules are added to the
positive rule set for the Streams client.

If inclusion_rule is false, then the rules are added to the
negative rule set for the Streams client.

In either case, the system creates the rule set if it does not exist.

Table 96–11 (Cont.) ADD_TABLE_RULES Procedure Parameters

Parameter Description

ADD_TABLE_RULES Procedures

96-68 PL/SQL Packages and Types Reference

Usage Notes
This procedure creates the specified capture process, apply process, or messaging
client if it does not exist.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the table name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the table name plus the sequence number is too
long, then the table name is truncated. The overloaded ADD_TABLE_RULES
procedure generates the rule names for DML and DDL changes. A capture process,
apply process, or messaging client uses the rules created for filtering.

and_condition If non-NULL, appends the specified condition to the
system-generated rule condition using an AND clause in the
following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For
example, to specify that the table rules generated by the
procedure evaluate to true only if the Streams tag is the
hexadecimal equivalent of '02', specify the following
condition:

:lcr.get_tag() = HEXTORAW(''02'')

The :lcr in the specified condition is converted to :dml or
:ddl, depending on the rule that is being generated. If you are
specifying an LCR member subprogram that is dependent on
the LCR type (row or DDL), then make sure this procedure only
generates the appropriate rule.

Specifically, if you specify an LCR member subprogram that is
valid only for row LCRs, then specify true for the include_
dml parameter and false for the include_ddl parameter. If
you specify an LCR member subprogram that is valid only for
DDL LCRs, then specify false for the include_dml
parameter and true for the include_ddl parameter.

See Also: Chapter 174, "Logical Change Record TYPEs"

Table 96–11 (Cont.) ADD_TABLE_RULES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-69

Examples
The following is an example of a table rule condition that may be created for DML
changes:

:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'EMPLOYEES'
AND :dml.is_null_tag() = 'Y' AND :dml.get_source_database_name() = 'DBS1.NET'

See Also:

■ "Rules" on page 96-2

■ "Users" on page 96-8

GET_SCN_MAPPING Procedure

96-70 PL/SQL Packages and Types Reference

GET_SCN_MAPPING Procedure

This procedure gets information about the system change number (SCN) values to
use for Streams capture and apply processes in a Streams replication environment.
This information can be used for the following purposes:

■ To recover transactions after point-in-time recovery is performed on a source
database in a multiple source Streams environment

■ To run flashback queries for the corresponding SCN at a source database and
destination database in a Streams single source replication environment

Syntax
DBMS_STREAMS_ADM.GET_SCN_MAPPING(
 apply_name IN VARCHAR2,
 src_pit_scn IN NUMBER,
 dest_instantiation_scn OUT NUMBER,
 dest_start_scn OUT NUMBER,
 dest_skip_txn_ids OUT DBMS_UTILITY.NAME_ARRAY);

Parameters

See Also: Oracle Streams Replication Administrator's Guide for
information about point-in-time recovery and flashback queries in a
Streams replication environment

Table 96–12 GET_SCN_MAPPING Procedure Parameters

Parameter Description

apply_name Name of the apply process which applies LCRs from the
source database. An error is raised if the specified apply
process does not exist.

src_pit_scn The SCN at the source database.

For point-in-time recovery, specify the point-in-time
recovery SCN at the source database.

If the specified SCN is greater than the source commit
SCN of the last applied transaction, then NULL is returned
for both dest_start_scn and dest_instantiation_
scn. In this case, no values can be returned for these
parameters because the corresponding transaction has not
been applied at the destination database yet.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-71

dest_instantiation_scn The SCN at the destination database that corresponds to
the specified src_pit_scn at the source database.

For point-in-time recovery, use this value for the
instantiation SCNs at the source database during recovery.

dest_start_scn For point in time recovery, the SCN to use for the start_
scn parameter for the recovery capture process.

dest_skip_txn_ids Transaction IDs of transactions that were skipped at the
dest_instantiation_scn because the apply process
was applying non-dependent transactions out of order.

For point in time recovery, these transaction IDs should be
ignored by the recovery apply process.

This parameter is relevant only if the commit_
serialization for the apply process that applied these
transactions was set to none, and the transactions were
applied out of order.

Table 96–12 (Cont.) GET_SCN_MAPPING Procedure Parameters

Parameter Description

MAINTAIN_SIMPLE_TABLESPACE Procedure

96-72 PL/SQL Packages and Types Reference

MAINTAIN_SIMPLE_TABLESPACE Procedure

This procedure clones a simple tablespace from a source database at a destination
database and uses Streams to maintain this tablespace at both databases. This
procedure either can perform these actions directly, or it can generate a script that
performs these actions.

Syntax
DBMS_STREAMS_ADM.MAINTAIN_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_database IN VARCHAR2,
 setup_streams IN BOOLEAN DEFAULT true,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT false);

Parameters

Table 96–13 MAINTAIN_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

tablespace_name The local simple tablespace to be cloned at the
destination database and maintained by Streams.

A directory object must exist for the directory that
contains the datafile for the tablespace. The user
who invokes this procedure must have READ
privilege on this directory object.

If NULL, then an error is raised.

source_directory_object The directory on the computer system running the
source database into which the generated Data
Pump export dump file and the datafile for the
cloned tablespace are placed. These files remain in
this directory after the procedure completes.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-73

destination_directory_object The directory on the computer system running the
destination database into which the generated
Data Pump dump file and the datafile for the
cloned tablespace are transferred.

If NULL, then an error is raised.

destination_database The global name of the destination database. A
database link from the source database to the
destination database with the same name must
exist.

If NULL, then an error is raised.

setup_streams If true, then the MAINTAIN_SIMPLE_
TABLESPACE procedure performs the necessary
actions to maintain the tablespace directly.

If false, then the MAINTAIN_SIMPLE_
TABLESPACE procedure does not perform the
necessary actions to maintain the tablespace
directly.

You specify false when this procedure is
generating a file that you will edit and then run.
An error is raised if you specify false and either
of the following parameters is NULL:

■ script_name

■ script_directory_object

Table 96–13 (Cont.) MAINTAIN_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

MAINTAIN_SIMPLE_TABLESPACE Procedure

96-74 PL/SQL Packages and Types Reference

script_name If non-NULL and the setup_streams parameter
is false, then the name of the script generated by
this procedure. The script contains all of the
statements used to maintain the specified
tablespace. If a file with the specified file name
exists in the specified directory for the script_
directory_object parameter, then the
statements are appended to the existing file.

If non-NULL and the setup_streams parameter
is true, then this procedure generates the
specified script and performs the actions to
maintain the specified tablespace directly.

If NULL and the setup_streams parameter is
true, then this procedure does not generate a file
and performs the actions to maintain the specified
tablespace directly. If NULL and the setup_
streams parameter is false, then an error is
raised.

script_directory_object The directory on the local computer system into
which the generated script is placed.

If the script_name parameter is NULL, then this
parameter is ignored, and this procedure does not
generate a file.

If NULL and the script_name parameter is
non-NULL, then an error is raised.

bi_directional Specify true to configure bi-directional replication
between the current database and the database
specified in destination_database. Both
databases are configured as source and destination
databases, and propagations are configured
between the databases to propagate events.

Specify false to configure one way replication
from the current database to the database specified
in destination_database. A capture process is
configured at the current database, a propagation
is configured to propagate events from the current
database to the destination database, and an apply
process is configured at the destination database.

Table 96–13 (Cont.) MAINTAIN_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-75

Usage Notes

Single Source and Bi-Directional Configurations
This procedure either sets up a single source Streams configuration with the local
database as the source database, or it sets up a bi-directional Streams configuration
with both databases acting as source and destination databases. The bi_
directional parameter controls whether the Streams configuration is single
source or bi-directional. The information about single source, bi-directional, and
multi-directional Streams environments in the description for the MAINTAIN_
TABLESPACES procedure also applies to this procedure.

Change Cycling and the MAINTAIN_SIMPLE_TABLESPACE Procedure
If the bi_directional is set to true, then this procedure configures
bi-directional replication, but this procedure cannot be used to configure
multi-directional replication where changes may be cycled back to a source
database by a third database in the environment. The information about change
cycling in the description for the MAINTAIN_TABLESPACES procedure also applies
to this procedure.

DDL Changes Not Maintained
This procedure does not configure the Streams environment to maintain DDL
changes to the tablespace nor to the database objects in the tablespace. For example,
the Streams environment is not configured to replicate ALTER TABLESPACE
statements on the tablespace, nor is it configured to replicate ALTER TABLE
statements on tables in the tablespace. You may configure the Streams environment
to maintain DDL changes manually or modify generated scripts to achieve this.

Privileges and Database Links Required by the MAINTAIN_SIMPLE_
TABLESPACE Procedure
The user who runs the MAINTAIN_SIMPLE_TABLESPACE procedure should have
DBA role. This user must have the necessary privileges to complete the following
actions:

■ Create SYS.AnyData queues, capture processes, propagations, and apply
processes.

■ Specify supplemental logging

■ Run subprograms in the DBMS_STREAMS_ADM, DBMS_STREAMS_
TABLESPACES_ADM, DBMS_FILE_TRANSFER, and DBMS_AQADM packages

MAINTAIN_SIMPLE_TABLESPACE Procedure

96-76 PL/SQL Packages and Types Reference

■ The necessary privileges to run the CLONE_SIMPLE_TABLESPACE procedure in
the DBMS_STREAMS_TABLESPACES_ADM package at the source database. See
CLONE_SIMPLE_TABLESPACE Procedure on page 99-11 for the list of
required privileges.

■ The necessary privileges to run the ATTACH_SIMPLE_TABLESPACE procedure
in the DBMS_STREAMS_TABLESPACES_ADM package at the destination
database. See ATTACH_SIMPLE_TABLESPACE Procedure on page 99-6 for the
list of required privileges.

■ Access the database specified in the destination_database parameter
through a database link. This database link should have the same name as the
global name of the destination database.

In addition, if the bi_directional parameter is set to true, then the
corresponding user at the destination database must be able to use a database link
to access the source database. This database link should have the same name as the
global name of the source database.

To ensure that the user who runs this procedure has the necessary privileges, Oracle
recommends that you configure a Streams administrator at each database. In this
case, each database link should be should be created in the Streams administrator's
schema.

Actions Performed by the MAINTAIN_SIMPLE_TABLESPACE Procedure
The actions performed by this procedure are the same as the actions performed by
the MAINTAIN_TABLESPACES procedure, except that this procedure only can be
used for a simple tablespace. A simple tablespace is a single, self-contained
tablespace that uses only one datafile. This procedure cannot be used for a non
simple tablespace or a set of tablespaces.

This procedure uses the default values for the parameters in the MAINTAIN_
TABLESPACES procedure that do not exist in the MAINTAIN_SIMPLE_
TABLESPACES procedure. For example, this procedure creates a capture process at
the source database named capture, because that is the default value for the
capture_name parameter in the MAINTAIN_TABLESPACES procedure.

See Also: Oracle Streams Concepts and Administration for
information about configuring a Streams administrator

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-77

Note:

■ To view all of the statements run by this procedure in detail,
you can use the procedure to generate a script and then view
the script in a text editor.

■ Each specified directory object must be created using the SQL
statement CREATE DIRECTORY, and the user who invokes the
MAINTAIN_SIMPLE_TABLESPACE procedure must have READ
and WRITE privilege on each one.

■ If the source and destination databases are running on different
platforms, then this procedure, or the script generated by this
procedure, converts transferred datafile to the appropriate
platform automatically.

See Also:

■ MAINTAIN_TABLESPACES Procedure on page 96-78

■ Using DBMS_STREAMS_TABLESPACE_ADM on page 99-2
and Oracle Database Administrator's Guide for more information
about simple tablespaces and self-contained tablespace sets

■ Oracle Streams Concepts and Administration for information
about configuring a Streams administrator

MAINTAIN_TABLESPACES Procedure

96-78 PL/SQL Packages and Types Reference

MAINTAIN_TABLESPACES Procedure

This procedure clones a set of tablespaces from a source database at a destination
database and uses Streams to maintain these tablespaces at both databases. This
procedure either can perform these actions directly, or it can generate a script that
performs these actions.

Syntax
DBMS_STREAMS_ADM.MAINTAIN_TABLESPACES(
 tablespace_names IN DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET,
 source_directory_object IN VARCHAR2,
 destination_directory_object IN VARCHAR2,
 destination_database IN VARCHAR2,
 setup_streams IN BOOLEAN DEFAULT true,
 script_name IN VARCHAR2 DEFAULT NULL,
 script_directory_object IN VARCHAR2 DEFAULT NULL,
 dump_file_name IN VARCHAR2 DEFAULT NULL,
 source_queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 source_queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 source_queue_user IN VARCHAR2 DEFAULT NULL,
 destination_queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 destination_queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 destination_queue_user IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT 'capture',
 propagation_name IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 log_file IN VARCHAR2 DEFAULT NULL,
 bi_directional IN BOOLEAN DEFAULT false);

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-79

Parameters

Table 96–14 MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

tablespace_names The local tablespace set to be cloned at the
destination database and maintained by Streams.

A directory object must exist for each directory
that contains the datafiles for the tablespace set.
The user who invokes this procedure must have
READ privilege on these directory objects.

If NULL, then an error is raised.

See Also: TABLESPACE_SET Type on page 99-4

source_directory_object The directory on the computer system running the
source database into which the generated Data
Pump export dump file and the datafiles that
comprise the cloned tablespace set are placed.
These files remain in this directory after the
procedure completes.

If NULL, then an error is raised.

destination_directory_object The directory on the computer system running the
destination database into which the generated
Data Pump dump file and the datafiles that
comprise the cloned tablespace set are transferred.

If NULL, then an error is raised.

destination_database The global name of the destination database. A
database link from the source database to the
destination database with the same name must
exist and must be accessible to the user who runs
the procedure.

If NULL, then an error is raised.

MAINTAIN_TABLESPACES Procedure

96-80 PL/SQL Packages and Types Reference

setup_streams If true, then the MAINTAIN_TABLESPACES
procedure performs the necessary actions to
maintain the tablespaces directly.

If false, then the MAINTAIN_TABLESPACES
procedure does not perform the necessary actions
to maintain the tablespaces directly.

You specify false when this procedure is
generating a file that you will edit and then run.
An error is raised if you specify false and either
of the following parameters is NULL:

■ script_name

■ script_directory_object

script_name If non-NULL and the setup_streams parameter
is false, then the name of the script generated by
this procedure. The script contains all of the
statements used to maintain the specified
tablespace set. If a file with the specified file name
exists in the specified directory for the script_
directory_object parameter, then the
statements are appended to the existing file.

If non-NULL and the setup_streams parameter
is true, then this procedure generates the
specified script and performs the actions to
maintain the specified tablespace directly.

If NULL and the setup_streams parameter is
true, then this procedure does not generate a file
and performs the actions to maintain the specified
tablespace set directly. If NULL and the setup_
streams parameter is false, then an error is
raised.

script_directory_object The directory on the local computer system into
which the generated script is placed.

If the script_name parameter is NULL, then this
parameter is ignored, and this procedure does not
generate a file.

If NULL and the script_name parameter is
non-NULL, then an error is raised.

Table 96–14 (Cont.) MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-81

dump_file_name The name of the Data Pump dump file that
contains the specified tablespace set. If a file with
the specified file name exists in the specified
directory for the source_directory_object or
destination_directory_object parameter,
then an error is raised.

If NULL, then the dump file name is generated by
the system. In this case, the dump file name is
expatnn.dmp, where nn is a sequence number.
The sequence number is incremented to produce a
dump file with a unique name in the source
directory.

source_queue_table The name of the queue table for the queue at the
source database, specified as [schema_
name.]queue_table_name. For example,
strmadmin.streams_queue_table. If the
schema is not specified, then the current user is the
default.

If the queue table owner is not specified, then the
user who runs this procedure is automatically
specified as the queue table owner.

source_queue_name The name of the queue at the source database that
will function as the SYS.AnyData queue,
specified as [schema_name.]queue_name. For
example, strmadmin.streams_queue.

If the schema is not specified, then it defaults to the
queue table owner. The queue owner
automatically has privileges to perform all queue
operations on the queue.

source_queue_user The name of the user who requires ENQUEUE and
DEQUEUE privileges for the queue at the source
database. This user is also configured as a secure
queue user of the queue. The queue user cannot
grant these privileges to other users because they
are not granted with the GRANT option.

If NULL, then no privileges are granted. You can
also grant queue privileges to the appropriate
users using the DBMS_AQADM package.

Table 96–14 (Cont.) MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

MAINTAIN_TABLESPACES Procedure

96-82 PL/SQL Packages and Types Reference

destination_queue_table The name of the queue table for the queue at the
destination database, specified as [schema_
name.]queue_table_name. For example,
strmadmin.streams_queue_table. If the
schema is not specified, then the current user is the
default.

If the queue table owner is not specified, then the
user who runs this procedure is automatically
specified as the queue table owner.

destination_queue_name The name of the queue at the destination database
that will function as the SYS.AnyData queue,
specified as [schema_name.]queue_name. For
example, strmadmin.streams_queue.

If the schema is not specified, then it defaults to the
queue table owner. The owner of the queue table
must also be the owner of the queue. The queue
owner automatically has privileges to perform all
queue operations on the queue.

If the schema is not specified for this parameter,
and the queue table owner is not specified in
destination_queue_table, then the current
user is the default.

destination_queue_user The name of the user who requires ENQUEUE and
DEQUEUE privileges for the queue at the
destination database. This user is also configured
as a secure queue user of the queue. The queue
user cannot grant these privileges to other users
because they are not granted with the GRANT
option.

If NULL, then no privileges are granted. You can
also grant queue privileges to the appropriate
users using the DBMS_AQADM package.

Table 96–14 (Cont.) MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-83

capture_name The name of the capture process configured to
capture DML changes to the tables in the
tablespace set at the source database. Do not
specify an owner.

If the specified name matches the name of an
existing capture process at the source database,
then the existing capture process is used, and the
rules for DML changes to the tables in the
tablespaces are added to the positive capture
process rule set.

Note: The capture_name setting cannot be
altered after the capture process is created.

propagation_name The name of the propagation configured to
propagate DML changes to the tables in the
tablespace set. Do not specify an owner.

If the specified name matches the name of an
existing propagation at the source database, then
the existing propagation is used, and the rules for
DML changes to the tables in the tablespaces are
added to the positive propagation rule set.

If NULL, then the system generates a name for each
propagation it creates.

Note: The propagation_name setting cannot be
altered after the propagation is created.

apply_name The name of the apply process configured to apply
DML changes to the tables in the tablespace set at
the destination database. Do not specify an owner.

If the specified name matches the name of an
existing apply process at the destination database,
then the existing apply process is used, and the for
DML changes to the tables in the tablespaces are
added to the positive apply process rule set.

The specified name must not match the name of an
existing messaging client at the destination
database.

If NULL, then the system generates a name for each
apply process it creates.

Note: The apply_name setting cannot be altered
after the apply process is created.

Table 96–14 (Cont.) MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

MAINTAIN_TABLESPACES Procedure

96-84 PL/SQL Packages and Types Reference

Usage Notes
The specified set of tablespaces must be self-contained. In this context
"self-contained" means that there are no references from inside the set of tablespaces
pointing outside of the set of tablespaces. For example, if a partitioned table is
partially contained in the set of tablespaces, then the set of tablespaces is not
self-contained.

Single Source and Bi-Directional Configurations
This procedure either sets up a single source Streams configuration with the local
database as the source database, or it sets up a bi-directional Streams configuration
with both databases acting as source and destination databases. The bi_
directional parameter controls whether the Streams configuration is single
source or bi-directional. If bi_directional is false, then a capture process at
the local database captures DML changes to the tables in the specified tablespace
set, a propagation propagates these changes to the destination database, and an
apply process at the destination database applies these changes. If bi_
directional is true, then each database captures changes and propagates them
to the other database, and each database applies changes from the other database.

log_file The name of the Data Pump export log file. This
log file is placed in the same directory as the Data
Pump export dump file.

If NULL, then the log file name is the same name as
the export dump file name with an extension
of .clg.

bi_directional Specify true to configure bi-directional replication
between the current database and the database
specified in destination_database. Both
databases are configured as source and destination
databases, and propagations are configured
between the databases to propagate events.

Specify false to configure one way replication
from the current database to the database specified
in destination_database. A capture process is
configured at the current database, a propagation
is configured to propagate events from the current
database to the destination database, and an apply
process is configured at the destination database.

Table 96–14 (Cont.) MAINTAIN_TABLESPACES Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-85

If bi_directional is set to false, then this procedure does not configure
bi-directional information sharing. Therefore, changes made to the tables in the
tablespace set at the destination database are not shared with the source database,
and the tablespaces are not kept in sync at the two databases, unless no changes are
made to the tablespace objects at the destination database. However, if bi_
directional is set to true, then Streams is configured to keep the tablespaces in
sync at the two databases, even if both databases allow DML changes to the
tablespace objects.

Both databases must be open when the actions are performed. Meet the following
requirements when you use this procedure:

■ Run this procedure at the intended source database. If bi_directional is set
to true, then run this procedure at the database that contains the tablespace set
to be cloned.

■ If this procedure is generating a script only, then the database specified in the
destination_database parameter does not need to be open when you run
this procedure, but both databases must be open when you run the generated
script.

Change Cycling and the MAINTAIN_TABLESPACES Procedure
If the bi_directional is set to true, then this procedure configures
bi-directional replication, but this procedure cannot be used to configure
multi-directional replication where changes may be cycled back to a source
database by a third database in the environment. For example, this procedure
cannot be used to configure a Streams replication environment with three databases
where each database shares changes with the other two databases in the
environment. If this procedure is used to configure a three way replication
environment such as this, then changes made at a source database would be cycled

Note: You may need to configure conflict resolution if this
procedure configures bi-directional replication.

See Also:

■ SET_UPDATE_CONFLICT_HANDLER Procedure on
page 15-54

■ Oracle Streams Replication Administrator's Guide for more
information about conflict resolution

MAINTAIN_TABLESPACES Procedure

96-86 PL/SQL Packages and Types Reference

back to the same source database. In a valid three way replication environment, a
particular change is made only once at each database.

To prevent change cycling in a bi-directional Streams replication environment, this
procedure configures the environment in the following way:

■ The apply process at each database applies changes with an apply tag that is
unique to the environment. An apply tag is a Streams tag that is part of each
redo record created by the apply process. For example, if this procedure
configures databases sfdb.net and nydb.net for bi-directional replication,
then assume that the apply tag for the apply process at sfdb.net is the
hexidecimal equivalent of '1', and assume that the apply tag for the apply
process at nydb.net is the hexidecimal equivalent of '2'.

■ The capture process at each database captures all DML changes to the
supported tables in the tablespace set, regardless of tags in the redo records for
the changes.

■ Each propagation propagates all DML changes to the supported tablespace set
to the other database in the bi-directional replication environment, except for
changes that originated at the other database. Continuing the example, the
propagation at sfdb.net propagates all changes to nydb.net, except for
changes with a tag value that is the hexidecimal equivalent of '1', because
these changes originated at nydb.net. Similarly, the propagation at nydb.net
propagates all changes to sfdb.net, except for changes with a tag value that is
the hexidecimal equivalent of '2'.

This procedure can be used to configure a Streams replication environment that
includes more than two databases, as long as changes made at a source database
cannot cycle back to the same source database. For example, this procedure can be
run multiple times to configure an environment in which a primary database shares
changes with multiple secondary databases. Such an environment is sometimes
called a "hub and spoke" environment.

You may configure the Streams environment manually to replicate changes in a
multiple source environment where each source database shares changes with the
other source databases, or you may modify generated scripts to achieve this.

See Also: Oracle Streams Replication Administrator's Guide for an
example of a hub and spoke environment and for information
about configuring a multiple source environment manually

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-87

DDL Changes Not Maintained
This procedure does not configure the Streams environment to maintain DDL
changes to the tablespace set nor to the database objects in the tablespace set. For
example, the Streams environment is not configured to replicate ALTER
TABLESPACE statements on the tablespace, nor is it configured to replicate ALTER
TABLE statements on tables in the tablespace. You may configure the Streams
environment to maintain DDL changes manually or modify generated scripts to
achieve this.

Privileges and Database Links Required by the MAINTAIN_TABLESPACES
Procedure
The user who runs the MAINTAIN_TABLESPACES procedure should have DBA role.
This user must have the necessary privileges to complete the following actions:

■ Create SYS.AnyData queues, capture processes, propagations, and apply
processes.

■ Specify supplemental logging

■ Run subprograms in the DBMS_STREAMS_ADM, DBMS_STREAMS_
TABLESPACES_ADM, DBMS_FILE_TRANSFER, and DBMS_AQADM packages

■ The necessary privileges to run the CLONE_TABLESPACES procedure in the
DBMS_STREAMS_TABLESPACES_ADM package at the source database. See
CLONE_TABLESPACES Procedure on page 99-14 for the list of required
privileges.

■ The necessary privileges to run the ATTACH_TABLESPACES procedure in the
DBMS_STREAMS_TABLESPACES_ADM package at the destination database. See
ATTACH_TABLESPACES Procedure on page 99-8 for the list of required
privileges.

■ Access the database specified in the destination_database parameter
through a database link. This database link should have the same name as the
global name of the destination database.

In addition, if the bi_directional parameter is set to true, then the
corresponding user at the destination database must be able to use a database link
to access the source database. This database link should have the same name as the
global name of the source database.

To ensure that the user who runs this procedure has the necessary privileges, Oracle
recommends that you configure a Streams administrator at each database. In this
case, each database link should be should be created in the Streams administrator's
schema.

MAINTAIN_TABLESPACES Procedure

96-88 PL/SQL Packages and Types Reference

Actions Performed by the MAINTAIN_TABLESPACES Procedure
This section describes the specific actions performed by this procedure. In the
description, the source database is the database is the database where the
MAINTAIN_TABLESPACES procedure is run, and the destination database is the
database specified in the destination_database parameter.

First, at the source database, this procedure performs the following actions:

1. Adds supplemental log groups for all tables supported by Streams in the
tablespace set

2. Configures a SYS.AnyData queue as a source queue that will stage changes to
the database objects in the tablespace set

Next, if the bi_directional parameter is set to true, then this procedure
performs the following actions at the source database (If the bi_directional
parameter is set to false, then these actions are not performed, and the procedure
continues at Step 5):

3. Configures a local apply process and adds rules to its positive rule set that
instruct the apply process to apply DML changes to tables that are supported
by Streams in the tablespace set. The apply process is configured to mark redo
records with a tag value that is unique to the destination database, which is the
source database of the changes.

4. Sets the key columns for tables that do not have a primary key using the SET_
KEY_COLUMNS procedure in the DBMS_APPLY_ADM package

Next, this procedure performs the following actions at the source database:

5. Configures a propagation, and configures its rule sets to instruct the
propagation to propagate changes from the source database to the destination
database. If the bi_directional parameter is set to true, then the rule sets
filter out changes that originated at the destination database.

6. Disables the propagation schedule for the propagation created in Step 5

7. Configures a local capture process and adds rules to its positive rule set that
instruct the capture process to capture DML changes to tables that are
supported by Streams in the tablespace set

8. Makes the specified tablespace set read-only

See Also: Oracle Streams Concepts and Administration for
information about configuring a Streams administrator

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-89

9. Clones the specified tablespace set using the CLONE_TABLESPACES procedure
in the DBMS_STREAMS_TABLESPACE_ADM package. The Data Pump export
dump file and the datafiles that comprise the cloned tablespace set are placed in
the specified source directory as part of the clone tablespaces operation.

10. Makes the specified tablespace set read/write. Users and applications can
resume operations on the tablespace set.

11. Starts the capture process configured in Step 7

Next, if the bi_directional parameter is set to true, then this procedure
performs the following action at the source database (If the bi_directional
parameter is set to false, then this action is not performed, and the procedure
continues at Step 13):

12. Starts the apply process configured in Step 3

Next, this procedure performs the following action at the source database:

13. Uses the DBMS_FILE_TRANSFER package to copy the Data Pump export dump
file and the datafiles for the tablespace set to the specified destination directory
at the computer system running the destination database

Next, this procedure performs the following actions at the destination database:

14. Attaches the tablespace set using the ATTACH_TABLESPACES procedure in the
DBMS_STREAMS_TABLESPACE_ADM package

15. Configures a local apply process and adds rules to its positive rule set that
instruct the apply process to apply DML changes to tables that are supported
by Streams in the tablespace set. The apply process is configured to mark redo
records with a tag value that is unique to the source database of the changes.

16. Sets the key columns for tables that do not have a primary key using the SET_
KEY_COLUMNS procedure in the DBMS_APPLY_ADM package

17. Configures a SYS.AnyData queue as a destination queue that will stage
propagated DML changes to the tables in the tablespace set

Next, if the bi_directional parameter is set to true, then this procedure
performs the following actions at the destination database (If the bi_directional
parameter is set to false, then these actions are not performed, and the procedure
continues at Step 24):

18. Adds supplemental log groups for all tables supported by Streams in the
tablespace set

MAINTAIN_TABLESPACES Procedure

96-90 PL/SQL Packages and Types Reference

19. Configures a propagation, and configures its rule sets to instruct the
propagation to propagate changes from this database to the source database.
The rule sets filter out changes that originated at the source database.

20. Disables the propagation schedule for the propagation created in Step 19

21. Configures a local capture process and adds rules to its positive rule set that
instruct the capture process to capture DML changes to tables that are
supported by Streams in the tablespace set

22. Records the value of the current database SCN, and uses this value to set the
instantiation SCNs of the objects in the tablespace set at the source database

23. Starts the capture process created in Step 21

Next, this procedure performs the following actions at the destination database:

24. Starts the apply process created in Step 15

25. Makes the tablespace set read/write

Next, if the bi_directional parameter is set to true, then this procedure
performs the following action at the destination database (If the bi_directional
parameter is set to false, then this action is not performed, and the procedure
continues at Step 24):

26. Enables the propagation schedule for the propagation created in Step 19

Next, this procedure performs the final action at the source database:

27. Enables the propagation schedule for the propagation created in Step 5

To monitor the progress of the configuration, query the V$SESSION_LONGOPS
dynamic performance view at the source database.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-91

Note:

■ To view all of the statements run by this procedure in detail,
you can use the procedure to generate a script and then view
the script in a text editor.

■ Each specified directory object must be created using the SQL
statement CREATE DIRECTORY, and the user who invokes the
MAINTAIN_TABLESPACES procedure must have READ and
WRITE privilege on each one.

■ If the source and destination databases are running on different
platforms, then this procedure, or the script generated by this
procedure, converts transferred datafiles to the appropriate
platform automatically.

See Also: Oracle Database Administrator's Guide for more
information about self-contained tablespace sets

PURGE_SOURCE_CATALOG Procedure

96-92 PL/SQL Packages and Types Reference

PURGE_SOURCE_CATALOG Procedure

This procedure removes all Streams data dictionary information at the local
database for the specified object. You can use this procedure to remove Streams
metadata that is not needed currently and will not be needed in the future.

Syntax
DBMS_STREAMS_ADM.PURGE_SOURCE_CATALOG(
 source_database IN VARCHAR2,
 source_object_name IN VARCHAR2,
 source_object_type IN VARCHAR2);

Parameters

Usage Notes
The global name of the source database containing the object must be specified for
the source_database parameter. If the current database is not the source
database for the object, then data dictionary information about the object is
removed at the current database, not the source database.

For example, suppose changes to the hr.employees table at the dbs1.net source
database are being applied to the hr.employees table at the dbs2.net
destination database. Also, suppose hr.employees at dbs2.net is not a source at
all. In this case, specifying dbs2.net as the source_database for this table
results in an error. However, specifying dbs1.net as the source_database for

Table 96–15 PURGE_SOURCE_CATALOG Procedure Parameters

Parameter Description

source_database The global name of the source database containing the object.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

source_object_name The name of the object specified as [schema_name.]object_
name. For example, hr.employees. If the schema is not
specified, then the current user is the default.

source_object_type Type of the object. Currently, TABLE is the only possible object
type.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-93

this table while running the PURGE_SOURCE_CATALOG procedure at the dbs2.net
database removes data dictionary information about the table at dbs2.net.

Do not run this procedure at a database if either of the following conditions are
true:

■ LCRs captured by the capture process for the object are or may be applied
locally without reinstantiating the object.

■ LCRs captured by the capture process for the object are or may be forwarded by
the database without reinstantiating the object.

Note: These conditions do not apply to LCRs that were not
created by the capture process. That is, these conditions do not
apply to user-created LCRs.

REMOVE_QUEUE Procedure

96-94 PL/SQL Packages and Types Reference

REMOVE_QUEUE Procedure

This procedure removes the specified SYS.AnyData queue.

Specifically, this procedure performs the following actions:

1. Waits until all current enqueue and dequeue transactions commit.

2. Stops the queue, which means that no further enqueues into the queue or
dequeues from the queue are allowed.

3. Drops the queue.

4. If the drop_unused_queue_table parameter is set to true, then drops the
queue table if it is empty and no other queues are using it.

5. If the cascade parameter is set to true, then drops all of the Streams clients
that are using the queue.

Syntax
DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name IN VARCHAR2,
 cascade IN BOOLEAN DEFAULT false,
 drop_unused_queue_table IN BOOLEAN DEFAULT true);

Parameters

Note: The specified queue must be a SYS.AnyData queue.

Table 96–16 REMOVE_QUEUE Procedure Parameters

Parameter Description

queue_name The name of the queue to remove, specified as [schema_
name.]queue_name. For example,
strmadmin.streams_queue. If the schema is not
specified, then the current user is the default.

cascade If true, then drops any Streams clients that use the queue

If false, then raises an error if there are any Streams
clients that use the queue. Before you run this procedure
with the cascade parameter set to false, make sure no
Streams clients are using the queue currently.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-95

drop_unused_queue_table If true and the queue table for the queue is empty, then
the queue table is dropped. The queue table is not
dropped if it contains any messages or if it is used by
another queue.

If false, then the queue table is not dropped

Table 96–16 REMOVE_QUEUE Procedure Parameters

Parameter Description

REMOVE_RULE Procedure

96-96 PL/SQL Packages and Types Reference

REMOVE_RULE Procedure

This procedure removes the specified rule or all rules from the rule set associated
with the specified capture process, apply process, propagation, or messaging client.

If this procedure results in an empty positive rule set for a messaging client, then
the messaging client is dropped automatically.

Syntax
DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name IN VARCHAR2,
 streams_type IN VARCHAR2,
 streams_name IN VARCHAR2,
 drop_unused_rule IN BOOLEAN DEFAULT true,
 inclusion_rule IN BOOLEAN DEFAULT true);

Parameters

Note: If a rule was automatically created by the system, and you
want to drop the rule, then you should use this procedure to
remove the rule instead of the DBMS_RULE_ADM.DROP_RULE
procedure. If you use the DBMS_RULE_ADM.DROP_RULE
procedure, then some metadata about the rule may remain.

Table 96–17 REMOVE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule to remove, specified as [schema_
name.]rule_name. If NULL, then removes all rules from the
specified capture process, apply process, propagation, or messaging
client rule set.

For example, to specify a rule in the hr schema named prop_
rule1, enter hr.prop_rule1. If the schema is not specified, then
the current user is the default.

streams_type The type of Streams client, either capture for a capture process,
apply for an apply process, propagation for a propagation, or
dequeue for a messaging client

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-97

streams_name The name of the Streams client, which may be a capture process,
apply process, propagation, or messaging client. Do not specify an
owner.

If the specified Streams client does not exist, but there is metadata in
the data dictionary that associates the rule with this client, then the
metadata is removed.

If the specified Streams client does not exist, and there is no
metadata in the data dictionary that associates the rule with this
client, then an error is raised.

drop_unused_rule If false, then the rule is not dropped from the database.

If true and the rule is not in any rule set, then the rule is dropped
from the database.

If true and the rule exists in any rule set, then the rule is not
dropped from the database.

inclusion_rule If inclusion_rule is true, then the rule is removed from the
positive rule set for the Streams client.

If inclusion_rule is false, then the rule is removed from the
negative rule set for the Streams client.

Table 96–17 (Cont.) REMOVE_RULE Procedure Parameters

Parameter Description

REMOVE_STREAMS_CONFIGURATION Procedure

96-98 PL/SQL Packages and Types Reference

REMOVE_STREAMS_CONFIGURATION Procedure

This procedure removes the Streams configuration at the local database.

Syntax
DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION;

Usage Notes
Specifically, this procedure performs the following actions at the local database:

■ Drops all capture processes

■ If any tables have been prepared for instantiation, then aborts preparation for
instantiation for the table using the ABORT_TABLE_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package

■ If any schemas have been prepared for instantiation, then aborts preparation for
instantiation for the schema using the ABORT_SCHEMA_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package

■ If the database has been prepared for instantiation, then aborts preparation for
instantiation for the database using the ABORT_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package

■ Drops propagations that were created using either the DBMS_STREAMS_ADM
package or the DBMS_PROPAGATION_ADM package. Before a propagation is
dropped, its propagation job is disabled. Does not drop propagations that were
created using the DBMS_AQADM package.

■ Disables all propagation jobs used by propagations

■ Drops all apply processes. If there are apply errors in the error queue for an
apply process, then this procedure deletes these apply errors before it drops the
apply process.

■ Removes specifications for DDL handlers used by apply processes, but does not
delete the PL/SQL procedures used by these handlers

■ Removes specifications for message handlers used by apply processes, but does
not delete the PL/SQL procedures used by these handlers

■ Removes specifications for precommit handlers used by apply processes, but
does not delete the PL/SQL procedures used by these handlers

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-99

■ Removes the instantiation SCN and ignore SCN for each apply object and
schema and for the entire database

■ Removes messaging clients

■ Unsets message notification specifications that were set using the SET_
MESSAGE_NOTIFICATION procedure in the DBMS_STREAMS_ADM package

■ Removes specifications for DML handlers and error handlers, but does not
delete the PL/SQL procedures used by these handlers

■ Removes update conflict handlers

■ Removes specifications for substitute key columns for apply tables

■ Drops rules that were created using the DBMS_STREAMS_ADM package. Does
not drop rules that were created using the DBMS_RULE_ADM package.

This procedure stops capture processes and apply processes before it drops them.

Attention: Running this procedure is dangerous. You should run
this procedure only if you are sure you want to remove the entire
Streams configuration at a database.

Note:

■ Running this procedure repeatedly does not cause errors. If the
procedure fails to complete, then you can run it again.

■ This procedure commits multiple times.

See Also:

■ STOP_CAPTURE Procedure on page 19-34 in the DBMS_
CAPTURE_ADM package

■ STOP_APPLY Procedure on page 15-59 in the DBMS_APPLY_
ADM package

■ REMOVE_RULE Procedure on page 96-96 in the DBMS_
STREAMS_ADM package

SET_MESSAGE_NOTIFICATION Procedure

96-100 PL/SQL Packages and Types Reference

SET_MESSAGE_NOTIFICATION Procedure

This procedure sets a notification for messages that can be dequeued by a specified
Streams messaging client from a specified queue. A notification is sent when a
message is enqueued into the specified queue and the specified messaging client
can dequeue the message because the message satisfies its rule sets.

Syntax
DBMS_STREAMS_ADM.SET_MESSAGE_NOTIFICATION(
 streams_name IN VARCHAR2,
 notification_action IN VARCHAR2,
 notification_type IN VARCHAR2 DEFAULT 'PROCEDURE',
 notification_context IN SYS.AnyData DEFAULT NULL,
 include_notification IN BOOLEAN DEFAULT true,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue');

Parameters

Table 96–18 SET_MESSAGE_NOTIFICATION Procedure Parameters

Parameter Description

streams_name The name of the Streams messaging client. Do not specify an
owner.

For example, if the user strmadmin is the messaging client,
then specify strmadmin.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-101

notification_action The action to be performed on message notification. Specify
one of the following:

■ For URL notifications, specify a URL without the prefix
http://.

For example, to specify the URL
http://www.company.com:8080, enter the following:

www.company.com:8080

■ For email notifications, specify an email address.

For example, to specify an the email address
xyz@company.com, enter the following:

xyz@company.com

■ For PL/SQL procedure notifications, specify an existing
user-defined PL/SQL procedure in the form [schema_
name.]procedure_name. If the schema_name is not
specified, then the user who invokes the SET_MESSAGE_
NOTIFICATION procedure is the default. The procedure
must be a PLSQLCALLBACK data structure.

For example, to specify a procedure named notify_
orders in the oe schema, enter the following:

oe.notify_orders

See Also: Examples on page 96-103 for more information
about message notification procedures

notification_type The type of notification. Specify one of the following:

■ HTTP if you specified a URL for notification_
action

■ MAIL if you specified an email address for
notification_action

■ PROCEDURE if you specified a user-defined procedure
for notification_action

The type must match the specification for the
notification_action parameter.

Table 96–18 (Cont.) SET_MESSAGE_NOTIFICATION Procedure Parameters

Parameter Description

SET_MESSAGE_NOTIFICATION Procedure

96-102 PL/SQL Packages and Types Reference

Usage Notes
You can specify one of the following types of notifications:

■ An email address to which message notifications are sent. When a relevant
message is enqueued into the queue, an email with the message properties is
mailed to the specified email address.

■ A PL/SQL procedure to be invoked on a notification. When a relevant message
is enqueued into the queue, the specified PL/SQL procedure is invoked with
the message properties. This PL/SQL procedure may dequeue the message.

notification_context The context of the notification. The context must be specified
using RAW datatype information. For example, to specify the
hexidecimal equivalent of 'FF', enter the following:

SYS.AnyData.ConvertRaw(HEXTORAW('FF'))

The notification context is passed the PL/SQL procedure in
procedure notifications and is not relevant for mail or HTTP
notifications.

include_notification If true, then this notification is added for the specified
streams_name and queue_name. That is, specifying true
turns on the notification for the streams_name and queue_
name.

If false, then this notification is removed for the specified
streams_name and queue_name. That is, specifying false
turns off the notification for the streams_name and queue_
name. If you specify false, then this procedure ignores any
specified values for the notification_action or
notification_context parameters.

queue_name The name of a local SYS.AnyData queue, specified as
[schema_name.]queue_name. The current database must
contain the queue. The specified queue must be a
SYS.AnyData queue.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for
this parameter. If the schema is not specified, then the current
user is the default.

Table 96–18 (Cont.) SET_MESSAGE_NOTIFICATION Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-103

■ An HTTP URL to which the notification is posted. When a relevant message is
enqueued into the queue, a notification with the message properties is posted to
the specified URL specified.

A client does not need to be connected to the database to receive a notification.

If you register for email notifications, then you should use the DBMS_AQELM
package to set the host name and port name for the SMTP server that will be used
by the database to send email notifications. If required, then you should set the
send-from email address, which is set by the database as the sent from field. You
need a Java-enabled database to use this feature.

If you register for HTTP notifications, you may want to use the DBMS_AQELM
package to set the host name and port number for the proxy server and a list of
no-proxy domains that will be used by the database to post HTTP notifications.

Each notification is an AQXmlNotification, which includes of the following:

■ notification_options, which includes the following:

■ destination - The destination queue from which the message was
dequeued

■ consumer_name - The name of the messaging client that dequeued the
message

■ message_set - The set of message properties

Examples
If you use a message notification procedure, then this PL/SQL procedure must have
the following signature:

See Also:

■ The documentation for the DBMS_AQELM package for more
information on email notifications and HTTP notifications

■ Oracle Streams Concepts and Administration for more information
about setting message notifications

■ Oracle Streams Advanced Queuing User's Guide and Reference and
Oracle XML DB Developer's Guide for more information about
message notifications and XML

■ Oracle Streams Concepts and Administration for more information
about how rules are used in Streams

SET_MESSAGE_NOTIFICATION Procedure

96-104 PL/SQL Packages and Types Reference

PROCEDURE procedure_name(
 context IN SYS.AnyData,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR);

Here, procedure_name stands for the name of the procedure. The procedure is a
PLSQLCALLBACK data structure that specifies the user-defined PL/SQL procedure
to be invoked on message notification.

The following is a simple example of a notification procedure that dequeues a
message of type oe.user_msg using the message identifier and consumer name
sent by the notification:

CREATE OR REPLACE PROCEDURE oe.notification_dequeue(
 context SYS.AnyData,
 reginfo SYS.AQ$_REG_INFO,
 descr SYS.AQ$_DESCRIPTOR)
AS
 dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle RAW(16);
 message oe.user_msg;
BEGIN
 -- Get the message identifier and consumer name from the descriptor
 dequeue_options.msgid := descr.msg_id;
 dequeue_options.consumer_name := descr.consumer_name;
 -- Dequeue the message
 DBMS_AQ.DEQUEUE(
 queue_name => descr.queue_name,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

See Also: PL/SQL Packages and Types Reference for more
information about PLSQLCALLBACK data structures

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-105

SET_RULE_TRANSFORM_FUNCTION Procedure

This procedure sets or removes the transformation function name for a rule-based
transformation.

Syntax
DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name IN VARCHAR2,
 transform_function IN VARCHAR2);

Parameters

Table 96–19 SET_RULE_TRANSFORM_FUNCTION Procedure Parameters

Parameter Description

rule_name The name of the rule whose rule-based transformation
function you are setting or removing, specified as
[schema_name.]rule_name.

For example, to specify a rule in the hr schema named
prop_rule1, enter hr.prop_rule1. If the schema is not
specified, then the current user is the default.

transform_function Either the name of the transformation function to be used
in the rule-based transformation for the rule or NULL.

If you specify a transformation function name, then you
must specify an existing function in one of the following
forms:

■ [schema_name.]function_name

■ [schema_name.]package_name.function_name

If the function is in a package, then the package_name
must be specified. For example, to specify a function in the
transform_pkg package in the hr schema named
executive_to_management, enter hr.transform_
pkg.executive_to_management. An error is returned
if the specified procedure does not exist.

If the schema_name is not specified, then the user who
invokes the rule-based transformation function is the
default.

If you specify NULL, then removes the current rule-based
transformation from the rule.

SET_RULE_TRANSFORM_FUNCTION Procedure

96-106 PL/SQL Packages and Types Reference

Usage Notes
This procedure modifies the specified rule's action context to specify the
transformation. A rule action context is optional information associated with a rule
that is interpreted by the client of the rules engine after the rule evaluates to TRUE
for an event. The client of the rules engine can be a user-created application or an
internal feature of Oracle, such as Streams. The Streams clients include capture
processes, propagations, apply processes, and messaging clients. The information in
an action context is an object of type SYS.RE$NV_LIST, which consists of a list of
name-value pairs.

A rule-based transformation in Streams always consists of the following
name-value pair in an action context:

■ The name is STREAMS$_TRANSFORM_FUNCTION.

■ The value is a SYS.AnyData instance containing a PL/SQL function name
specified as a VARCHAR2. This function performs the transformation.

The user that calls the transformation function must have EXECUTE privilege on the
function. The following list describes which user calls the transformation function:

■ If a transformation is specified for a rule used by a capture process, then the
user who calls the transformation function is the capture user for the capture
process.

■ If a transformation is specified for a rule used by a propagation, then the user
who calls the transformation function is the owner of the source queue for the
propagation.

■ If a transformation is specified on a rule used by an apply process, then the user
who calls the transformation function is the apply user for the apply process.

■ If a transformation is specified on a rule used by a messaging client, then the
user who calls the transformation function is the user who invokes the
messaging client.

Note: This procedure does not verify that the specified
transformation function exists. If the function does not exist, then
an error is raised when a Streams client tries to invoke the
transformation function.

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-107

SET_UP_QUEUE Procedure

This procedure creates a queue table and a SYS.AnyData queue for use with the
capture, propagate, and apply functionality of Streams.

Syntax
DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
 storage_clause IN VARCHAR2 DEFAULT NULL,
 queue_name IN VARCHAR2 DEFAULT 'streams_queue',
 queue_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 96–20 SET_UP_QUEUE Procedure Parameters

Parameter Description

queue_table The name of the queue table specified as [schema_
name.]queue_table_name. For example,
strmadmin.streams_queue_table. If the schema is not
specified, then the current user is the default.

If the queue table owner is not specified, then the user who runs
this procedure is automatically specified as the queue table
owner.

storage_clause The storage clause for queue table

The storage parameter is included in the CREATE TABLE
statement when the queue table is created. You can specify any
valid table storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace of
the user who runs this procedure. If a tablespace is specified
here, then the queue table and all its related objects are created
in the tablespace specified in the storage clause.

If NULL, then Oracle uses the storage characteristics of the
tablespace in which the queue table is created.

See Also: Oracle Database SQL Reference for more information
about storage clauses

SET_UP_QUEUE Procedure

96-108 PL/SQL Packages and Types Reference

Usage Notes
Set up includes the following actions:

■ If the specified queue table does not exist, then this procedure runs the
CREATE_QUEUE_TABLE procedure in the DBMS_AQADM package to create the
queue table with the specified storage clause.

■ If the specified queue name does not exist, then this procedure runs the
CREATE_QUEUE procedure in the DBMS_AQADM package to create the queue.

■ This procedure starts the queue.

■ If a queue user is specified, then this procedure configures this user as a secure
queue user of the queue and grants ENQUEUE and DEQUEUE privileges on the
queue to the specified queue user.

To configure the queue user as a secure queue user, this procedure creates an
Advanced Queuing agent with the same name as the user name, if one does not
already exist. If an agent with this name already exists and is associated with
the queue user only, then it is used. SET_UP_QUEUE then runs the ENABLE_DB_

queue_name The name of the queue that will function as the SYS.AnyData
queue, specified as [schema_name.]queue_name. For
example, strmadmin.streams_queue.

If the schema is not specified, then it defaults to the queue table
owner. The owner of the queue table must also be the owner of
the queue. The queue owner automatically has privileges to
perform all queue operations on the queue.

 If the schema is not specified for this parameter, and the queue
table owner is not specified in queue_table, then the current
user is the default.

queue_user The name of the user who requires ENQUEUE and DEQUEUE
privileges for the queue. This user is also configured as a secure
queue user of the queue. The queue user cannot grant these
privileges to other users because they are not granted with the
GRANT option.

If NULL, then no privileges are granted. You can also grant
queue privileges to the appropriate users using the DBMS_
AQADM package.

comment The comment for the queue

Table 96–20 (Cont.) SET_UP_QUEUE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_ADM Subprograms

DBMS_STREAMS_ADM 96-109

ACCESS procedure in the DBMS_AQADM package, specifying the agent and the
user.

This procedure creates a SYS.AnyData queue that is both a secure queue and a
transactional queue.

Note:

■ To enqueue events into and dequeue events from a queue, a
queue user must have EXECUTE privilege on the DBMS_
STREAMS_MESSAGING package or the DBMS_AQ package. The
SET_UP_QUEUE procedure does not grant this privilege.

■ If the agent that SET_UP_QUEUE tries to create already exists
and is associated with a user other than the user specified by
queue_user, then an error is raised. In this case, rename or
remove the existing agent, and retry SET_UP_QUEUE.

■ Queue names and queue table names can be a maximum of 24
bytes.

See Also: Oracle Streams Concepts and Administration for more
information about secure queue users

SET_UP_QUEUE Procedure

96-110 PL/SQL Packages and Types Reference

DBMS_STREAMS_AUTH 97-1

97
DBMS_STREAMS_AUTH

The DBMS_STREAMS_AUTH package, one of a set of Streams packages, provides
interfaces for granting privileges to Streams administrators and revoking privileges
from Streams administrators.

This chapter contains the following topic:

■ Summary of DBMS_STREAMS_AUTH Subprograms

See Also: Oracle Streams Concepts and Administration for more
information about this package and Streams administrators

Summary of DBMS_STREAMS_AUTH Subprograms

97-2 PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_AUTH Subprograms

Table 97–1 DBMS_STREAMS_AUTH Package Subprograms

Subprogram Description

GRANT_ADMIN_PRIVILEGE Procedure on
page 97-3

Either grants the privileges needed by a user
to be a Streams administrator directly, or
generates a script that can be used to grant
these privileges

GRANT_REMOTE_ADMIN_ACCESS
Procedure on page 97-6

Enables a remote Streams administrator to
perform administrative actions at the local
database by connecting to the grantee using
a database link

REVOKE_ADMIN_PRIVILEGE Procedure
on page 97-7

Either revokes Streams administrator
privileges from a user directly, or generates a
script that can be used to revoke these
privileges

REVOKE_REMOTE_ADMIN_ACCESS
Procedure on page 97-9

Disables a remote Streams administrator
from performing administrative actions by
connecting to the grantee using a database
link

Summary of DBMS_STREAMS_AUTH Subprograms

DBMS_STREAMS_AUTH 97-3

GRANT_ADMIN_PRIVILEGE Procedure

This procedure either grants the privileges needed by a user to be a Streams
administrator directly, or generates a script that can be used to grant these
privileges.

Syntax
DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 grant_privileges IN BOOLEAN DEFAULT true,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 97–2 GRANT_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

grantee The user to whom privileges are granted

grant_privileges If true, then the GRANT_ADMIN_PRIVILEGE procedure grants
the privileges to the specified grantee directly, and adds the
grantee to the DBA_STREAMS_ADMINISTRATOR data dictionary
view with YES for both the LOCAL_PRIVILEGES column and the
ACCESS_FROM_REMOTE column. If the user already has an entry
in this data dictionary view, then this procedure does not make
another entry, and no error is raised. If true and any of the grant
statements fail, then an error is raised.

If false, then the GRANT_ADMIN_PRIVILEGE procedure does
not grant the privileges to the specified grantee directly, and does
not add the grantee to the DBA_STREAMS_ADMINISTRATOR data
dictionary view.

You specify false when this procedure is generating a file that
you will edit and then run. If you specify false and either the
file_name or directory_name parameter is NULL, then an
error is raised.

file_name The name of the file generated by this procedure. The file contains
all of the statements that grant the privileges. If a file with the
specified file name exists in the specified directory name, then the
grant statements are appended to the existing file.

If NULL, then this procedure does not generate a file.

GRANT_ADMIN_PRIVILEGE Procedure

97-4 PL/SQL Packages and Types Reference

Usage Notes
The user who runs this procedure must be an administrative user who can grant
privileges to other users.

Specifically, this procedure grants the following privileges to the specified user:

■ The RESTRICTED SESSION system privilege

■ EXECUTE on the following packages:

– DBMS_APPLY_ADM

– DBMS_AQ

– DBMS_AQADM

– DBMS_AQIN

– DBMS_AQELM

– DBMS_CAPTURE_ADM

– DBMS_FLASHBACK

– DBMS_PROPAGATION_ADM

– DBMS_RULE_ADM

– DBMS_STREAMS_ADM

– DBMS_STREAMS_MESSAGING

– DBMS_TRANSFORM

■ Privileges to enqueue events into and dequeue events from any queue

directory_name The directory into which the generated file is placed. The
specified directory must be a directory object created using the
SQL statement CREATE DIRECTORY. If you specify a directory,
then the user who invokes this procedure must have WRITE
privilege on the directory object.

If the file_name parameter is NULL, then this parameter is
ignored, and this procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then an error
is raised.

Table 97–2 (Cont.) GRANT_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_AUTH Subprograms

DBMS_STREAMS_AUTH 97-5

■ Privileges to manage any queue

■ Privileges to create, alter, and execute any of the following types of objects in
the user's own schema and in other schemas:

– Evaluation contexts

– Rule sets

– Rules

In addition, the grantee has the ability to grant these privileges to other users.

■ SELECT privilege on data dictionary views related to Streams

■ The ability to allow a remote Streams administrator to perform administrative
actions through a database link by connecting to the grantee. This ability is
enabled by running the GRANT_REMOTE_ADMIN_ACCESS procedure in this
package.

Note:

■ To view all of the statements run by this procedure in detail,
you can use the procedure to generate a script and then view
the script in a text editor.

■ This procedure does not grant any roles to the grantee.

■ This procedure grants only the privileges necessary to
configure and administer a Streams environment. You may
grant more privileges to the grantee if necessary.

See Also:

■ "GRANT_REMOTE_ADMIN_ACCESS Procedure" on
page 97-6

■ Oracle Streams Concepts and Administration for more information
about configuring a Streams administrator

GRANT_REMOTE_ADMIN_ACCESS Procedure

97-6 PL/SQL Packages and Types Reference

GRANT_REMOTE_ADMIN_ACCESS Procedure

This procedure enables a remote Streams administrator to perform administrative
actions at the local database by connecting to the grantee using a database link.

Syntax
DBMS_STREAMS_AUTH.GRANT_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

Parameters

Usage Notes
Typically, you run this procedure and specify a grantee at a local source database if
a downstream capture process captures changes originating at the local source
database. The Streams administrator at a downstream capture database administers
the source database using this connection. You may also run this procedure at a
database running an apply process so that a remote Streams administrator can set
instantiation SCNs at the local database.

Table 97–3 GRANT_REMOTE_ADMIN_ACCESS Procedure Parameter

Parameter Description

grantee The user who allows remote access. The procedure adds the
grantee to the DBA_STREAMS_ADMINISTRATOR data dictionary
view with YES for the ACCESS_FROM_REMOTE column. If the user
already has an entry in this data dictionary view, then this
procedure does not make another entry. Instead, it updates the
ACCESS_FROM_REMOTE column to YES.

Note: The GRANT_ADMIN_PRIVILEGE procedure runs this
procedure.

See Also: "GRANT_ADMIN_PRIVILEGE Procedure" on
page 97-3

Summary of DBMS_STREAMS_AUTH Subprograms

DBMS_STREAMS_AUTH 97-7

REVOKE_ADMIN_PRIVILEGE Procedure

This procedure either revokes Streams administrator privileges from a user directly,
or generates a script that can be used to revoke these privileges.

Syntax
DBMS_STREAMS_AUTH.REVOKE_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 revoke_privileges IN BOOLEAN DEFAULT true,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 97–4 REVOKE_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

grantee The user from whom privileges are revoked

revoke_privileges If true, then the REVOKE_ADMIN_PRIVILEGE procedure revokes
the privileges from the specified user directly, and removes the
user from the DBA_STREAMS_ADMINISTRATOR data dictionary
view. If the user does not have a record in this data dictionary
view, then this procedure does not remove a record from the
view, and no error is raised. If true and any of the revoke
statements fail, then an error is raised. A revoke statement will fail
if the user is not granted the privilege that is being revoked.

If false, then the REVOKE_ADMIN_PRIVILEGE procedure does
not revoke the privileges to the specified user directly, and does
not remove the user from the DBA_STREAMS_ADMINISTRATOR
data dictionary view.

You specify false when this procedure is generating a file that
you will edit and then run. If you specify false and either the
file_name or directory_name parameter is NULL, then an
error is raised.

file_name The name of the file generated by this procedure. The file contains
all of the statements that revoke the privileges. If a file with the
specified file name exists in the specified directory name, then the
revoke statements are appended to the existing file.

If NULL, then this procedure does not generate a file.

REVOKE_ADMIN_PRIVILEGE Procedure

97-8 PL/SQL Packages and Types Reference

Usage Notes
The user who runs this procedure must be an administrative user who can revoke
privileges from other users. Specifically, this procedure revokes the privileges
granted by running the GRANT_ADMIN_PRIVILEGE procedure in this package.

directory_name The directory into which the generated file is placed. The
specified directory must be a directory object created using the
SQL statement CREATE DIRECTORY. If you specify a directory,
then the user who invokes this procedure must have WRITE
privilege on the directory object.

If the file_name parameter is NULL, then this parameter is
ignored, and this procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then an error
is raised.

Note: To view all of the statements run by this procedure in detail,
you can use the procedure to generate a script and then view the
script in a text editor.

See Also: "GRANT_ADMIN_PRIVILEGE Procedure" on
page 97-3

Table 97–4 (Cont.) REVOKE_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_AUTH Subprograms

DBMS_STREAMS_AUTH 97-9

REVOKE_REMOTE_ADMIN_ACCESS Procedure

This procedure disables a remote Streams administrator from performing
administrative actions by connecting to the grantee using a database link.

Syntax
DBMS_STREAMS_AUTH.REVOKE_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

Parameters

Note: The REVOKE_ADMIN_PRIVILEGE procedure runs this
procedure.

See Also: "REVOKE_ADMIN_PRIVILEGE Procedure" on
page 97-7

Table 97–5 REVOKE_REMOTE_ADMIN_ACCESS Procedure Parameter

Parameter Description

grantee The user for whom access from a remote Streams administrator is
disabled.

If a row for the grantee exists in the DBA_STREAMS_
ADMINISTRATOR data dictionary view, then the procedure
updates the ACCESS_FROM_REMOTE column for the grantee to
NO. If, after this update, both the LOCAL_PRIVILEGES column
and the ACCESS_FROM_REMOTE column are NO for the grantee,
then this procedure removes the grantee from the view.

If no row for the grantee exists in the DBA_STREAMS_
ADMINISTRATOR data dictionary view, then the procedure does
not update the view and does not raise an error.

REVOKE_REMOTE_ADMIN_ACCESS Procedure

97-10 PL/SQL Packages and Types Reference

DBMS_STREAMS_MESSAGING 98-1

98
DBMS_STREAMS_MESSAGING

The DBMS_STREAMS_MESSAGING package, one of a set of Streams packages, provides
interfaces to enqueue messages into and dequeue messages from a SYS.AnyData
queue.

This chapter contains the following topic:

■ Summary of DBMS_STREAMS_MESSAGING Subprograms

See Also:

■ Oracle Streams Concepts and Administration for more information
about Streams and for an example that uses the procedures in
this package

■ Oracle Streams Advanced Queuing User's Guide and Reference for
more information about queues and messaging

Summary of DBMS_STREAMS_MESSAGING Subprograms

98-2 PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_MESSAGING Subprograms

Table 98–1 DBMS_STREAMS_MESSAGING Package Subprograms

Subprogram Description

DEQUEUE Procedures on page 98-3 Uses the specified Streams messaging client to
dequeue a message from the specified queue

ENQUEUE Procedures on page 98-6 The current user enqueues a message into the
specified queue

Summary of DBMS_STREAMS_MESSAGING Subprograms

DBMS_STREAMS_MESSAGING 98-3

DEQUEUE Procedures

These procedures use the specified Streams messaging client to dequeue a message
from the specified queue.

Syntax
DBMS_STREAMS_MESSAGING.DEQUEUE(
 queue_name IN VARCHAR2,
 streams_name IN VARCHAR2,
 payload OUT SYS.AnyData,
 dequeue_mode IN VARCHAR2 DEFAULT 'REMOVE',
 navigation IN VARCHAR2 DEFAULT 'NEXT MESSAGE',
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 msgid OUT RAW);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains the msgid OUT parameter, and the other does not.

Table 98–2 DEQUEUE Procedure Parameters

Parameter Description

queue_name The name of the local queue from which messages will be dequeued,
specified as [schema_name.]queue_name. The current database
must contain the queue, and the queue must be a secure queue of
SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for this
parameter. If the schema is not specified, then the current user is the
default.

streams_name The name of the Streams messaging client. For example, if the user
strmadmin is the messaging client, then specify strmadmin.

If NULL and a relevant messaging client for the queue exists, then the
relevant messaging client is used. If NULL and multiple relevant
messaging clients for the queue exist, then an error is raised.

payload The payload that is dequeued

DEQUEUE Procedures

98-4 PL/SQL Packages and Types Reference

dequeue_mode Specify one of the following settings:

REMOVE: Read the message and delete it. This setting is the default.
The message can be retained in the queue table based on the
retention properties.

LOCKED: Read and obtain a write lock on the message. The lock lasts
for the duration of the transaction. This setting is equivalent to a
select for update statement.

BROWSE: Read the message without acquiring any lock on the
message. This specification is equivalent to a select statement.

navigation Specifies the position of the message that will be retrieved. First, the
position is determined. Second, the search criterion is applied.
Finally, the message is retrieved.

Specify one of the following settings:

NEXT MESSAGE: Retrieve the next message that is available and
matches the search criteria. If the previous message belongs to a
message group, then retrieve the next available message that matches
the search criteria and belongs to the message group. This setting is
the default.

NEXT TRANSACTION: Skip the remainder of the current message
group (if any) and retrieve the first message of the next message
group. This setting can only be used if message grouping is enabled
for the current queue.

FIRST MESSAGE: Retrieves the first message which is available and
matches the search criteria. This setting resets the position to the
beginning of the queue.

Note: Each message group contains the messages in a single
transaction.

See Also: Oracle Streams Advanced Queuing User's Guide and Reference
for more information about dequeue options

wait Either FOREVER or NO_WAIT

If FOREVER, then the dequeue call is blocked without a time out until
a message is available in the queue.

If NO_WAIT, then a wait time of zero seconds is used. In this case, the
dequeue will return immediately even if there are no messages in the
queue.

msgid Specifies the message identifier of the message that is dequeued

Table 98–2 (Cont.) DEQUEUE Procedure Parameters

Parameter Description

Summary of DBMS_STREAMS_MESSAGING Subprograms

DBMS_STREAMS_MESSAGING 98-5

Exceptions

Table 98–3 DEQUEUE Procedure Exceptions

Exception Description

ENDOFCURTRANS Dequeue has reached the end of the messages in the current
transaction. Specify this exception in the following way:

SYS.DBMS_STREAMS_MESSAGING.ENDOFCURTRANS

Every dequeue procedure should include an exception handler that
handles this exception.

NOMOREMSGS There are no more messages in the queue for the dequeue operation.
Specify this exception in the following way:

SYS.DBMS_STREAMS_MESSAGING.NOMOREMSGS

A dequeue procedure that specifies NO_WAIT for the wait
parameter should include an exception handler that handles this
exception.

ENQUEUE Procedures

98-6 PL/SQL Packages and Types Reference

ENQUEUE Procedures

These procedures enable the current user to enqueue a message into the specified
queue.

Syntax
DBMS_STREAMS_MESSAGING.ENQUEUE(
 queue_name IN VARCHAR2,
 payload IN SYS.AnyData,
 msgid OUT RAW);

Parameters

Usage Notes
To successfully enqueue messages into a queue, the current user must be mapped to
a unique Advanced Queuing agent with the same name as the current user. You can
run the DBMS_STREAMS_ADM.SET_UP_QUEUE procedure and specify a user as the
queue user to grant the necessary privileges to the user to perform enqueues. The
Advanced Queuing agent is created automatically when you run SET_UP_QUEUE
and specify a queue user.

Note: This procedure is overloaded. One version of this procedure
contains the msgid OUT parameter, and the other does not.

Table 98–4 ENQUEUE Procedure Parameters

Parameter Description

queue_name The name of the local queue into which messages will be enqueued,
specified as [schema_name.]queue_name. The current database
must contain the queue, and the queue must be a secure queue of
SYS.AnyData type.

For example, to specify a queue named streams_queue in the
strmadmin schema, enter strmadmin.streams_queue for this
parameter. If the schema is not specified, then the current user is the
default.

payload The payload that is enqueued

msgid Specifies the message identifier of the message that is enqueued

Summary of DBMS_STREAMS_MESSAGING Subprograms

DBMS_STREAMS_MESSAGING 98-7

See Also: "SET_UP_QUEUE Procedure" on page 96-107

ENQUEUE Procedures

98-8 PL/SQL Packages and Types Reference

DBMS_STREAMS_TABLESPACE_ADM 99-1

99
DBMS_STREAMS_TABLESPACE_ADM

The DBMS_STREAMS_TABLESPACE_ADM package, one of a set of Streams packages,
provides administrative interfaces for copying tablespaces between databases and
moving tablespaces from one database to another. This package uses transportable
tablespaces, Data Pump, and the DBMS_FILE_TRANSFER package.

This chapter contains the following topics:

■ Using DBMS_STREAMS_TABLESPACE_ADM

■ Overview

■ Types

■ Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

See Also: Oracle Streams Concepts and Administration and Oracle
Streams Replication Administrator's Guide for more information about
this package and Streams

Using DBMS_STREAMS_TABLESPACE_ADM

99-2 PL/SQL Packages and Types Reference

Using DBMS_STREAMS_TABLESPACE_ADM

■ Overview

■ Types

Overview

Either a simple tablespace or a self-contained tablespace set must be specified in
each procedure in this package.

A self-contained tablespace has no references from the tablespace pointing outside
of the tablespace. For example, if an index in the tablespace is for a table in a
different tablespace, then the tablespace is not self-contained. A simple tablespace
is a self-contained tablespace that uses only one datafile.

A simple tablespace must be specified in the following procedures:

■ ATTACH_SIMPLE_TABLESPACE Procedure

■ CLONE_SIMPLE_TABLESPACE Procedure

■ DETACH_SIMPLE_TABLESPACE Procedure

■ PULL_SIMPLE_TABLESPACE Procedure

A self-contained tablespace set has no references from inside the set of tablespaces
pointing outside of the set of tablespaces. For example, if a partitioned table is
partially contained in the set of tablespaces, then the set of tablespaces is not
self-contained.

A self-contained tablespace set must be specified in the following procedures:

■ ATTACH_TABLESPACES Procedure

■ CLONE_TABLESPACES Procedure

■ DETACH_TABLESPACES Procedure

■ PULL_TABLESPACES Procedure

To determine whether a set of tablespaces is self-contained, use the
TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.

See Also: Oracle Database Administrator's Guide for more
information about self-contained tablespaces and tablespace sets

Using DBMS_STREAMS_TABLESPACE_ADM

DBMS_STREAMS_TABLESPACE_ADM 99-3

Types

This package contains the PL/SQL types listed in Table 99–1.

DIRECTORY_OBJECT_SET Type
Contains the names of one or more directory objects. Each name must be a directory
object created using the SQL statement CREATE DIRECTORY.

Syntax
TYPE DIRECTORY_OBJECT_SET IS TABLE OF VARCHAR2(32)
 INDEX BY BINARY_INTEGER;

FILE Type
Contains the directory object associated with a directory and the name of the file in
the directory.

Syntax
TYPE FILE IS RECORD(
 directory_object VARCHAR2(32),
 file_name VARCHAR2(4000));

Attributes

Table 99–1 DBMS_STREAMS_TABLESPACE_ADM Types

Type Description

DIRECTORY_OBJECT_SET Type on
page 99-3

Contains the names of one or more directory
objects

FILE Type on page 99-3 Contains the directory object associated with a
directory and the name of the file in the
directory

FILE_SET Type on page 99-4 Contains one or more files

TABLESPACE_SET Type on page 99-4 Contains the names of one or more tablespaces

Table 99–2 FILE Attributes

Attribute Description

directory_object The name of a directory object. You must specify the name of a
directory object created using the SQL statement CREATE
DIRECTORY.

Types

99-4 PL/SQL Packages and Types Reference

FILE_SET Type
Contains one or more files.

Syntax
TYPE FILE_SET IS TABLE OF FILE
 INDEX BY BINARY_INTEGER;

TABLESPACE_SET Type
Contains the names of one or more tablespaces.

Syntax
TYPE TABLESPACE_SET IS TABLE OF VARCHAR2(32)
 INDEX BY BINARY_INTEGER;

file_name The name of the file in the corresponding directory associated
with the directory object

Table 99–2 FILE Attributes

Attribute Description

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-5

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

Table 99–3 DBMS_STREAMS_TABLESPACE_ADM Package Subprograms

Subprogram Description

ATTACH_SIMPLE_TABLESPACE
Procedure on page 99-6

Uses Data Pump to import a simple tablespace
previously exported using the
DBMS_STREAMS_TABLESPACE_ADM package or Data
Pump export

ATTACH_TABLESPACES
Procedure on page 99-8

Uses Data Pump to import a self-contained tablespace
set previously exported using the
DBMS_STREAMS_TABLESPACE_ADM package or Data
Pump export

CLONE_SIMPLE_TABLESPACE
Procedure on page 99-11

Clones a simple tablespace. The tablespace can later
be attached to a database.

CLONE_TABLESPACES Procedure
on page 99-14

Clones a set of self-contained tablespaces. The
tablespaces can later be attached to a database.

DETACH_SIMPLE_TABLESPACE
Procedure on page 99-17

Detaches a simple tablespace. The tablespace can later
be attached to a database.

DETACH_TABLESPACES
Procedure on page 99-19

Detaches a set of self-contained tablespaces. The
tablespaces can later be attached to a database.

PULL_SIMPLE_TABLESPACE
Procedure on page 99-22

Copies a simple tablespace from a remote database
and attaches it to the current database

PULL_TABLESPACES Procedure
on page 99-25

Copies a set of self-contained tablespaces from a
remote database and attaches the tablespaces to the
current database

ATTACH_SIMPLE_TABLESPACE Procedure

99-6 PL/SQL Packages and Types Reference

ATTACH_SIMPLE_TABLESPACE Procedure

This procedure uses Data Pump to import a simple tablespace previously exported
using the DBMS_STREAMS_TABLESPACE_ADM package or Data Pump export.

Syntax
DBMS_STREAMS_TABLESPACE_ADM.ATTACH_SIMPLE_TABLESPACE(
 directory_object IN VARCHAR2,
 tablespace_file_name IN VARCHAR2,
 converted_file_name IN VARCHAR2 DEFAULT NULL,
 datafile_platform IN VARCHAR2 DEFAULT NULL,
 tablespace_name OUT VARCHAR2);

Parameters

Table 99–4 ATTACH_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

directory_object The directory that contains the Data Pump dump file and the
datafile for the tablespace. You must specify the name of a
directory object created using the SQL statement CREATE
DIRECTORY.

The name of the Data Pump export dump file must be the
same as the datafile name for the tablespace, except with a
.dmp extension. If the converted_file_name is non-NULL,
specify the dump file produced by the export database, not
the file name after conversion.

The Data Pump import log file is written to this directory.
The name of the log file is the same as the datafile name for
the tablespace, except with an .alg extension. If a file
already exists with the same name as the log file in the
directory, then the file is overwritten.

If NULL, then an error is raised.

tablespace_file_name The name of the datafile for the tablespace being imported.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-7

Usage Notes
To run this procedure, a user must meet the following requirements:

■ Have IMP_FULL_DATABASE role

■ Have READ and WRITE privilege on the directory object that contains the Data
Pump export dump file and the datafiles for the tablespaces in the set, specified
by the directory_object parameter

converted_file_name If the datafile_platform parameter is non-NULL and is
not the same as the platform of the local import database,
then specify a file name for the converted datafile. The
datafile is converted to the platform of the local import
database and copied to the new file name. The existing
datafile is not modified nor deleted.

If non-NULL and the datafile_platform parameter is
NULL, then this parameter is ignored.

If non-NULL and the datafile_platform parameter
specifies the same platform as the local import database, then
this parameter is ignored.

If NULL and the datafile_platform parameter is
non-NULL, then an error is raised.

datafile_platform Specify NULL if the platform is the same for the export
database and the current import database.

Specify the platform for the export database if the platform is
different for the export database and the import database.

You can determine the platform of a database by querying
the PLATFORM_NAME column in the V$DATABASE dynamic
performance view. The V$TRANSPORTABLE_PLATFORM
dynamic performance view lists all platforms that support
cross-platform transportable tablespaces.

tablespace_name Contains the name of the attached tablespace. The attached
tablespace is read-only. You can use this parameter in an
ALTER TABLESPACE statement to make it read/write if
necessary.

See Also: Overview on page 99-2

Table 99–4 (Cont.) ATTACH_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

ATTACH_TABLESPACES Procedure

99-8 PL/SQL Packages and Types Reference

ATTACH_TABLESPACES Procedure

This procedure uses Data Pump to import a self-contained tablespace set previously
exported using the DBMS_STREAMS_TABLESPACE_ADM package or Data Pump
export.

In addition, this procedure optionally can create datafiles for the tablespace set that
can be used with the local platform, if the platform at the export database is
different than the local database platform.

Syntax
DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 dump_file IN FILE,
 tablespace_files IN FILE_SET,
 converted_files IN FILE_SET,
 datafiles_platform IN VARCHAR2 DEFAULT NULL,
 log_file IN FILE DEFAULT NULL,
 tablespace_names OUT TABLESPACE_SET);

Parameters

Table 99–5 ATTACH_TABLESPACES Procedure Parameters

Parameter Description

data_pump_job_name The Data Pump job name. Specify a Data Pump job name if you
want to adhere to naming conventions or if you want to track
the job more easily.

If NULL, then the system generates a Data Pump job name.

dump_file The file name of the Data Pump dump file to import.

If NULL or if a file attribute is NULL, then an error is raised.

tablespace_files The file set that contains the datafiles for the tablespace set being
imported.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-9

Usage Notes
To run this procedure, a user must meet the following requirements:

■ Have IMP_FULL_DATABASE role

converted_files If the datafiles_platform parameter is non-NULL and is not
the same as the platform for the local import database, then
specify a file set with the names of the converted datafiles. The
datafiles are converted to the platform of the local import
database and copied to the new file names. In this case, the
number of files in the specified file set must match the number
of files in the file set specified for the tablespace_files
parameter. The existing datafiles are not modified nor deleted.

If non-NULL and the datafiles_platform parameter is NULL,
then this parameter is ignored.

If non-NULL and the datafiles_platform parameter
specifies the same platform as the local import database, then
this parameter is ignored.

If NULL and the datafiles_platform parameter is non-NULL,
then an error is raised.

datafiles_platform Specify NULL if the platform is the same for the export database
and the current import database.

Specify the platform for the export database if the platform is
different for the export database and the import database.

You can determine the platform of a database by querying the
PLATFORM_NAME column in the V$DATABASE dynamic
performance view. The V$TRANSPORTABLE_PLATFORM
dynamic performance view lists all platforms that support
cross-platform transportable tablespaces.

log_file Specify the log file name for the Data Pump import.

If NULL or if at least one file parameter is NULL, then the system
generates a log file name with the extension .alg and places it
in the Data Pump export dump file directory.

If a file already exists with the same name as the log file in the
directory, then the file is overwritten.

tablespace_names Contains the names of the attached tablespaces. The attached
tablespace is read-only. You can use the names in this parameter
in an ALTER TABLESPACE statement to make them read/write if
necessary.

Table 99–5 (Cont.) ATTACH_TABLESPACES Procedure Parameters

Parameter Description

ATTACH_TABLESPACES Procedure

99-10 PL/SQL Packages and Types Reference

■ Have READ and WRITE privilege on the directory objects that contain the Data
Pump export dump file and the datafiles for the tablespaces in the set, specified
by the dump_file parameter and the tablespace_files parameter,
respectively

■ Have WRITE privilege on the directory object that will hold the Data Pump
import log file, specified by the log_file parameter if it is non-NULL

■ Have WRITE privilege on the directory objects that will hold the converted
datafiles for the tablespaces in the set if platform conversion is necessary. These
directory objects are specified by the converted_files parameter if it is
non-NULL.

See Also:

■ Overview on page 99-2

■ Summary of DBMS_STREAMS_TABLESPACE_ADM
Subprograms on page 99-5

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-11

CLONE_SIMPLE_TABLESPACE Procedure

Clones a simple tablespace. The specified tablespace must be online.

Specifically, this procedure performs the following actions:

1. Makes the specified tablespace read-only if it is not read-only

2. Uses Data Pump to export the metadata for the tablespace and places the dump
file in the specified directory

3. Places the datafile for the specified tablespace in the specified directory

4. If this procedure made the tablespace read-only, then makes the tablespace
read/write

In addition, this procedure optionally can create a datafile for the tablespace that
can be used with a platform that is different than the local database platform.

To run this procedure, a user must meet the following requirements:

■ Have EXP_FULL_DATABASE role

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the
tablespace must be made read-only

■ Have READ privilege on the directory object for the directory that contains the
datafile for the tablespace. The name of this tablespace is specified by the
tablespace_name parameter. If a directory object does not exist for this
directory, then create the directory object and grant the necessary privileges
before you run this procedure.

■ Have READ and WRITE privilege on the directory object that will contain the
Data Pump export dump file, specified by the directory_object parameter

After cloning a tablespace using this procedure, you can add the tablespace to a
different database using the ATTACH_SIMPLE_TABLESPACE procedure. If the
database is a remote database and you want to use the
ATTACH_SIMPLE_TABLESPACE procedure, then you can transfer the dump file
and datafile to the remote system using the DBMS_FILE_TRANSFER package, FTP,
or some other method.

CLONE_SIMPLE_TABLESPACE Procedure

99-12 PL/SQL Packages and Types Reference

Syntax
DBMS_STREAMS_TABLESPACE_ADM.CLONE_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 directory_object IN VARCHAR2,
 destination_platform IN VARCHAR2 DEFAULT NULL,
 tablespace_file_name OUT VARCHAR2);

Parameters

See Also:

■ Overview on page 99-2

■ ATTACH_SIMPLE_TABLESPACE Procedure on page 99-6 and
PULL_SIMPLE_TABLESPACE Procedure on page 99-22

Table 99–6 CLONE_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

tablespace_name The tablespace to be cloned.

If NULL, then an error is raised.

directory_object The directory where the Data Pump export dump file, the
Data Pump export log file, and the datafile for the tablespace
are placed. You must specify the name of a directory object
created using the SQL statement CREATE DIRECTORY.

The name of the Data Pump export dump file is the same as
the datafile name for the tablespace, except with a .dmp
extension. If a file already exists with the same name as the
dump file in the directory, then an error is raised.

The name of the log file is the same as the datafile name for
the tablespace, except with a .clg extension. If a file already
exists with the same name as the log file in the directory, then
the file is overwritten.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-13

destination_platform Specify NULL if the platform is the same for the current
export database and the intended import database.

Specify the platform for the intended import database if the
platform is different for the export database and the import
database.

You can determine the platform of a database by querying
the PLATFORM_NAME column in the V$DATABASE dynamic
performance view. The V$TRANSPORTABLE_PLATFORM
dynamic performance view lists all platforms that support
cross-platform transportable tablespaces.

tablespace_file_name Contains the name of the cloned tablespace datafile. This
datafile is placed in the directory specified by the parameter
directory_object.

Table 99–6 (Cont.) CLONE_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

CLONE_TABLESPACES Procedure

99-14 PL/SQL Packages and Types Reference

CLONE_TABLESPACES Procedure

Clones a set of self-contained tablespaces. All of the tablespaces in the specified
tablespace set must be online.

Specifically, this procedure performs the following actions:

1. Makes any read/write tablespace in the specified tablespace set read-only

2. Uses Data Pump to export the metadata for the tablespaces in the tablespace set
and places the dump file in the specified directory

3. Places the datafiles that comprise the specified tablespace set in the specified
directory

4. If this procedure made a tablespace read-only, then makes the tablespace
read/write

In addition, this procedure optionally can create datafiles for the tablespace set that
can be used with a platform that is different than the local database platform.

Syntax
DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 dump_file IN FILE,
 tablespace_directory_objects IN DIRECTORY_OBJECT_SET,
 destination_platform IN VARCHAR2 DEFAULT NULL,
 log_file IN FILE DEFAULT NULL,
 tablespace_files OUT FILE_SET);

Parameters

Table 99–7 CLONE_TABLESPACES Procedure Parameters

Parameter Description

data_pump_job_name The Data Pump job name. Specify a Data Pump job
name if you want to adhere to naming conventions
or if you want to track the job more easily.

If NULL, then the system generates a Data Pump
job name.

tablespace_names The tablespace set to be cloned.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-15

dump_file The file name of the Data Pump dump file that is
exported.

If NULL or if a file attribute is NULL, then an error is
raised.

If the specified file already exists, then an error is
raised.

tablespace_directory_objects The set of directory objects into which the datafiles
for the tablespaces are copied. If more than one
directory object is in the set, then a datafile is
copied to each directory object in the set in
sequence. In this case, if the end of the directory
object set is reached, then datafile copying starts
again with the first directory object in the set.

If NULL, then datafiles for the tablespace set are
copied to the dump file directory.

destination_platform Specify NULL if the platform is the same for the
current export database and the intended import
database.

Specify the platform for the intended import
database if the platform is different for the export
database and the import database.

You can determine the platform of a database by
querying the PLATFORM_NAME column in the
V$DATABASE dynamic performance view. The
V$TRANSPORTABLE_PLATFORM dynamic
performance view lists all platforms that support
cross-platform transportable tablespaces.

log_file Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL,
then the system generates a log file name with the
extension .clg and places it in the dump file
directory.

If a file already exists with the same name as the
log file in the directory, then the file is overwritten.

tablespace_files Contains the datafiles for the cloned tablespace set.
These datafiles are placed in the directories
specified by the directory objects in the parameter
tablespace_directory_objects.

Table 99–7 (Cont.) CLONE_TABLESPACES Procedure Parameters

Parameter Description

CLONE_TABLESPACES Procedure

99-16 PL/SQL Packages and Types Reference

Usage Notes
To run this procedure, a user must meet the following requirements:

■ Have EXP_FULL_DATABASE role

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the
tablespace must be made read-only

■ Have READ privilege on the directory objects for the directories that contain the
datafiles for the tablespace set. The names of these tablespaces are specified by
the tablespace_names parameter. If a directory object does not exist for one
or more of these directories, then create the directory objects and grant the
necessary privileges before you run this procedure.

■ Have READ and WRITE privilege on the directory object that will contain the
Data Pump export dump file, specified by the dump_file parameter

■ Have WRITE privilege on the directory objects that will contain the copied
datafiles for the tablespaces in the set, specified by the
tablespace_directory_objects parameter if non-NULL

■ Have WRITE privilege on the directory object that will contain the Data Pump
export log file, specified by the log_file parameter if non-NULL

After cloning a tablespace set using this procedure, you can add the tablespaces to a
different database using the ATTACH_TABLESPACES procedure. If the database is a
remote database and you want to use the ATTACH_TABLESPACES procedure, then
you can transfer the dump file and datafiles to the remote system using the
DBMS_FILE_TRANSFER package, FTP, or some other method.

See Also:

■ Overview on page 99-2

■ Summary of DBMS_STREAMS_TABLESPACE_ADM
Subprograms on page 99-3

■ ATTACH_TABLESPACES Procedure on page 99-8 and
PULL_TABLESPACES Procedure on page 99-25

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-17

DETACH_SIMPLE_TABLESPACE Procedure

Detaches a simple tablespace. The specified tablespace must be online.

Specifically, this procedure performs the following actions:

1. Makes the specified tablespace read-only if it is not read-only

2. Uses Data Pump to export the metadata for the tablespace and places the dump
file in the directory that contains the tablespace datafile

3. Drops the tablespace and its contents from the database

Syntax
DBMS_STREAMS_TABLESPACE_ADM.DETACH_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 directory_object OUT VARCHAR2,
 tablespace_file_name OUT VARCHAR2);

Parameters

Table 99–8 DETACH_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

data_pump_job_name The Data Pump job name. Specify a Data Pump job name if
you want to adhere to naming conventions or if you want to
track the job more easily.

If NULL, then the system generates a Data Pump job name.

directory_object Contains the directory where the Data Pump export dump
file and the Data Pump export log file are placed. The
procedure uses the directory of the datafile for the tablespace.
Therefore, make sure a directory object created using the SQL
statement CREATE DIRECTORY exists for this directory.

The name of the Data Pump export dump file is the same as
the datafile name for the tablespace, except with a .dmp
extension. If a file already exists with the same name as the
dump file in the directory, then an error is raised.

The name of the log file is the same as the datafile name for
the tablespace, except with a .dlg extension. If a file already
exists with the same name as the log file in the directory, then
the file is overwritten.

tablespace_file_name Contains the name of the detached tablespace datafile.

DETACH_SIMPLE_TABLESPACE Procedure

99-18 PL/SQL Packages and Types Reference

Usage Notes
To run this procedure, a user must meet the following requirements:

■ Have EXP_FULL_DATABASE role

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have DROP TABLESPACE privilege

■ Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the
tablespace must be made read-only

■ Have READ and WRITE privilege on the directory object for the directory that
contains the tablespace datafile. The name of this tablespace is specified by the
tablespace_name parameter. If a directory object does not exist for this
directory, then create the directory object and grant the necessary privileges
before you run this procedure. This directory also will contain the Data Pump
export dump file generated by this procedure.

After detaching a tablespace using this procedure, you can add the tablespace to a
different database using the ATTACH_SIMPLE_TABLESPACE procedure. If the
database is a remote database and you want to use the
ATTACH_SIMPLE_TABLESPACE procedure, then you can transfer the dump file
and datafile to the remote system using the DBMS_FILE_TRANSFER package, FTP,
or some other method. You may use the two OUT parameters in this procedure to
accomplish the attach or pull operation.

Note: Do not use the DETACH_SIMPLE_TABLESPACE procedure
on a tablespace if the tablespace is using the Oracle-managed files
feature. If you do, then the datafile for the tablespace is dropped
automatically when the tablespace is dropped.

See Also:

■ Overview on page 99-2

■ ATTACH_SIMPLE_TABLESPACE Procedure on page 99-6 and
PULL_SIMPLE_TABLESPACE Procedure on page 99-22

■ Oracle Database Administrator's Guide for more information
about the Oracle-managed files feature

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-19

DETACH_TABLESPACES Procedure

Detaches a set of self-contained tablespaces. All of the tablespaces in the specified
tablespace set must be online and any table partitions must not span tablespaces in
the tablespace set.

Specifically, this procedure performs the following actions:

1. Makes any read/write tablespace in the specified tablespace set read-only

2. Uses Data Pump to export the metadata for the tablespace set and places the
dump file in the specified directory

3. Drops the tablespaces in the specified tablespace set and their contents from the
database

To run this procedure, a user must meet the following requirements:

■ Have EXP_FULL_DATABASE role

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have DROP TABLESPACE privilege

■ Have MANAGE TABLESPACE or ALTER TABLESPACE on a tablespace if the
tablespace must be made read-only

■ Have READ privilege on the directory objects for the directories that contain the
datafiles for the tablespace set. The names of these tablespaces are specified by
the tablespace_name parameter. If a directory object does not exist for one or
more of these directories, then create the directory objects and grant the
necessary privileges before you run this procedure.

■ Have READ and WRITE privilege on the directory object that will contain the
Data Pump export dump file, specified by the dump_file parameter

■ Have WRITE privilege on the directory object that will contain the Data Pump
export the log file, specified by the log_file parameter if non-NULL

After detaching a tablespace set using this procedure, you can add the tablespaces
in the set to a different database using the ATTACH_TABLESPACES procedure. If the
database is a remote database and you want to use the ATTACH_TABLESPACES
procedure, then you can transfer the dump file and datafiles to the remote system
using the DBMS_FILE_TRANSFER package, FTP, or some other method.

DETACH_TABLESPACES Procedure

99-20 PL/SQL Packages and Types Reference

Syntax
DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 dump_file IN FILE,
 log_file IN FILE DEFAULT NULL,
 tablespace_files OUT FILE_SET);

Parameters

Note: Do not use the DETACH_TABLESPACES procedure if any of
the tablespaces in the tablespace set are using the Oracle-managed
files feature. If you do, then the datafiles for these tablespaces are
dropped automatically when the tablespaces are dropped.

See Also:

■ Overview on page 99-2

■ "Summary of DBMS_STREAMS_TABLESPACE_ADM
Subprograms" on page 99-5

■ ATTACH_TABLESPACES Procedure on page 99-8
andPULL_TABLESPACES Procedure on page 99-25

■ Oracle Database Administrator's Guide for more information
about the Oracle-managed files feature

Table 99–9 DETACH_TABLESPACES Procedure Parameters

Parameter Description

data_pump_job_name The Data Pump job name. Specify a Data Pump job name if
you want to adhere to naming conventions or if you want to
track the job more easily.

If NULL, then the system generates a Data Pump job name.

tablespace_names The tablespace set to be detached.

If NULL, then an error is raised.

dump_file The file name of the Data Pump dump file that is exported.

If NULL or if a file attribute is NULL, then an error is raised.

If the specified file already exists, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-21

log_file Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL, then the
system generates a log file name with the extension .dlg and
places it in the dump file directory.

If a file already exists with the same name as the log file in the
directory, then the file is overwritten.

tablespace_files Contains the names of the datafiles for the detached
tablespace set.

Table 99–9 (Cont.) DETACH_TABLESPACES Procedure Parameters

Parameter Description

PULL_SIMPLE_TABLESPACE Procedure

99-22 PL/SQL Packages and Types Reference

PULL_SIMPLE_TABLESPACE Procedure

Copies a simple tablespace from a remote database and attaches it to the current
database. The specified tablespace at the remote database must be online.

Specifically, this procedure performs the following actions:

1. Makes the specified tablespace read-only at the remote database if it is not
read-only

2. Uses Data Pump to export the metadata for the tablespace

3. Uses a database link and the DBMS_FILE_TRANSFER package to transfer the
datafile for the tablespace and the log file for the Data Pump export to the
current database

4. Places the datafile for the specified tablespace and the log file for the Data
Pump export in the specified directory at the local database

5. If this procedure made the tablespace read-only, then makes the tablespace
read/write

6. Uses Data Pump to import the metadata for the tablespace in the at the local
database

In addition, this procedure optionally can create a datafile for the tablespace that
can be used with the local platform, if the platform at the remote database is
different than the local database platform.

Syntax
DBMS_STREAMS_TABLESPACE_ADM.PULL_SIMPLE_TABLESPACE(
 tablespace_name IN VARCHAR2,
 database_link IN VARCHAR2,
 directory_object IN VARCHAR2 DEFAULT NULL,
 conversion_extension IN VARCHAR2 DEFAULT NULL);

Parameters

Table 99–10 PULL_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

tablespace_name The tablespace to be pulled.

If NULL, then an error is raised.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-23

Usage Notes
To run this procedure, a user must meet the following requirements on the remote
database:

■ Have the EXP_FULL_DATABASE role

■ Have execute privilege on the DBMS_STREAMS_TABLESPACE_ADM package

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have MANAGE TABLESPACE or ALTER TABLESPACE privilege on a tablespace if
the tablespace must be made read-only

■ Have READ privilege on the directory object for the directory that contains the
datafile for the tablespace. The name of this tablespace is specified by the

database_link The name of the database link to the database that contains
the tablespace to pull.

If NULL, then an error is raised.

directory_object The directory object to which the datafile for the tablespace is
copied on the local database. You must specify the name of a
directory object created using the SQL statement CREATE
DIRECTORY.

The Data Pump import log file is written to this directory.
The name of the log file is the same as the datafile name for
the tablespace, except with a .plg extension. If a file already
exists with the same name as the log file in the directory, then
the file is overwritten.

If NULL, then an error is raised.

conversion_extension Specify NULL if the platform is the same for the remote export
database and the current import database.

If the platform is different for the export database and the
import database, then specify an extension for the tablespace
datafile that is different than the extension for the tablespace
datafile at the remote database. In this case, the procedure
transfers the datafile to the import database and converts it to
be compatible with the current import database platform
automatically. After conversion is complete, the original
datafile is deleted at the import database.

Table 99–10 (Cont.) PULL_SIMPLE_TABLESPACE Procedure Parameters

Parameter Description

PULL_SIMPLE_TABLESPACE Procedure

99-24 PL/SQL Packages and Types Reference

tablespace_name parameter. If a directory object does not exist for this
directory, then create the directory object and grant the necessary privileges
before you run this procedure.

To run this procedure, a user must meet the following requirements on the local
database:

■ Have the roles IMP_FULL_DATABASE and EXECUTE_CATALOG_ROLE

■ Have WRITE privilege on the directory object that will contain the Data Pump
export the log file, specified by the log_file parameter if non-NULL

■ Have WRITE privilege on the directory object that will hold the datafile for the
tablespace, specified by the directory_object parameter

See Also: Overview on page 99-2

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-25

PULL_TABLESPACES Procedure

Copies a set of self-contained tablespaces from a remote database and attaches the
tablespaces to the current database. All of the tablespaces in the specified tablespace
set at the remote database must be online.

Specifically, this procedure performs the following actions:

1. Makes any read/write tablespace in the specified tablespace set at the remote
database read-only

2. Uses Data Pump to export the metadata for the tablespaces in the tablespace set

3. Uses a database link and the DBMS_FILE_TRANSFER package to transfer the
datafiles for the tablespace set and the log file for the Data Pump export to the
current database

4. Places the datafiles that comprise the specified tablespace set in the specified
directories at the local database

5. Places the log file for the Data Pump export in the specified directory at the
local database

6. If this procedure made a tablespace read-only, then makes the tablespace
read/write

7. Uses Data Pump to import the metadata for the tablespaces in the tablespace set
at the local database

In addition, this procedure optionally can create datafiles for the tablespace set that
can be used with the local platform, if the platform at the remote database is
different than the local database platform.

Syntax
DBMS_STREAMS_TABLESPACE_ADM.PULL_TABLESPACES(
 datapump_job_name IN OUT VARCHAR2,
 database_link IN VARCHAR2,
 tablespace_names IN TABLESPACE_SET,
 tablespace_directory_objects IN DIRECTORY_OBJECT_SET,
 log_file IN FILE,
 conversion_extension IN VARCHAR2 DEFAULT NULL);

PULL_TABLESPACES Procedure

99-26 PL/SQL Packages and Types Reference

Parameters

Table 99–11 PULL_TABLESPACES Procedure Parameters

Parameter Description

data_pump_job_name The Data Pump job name. Specify a Data Pump job
name if you want to adhere to naming conventions
or if you want to track the job more easily.

If NULL, then the system generates a Data Pump job
name.

database_link The name of the database link to the database that
contains the tablespace set to pull.

If NULL, then an error is raised.

tablespace_names The tablespace set to be pulled.

If NULL, then an error is raised.

tablespace_directory_objects The set of directory objects to which the datafiles
for the tablespaces are copied. If more than one
directory object is in the set, then a datafile is
copied to each directory object in the set in
sequence. In this case, if the end of the directory
object set is reached, then datafile copying starts
again with the first directory object in the set.

If NULL, then an error is raised.

log_file Specify the log file name for the Data Pump export.

If NULL or if at least one file parameter is NULL,
then the system generates a log file name with the
extension .plg and places it in one of the datafile
directories.

If a file already exists with the same name as the log
file in the directory, then the file is overwritten.

Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms

DBMS_STREAMS_TABLESPACE_ADM 99-27

Usage Notes
To run this procedure, a user must meet the following requirements on the remote
database:

■ Have the EXP_FULL_DATABASE role

■ Have execute privilege on the DBMS_STREAMS_TABLESPACE_ADM package

■ Have access to at least one data dictionary view that contains information about
the tablespaces. These views include DBA_TABLESPACES and
USER_TABLESPACES.

■ Have MANAGE TABLESPACE or ALTER TABLESPACE privilege on a tablespace if
the tablespace must be made read-only

■ Have READ privilege on the directory objects for the directories that contain the
datafiles for the tablespace set. The names of these tablespaces are specified by
the tablespace_names parameter. If a directory object does not exist for one
or more of these directories, then create the directory objects and grant the
necessary privileges before you run this procedure.

To run this procedure, a user must meet the following requirements on the local
database:

■ Have the roles IMP_FULL_DATABASE and EXECUTE_CATALOG_ROLE

■ Have WRITE privilege on the directory object that will contain the Data Pump
export the log file, specified by the log_file parameter if non-NULL

conversion_extension Specify NULL if the platform is the same for the
remote export database and the current import
database.

If the platform is different for the export database
and the import database, then specify an extension
for the tablespace datafiles that is different than the
extension for the tablespace datafiles at the remote
database. In this case, the procedure transfers the
datafiles to the import database and converts them
to be compatible with the current import database
platform automatically. After conversion is
complete, the original datafiles are deleted at the
import database.

Table 99–11 (Cont.) PULL_TABLESPACES Procedure Parameters

Parameter Description

PULL_TABLESPACES Procedure

99-28 PL/SQL Packages and Types Reference

■ Have WRITE privilege on the directory objects that will hold the datafiles for the
tablespaces in the set, specified by the tablespace_directory_objects
parameter

See Also:

■ Overview on page 99-2

■ Summary of DBMS_STREAMS_TABLESPACE_ADM
Subprograms on page 99-5

DBMS_TRACE 100-1

100
 DBMS_TRACE

The DBMS_TRACE package contains the interface to trace PL/SQL functions,
procedures, and exceptions.

This chapter contains the following topics:

■ Using DBMS_TRACE

■ Overview

■ Security Model

■ Constants

■ Restrictions

■ Operational Notes

■ Summary of DBMS_TRACE Subprograms

Using DBMS_TRACE

100-2 PL/SQL Packages and Types Reference

Using DBMS_TRACE

■ Overview

■ Security Model

■ Constants

■ Restrictions

■ Operational Notes

Overview

DBMS_TRACE provides subprograms to start and stop PL/SQL tracing in a session.
Oracle collects the trace data as the program executes and writes it to database
tables.

A typical session involves:

■ Starting PL/SQL tracing in session (DBMS_TRACE.SET_PLSQL_TRACE).

■ Running an application to be traced.

■ Stopping PL/SQL tracing in session (DBMS_TRACE.CLEAR_PLSQL_TRACE).

Security Model

This package must be created under SYS.

Constants

DBMS_TRACE uses these constants:

trace_all_calls constant INTEGER := 1;
trace_enabled_calls constant INTEGER := 2;
trace_all_exceptions constant INTEGER := 4;
trace_enabled_exceptions constant INTEGER := 8;
trace_all_sql constant INTEGER := 32;
trace_enabled_sql constant INTEGER := 64;
trace_all_lines constant INTEGER := 128;
trace_enabled_lines constant INTEGER := 256;

Using DBMS_TRACE

DBMS_TRACE 100-3

trace_stop constant INTEGER := 16384;
trace_pause constant INTEGER := 4096;
trace_resume constant INTEGER := 8192;
trace_limit constant INTEGER := 16;
trace_major_version constant BINARY_INTEGER := 1;
trace_minor_version constant BINARY_INTEGER := 0;

Oracle recommends using the symbolic form for all these constants.

Restrictions

You cannot use PL/SQL tracing in a shared server environment.

Operational Notes

■ Controlling Data Volume

■ Creating Database Tables to Collect DBMS_TRACE Output

■ Collecting Trace Data

■ Collected Data

■ Trace Control

Controlling Data Volume
Profiling large applications may produce a large volume of data. You can control the
volume of data collected by enabling specific program units for trace data collection.

You can enable a program unit by compiling it debug. This can be done in one of
two ways:

alter session set plsql_debug=true;
create or replace ... /* create the library units - debug information will be
generated */

or:

/* recompile specific library unit with debug option */
alter [PROCEDURE | FUNCTION | PACKAGE BODY] <libunit-name> compile debug;

Note: You cannot use the second method for anonymous blocks.

Operational Notes

100-4 PL/SQL Packages and Types Reference

You can limit the amount of storage used in the database by retaining only the most
recent 8,192 records (approximately) by including TRACE_LIMIT in the TRACE_
LEVEL parameter of the SET_PLSQL_TRACE procedure.

Creating Database Tables to Collect DBMS_TRACE Output
You must create database tables into which the DBMS_TRACE package writes
output. Otherwise, the data is not collected. To create these tables, run the script
TRACETAB.SQL. The tables this script creates are owned by SYS.

Collecting Trace Data
The PL/SQL features you can trace are described in the script DBMSPBT.SQL. Some
of the key tracing features are:

■ Tracing Calls

■ Tracing Exceptions

■ Tracing SQL

■ Tracing Lines

Additional features of DBMS_TRACE also allow pausing and resuming trace, and
limiting the output.

Tracing Calls
Two levels of call tracing are available:

■ Level 1: Trace all calls. This corresponds to the constant trace_all_calls.

■ Level 2: Trace calls to enabled program units only. This corresponds to the
constant trace_enabled_calls.

Enabling cannot be detected for remote procedure calls (RPCs); hence, RPCs are
only traced with level 1.

Tracing Exceptions
Two levels of exception tracing are available:

■ Level 1: Trace all exceptions. This corresponds to trace_all_exceptions.

■ Level 2: Trace exceptions raised in enabled program units only. This
corresponds to trace_enabled_exceptions.

Tracing SQL
Two levels of SQL tracing are available:

Using DBMS_TRACE

DBMS_TRACE 100-5

■ Level 1: Trace all SQL. This corresponds to the constant trace_all_sql.

■ Level 2: Trace SQL in enabled program units only. This corresponds to the
constant trace_enabled_sql.

Tracing Lines
Two levels of line tracing are available:

■ Level 1: Trace all lines. This corresponds to the constant trace_all_lines.

■ Level 2: Trace lines in enabled program units only. This corresponds to the
constant trace_enabled_lines.

When tracing lines, Oracle adds a record to the database each time the line number
changes. This includes line number changes due to procedure calls and returns.

Collected Data
If tracing is requested only for enabled program units, and if the current program
unit is not enabled, then no trace data is written.

When tracing calls, both the call and return are traced. The check for whether
tracing is "enabled" passes if either the called routine or the calling routine is
"enabled".

Call tracing will always output the program unit type, program unit name, and line
number for both the caller and the callee. It will output the caller's stack depth. If
the caller's unit is enabled, the calling procedure name will also be output. If the
callee's unit is enabled, the called procedure name will be output

Exception tracing writes out the line number. Raising the exception shows
information on whether the exception is user-defined or pre-defined. It also shows
the exception number in the case of pre-defined exceptions. Both the place where
the exceptions are raised and their handler is traced. The check for tracing being
"enabled" is done independently for the place where the exception is raised and the
place where the exception is handled.

All calls to DBMS_TRACE.SET_PLSQL_TRACE and DBMS_TRACE.CLEAR_PLSQL_
TRACE place a special trace record in the database. Therefore, it is always possible to
determine when trace settings were changed.

Note: For both all types of tracing, level 1 overrides level 2. For
example, if both level 1 and level 2 are enabled, then level 1 takes
precedence.

Operational Notes

100-6 PL/SQL Packages and Types Reference

Trace Control
As well as determining which items are collected, you can pause and resume the
trace process. No information is gathered between the time that tracing is paused
and the time that it is resumed. The constants TRACE_PAUSE and TRACE_RESUME
are used to accomplish this. Trace records are generated to indicate that the trace
was paused/resumed.

It is also possible to retain only the last 8,192 trace events of a run by using the
constant TRACE_LIMIT. This allows tracing to be turned on without filling up the
database. When tracing stops, the last 8,192 records are saved. The limit is
approximate, since it is not checked on every trace record. At least the requested
number of trace records will be generated; up to 1,000 additional records may be
generated.

Summary of DBMS_TRACE Subprograms

DBMS_TRACE 100-7

Summary of DBMS_TRACE Subprograms

Table 100–1 DBMS_TRACE Package Subprograms

Subprogram Description

CLEAR_PLSQL_TRACE
Procedure on page 100-8

Stops trace data dumping in session

PLSQL_TRACE_VERSION
Procedure on page 100-9

Gets the version number of the trace package

SET_PLSQL_TRACE
Procedure on page 100-10

Starts tracing in the current session

CLEAR_PLSQL_TRACE Procedure

100-8 PL/SQL Packages and Types Reference

CLEAR_PLSQL_TRACE Procedure

This procedure disables trace data collection.

Syntax
DBMS_TRACE.CLEAR_PLSQL_TRACE;

Summary of DBMS_TRACE Subprograms

DBMS_TRACE 100-9

PLSQL_TRACE_VERSION Procedure

This procedure gets the version number of the trace package. It returns the major
and minor version number of the DBMS_TRACE package.

Syntax
DBMS_TRACE.PLSQL_TRACE_VERSION (
 major OUT BINARY_INTEGER,
 minor OUT BINARY_INTEGER);

Parameters

Table 100–2 PLSQL_TRACE_VERSION Procedure Parameters

Parameter Description

major Major version number of DBMS_TRACE.

minor Minor version number of DBMS_TRACE.

SET_PLSQL_TRACE Procedure

100-10 PL/SQL Packages and Types Reference

SET_PLSQL_TRACE Procedure

This procedure enables PL/SQL trace data collection.

Syntax
DBMS_TRACE.SET_PLSQL_TRACE (
 trace_level INTEGER);

Parameters

Table 100–3 SET_PLSQL_TRACE Procedure Parameters

Parameter Description

trace_level You must supply one or more of the constants as listed on
page 100-2. By summing the constants, you can enable tracing
of multiple PL/SQL language features simultaneously. The
control constants "trace_pause", "trace_resume" and "trace_
stop" should not be used in combination with other constants

Also see "Collecting Trace Data" on page 100-4 for more
information.

DBMS_TRANSACTION 101-1

101
 DBMS_TRANSACTION

The DBMS_TRANSACTION package provides access to SQL transaction
statements from stored procedures.

This chapter contains the following topics:

■ Using DBMS_TRANSACTION

■ Security Model

■ Summary of DBMS_TRANSACTION Subprograms

See Also: Oracle Database SQL Reference

Using DBMS_TRANSACTION

101-2 PL/SQL Packages and Types Reference

Using DBMS_TRANSACTION

■ Security Model

Security Model

This package runs with the privileges of calling user, rather than the package owner
SYS.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-3

Summary of DBMS_TRANSACTION Subprograms

Table 101–1 DBMS_TRANSACTION Package Subprograms

Subprogram Description

ADVISE_COMMIT Procedure on page 101-5 Equivalent to the SQL statement:

ALTER SESSION ADVISE COMMIT

ADVISE_NOTHING Procedure on
page 101-6

Equivalent to the SQL statement:

ALTER SESSION ADVISE NOTHING

ADVISE_ROLLBACK Procedure on
page 101-7

Equivalent to the SQL statement:

ALTER SESSION ADVISE ROLLBACK

BEGIN_DISCRETE_TRANSACTION
Procedure on page 101-8

Sets "discrete transaction mode" for this
transaction

COMMIT Procedure on page 101-9 Equivalent to the SQL statement:

COMMIT

COMMIT_COMMENT Procedure on
page 101-10

Equivalent to the SQL statement:

COMMIT COMMENT <text>

COMMIT_FORCE Procedure on page 101-11 Equivalent to the SQL statement:

COMMIT FORCE <text>, <number>"

LOCAL_TRANSACTION_ID Function on
page 101-12

Returns the local (to instance) unique
identifier for the current transaction

PURGE_LOST_DB_ENTRY Procedure on
page 101-13

Enables removal of incomplete transactions
from the local site when the remote database
is destroyed or re-created before recovery
completes

PURGE_MIXED Procedure on page 101-16 Deletes information about a given mixed
outcome transaction

READ_ONLY Procedure on page 101-17 Equivalent to the SQL statement:

SET TRANSACTION READ ONLY

READ_WRITE Procedure on page 101-18 equivalent to the SQL statement:

SET TRANSACTION READ WRITE

ROLLBACK Procedure on page 101-19 Equivalent to the SQL statement:

ROLLBACK

Summary of DBMS_TRANSACTION Subprograms

101-4 PL/SQL Packages and Types Reference

ROLLBACK_FORCE Procedure on
page 101-20

Equivalent to the SQL statement:

ROLLBACK FORCE <text>

ROLLBACK_SAVEPOINT Procedure on
page 101-21

Equivalent to the SQL statement:

ROLLBACK TO SAVEPOINT <savepoint_
name>

SAVEPOINT Procedure on page 101-22 Equivalent to the SQL statement:

SAVEPOINT <savepoint_name>

STEP_ID Function on page 101-23 Returns local (to local transaction) unique
positive integer that orders the DML
operations of a transaction

USE_ROLLBACK_SEGMENT Procedure on
page 101-24

Equivalent to the SQL statement:

SET TRANSACTION USE ROLLBACK
SEGMENT <rb_seg_name>

Table 101–1 (Cont.) DBMS_TRANSACTION Package Subprograms

Subprogram Description

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-5

ADVISE_COMMIT Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE COMMIT

Syntax
DBMS_TRANSACTION.ADVISE_COMMIT;

ADVISE_NOTHING Procedure

101-6 PL/SQL Packages and Types Reference

ADVISE_NOTHING Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE NOTHING

Syntax
DBMS_TRANSACTION.ADVISE_NOTHING;

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-7

ADVISE_ROLLBACK Procedure

This procedure is equivalent to the SQL statement:

ALTER SESSION ADVISE ROLLBACK

Syntax
DBMS_TRANSACTION.ADVISE_ROLLBACK;

BEGIN_DISCRETE_TRANSACTION Procedure

101-8 PL/SQL Packages and Types Reference

BEGIN_DISCRETE_TRANSACTION Procedure

This procedure sets "discrete transaction mode" for this transaction.

Syntax
DBMS_TRANSACTION.BEGIN_DISCRETE_TRANSACTION;

Exceptions

Examples
DISCRETE_TRANSACTION_FAILED exception;
 pragma exception_init(DISCRETE_TRANSACTION_FAILED, -8175);
CONSISTENT_READ_FAILURE exception;
 pragma exception_init(CONSISTENT_READ_FAILURE, -8176);

Table 101–2 BEGIN_DISCRETE_TRANSACTION Procedure Exceptions

Exception Description

ORA-08175 A transaction attempted an operation which cannot be performed
as a discrete transaction.

If this exception is encountered, then rollback and retry the
transaction

ORA-08176 A transaction encountered data changed by an operation that does
not generate rollback data: create index, direct load or discrete
transaction.

If this exception is encountered, then retry the operation that
received the exception.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-9

COMMIT Procedure

This procedure is equivalent to the SQL statement:

COMMIT

This procedure is included for completeness, the functionality being already
implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.COMMIT;

COMMIT_COMMENT Procedure

101-10 PL/SQL Packages and Types Reference

COMMIT_COMMENT Procedure

This procedure is equivalent to the SQL statement:

COMMIT COMMENT <text>

Syntax
DBMS_TRANSACTION.COMMIT_COMMENT (
 cmnt VARCHAR2);

Parameters

Table 101–3 COMMIT_COMMENT Procedure Parameters

Parameter Description

cmnt Comment to associate with this commit.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-11

COMMIT_FORCE Procedure

This procedure is equivalent to the SQL statement:

COMMIT FORCE <text>, <number>"

Syntax
DBMS_TRANSACTION.COMMIT_FORCE (
 xid VARCHAR2,
 scn VARCHAR2 DEFAULT NULL);

Parameters

Table 101–4 COMMIT_FORCE Procedure Parameters

Parameter Description

xid Local or global transaction ID.

scn System change number.

LOCAL_TRANSACTION_ID Function

101-12 PL/SQL Packages and Types Reference

LOCAL_TRANSACTION_ID Function

This function returns the local (to instance) unique identifier for the current
transaction. It returns null if there is no current transaction.

Syntax
DBMS_TRANSACTION.LOCAL_TRANSACTION_ID (
 create_transaction BOOLEAN := FALSE)
 RETURN VARCHAR2;

Parameters

Table 101–5 LOCAL_TRANSACTION_ID Function Parameters

Parameter Description

create_
transaction

If true, then start a transaction if one is not currently active.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-13

PURGE_LOST_DB_ENTRY Procedure

When a failure occurs during commit processing, automatic recovery consistently
resolves the results at all sites involved in the transaction. However, if the remote
database is destroyed or re-created before recovery completes, then the entries used
to control recovery in DBA_2PC_PENDING and associated tables are never removed,
and recovery will periodically retry. Procedure PURGE_LOST_DB_ENTRY enables
removal of such transactions from the local site.

Syntax
DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY (
 xid VARCHAR2);

Parameters

Usage Notes

Before automatic recovery runs, the transaction may show up in DBA_2PC_
PENDING as state "collecting", "committed", or "prepared". If the DBA has forced an
in-doubt transaction to have a particular result by using "commit force" or "rollback
force", then states "forced commit" or "forced rollback" may also appear. Automatic
recovery normally deletes entries in any of these states. The only exception is when
recovery finds a forced transaction which is in a state inconsistent with other sites in
the transaction; in this case, the entry is left in the table and the MIXED column has
the value 'yes'.

Table 101–6 PURGE_LOST_DB_ENTRY Procedure Parameters

Parameter Description

xid Must be set to the value of the LOCAL_TRAN_ID column in the
DBA_2PC_PENDING table.

WARNING: PURGE_LOST_DB_ENTRY should only be used
when the other database is lost or has been re-created. Any other
use may leave the other database in an unrecoverable or
inconsistent state.

PURGE_LOST_DB_ENTRY Procedure

101-14 PL/SQL Packages and Types Reference

However, under certain conditions, it may not be possible for automatic recovery to
run. For example, a remote database may have been permanently lost. Even if it is
re-created, it gets a new database ID, so that recovery cannot identify it (a possible
symptom is ORA-02062). In this case, the DBA may use the procedure PURGE_
LOST_DB_ENTRY to clean up the entries in any state other than "prepared". The
DBA does not need to be in any particular hurry to resolve these entries, because
they are not holding any database resources.

The following table indicates what the various states indicate about the transaction
and what the DBA actions should be:

Table 101–7 PURGE_LOST_DB_ENTRY Procedure States

State of
Column

State of
Global
Transaction

State of
Local
Transaction

Normal
DBA
Action Alternative DBA Action

Collecting Rolled
back

Rolled
back

None PURGE_LOST_DB_ENTRY
(See Note 1)

Committed Committed Committed None PURGE_LOST_DB_ENTRY
(See Note 1)

Prepared Unknown Prepared None FORCE COMMIT or
ROLLBACK

Forced
commit

Unknown Committed None PURGE_LOST_DB_ENTRY
(See Note 1)

Forced
rollback

Unknown Rolled
back

None PURGE_LOST_DB_ENTRY
(See Note 1)

Forced
commit
(mixed)

Mixed Committed (See
Note 2)

Forced
rollback
(mixed)

Mixed Rolled
back

(See
Note 2)

NOTE 1: Use only if significant reconfiguration has occurred so
that automatic recovery cannot resolve the transaction. Examples
are total loss of the remote database, reconfiguration in software
resulting in loss of two-phase commit capability, or loss of
information from an external transaction coordinator such as a TP
monitor.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-15

NOTE 2: Examine and take any manual action to remove
inconsistencies; then use the procedure PURGE_MIXED.

PURGE_MIXED Procedure

101-16 PL/SQL Packages and Types Reference

PURGE_MIXED Procedure

When in-doubt transactions are forced to commit or rollback (instead of letting
automatic recovery resolve their outcomes), there is a possibility that a transaction
can have a mixed outcome: Some sites commit, and others rollback. Such
inconsistency cannot be resolved automatically by Oracle; however, Oracle flags
entries in DBA_2PC_PENDING by setting the MIXED column to a value of 'yes'.

Oracle never automatically deletes information about a mixed outcome transaction.
When the application or DBA is certain that all inconsistencies that might have
arisen as a result of the mixed transaction have been resolved, this procedure can be
used to delete the information about a given mixed outcome transaction.

Syntax
DBMS_TRANSACTION.PURGE_MIXED (
 xid VARCHAR2);

Parameters

Table 101–8 PURGE_MIXED Procedure Parameters

Parameter Description

xid Must be set to the value of the LOCAL_TRAN_ID column in the
DBA_2PC_PENDING table.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-17

READ_ONLY Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION READ ONLY

Syntax
DBMS_TRANSACTION.READ_ONLY;

READ_WRITE Procedure

101-18 PL/SQL Packages and Types Reference

READ_WRITE Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION READ WRITE

Syntax
DBMS_TRANSACTION.READ_WRITE;

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-19

ROLLBACK Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK

This procedure is included for completeness, the functionality being already
implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.ROLLBACK;

ROLLBACK_FORCE Procedure

101-20 PL/SQL Packages and Types Reference

ROLLBACK_FORCE Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK FORCE <text>

Syntax
DBMS_TRANSACTION.ROLLBACK_FORCE (
 xid VARCHAR2);

Parameters

Table 101–9 ROLLBACK_FORCE Procedure Parameters

Parameter Description

xid Local or global transaction ID.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-21

ROLLBACK_SAVEPOINT Procedure

This procedure is equivalent to the SQL statement:

ROLLBACK TO SAVEPOINT <savepoint_name>

This procedure is included for completeness, the functionality being already
implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.ROLLBACK_SAVEPOINT (
 savept VARCHAR2);

Parameters

Table 101–10 ROLLBACK_SAVEPOINT Procedure Parameters

Parameter Description

savept Savepoint identifier.

SAVEPOINT Procedure

101-22 PL/SQL Packages and Types Reference

SAVEPOINT Procedure

This procedure is equivalent to the SQL statement:

SAVEPOINT <savepoint_name>

This procedure is included for completeness, the feature being already implemented
as part of PL/SQL.

Syntax
DBMS_TRANSACTION.SAVEPOINT (
 savept VARCHAR2);

Parameters

Table 101–11 SAVEPOINT Procedure Parameters

Parameter Description

savept Savepoint identifier.

Summary of DBMS_TRANSACTION Subprograms

DBMS_TRANSACTION 101-23

STEP_ID Function

This function returns local (to local transaction) unique positive integer that orders
the DML operations of a transaction.

Syntax
DBMS_TRANSACTION.STEP_ID
 RETURN NUMBER;

USE_ROLLBACK_SEGMENT Procedure

101-24 PL/SQL Packages and Types Reference

USE_ROLLBACK_SEGMENT Procedure

This procedure is equivalent to the SQL statement:

SET TRANSACTION USE ROLLBACK SEGMENT <rb_seg_name>

Syntax
DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT (
 rb_name VARCHAR2);

Parameters

Table 101–12 USE_ROLLBACK_SEGMENT Procedure Parameters

Parameter Description

rb_name Name of rollback segment to use.

DBMS_TRANSFORM 102-1

102
DBMS_TRANSFORM

The DBMS_TRANSFORM package provides an interface to the message format
transformation features of Oracle Advanced Queuing.

This chapter contains the following topic:

■ Summary of DBMS_TRANSFORM Subprograms

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference for more on message format transformations.

Summary of DBMS_TRANSFORM Subprograms

102-2 PL/SQL Packages and Types Reference

Summary of DBMS_TRANSFORM Subprograms

Table 102–1 DBMS_TRANSFORM Package Subprograms

Subprograms Description

CREATE_
TRANSFORMATION
Procedure on page 102-3

Creates a transformation that maps an object of the
source type to an object of the destination type

DROP_
TRANSFORMATION
Procedure on page 102-5

Drops the given transformation

MODIFY_
TRANSFORMATION
Procedure on page 102-6

Modifies an existing transformation

Summary of DBMS_TRANSFORM Subprograms

DBMS_TRANSFORM 102-3

CREATE_TRANSFORMATION Procedure

This procedure creates a transformation that maps an object of the source type to an
object of the target type. The transformation expression can be a SQL expression or
a PL/SQL function. It must return an object of the target type.

Syntax
DBMS_TRANSFORM.CREATE_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30),
 from_schema VARCHAR2(30),
 from_type VARCHAR2(30),
 to_schema VARCHAR2(30),
 to_type VARCHAR2(30),
 transformation VARCHAR2(4000));

Parameters

Usage Notes
■ The transformation expression must be a SQL expression or a PL/SQL function

returning the type of the specified attribute of the target type.

Table 102–2 CREATE_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation.

name Specifies the name of the transformation.

from_schema Specifies the schema of the source type.

from_type Specifies the source type.

to_schema Specifies the target type schema.

to_type Specifies the target type.

transformation Specifies the transformation expression, returning an object
of the target type. The expression must be a function
returning an object of the target type or a constructor
expression for the target type. You can choose not to specify
a transformation expression and instead specify
transformations for attributes of the target type using
MODIFY_TRANSFORMATION.

CREATE_TRANSFORMATION Procedure

102-4 PL/SQL Packages and Types Reference

■ To create, modify or drop transformations, a user must be granted execute
privileges on DBMS_TRANSFORM. The user must also have execute privileges on
the user defined types that are the source and destination types of the
transformation. In addition, the user must also have execute privileges on any
PLSQL function being used in the transformation function.

■ The transformation cannot write database state (perform DML) or commit or
rollback the current transaction.

■ The transformation must be a SQL function with source type as input type,
returning an object of the target type. It could also be a SQL expression of target
type, referring to a source type. All references to the source type must be of the
form source.user_data.

■ Both source and target types must be non-scalar database types. A null
transformation expression maps to a null target object.

■ For using the transformation at enqueue and dequeue time, the login user
invoking the operation must have execute privileges on the PLSQL functions
used by the transformation. For propagation, the owning schema of the queue
must have these privileges.

Summary of DBMS_TRANSFORM Subprograms

DBMS_TRANSFORM 102-5

DROP_TRANSFORMATION Procedure

This procedure drops the given transformation.

Syntax
DBMS_TRANSFORM.DROP_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30));

Parameters

Table 102–3 DROP_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation.

name Specifies the name of the transformation.

MODIFY_TRANSFORMATION Procedure

102-6 PL/SQL Packages and Types Reference

MODIFY_TRANSFORMATION Procedure

This procedure modifies the transformation expression for the given
transformation.

Syntax
DBMS_TRANSFORM.MODIFY_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30),
 attribute_number INTEGER,
 transformation VARCHAR2(4000));

Parameters

Usage Notes
■ If the new transformation is a single expression of the target type, it may be

specified with an attribute_number of 0. The new transformation may also
be specified for each attribute of the target type.

■ You can use this procedure to define the transformation as a separate expression
for each attribute of the target type. For large transformations, this
representation may be more readable and allow the application of fine grain
control over the transformation. If the transformation expression was left

Table 102–4 MODIFY_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation.

name Specifies the name of the transformation.

attribute_number The attribute of the target type for which the new
transformation expression is being specified. When
specifying the new transformation as a single expression of
the target type, specify a value of 0.

transformation The transformation expression must be a SQL expression or
a PL/SQL function returning the type of the specified
attribute of the target type. If the attribute_number is 0, then
the expression must be a PL/SQL function returning an
object of the target type or a constructor expression for the
target type.

Summary of DBMS_TRANSFORM Subprograms

DBMS_TRANSFORM 102-7

unspecified for some of the attributes of the target type, they are evaluated to
null when the transformation is applied.

MODIFY_TRANSFORMATION Procedure

102-8 PL/SQL Packages and Types Reference

DBMS_TYPES 103-1

103
DBMS_TYPES

The DBMS_TYPES package consists of constants, which represent the built-in and
user-defined types.

This chapter contains the following topics:

■ Using DBMS_TYPES

■ Constants

■ Exceptions

Using DBMS_TYPES

103-2 PL/SQL Packages and Types Reference

Using DBMS_TYPES

Constants

The following table lists the constants in the DBMS_TYPES package.

Table 103–1 DBMS_TYPES Constants

Constant Description

NO_DATA Is only relevant if PieceWise is called, for a
collection or anydataset. Denotes the end of
collection/anydataset when all the elements
have been accessed

SUCCESS The operation succeeded

TYPECODE_BDOUBLE A NUMBER type

TYPECODE_BFILE A BFILE type

TYPECODE_BFLOAT A NUMBER type

TYPECODE_BLOB A BLOB type

TYPECODE_CFILE A CFILE type

TYPECODE_CHAR A CHAR type

TYPECODE_CLOB A CLOB type

TYPECODE_DATE A DATE type

TYPECODE_INTERVAL_DS An INTERVAL_DS type

TYPECODE_INTERVAL_YM A INTERVAL_YM type

TYPECODE_MLSLABEL An MLSLABEL type

TYPECODE_NAMEDCOLLECTION A named collection (VARRAY/nested table) type

TYPECODE_NUMBER A NUMBER type

TYPECODE_OBJECT An OBJECT type

TYPECODE_OPAQUE An OPAQUE type

TYPECODE_RAW A RAW type

TYPECODE_REF A REF type

TYPECODE_TABLE A nested table collection type

Using DBMS_TYPES

DBMS_TYPES 103-3

Exceptions

■ INVALID_PARAMETERS

■ INCORRECT_USAGE

■ TYPE_MISMATCH

TYPECODE_TIMESTAMP A TIMESTAMP type

TYPECODE_TIMESTAMP_LTZ A TIMESTAMP_LTZ type

TYPECODE_TIMESTAMP_TZ A TIMESTAMP_TZ type

TYPECODE_VARCHAR2 A VARCHAR2 type

TYPECODE_VARCHAR A VARCHAR type

TYPECODE_VARRAY A VARRAY collection type

Table 103–1 DBMS_TYPES Constants

Constant Description

Exceptions

103-4 PL/SQL Packages and Types Reference

DBMS_UTILITY 104-1

104
DBMS_UTILITY

The DBMS_UTILITY package provides various utility subprograms.

This chapter contains the following topics:

■ Using DBMS_UTILITY

■ Security Model

■ Types

■ Deprecated Subprograms

■ Summary of DBMS_UTILITY Subprograms

Using DBMS_UTILITY

104-2 PL/SQL Packages and Types Reference

Using DBMS_UTILITY

■ Security Model

■ Types

■ Deprecated Subprograms

Security Model

DBMS_UTILITY runs with the privileges of the calling user for the NAME_
RESOLVE Procedure, the COMPILE_SCHEMA Procedure, and the ANALYZE_
SCHEMA Procedure. This is necessary so that the SQL works correctly.

The package does not run as SYS. The privileges are checked using DBMS_DDL.

Types

■ dblink_array

■ index_table_type

■ instance_record

■ lname_array

■ name_array

■ number_array

■ uncl_array

dblink_array
TYPE dblink_array IS TABLE OF VARCHAR2(128) INDEX BY BINARY_INTEGER;

Lists of database links should be stored here.

index_table_type
TYPE index_table_type IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;

The order in which objects should be generated is returned here.

Using DBMS_UTILITY

DBMS_UTILITY 104-3

instance_record
 TYPE instance_record IS RECORD (
 inst_number NUMBER,
 inst_name VARCHAR2(60));
 TYPE instance_table IS TABLE OF instance_record INDEX BY BINARY_INTEGER;

The list of active instance number and instance name.

The starting index of instance_table is 1; instance_table is dense.

lname_array
TYPE lname_array IS TABLE OF VARCHAR2(4000) index by BINARY_INTEGER;

Lists of Long NAME should be stored here, it includes fully qualified attribute
names.

name_array
TYPE name_array IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

Lists of NAME should be stored here.

number_array
TYPE number_array IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

The order in which objects should be generated is returned here for users.

uncl_array
TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

Lists of "USER"."NAME"."COLUMN"@LINK should be stored here.

Deprecated Subprograms

Obsolete with Oracle Database Release 10g:

■ ANALYZE_DATABASE Procedure

■ ANALYZE_SCHEMA Procedure

Summary of DBMS_UTILITY Subprograms

104-4 PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms

Table 104–1 DBMS_UTILITY Package Subprograms

Subprogram Description

ANALYZE_DATABASE
Procedure on page 104-6

Analyzes all the tables, clusters, and indexes in a
database [see also Deprecated Subprograms]

ACTIVE_INSTANCES Procedure
on page 104-8

Returns the active instance

ANALYZE_PART_OBJECT
Procedure on page 104-9

Analyzes the given tables and indexes

ANALYZE_SCHEMA Procedure
on page 104-10

Analyzes all the tables, clusters, and indexes in a
schema [see also Deprecated Subprograms]

CANONICALIZE Procedure on
page 104-12

Canonicalizes a given string

COMMA_TO_TABLE Procedures
on page 104-14

Converts a comma-delimited list of names into a
PL/SQL table of names

COMPILE_SCHEMA Procedure
on page 104-15

Compiles all procedures, functions, packages, and
triggers in the specified schema

CREATE_ALTER_TYPE_ERROR_
TABLE Procedure on page 104-16

Creates an error table to be used in the EXCEPTION
clause of the ALTER TYPE statement

CURRENT_INSTANCE Function
on page 104-17

Returns the current connected instance number

DATA_BLOCK_ADDRESS_
BLOCK Function on page 104-18

Gets the block number part of a data block address

DATA_BLOCK_ADDRESS_FILE
Function on page 104-19

Gets the file number part of a data block address

DB_VERSION Procedure on
page 104-20

Returns version information for the database

EXEC_DDL_STATEMENT
Procedure on page 104-21

Executes the DDL statement in parse_string

FORMAT_ERROR_BACKTRACE
Function on page 104-22

Formats the backtrace from the point of the
current error to the exception handler where the
error has been caught

FORMAT_ERROR_STACK
Function on page 104-26

Formats the current error stack

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-5

FORMAT_CALL_STACK
Function on page 104-27

Formats the current call stack

GET_CPU_TIME Function on
page 104-28

Returns the current CPU time in 100th's of a second

GET_DEPENDENCY Procedure
on page 104-29

Shows the dependencies on the object passed in.

GET_HASH_VALUE Function on
page 104-30

Computes a hash value for the given string

GET_PARAMETER_VALUE
Function on page 104-31

Gets the value of specified init.ora parameter

GET_TIME Function on
page 104-33

Finds out the current time in 100th's of a second

IS_CLUSTER_DATABASE
Function on page 104-34

Finds out if this database is running in cluster database
mode

MAKE_DATA_BLOCK_
ADDRESS Function on
page 104-35

Creates a data block address given a file number and a
block number

NAME_RESOLVE Procedure on
page 104-36

Resolves the given name

NAME_TOKENIZE Procedure on
page 104-38

Calls the parser to parse the given name

PORT_STRING Function on
page 104-39

Returns a string that uniquely identifies the version of
Oracle and the operating system

TABLE_TO_COMMA Procedures
on page 104-40

Converts a PL/SQL table of names into a
comma-delimited list of names

VALIDATE Procedure on
page 104-41

Converts a PL/SQL table of names into a
comma-delimited list of names

Table 104–1 (Cont.) DBMS_UTILITY Package Subprograms

Subprogram Description

ANALYZE_DATABASE Procedure

104-6 PL/SQL Packages and Types Reference

ANALYZE_DATABASE Procedure

This procedure runs the ANALYZE command on all the tables, clusters, and indexes
in a database. Use this procedure to collect nonoptimizer statistics. For optimizer
statistics, use the DBMS_STATS.GATHER_DATABASE_STATS procedure.

Syntax
DBMS_UTILITY.ANALYZE_DATABASE (
 method VARCHAR2,
 estimate_rows NUMBER DEFAULT NULL,
 estimate_percent NUMBER DEFAULT NULL,
 method_opt VARCHAR2 DEFAULT NULL);

Parameters

Note: This subprogam is obsolete with release Oracle Database
Release 10g. It is retained in documentation for reasons of
backward compatibility. For current functionality, see "DBMS_
STATS" on page 104-1.

Table 104–2 ANALYZE_DATABASE Procedure Parameters

Parameter Description

method One of ESTIMATE, COMPUTE or DELETE.

If ESTIMATE, then either estimate_rows or estimate_
percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.

If estimate_rows is specified, then ignore this parameter.

method_opt Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-7

Exceptions

Usage Notes
Use this procedure to collect nonoptimizer statistics. For optimizer statistics, use the
DBMS_STATS.GATHER_TABLE_STATS or DBMS_STATS.GATHER_INDEX_STATS
procedure.

Table 104–3 ANALYZE_DATABASE Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this database.

ACTIVE_INSTANCES Procedure

104-8 PL/SQL Packages and Types Reference

ACTIVE_INSTANCES Procedure

This procedure returns the active instance.

Syntax
DBMS_UTILITY.ACTIVE_INSTANCES (
 instance_table OUT INSTANCE_TABLE,
 instance_count OUT NUMBER);

Parameters

Table 104–4 ACTIVE_INSTANCES Procedure Parameters

Procedure Description

instance_table Contains a list of the active instance numbers and names.
When no instance is up, the list is empty.

instance_count Number of active instances.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-9

ANALYZE_PART_OBJECT Procedure

This procedure is equivalent to SQL:

"ANALYZE TABLE|INDEX [<schema>.]<object_name> PARTITION <pname> [<command_type>]
[<command_opt>] [<sample_clause>]

Syntax
DBMS_UTILITY.ANALYZE_PART_OBJECT (
 schema IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2 DEFAULT NULL,
 object_type IN CHAR DEFAULT 'T',
 command_type IN CHAR DEFAULT 'E',
 command_opt IN VARCHAR2 DEFAULT NULL,
 sample_clause IN VARCHAR2 DEFAULT 'sample 5 percent ');

Parameters

Usage Notes
For each partition of the object, run in parallel using job queues.

Table 104–5 ANALYZE_PART_OBJECT Procedure Parameters

Parameter Description

schema Schema of the object_name.

object_name Name of object to be analyzed, must be partitioned.

object_type Type of object, must be T (table) or I (index).

command_type Must be V (validate structure)

command_opt Other options for the command type.

For C, E it can be FOR table, FOR all LOCAL indexes, FOR all columns
or combination of some of the 'for' options of analyze statistics
(table). For V, it can be CASCADE when object_type is T.

sample_clause The sample clause to use when command_type is 'E'.

ANALYZE_SCHEMA Procedure

104-10 PL/SQL Packages and Types Reference

ANALYZE_SCHEMA Procedure

This procedure runs the ANALYZE command on all the tables, clusters, and indexes
in a schema. Use this procedure to collect nonoptimizer statistics. For optimizer
statistics, use the DBMS_STATS.GATHER_SCHEMA_STATS procedure.

Syntax
DBMS_UTILITY.ANALYZE_SCHEMA (
 schema VARCHAR2,
 method VARCHAR2,
 estimate_rows NUMBER DEFAULT NULL,
 estimate_percent NUMBER DEFAULT NULL,
 method_opt VARCHAR2 DEFAULT NULL);

Parameters

Note: This subprogam is obsolete with Oracle Database Release
10g. It is retained in documentation for reasons of backward
compatibility. For current functionality, see "DBMS_STATS" on
page 104-1.

Table 104–6 ANALYZE_SCHEMA Procedure Parameters

Parameter Description

schema Name of the schema.

method One of ESTIMATE, COMPUTE or DELETE.

If ESTIMATE, then either estimate_rows or estimate_
percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.

If estimate_rows is specified, then ignore this parameter.

method_opt Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-11

Exceptions

Table 104–7 ANALYZE_SCHEMA Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this schema.

CANONICALIZE Procedure

104-12 PL/SQL Packages and Types Reference

CANONICALIZE Procedure

This procedure canonicalizes the given string. The procedure handles a single
reserved or key word (such as 'table'), and strips off white spaces for a single
identifier so that ' table ' becomes TABLE.

Syntax
DBMS_UTILITY.CANONICALIZE(
 name IN VARCHAR2,
 canon_name OUT VARCHAR2,
 canon_len IN BINARY_INTEGER);

Parameters

Return Values
Returns the first canon_len bytes in canon_name

Usage Notes
■ If name is NULL, canon_name becomes NULL.

■ If name is not a dotted name, and if name begins and ends with a double quote,
remove both quotes. Alternatively, convert to upper case with NLS_UPPER.
Note that this case does not include a name with special characters, such as a
space, but is not doubly quoted.

■ If name is a dotted name (such as a."b".c), for each component in the dotted
name in the case in which the component begins and ends with a double quote,
no transformation will be performed on this component. Alternatively, convert
to upper case with NLS_UPPER and apply begin and end double quotes to the
capitalized form of this component. In such a case, each canonicalized
component will be concatenated together in the input position, separated by ".".

Table 104–8 CANONICALIZE Procedure Parameters

Parameter Description

name The string to be canonicalized.

canon_name The canonicalized string

canon_len The length of the string (in bytes) to canonicalize.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-13

■ Any other character after a[.b]* will be ignored.

■ The procedure does not handle cases like 'A B.'

Examples
■ a becomes A

■ "a" becomes a

■ "a".b becomes "a"."B"

■ "a".b,c.f becomes "a"."B" with",c.f" ignored.

COMMA_TO_TABLE Procedures

104-14 PL/SQL Packages and Types Reference

COMMA_TO_TABLE Procedures

These procedures converts a comma-delimited list of names into a PL/SQL table of
names. The second version supports fully-qualified attribute names.

Syntax
DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT uncl_array);

DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT lname_array);

Parameters

Return Values
A PL/SQL table is returned, with values 1..n and n+1 is null.

Usage Notes
The list must be a non-empty comma-delimited list: Anything other than a
comma-delimited list is rejected. Commas inside double quotes do not count.

Entries in the comma-delimited list cannot include multibyte characters such as
hyphens (-).

The values in tab are cut from the original list, with no transformations.

Table 104–9 COMMA_TO_TABLE Procedure Parameters

Parameter Description

list Comma separated list of tables.

tablen Number of tables in the PL/SQL table.

tab PL/SQL table which contains list of table names.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-15

COMPILE_SCHEMA Procedure

This procedure compiles all procedures, functions, packages, and triggers in the
specified schema. After calling this procedure, you should select from view ALL_
OBJECTS for items with status of INVALID to see if all objects were successfully
compiled.

To see the errors associated with INVALID objects, you may use the Enterprise
Manager command:

SHOW ERRORS <type> <schema>.<name>

Syntax
DBMS_UTILITY.COMPILE_SCHEMA (
 schema VARCHAR2,
 compile_all BOOLEAN DEFAULT TRUE);

Parameters

Exceptions

Table 104–10 COMPILE_SCHEMA Procedure Parameters

Parameter Description

schema Name of the schema.

Table 104–11 COMPILE_SCHEMA Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this schema.

CREATE_ALTER_TYPE_ERROR_TABLE Procedure

104-16 PL/SQL Packages and Types Reference

CREATE_ALTER_TYPE_ERROR_TABLE Procedure

This procedure creates an error table to be used in the EXCEPTION clause of the
ALTER TYPE statement.

Syntax
DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE(
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Parameters

Exceptions
An error is returned if the table already exists.

Table 104–12 CREATE_ALTER_TYPE_ERROR_TABLE Procedure Parameters

Parameter Description

schema_name The name of the schema.

table_name The name of the table created.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-17

CURRENT_INSTANCE Function

This function returns the current connected instance number. It returns NULL when
connected instance is down.

Syntax
DBMS_UTILITY.CURRENT_INSTANCE
 RETURN NUMBER;

DATA_BLOCK_ADDRESS_BLOCK Function

104-18 PL/SQL Packages and Types Reference

DATA_BLOCK_ADDRESS_BLOCK Function

This function gets the block number part of a data block address.

Syntax
DBMS_UTILITY.DATA_BLOCK_ADDRESS_BLOCK (
 dba NUMBER)
 RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references(data_block_address_block, WNDS, RNDS, WNPS, RNPS);

Return Values

Usage Notes
This function should not be used with datablocks which belong to bigfile
tablespaces.

Table 104–13 DATA_BLOCK_ADDRESS_BLOCK Function Parameters

Parameter Description

dba Data block address.

Table 104–14 DATA_BLOCK_ADDRESS_BLOCK Function Return Values

Returns Description

block Block offset of the block.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-19

DATA_BLOCK_ADDRESS_FILE Function

This function gets the file number part of a data block address.

Syntax
DBMS_UTILITY.DATA_BLOCK_ADDRESS_FILE (
 dba NUMBER)
 RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references (data_block_address_file, WNDS, RNDS, WNPS, RNPS);

Return Values

Usage Notes
This function should not be used with datablocks which belong to bigfile
tablespaces.

Table 104–15 DATA_BLOCK_ADDRESS_FILE Function Parameters

Parameter Description

dba Data block address.

Table 104–16 DATA_BLOCK_ADDRESS_FILE Function Return Values

Returns Description

file File that contains the block.

DB_VERSION Procedure

104-20 PL/SQL Packages and Types Reference

DB_VERSION Procedure

This procedure returns version information for the database.

Syntax
DBMS_UTILITY.DB_VERSION (
 version OUT VARCHAR2,
 compatibility OUT VARCHAR2);

Parameters

Table 104–17 DB_VERSION Procedure Parameters

Parameter Description

version A string which represents the internal software version of the
database (for example, 7.1.0.0.0).

The length of this string is variable and is determined by the
database version.

compatibility The compatibility setting of the database determined by the
"compatible" init.ora parameter.

If the parameter is not specified in the init.ora file, then
NULL is returned.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-21

EXEC_DDL_STATEMENT Procedure

This procedure executes the DDL statement in parse_string.

Syntax
DBMS_UTILITY.EXEC_DDL_STATEMENT (
 parse_string IN VARCHAR2);

Parameters

Table 104–18 EXEC_DDL_STATEMENT Procedure Parameters

Parameter Description

parse_string DDL statement to be executed.

FORMAT_ERROR_BACKTRACE Function

104-22 PL/SQL Packages and Types Reference

FORMAT_ERROR_BACKTRACE Function

This procedure displays the call stack at the point where an exception was raised,
even if the procedure is called from an exception handler in an outer scope. The
output is similar to the output of the SQLERRM function, but not subject to the
same size limitation.

Syntax
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
 RETURN VARCHAR2;

Return Values
The backtrace string. A NULL string is returned if no error is currently being handled.

Examples
CREATE OR REPLACE PROCEDURE Log_Errors (i_buff in varchar2) IS
 g_start_pos integer := 1;
 g_end_pos integer;

 FUNCTION Output_One_Line RETURN BOOLEAN IS
 BEGIN
 g_end_pos := Instr (i_buff, Chr(10), g_start_pos);

 CASE g_end_pos > 0
 WHEN true THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
g_end_pos-g_start_pos));
 g_start_pos := g_end_pos+1;
 RETURN TRUE;

 WHEN FALSE THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
(Length(i_buff)-g_start_pos)+1));
 RETURN FALSE;
 END CASE;
 END Output_One_Line;

BEGIN
 WHILE Output_One_Line() LOOP NULL;
 END LOOP;
END Log_Errors;

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-23

/

Set Doc Off
Set Feedback off
Set Echo Off

CREATE OR REPLACE PROCEDURE P0 IS
 e_01476 EXCEPTION; pragma exception_init (e_01476, -1476);
BEGIN
 RAISE e_01476;
END P0;
/
Show Errors

CREATE OR REPLACE PROCEDURE P1 IS
BEGIN
 P0();
END P1;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P2 IS
BEGIN
 P1();
END P2;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P3 IS
BEGIN
 P2();
END P3;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P4 IS
 BEGIN P3(); END P4;
/
CREATE OR REPLACE PROCEDURE P5 IS
 BEGIN P4(); END P5;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE Top_Naive IS
BEGIN

FORMAT_ERROR_BACKTRACE Function

104-24 PL/SQL Packages and Types Reference

 P5();
END Top_Naive;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE Top_With_Logging IS
 -- NOTE: SqlErrm in principle gives the same info as Format_Error_Stack.
 -- But SqlErrm is subject to some length limits,
 -- while Format_Error_Stack is not.
BEGIN
 P5();
EXCEPTION
 WHEN OTHERS THEN
 Log_Errors ('Error_Stack...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_STACK());
 Log_Errors ('Error_Backtrace...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_BACKTRACE());
 DBMS_OUTPUT.PUT_LINE ('----------');
END Top_With_Logging;
/
SHOW ERRORS

--

Set ServerOutput On
call Top_Naive()
 /*
 ERROR at line 1:
 ORA-01476: divisor is equal to zero
 ORA-06512: at "U.P0", line 4
 ORA-06512: at "U.P1", line 3
 ORA-06512: at "U.P2", line 3
 ORA-06512: at "U.P3", line 3
 ORA-06512: at "U.P4", line 2
 ORA-06512: at "U.P5", line 2
 ORA-06512: at "U.TOP_NAIVE", line 3
 */
 ;

Set ServerOutput On
call Top_With_Logging()
 /*
 Error_Stack...
 ORA-01476: divisor is equal to zero
 Error_Backtrace...

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-25

 ORA-06512: at "U.P0", line 4
 ORA-06512: at "U.P1", line 3
 ORA-06512: at "U.P2", line 3
 ORA-06512: at "U.P3", line 3
 ORA-06512: at "U.P4", line 2
 ORA-06512: at "U.P5", line 2
 ORA-06512: at "U.TOP_WITH_LOGGING", line 6

 */
 ;

/*
 ORA-06512:
 Cause:
 Backtrace message as the stack is
 unwound by unhandled exceptions.
 Action:
 Fix the problem causing the exception
 or write an exception handler for this condition.
 Or you may need to contact your application administrator
 or database administrator.
*/

FORMAT_ERROR_STACK Function

104-26 PL/SQL Packages and Types Reference

FORMAT_ERROR_STACK Function

This function formats the current error stack. This can be used in exception handlers
to look at the full error stack.

Syntax
DBMS_UTILITY.FORMAT_ERROR_STACK
 RETURN VARCHAR2;

Return Values
This returns the error stack, up to 2000 bytes.

Return Values
See FORMAT_ERROR_BACKTRACE Function on page 104-22.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-27

FORMAT_CALL_STACK Function

This function formats the current call stack. This can be used on any stored
procedure or trigger to access the call stack. This can be useful for debugging.

Syntax
DBMS_UTILITY.FORMAT_CALL_STACK
 RETURN VARCHAR2;

Pragmas
pragma restrict_references(format_call_stack,WNDS);

Return Values
This returns the call stack, up to 2000 bytes.

GET_CPU_TIME Function

104-28 PL/SQL Packages and Types Reference

GET_CPU_TIME Function

This function returns the current CPU time in 100th's of a second. The returned
CPU time is the number of 100th's of a second from some arbitrary epoch.

Syntax
 DBMS_UTILITY.GET_CPU_TIME
 RETURN NUMBER;

Return Values
Time is the number of 100th's of a second from some arbitrary epoch.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-29

GET_DEPENDENCY Procedure

This procedure shows the dependencies on the object passed in.

Syntax
 DBMS_UTILITY.GET_DEPENDENCY
 type IN VARCHAR2,
 schema IN VARCHAR2,
 name IN VARCHAR2);

Parameters

Table 104–19 GET_DEPENDENCY Procedure Parameters

Parameter Description

type The type of the object, for example if the object is a table give the
type as 'TABLE'.

schema The schema name of the object.

name The name of the object.

GET_HASH_VALUE Function

104-30 PL/SQL Packages and Types Reference

GET_HASH_VALUE Function

This function computes a hash value for the given string.

Syntax
DBMS_UTILITY.GET_HASH_VALUE (
 name VARCHAR2,
 base NUMBER,
 hash_size NUMBER)
 RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references(get_hash_value, WNDS, RNDS, WNPS, RNPS);

Return Values
A hash value based on the input string. For example, to get a hash value on a string
where the hash value should be between 1000 and 3047, use 1000 as the base value
and 2048 as the hash_size value. Using a power of 2 for the hash_size
parameter works best.

Table 104–20 GET_HASH_VALUE Function Parameters

Parameter Description

name String to be hashed.

base Base value for the returned hash value to start at.

hash_size Desired size of the hash table.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-31

GET_PARAMETER_VALUE Function

This function gets the value of specified init.ora parameter.

Syntax
DBMS_UTILITY.GET_PARAMETER_VALUE (
 parnam IN VARCHAR2,
 intval IN OUT BINARY_INTEGER,
 strval IN OUT VARCHAR2)
 RETURN BINARY_INTEGER;

Parameters

Return Values

Usage Notes
When using DBMS_UTILITY.GET_PARAMETER_VALUE, only the first parameter
setting of /dir1 is returned when init.ora is set as follows:

utl_file_dir = /dir1
utl_file_dir = /dir2

However, the full comma-delimited string is returned if you are using:

Table 104–21 GET_PARAMETER_VALUE Function Parameters

Parameter Description

parnam Parameter name.

intval Value of an integer parameter or the value length of a string
parameter.

strval Value of a string parameter.

Table 104–22 GET_PARAMETER_VALUE Function Return Values

Returns Description

partyp Parameter type:

0 if parameter is an integer/boolean parameter

1 if parameter is a string/file parameter

GET_PARAMETER_VALUE Function

104-32 PL/SQL Packages and Types Reference

utl_file_dir = /dir1, /dir2

Examples
DECLARE
 parnam VARCHAR2(256);
 intval BINARY_INTEGER;
 strval VARCHAR2(256);
 partyp BINARY_INTEGER;
BEGIN
 partyp := dbms_utility.get_parameter_value('max_dump_file_size',
 intval, strval);
 dbms_output.put('parameter value is: ');
 IF partyp = 1 THEN
 dbms_output.put_line(strval);
 ELSE
 dbms_output.put_line(intval);
 END IF;
 IF partyp = 1 THEN
 dbms_output.put('parameter value length is: ');
 dbms_output.put_line(intval);
 END IF;
 dbms_output.put('parameter type is: ');
 IF partyp = 1 THEN
 dbms_output.put_line('string');
 ELSE
 dbms_output.put_line('integer');
 END IF;
END;

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-33

GET_TIME Function

This function finds out the current time in 100th's of a second. It is primarily useful
for determining elapsed time.

Syntax
DBMS_UTILITY.GET_TIME
 RETURN NUMBER;

Return Values
Time is the number of 100th's of a second from some arbitrary epoch.

IS_CLUSTER_DATABASE Function

104-34 PL/SQL Packages and Types Reference

IS_CLUSTER_DATABASE Function

This function finds out if this database is running in cluster database mode.

Syntax
DBMS_UTILITY.IS_CLUSTER_DATABASE
 RETURN BOOLEAN;

Return Values
This function returns TRUE if this instance was started in cluster database mode;
FALSE otherwise.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-35

MAKE_DATA_BLOCK_ADDRESS Function

This function creates a data block address given a file number and a block number.
A data block address is the internal structure used to identify a block in the
database. This function is useful when accessing certain fixed tables that contain
data block addresses.

Syntax
DBMS_UTILITY.MAKE_DATA_BLOCK_ADDRESS (
 file NUMBER,
 block NUMBER)
 RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references (make_data_block_address, WNDS, RNDS, WNPS, RNPS);

Return Values

Table 104–23 MAKE_DATA_BLOCK_ADDRESS Function Parameters

Parameter Description

file File that contains the block.

block Offset of the block within the file in terms of block increments.

Table 104–24 MAKE_DATA_BLOCK_ADDRESS Function Return Values

Returns Description

dba Data block address.

NAME_RESOLVE Procedure

104-36 PL/SQL Packages and Types Reference

NAME_RESOLVE Procedure

This procedure resolves the given name, including synonym translation and
authorization checking as necessary.

Syntax
DBMS_UTILITY.NAME_RESOLVE (
 name IN VARCHAR2,
 context IN NUMBER,
 schema OUT VARCHAR2,
 part1 OUT VARCHAR2,
 part2 OUT VARCHAR2,
 dblink OUT VARCHAR2,
 part1_type OUT NUMBER,
 object_number OUT NUMBER);

Parameters

Table 104–25 NAME_RESOLVE Procedure Parameters

Parameter Description

name Name of the object.

This can be of the form [[a.]b.]c[@d], where a, b, c are SQL identifier
and d is a dblink. No syntax checking is performed on the dblink. If
a dblink is specified, or if the name resolves to something with a
dblink, then object is not resolved, but the schema, part1, part2
and dblink OUT parameters are filled in.

a, b and c may be delimited identifiers, and may contain
Globalization Support (NLS) characters (single and multibyte).

context Must be an integer between 0 and 8.

schema Schema of the object: c. If no schema is specified in name, then the
schema is determined by resolving the name.

part1 First part of the name. The type of this name is specified part1_
type (synonym, procedure or package).

part2 If this is non-NULL, then this is a procedure name within the
package indicated by part1.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-37

Exceptions
All errors are handled by raising exceptions. A wide variety of exceptions are
possible, based on the various syntax error that are possible when specifying object
names.

dblink If this is non-NULL, then a database link was either specified as part
of name or name was a synonym which resolved to something with
a database link. In this later case, part1_type indicates a
synonym.

part1_type Type of part1 is:

5 - synonym

7 - procedure (top level)

8 - function (top level)

9 - package

If a synonym, then it means that name is a synonym that translates
to something with a database link. In this case, if further name
translation is desired, then you must call the DBMS_
UTILITY.NAME_RESOLVE procedure on this remote node.

object_number Object identifier

Table 104–25 NAME_RESOLVE Procedure Parameters

Parameter Description

NAME_TOKENIZE Procedure

104-38 PL/SQL Packages and Types Reference

NAME_TOKENIZE Procedure

This procedure calls the parser to parse the given name as "a [. b [. c]][@ dblink]". It
strips double quotes, or converts to uppercase if there are no quotes. It ignores
comments of all sorts, and does no semantic analysis. Missing values are left as
NULL.

Syntax
DBMS_UTILITY.NAME_TOKENIZE (
 name IN VARCHAR2,
 a OUT VARCHAR2,
 b OUT VARCHAR2,
 c OUT VARCHAR2,
 dblink OUT VARCHAR2,
 nextpos OUT BINARY_INTEGER);

Parameters
For each of a, b, c, dblink, tell where the following token starts in anext, bnext,
cnext, dnext respectively.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-39

PORT_STRING Function

This function returns a string that identifies the operating system and the TWO TASK
PROTOCOL version of the database. For example, "VAX/VMX-7.1.0.0"

The maximum length is port-specific.

Syntax
DBMS_UTILITY.PORT_STRING
 RETURN VARCHAR2;

Pragmas
pragma restrict_references(port_string, WNDS, RNDS, WNPS, RNPS);

TABLE_TO_COMMA Procedures

104-40 PL/SQL Packages and Types Reference

TABLE_TO_COMMA Procedures

These procedures converts a PL/SQL table of names into a comma-delimited list of
names. This takes a PL/SQL table, 1..n, terminated with n+1 null. The second
version supports fully-qualified attribute names.

Syntax
DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN UNCL_ARRAY,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN lname_array,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

Parameters

Return Values
Returns a comma-delimited list and the number of elements found in the table.

Table 104–26 TABLE_TO_COMMA Procedure Parameters

Parameter Description

tab PL/SQL table which contains list of table names.

tablen Number of tables in the PL/SQL table.

list Comma separated list of tables.

Summary of DBMS_UTILITY Subprograms

DBMS_UTILITY 104-41

VALIDATE Procedure

This procedure makes invalid database objects valid.

Syntax
 DBMS_UTILITY.VALIDATE(
 object_id NUMBER);

Parameters

Usage Notes
No errors are raised if the object does not exist or is already valid or is an object that
cannot be validated.

Table 104–27 VALIDATE Procedure Parameters

Parameter Description

object_id The ID number of object to be validated. This is the same as the
value of the OBJECT_ID column from ALL_OBJECTS.

VALIDATE Procedure

104-42 PL/SQL Packages and Types Reference

DBMS_WARNING 105-1

105
DBMS_WARNING

The DBMS_WARNING package provides a way to manipulate the behavior of
PL/SQL warning messages, in particular by reading and changing the setting of the
PLSQL_WARNINGS initialization parameter to control what kinds of warnings are
suppressed, displayed, or treated as errors. This package provides the interface to
query, modify and delete current system or session settings.

This chapter contains the following topics:

■ Using DBMS_WARNING

■ Security Model

■ Summary of DBMS_WARNING Subprograms

Using DBMS_WARNING

105-2 PL/SQL Packages and Types Reference

Using DBMS_WARNING

■ Security Model

Security Model

Note that for all the following interfaces, if value of the scope parameter is SYSTEM,
then the user must have ALTER SYSTEM privilege.

Summary of DBMS_WARNING Subprograms

DBMS_WARNING 105-3

Summary of DBMS_WARNING Subprograms

Table 105–1 DBMS_WARNING Package Subprograms

Subprogram Description

ADD_WARNING_SETTING_
CAT Procedure on page 105-4

Modifies the current session or system warning
settings of the warning_category previously supplied

ADD_WARNING_SETTING_
NUM Procedure on page 105-5

Modifies the current session or system warning
settings of the or warning_number previously supplied

GET_CATEGORY Function on
page 105-6

Returns the category name, given the message
number

GET_WARNING_SETTING_
CAT Function on page 105-7

Returns the specific warning category in the session

GET_WARNING_SETTING_
NUM Function on page 105-8

Returns the specific warning number in the session

GET_WARNING_SETTING_
STRING Function on page 105-9

Returns the entire warning string for the current
session

SET_WARNING_SETTING_
STRING Procedure on
page 105-10

Replaces previous settings with the new value

ADD_WARNING_SETTING_CAT Procedure

105-4 PL/SQL Packages and Types Reference

ADD_WARNING_SETTING_CAT Procedure

You can modify the current session's or system's warning settings with the value
supplied. The value will be added to the existing parameter setting if the value for
the warning_category or warning_value has not been set, or override the
existing value. The effect of calling this function is same as adding the qualifier
(ENABLE/DISABLE/ERROR) on the category specified to the end of the current
session or system setting.

Syntax
DBMS_WARNING.ADD_WARNING_SETTING_CAT (
 warning_category IN VARCHAR2,
 warning_value IN VARCHAR2,
 scope IN VARCAHR2);

Parameters

Table 105–2 ADD_WARNING_SETTING_CAT Procedure Parameters

Parameter Description

warning_category Name of the category. Allowed values are ALL,
INFORMATIONAL, SEVERE and PERFORMANCE.

warning_value Value for the category. Allowed values are ENABLE, DISABLE,
and ERROR.

scope Specifies if the changes are being performed in the session
context or the system context. Allowed values are SESSION or
SYSTEM.

Summary of DBMS_WARNING Subprograms

DBMS_WARNING 105-5

ADD_WARNING_SETTING_NUM Procedure

You can modify the current session or system warning settings with the value
supplied. If the value was already set, you will override the existing value. The
effect of calling this function is same as adding the qualifier (ENABLE / DISABLE/
ERROR) on the category specified to the end of the current session or system setting.

Syntax
DBMS_WARNING.ADD_WARNING_SETTING_NUM (
 warning_number IN NUMBER,
 warning_value IN VARCHAR2,
 scope IN VARCAHR2);

Parameters

Table 105–3 ADD_WARNING_SETTING_NUM Procedure Parameters

Parameter Description

warning_number The warning number. Allowed values are all valid warning
numbers.

warning_value Value for the category. Allowed values are ENABLE, DISABLE,
and ERROR.

scope Specifies if the changes are being performed in the session
context or the system context. Allowed values are SESSION or
SYSTEM.

GET_CATEGORY Function

105-6 PL/SQL Packages and Types Reference

GET_CATEGORY Function

This function returns the category name, given the message number.

Syntax
DBMS_WARNING.GET_CATEGORY (
 warning_number IN pls_integer)
RETURN VARCHAR2;

Parameters

Table 105–4 GET_CATEGORY Function Parameters

Parameter Description

warning_number The warning message number.

Summary of DBMS_WARNING Subprograms

DBMS_WARNING 105-7

GET_WARNING_SETTING_CAT Function

This function returns the specific warning category setting for the current session.

Syntax
DBMS_WARNING.GET_WARNING_SETTING_CAT (
 warning_category IN VARCHAR2)
RETURN warning_value;

Parameters

Table 105–5 GET_WARNING_SETTING_CAT Function Parameters

Parameter Description

warning_category Name of the category. Allowed values are all valid category
names (ALL, INFORMATIONAL, SEVERE and PERFORMANCE).

GET_WARNING_SETTING_NUM Function

105-8 PL/SQL Packages and Types Reference

GET_WARNING_SETTING_NUM Function

This function returns the specific warning number setting for the current session.

Syntax
DBMS_WARNING.GET_WARNING_SETTING_NUM (
 warning_number IN NUMBER)
RETURN warning_value;

Parameters

Table 105–6 GET_WARNING_SETTING_NUM Function Parameters

Parameter Description

warning_number Warning number. Allowed values are all valid warning
numbers.

Summary of DBMS_WARNING Subprograms

DBMS_WARNING 105-9

GET_WARNING_SETTING_STRING Function

This function returns the entire warning string for the current session.

Syntax
DBMS_WARNING.GET_WARNING_SETTING_STRING
 RETURN pls_integer;

Usage Notes
Use this function when you do not have SELECT privilege on v$parameter or
v$paramater2 fixed tables, or if you want to parse the warning string yourself
and then modify and set the new value using SET_WARNING_SETTING_STRING.

SET_WARNING_SETTING_STRING Procedure

105-10 PL/SQL Packages and Types Reference

SET_WARNING_SETTING_STRING Procedure

This procedureS replaces previous settings with the new value. The warning string
may contain mix of category and warning numbers using the same syntax as used
on the right hand side of '=' when issuing an ALTER SESSION or SYSTEM SET
PLSQL_WARNINGS command. This will have same effect as ALTER SESSION OR
ALTER SYSTEM command.

Syntax
DBMS_WARNING.SET_WARNING_SETTING_STRING (
 warning_value IN VARCHAR2,
 scope IN VARCHAR2);

Parameters

Table 105–7 SET_WARNING_SETTING_STRING Procedure Parameters

Parameter Description

warning_value The new string that will constitute the new value.

scope This will specify if the changes are being done in the session
context, or system context. Allowed values are SESSION or
SYSTEM.

DBMS_WORKLOAD_REPOSITORY 106-1

106
DBMS_WORKLOAD_REPOSITORY

The DBMS_WORKLOAD_REPOSITORY package lets you manage the Workload
Repository, performing operations such as managing snapshots and baselines.

The chapter contains the following topic:

■ Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

106-2 PL/SQL Packages and Types Reference

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

Table 106–1 DBMS_WORKLOAD_REPOSITORY Package Subprograms

Subprogram Description

AWR_REPORT_HTML Function
on page 106-3

Displays the AWR report in HTML

AWR_REPORT_TEXT Function
on page 106-4

Displays the AWR report in text

CREATE_BASELINE Function
and Procedure on page 106-5

Creates a single baseline

CREATE_SNAPSHOT Function
and Procedure on page 106-6

Creates a manual snapshot immediately

DROP_BASELINE Procedure on
page 106-7

Drops a range of snapshots

DROP_SNAPSHOT_RANGE
Procedure on page 106-8

Activates service

MODIFY_SNAPSHOT_
SETTINGS Procedure on
page 106-9

Modifies the snapshot settings.

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

DBMS_WORKLOAD_REPOSITORY 106-3

AWR_REPORT_HTML Function

This table function displays the AWR report in HTML.

Syntax
DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_HTML(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Return Values
The output will be one column of VARCHAR2(150).

Usage Notes
You can call the function directly but Oracle recommends you use the awrrpt.sql
script which prompts users for the required information.

Table 106–2 AWR_REPORT_HTML Parameters

Parameter Description

l_dbid The database identifier.

l_ins_num The instance number.

l_bid The 'Begin Snapshot' Id

l_eid The 'End Snapshot' Id

l_options A flag to specify to control the output of the report. Currently,
Oracle supports one value :

■ l_options - 8. Displays the ADDM specific portions
of the report. These sections include the Buffer Pool
Advice, Shared Pool Advice, PGA Target Advice, and
Wait Class sections.

AWR_REPORT_TEXT Function

106-4 PL/SQL Packages and Types Reference

AWR_REPORT_TEXT Function

This table function displays the AWR report in text.

Syntax
DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_TEXT(
 l_dbid IN NUMBER,
 l_inst_num IN NUMBER,
 l_bid IN NUMBER,
 l_eid IN NUMBER,
 l_options IN NUMBER DEFAULT 0)
 RETURN awrrpt_text_type_table PIPELINED;

Parameters

Return Values
The output will be one column of VARCHAR2(80).

Usage Notes
You can call the function directly but Oracle recommends you use the awrrpt.sql
script which prompts users for the required information.

Table 106–3 AWR_REPORT_TEXT Parameters

Parameter Description

l_dbid The database identifier.

l_ins_num The instance number.

l_bid The 'Begin Snapshot' Id

l_eid The 'End Snapshot' Id

l_options A flag to specify to control the output of the report. Currently,
Oracle supports one value :

■ l_options - 8. Displays the ADDM specific portions
of the report. These sections include the Buffer Pool
Advice, Shared Pool Advice, PGA Target Advice, and
Wait Class sections.

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

DBMS_WORKLOAD_REPOSITORY 106-5

CREATE_BASELINE Function and Procedure

This function and procedure creates a baseline.

Syntax
DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_snap_id IN NUMBER,
 end_snap_id IN NUMBER,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL);

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_snap_id IN NUMBER,
 end_snap_id IN NUMBER,
 baseline_name IN VARCHAR2,
 dbid IN NUMBER DEFAULT NULL)
 RETURN NUMBER;

Parameters

Examples
This example creates a baseline (named 'oltp_peakload_bl') between snapshots
105 and 107 for the local database:

EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 105,
end_snap_id => 107,
baseline_name => 'oltp_peakload_bl');

If you query the DBA_HIST_BASELINE view after the Create Baseline action, you
will see the newly created baseline in the Workload Repository.

Table 106–4 CREATE_BASELINE Parameters

Parameter Description

start_snap_id The start snapshot sequence number.'

end_snap_id The end snapshot sequence number.

baseline_name The name of baseline.

dbid The database id (default to local DBID).

CREATE_SNAPSHOT Function and Procedure

106-6 PL/SQL Packages and Types Reference

CREATE_SNAPSHOT Function and Procedure

This function and procedure create snapshots.In the case of the function, the
snapshot ID is returned.

Syntax
DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(

flush_level IN VARCHAR2 DEFAULT 'TYPICAL');

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(
flush_level IN VARCHAR2 DEFAULT 'TYPICAL')

 RETURN NUMBER;

Parameters

Examples
This example creates a manual snapshot at the TYPICAL level:

EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT();

If you query the DBA_HIST_SNAPSHOT view after the CREATE_SNAPSHOT action,
you will see one more snapshot ID added to the Workload Repository.

Table 106–5 CREATE_SNAPSHOT Parameters

Parameter Description

flush_level The flush level for the snapshot is either 'TYPICAL' or 'ALL'

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

DBMS_WORKLOAD_REPOSITORY 106-7

DROP_BASELINE Procedure

This procedure drops a baseline.

Syntax
DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(
 baseline_name IN VARCHAR2,
 cascade IN BOOLEAN DEFAULT false,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Examples
This example drops the baseline 'oltp_peakload_bl' without dropping the
underlying snapshots:

EXECUTE DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (
 baseline_name => 'oltp_peakload_bl');

If you query the DBA_HIST_BASELINE view after the DROP_BASELINE action, you
will see the specified baseline definition is removed. You can query the DBS_HIST_
SNAPSHOT view to find that the underlying snapshots are left intact.

Table 106–6 DROP_BASELINE Parameters

Parameter Description

baseline_name The name of baseline.

cascade If TRUE, the pair of snapshots associated with the baseline will
also be dropped. Otherwise, only the baseline is removed.

dbid The (optional) database id (default to local DBID).

DROP_SNAPSHOT_RANGE Procedure

106-8 PL/SQL Packages and Types Reference

DROP_SNAPSHOT_RANGE Procedure

This procedure drops a range of snapshots.

Syntax
DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(
 low_snap_id IN NUMBER,
 high_snap_id IN NUMBER
 dbid IN NUMBER DEFAULT NULL);

Parameters

Examples
This example drops the range of snapshots between snapshot id 102 to 105 for the
local database:

EXECUTE DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(102, 105);

If you query the dba_hist_snapshot view after the Drop Snapshot action,
you will see that snapshots 102 to 105 are removed from the Workload Repository.

Table 106–7 DROP_SNAPSHOT_RANGE Procedure Parameters

Parameter Description

low_snap_id The low snapshot id of snapshots to drop.

high_snap_id The high snapshot id of snapshots to drop.

dbid The database id (default to local DBID.

Summary of DBMS_WORKLOAD_REPOSITORY Subprograms

DBMS_WORKLOAD_REPOSITORY 106-9

MODIFY_SNAPSHOT_SETTINGS Procedure

This procedure controls two aspects of snapshot generation. The INTERVAL setting
affects how often snapshots are automatically captured while the RETENTION
setting affects how long snapshots are retained in the Workload Repository.

Syntax
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS((
 retention IN NUMBER DEFAULT NULL,
 interval IN NUMBER DEFAULT NULL,
 dbid IN NUMBER DEFAULT NULL);

Parameters

Examples
This example changes the interval setting to one hour and the retention
setting to two weeks for the local database:

execute dbms_workload_repository.modify_snapshot_settings(interval => 60,
retention => 20160);

If you query the DBA_HIST_WR_CONTROL table after this procedure is executed,
you will see the changes to these settings.

Table 106–8 MODIFY_SNAPSHOT_SETTINGS Procedure Parameters

Parameter Description

retention The new retention time (in minutes). The specified value must
be in the range of 1 day to 100 years. If ZERO is specified, the
maximum value of 100 years will be used. If NULL is specified,
the old value for retention is preserved.

interval The new interval setting between each snapshot, in units of
minutes. The specified value must be in the range between 10
minutes to 1 year. If ZERO is specified, the maximum value of 1
year will be used. If NULL is specified, the current value is
preserved.

dbid The database id (default to local DBID.

MODIFY_SNAPSHOT_SETTINGS Procedure

106-10 PL/SQL Packages and Types Reference

DBMS_WM 107-1

107
DBMS_WM

The DBMS_WM package provides an interface to Oracle Database Workspace
Manager (often referred to as Workspace Manager).

■ Documentation of DBMS_WM

Documentation of DBMS_WM

107-2 PL/SQL Packages and Types Reference

Documentation of DBMS_WM

For a complete description of this package, see DBMS_WM in Oracle Database
Application Developer's Guide - Workspace Manager.

DBMS_XDB 108-1

108
DBMS_XDB

The DBMS_XDB package supports the following features:

■ Resource Management subprograms which complement Resource Views

■ The Access Control List (ACL)-based Security Mechanism

■ Configuration Session Management

■ Creation of the XDB username

This chapter contains the following topics:

■ Using DBMS_XDB

■ Overview

■ Constants

■ Summary of DBMS_XDB Subprograms

See Also:

■ Oracle XML DB Developer's Guide

■ Oracle Database New Features

Using DBMS_XDB

108-2 PL/SQL Packages and Types Reference

Using DBMS_XDB

■ Overview

■ Constants

Overview

The DBMS_XDB package supports the following features:

■ The Resource Management functionality provides LINK Procedure,
EXISTSRESOURCE Function, LOCKRESOURCE Function, GETLOCKTOKEN
Procedure, UNLOCKRESOURCE Function, CREATERESOURCE Functions,
RENAMERESOURCE Procedure, DELETERESOURCE Procedure, GETRESOID
Function, CREATEOIDPATH Function, REBUILDHIERARCHICALINDEX
Procedure and CREATEFOLDER Function methods, which complement
Resource Views.

■ The Access Control List (ACL)-based Security Mechanism can be used with
in-hierarchy ACLs stored by the database or in-memory ACLs that may be
stored outside the database. Some of these methods can be used for both Oracle
resources and arbitrary database objects. Use CHECKPRIVILEGES Function,
GETACLDOCUMENT Procedure, CHANGEPRIVILEGES Function and
GETPRIVILEGES Function for Oracle Resources. ACLCHECKPRIVILEGES
Function provides access to Oracle's ACL-based Security mechanism without
storing objects in the Hierarchy.

■ Configuration Session Management is supported by CFG_REFRESH
Procedure, CFG_GET Function and CFG_UPDATE Procedure. methods.

■ The XDB username is created during XDB installation. This user owns a set of
default tables and packages. GETXDB_TABLESPACE Function and MOVEXDB_
TABLESPACE Procedure enable movement of schemas to a specified
tablespace, and support the default SYSAUX tablespace introduction

Using DBMS_XDB

DBMS_XDB 108-3

Constants

Table 108–1 Defined Constants for DBMS_XDB

Constant Definition Description

DELTE_RESOURCE CONSTANT NUMBER :=1 Deletes a resource; fails if the resource has
children.

DELETE_
RECURSIVE

CONSTANT NUMBER :=2 Deletes a resource and its children, if any.

DELETE_FORCE CONSTANT NUMBER :=3 Deletes the resource, even if the object it
contains is invalid.

DELETE_
RECURSIVE_
FORCE

CONSTANT NUMBER :=4 Deletes a resource and its children, if any,
even if the object it contains is invalid.

Summary of DBMS_XDB Subprograms

108-4 PL/SQL Packages and Types Reference

Summary of DBMS_XDB Subprograms

Table 108–2 DBMS_XDB Package Subprograms

Subprogram Description

ACLCHECKPRIVILEGES
Function on page 108-6

Checks access privileges granted to the current user by
specified ACL document on a resource whose owner is
specified by the 'owner' parameter.

CFG_GET Function on
page 108-7

Retrieves the session's configuration information

CFG_REFRESH Procedure on
page 108-8

Refreshes the session's configuration information to the
latest configuration

CFG_UPDATE Procedure on
page 108-9

Updates the configuration information

CHANGEPRIVILEGES Function
on page 108-10

Adds the given ACE to the given resource's ACL

CHECKPRIVILEGES Function on
page 108-11

Checks access privileges granted to the current user on
the specified resource

CREATEFOLDER Function on
page 108-12

Creates a new folder resource in the hierarchy

CREATEOIDPATH Function on
page 108-13

Creates a virtual path to the resource based on object ID

CREATERESOURCE Functions
on page 108-14

Creates a new resource

DELETERESOURCE Procedure
on page 108-17

Deletes a resource from the hierarchy

EXISTSRESOURCE Function on
page 108-18

Determines if a resource is the hierarchy, based on its
absolute path

GETACLDOCUMENT Procedure
on page 108-19

Retrieves ACL document that protects resource given its
path name

GETLOCKTOKEN Procedure on
page 108-20

Returns that resource's lock token for the current user
given a path to a resource

GETPRIVILEGES Function on
page 108-21

Gets all privileges granted to the current user on the
given resource

GETRESOID Function on
page 108-22

Returns the object ID of the resource from its absolute
path

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-5

GETXDB_TABLESPACE
Function on page 108-23

Returns the current tablespace of the XDB (user)

LINK Procedure on page 108-24 Creates a link to an existing resource

LOCKRESOURCE Function on
page 108-25

Gets a WebDAV-style lock on that resource given a path
to that resource

MOVEXDB_TABLESPACE
Procedure on page 108-26

Moves the XDB (user) to the specified tablespace

REBUILDHIERARCHICALINDE
X Procedure on page 108-27

Rebuilds the hierarchical index after import or export
operations

RENAMERESOURCE Procedure
on page 108-28

Renames the XDB resource

SETACL Procedure on
page 108-29

Sets the ACL on the given resource

UNLOCKRESOURCE Function
on page 108-30

Unlocks the resource given a lock token and resource
path

Table 108–2 (Cont.) DBMS_XDB Package Subprograms

Subprogram Description

ACLCHECKPRIVILEGES Function

108-6 PL/SQL Packages and Types Reference

ACLCHECKPRIVILEGES Function

This function checks access privileges granted to the current user by specified ACL
document by the OWNER of the resource. Returns positive integer if all privileges are
granted.

Syntax
DBMS_XDB.ACLCHECKPRIVILEGES(

acl_path IN VARCHAR2,
owner IN VARCHAR2,
privs IN xmltype)

 RETURN PLS_INTEGER;

Parameters

Table 108–3 ACLCHECKPRIVILEGES Function Parameters

Parameter Description

acl_path Absolute path in the Hierarchy for ACL document.

owner Resource owner name; the pseudo user "DAV:owner" is replaced by this
user during ACL privilege resolution.

privs An XMLType instance of the privilege element specifying the requested
set of access privileges. See description for CHECKPRIVILEGES
Function.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-7

CFG_GET Function

This function retrieves the session's configuration information as an XMLType
instance.

Syntax
DBMS_XDB.CFG_GET
 RETURN SYS.XMLType;

CFG_REFRESH Procedure

108-8 PL/SQL Packages and Types Reference

CFG_REFRESH Procedure

This procedure refreshes the session's configuration information to the latest
configuration.

Syntax
DBMS_XDB.CFG_REFRESH;

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-9

CFG_UPDATE Procedure

This procedure updates the configuration information and commits the change.

Syntax
DBMS_XDB.CFG_UPDATE(

xdbconfig IN SYS.XMLTYPE);

Parameters

Table 108–4 CFG_UPDATE Procedure Parameters

Parameter Description

xdbconfig The new configuration data.

CHANGEPRIVILEGES Function

108-10 PL/SQL Packages and Types Reference

CHANGEPRIVILEGES Function

This function adds the given ACE to the given resource's ACL.

Syntax
DBMS_XDB.CHANGEPRIVILEGES(

res_path IN VARCHAR2,
ace IN xmltype)

 RETURN PLS_INTEGER;

Parameters

Return Values
It returns a positive integer if the ACL was successfully modified.

Usage Notes
If no ACE with the same principal and the same operation (grant/deny) already
exists in the ACL, the new ACE is added at the end of the ACL.

Table 108–5 CHANGEPRIVILEGES Function Parameters

Parameter Description

res_path Path name of the resource for which privileges need to be changed.

ace An XMLType instance of the <ace> element which specifies the
<principal>, the operation <grant> and the list of privileges.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-11

CHECKPRIVILEGES Function

This function checks access privileges granted to the current user on the specified
resource.

Syntax
DBMS_XDB.CHECKPRIVILEGES(

res_path IN VARCHAR2,
privs IN xmltype)

RETURN PLS_INTEGER;

Parameters

Return Values
Returns positive integer if all requested privileges granted.

Table 108–6 CHECKPRIVILEGES Function Parameters

Parameter Description

res_path Absolute path in the Hierarchy for resource.

privs An XMLType instance of the privilege element specifying the requested
set of access privileges.

CREATEFOLDER Function

108-12 PL/SQL Packages and Types Reference

CREATEFOLDER Function

This function creates a new folder resource in the hierarchy.

Syntax
DBMS_XDB.CREATEFOLDER(

path IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if operation successful; FALSE, otherwise.Returns TRUE if operation
successful; FALSE, otherwise.

Usage Notes
The given path name's parent folder must already exist in the hierarchy: if
'/folder1/folder2' is passed as the path parameter, then '/folder1' must
already exist.

Table 108–7 CREATEFOLDER Function Parameters

Parameter Description

path Path name for the new folder.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-13

CREATEOIDPATH Function

This function creates a virtual path to the resource based on object ID.

Syntax
DBMS_XDB.CREATEOIDPATH(

oid IN RAW)
 RETURN VARCHAR2;

Parameters

Table 108–8 CREATEOIDPATH Function Parameters

Parameter Description

oid Object ID of the resource.

CREATERESOURCE Functions

108-14 PL/SQL Packages and Types Reference

CREATERESOURCE Functions

The functions create a new resource. The description of the overload options
precede each version of the syntax

Syntax
Creates a new resource with the given string as its contents:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
data IN VARCHAR2)

 RETURN BOOLEAN;

Creates a new resource with the given XMLType data as its contents:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
data IN SYS.XMLTYPE)

 RETURN BOOLEAN;

Given a REF to an existing XMLType row, creates a resource whose contents point to
that row. That row should not already exist inside another resource:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
datarow IN REF SYS.XMLTYPE)

 RETURN BOOLEAN;

Creates a resource with the given BLOB as its contents, and specifies character set of
the source BLOB:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
data IN BLOB,
csid IN NUMBER :=0)

 RETURN BOOLEAN;

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-15

Creates a resource with the given BFILE as its contents, and specifies character set
of the source BFILE:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
data IN BFILE,
csid IN NUMBER :=0)

 RETURN BOOLEAN;

Creates a resource with the given CLOB as its contents:

DBMS_XDB.CREATERESOURCE(
path IN VARCHAR2,
data IN CLOB)

 RETURN BOOLEAN;

Parameters

Table 108–9 CREATERESOURCE Function Parameters

Parameter Description

path Path name of the resource to create. The path name's parent folder must
already exist in the hierarchy. In other words, if /foo/bar.txt is passed
in, then folder /foo must already exist.

data The new resource's contents. The data will be parsed to check if it
contains a schema-based XML document, and the contents will be stored
as schema-based in the schema's default table. Otherwise, it will be saved
as binary data.

datarow REF to an XMLType row to be used as the contents.

csid Character set id of the document. Must be a valid Oracle id; otherwise
returns an error.

If a zero CSID is specified then the data is defaulted to the database
character set. Otherwise, the encoding of the data is determined as
follows:

■ From the path extension, determine the resource's MIME type.

■ If the MIME type is */xml, then the encoding is detected based on
Appendix F of the W3C XML 1.0 Reference at
http://www.w3.org/TR/2000/REC-xml-20001006; otherwise, it is
defaulted to the database character set.

CREATERESOURCE Functions

108-16 PL/SQL Packages and Types Reference

Return Values
Returns TRUE if operation successful; FALSE, otherwise.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-17

DELETERESOURCE Procedure

This procedure deletes a resource from the hierarchy.

Syntax
DBMS_XDB.DELETERESOURCE(

path IN VARCHAR2,
delete_option IN PLS_INTEGER);

Parameters

Table 108–10 DELETERESOURCE Procedure Parameters

Parameter Description

path Path name of the resource to delete.

delete_option The option that controls how a a resource is deleted; defined in
Table 108–1 on page 108-3:

■ DELETE_RESOURCE

■ DELETE_RECURSIVE

■ DELETE_FORCE

■ DELETE_RECURSIVE_FORCE

EXISTSRESOURCE Function

108-18 PL/SQL Packages and Types Reference

EXISTSRESOURCE Function

This function indicates if a resource is in the hierarchy. Matches resource by a string
that represents its absolute path.

Syntax
DBMS_XDB.EXISTSRESOURCE(

abspath IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if the resource is found.

Table 108–11 EXISTSRESOURCE Function Parameters

Parameter Description

abspath Path name of the resource whose ACL document is required.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-19

GETACLDOCUMENT Procedure

This procedure retrieves ACL document that protects resource given its path name.

Syntax
DBMS_XDB.GETACLDOCUMENT(

abspath IN VARCHAR2)
RETURN sys.xmltype;

Parameters

Return Values
Returns the XMLType for ACL document.

Table 108–12 GETACLDOCUMENT Function Parameters

Parameter Description

abspath Path name of the resource whose ACL document is required.

GETLOCKTOKEN Procedure

108-20 PL/SQL Packages and Types Reference

GETLOCKTOKEN Procedure

Given a path to a resource, this procedure returns that resource's lock token for the
current user.

Syntax
DBMS_XDB.GETLOCKTOKEN(

path IN VARCHAR2,
locktoken OUT VARCHAR2);

Parameters

Usage Notes
The user must have READPROPERTIES privilege on the resource.

Table 108–13 GETLOCKTOKEN Procedure Parameters

Parameter Description

path Path name to the resource.

locktoken Logged-in user's lock token for the resource.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-21

GETPRIVILEGES Function

This function gets all privileges granted to the current user on the given resource.

Syntax
DBMS_XDB.GETPRIVILEGES(

res_path IN VARCHAR2)
 RETURN sys.xmltype;

Parameters

Return Values
Returns an XMLType instance of <privilege> element, which contains the list of
all leaf privileges granted on this resource to the current user.

Table 108–14 GETPRIVILEGES Function Parameters

Parameter Description

res_path Absolute path in the hierarchy of the resource.

GETRESOID Function

108-22 PL/SQL Packages and Types Reference

GETRESOID Function

Returns the object ID of the resource from its absolute path.

Syntax
DBMS_XDB.GETRESOID(

abspath IN VARCHAR2)
RETURN RAW;

Parameters

Return Values
Returns NULL if the resource is not present.

Table 108–15 GETRESOID Function Parameters

Parameter Description

abspath_path Absolute path of the resource.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-23

GETXDB_TABLESPACE Function

This function returns the current tablespace of the XDB (user).

Syntax
DBMS_XDB.GETXDB_TABLESPACE
 RETURN VARCHAR2;

LINK Procedure

108-24 PL/SQL Packages and Types Reference

LINK Procedure

This procedure creates a link to an existing resource.

Syntax
DBMS_XDB.LINK(

srcpath IN VARCHAR2,
linkfolder IN VARCHAR2,
linkname IN VARCHAR2);

Parameters

Table 108–16 LINK Procedure Parameters

Parameter Description

srcpath Path name of the resource to which a link is made

linkfolder Folder in which the new link is placed.

linkname Name of the new link.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-25

LOCKRESOURCE Function

Given a path to a resource, this function gets a WebDAV-style lock on that resource.

Syntax
DBMS_XDB.LOCKRESOURCE(

path IN VARCHAR2,
depthzero IN BOOLEAN,
shared IN boolean)

RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if successful.

Usage Notes
The user must have UPDATE privileges on the resource.

Table 108–17 LOCKRESOURCE Function Parameters

Parameter Description

path Path name of the resource to lock.

depthzero NOT SUPPORTED. Only given resource is locked. In future
releases, passing FALSE will obtain an infinite-depth lock.

shared Passing TRUE will obtain a shared write lock.

MOVEXDB_TABLESPACE Procedure

108-26 PL/SQL Packages and Types Reference

MOVEXDB_TABLESPACE Procedure

This procedure moves the XDB (user) to the specified tablespace.

Syntax
DBMS_XDB.MOVEXDB_TABLESPACE(

new_tablespace IN VARCHAR2);

Parameters

Usage Notes
This operation waits for all concurrent XDB sessions to exit.

Table 108–18 MOVEXDB_TABLESPACE Procedure Parameters

Parameter Description

new_tablespace Name of the tablespace where the XDB will be moved.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-27

REBUILDHIERARCHICALINDEX Procedure

This procedure rebuilds the hierarchical index after import or export operations.
This is necessary because data cannot be exported from index tables.

Syntax
DBMS_XDB.REBUILDHIERARCHICALINDEX;

RENAMERESOURCE Procedure

108-28 PL/SQL Packages and Types Reference

RENAMERESOURCE Procedure

This procedure renames the XDB resource.

Syntax
DBMS_XDB.RENAMERESOURCE(

srcpath IN VARCHAR2,
destfolder IN CARCHAR2,
newname IN VARCHAR2);

Parameters

Table 108–19 RENAMERESOURCE Procedure Parameters

Parameter Description

srcpath Absolute path in the Hierarchy for the source resource
destination folder.

destfolder Absolute path in the Hierarchy for the destination folder.

newname Name of the child in the destination folder.

Summary of DBMS_XDB Subprograms

DBMS_XDB 108-29

SETACL Procedure

Sets the ACL on the given resource to be the ACL specified by path.

Syntax
DBMS_XDB.SETACL(

res_path IN VARCHAR2,
acl_path IN VARCHAR2);

Parameters

Usage Notes
The user must have <write-acl> privileges on the resource.

Table 108–20 SETACL Procedure Parameters

Parameter Description

res_path Absolute path in the Hierarchy for resource.

acl_path Absolute path in the Hierarchy for ACL.

UNLOCKRESOURCE Function

108-30 PL/SQL Packages and Types Reference

UNLOCKRESOURCE Function

This function unlocks the resource given a lock token and a path to the resource.

Syntax
DBMS_XDB.UNLOCKRESOURCE(

path IN VARCHAR2,
deltoken IN VARCHAR2)

 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if operation successful.

Usage Notes
The user must have UPDATE privileges on the resource.

Table 108–21 UNLOCKRESOURCE Function Parameters

Parameter Description

path Path name to the resource.

deltoken Lock token to be removed.

DBMS_XDB_VERSION 109-1

109
DBMS_XDB_VERSION

Oracle XML DB versioning APIs are found in the DBMS_XBD_VERSION package.
Functions and procedures of DBMS_XDB_VERSION help to create a VCR and
manage the versions in the version history.

This chapter contains the following topic:

■ Summary of DBMS_XDB_VERSION Subprograms

See Also: Oracle XML DB Developer's Guide

Summary of DBMS_XDB_VERSION Subprograms

109-2 PL/SQL Packages and Types Reference

Summary of DBMS_XDB_VERSION Subprograms

Table 109–1 DBMS_XDB_VERSION Package Subprograms

Method Description

CHECKIN Function on
page 109-3

Checks in a checked-out VCR and returns the resource id of
the newly-created version

CHECKOUT Procedure on
page 109-4

Checks out a VCR before updating or deleting it

GETCONTENTSBLOBBYRES
ID Function on page 109-5

Obtain contents as a BLOB

GETCONTENTSCLOBBYRES
ID Function on page 109-6

Obtain contents as a CLOB

GETCONTENTSXMLBYRESI
D Function on page 109-7

Obtain contents as an XMLType

GETPREDECESSORS
Function on page 109-8

Retrieves the list of predecessors by path name

GETPREDSBYRESID
Function on page 109-9

Retrieves the list of predecessors by resource id

GETRESOURCEBYRESID
Function on page 109-9

Obtains the resource as an XMLType, given the resource
object ID

GETSUCCESSORS Function
on page 109-9

Retrieves the list of successors by path name

GETSUCCSBYRESID
Function on page 109-12

Retrieves the list of successors by resource id

MAKEVERSIONED Function
on page 109-13

Turns a regular resource whose path name is given into a
version-controlled resource

UNCHECKOUT Function on
page 109-14

Checks in a checked-out resource, returns the resource id of
the version before the resource is checked out

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-3

CHECKIN Function

This function checks in a checked-out VCR and returns the resource id of the
newly-created version.

Syntax
DBMS_XDB_VERSION.CHECKIN(

pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Usage Notes
This is not an auto-commit SQL operation. CHECKIN Function doesn't have to
take the same path name that was passed to CHECKOUT Procedure operation.
However, the CHECKIN Function path name and the CHECKOUT Procedure
path name must be of the same resource for the operations to function correctly. If
the resource has been renamed, the new name must be used to CHECKIN
Function because the old name is either invalid or is currently bound with a
different resource. Exception is raised if the path name does not exist. If the path
name has been changed, the new path name must be used to CHECKIN Function
the resource.

Table 109–2 CHECKIN Function Parameters

Parameter Description

pathname The path name of the checked-out resource.

CHECKOUT Procedure

109-4 PL/SQL Packages and Types Reference

CHECKOUT Procedure

This procedure checks out a VCR before updating or deleting it.

Syntax
DBMS_XDB_VERSION.CHECKOUT(

pathname VARCHAR2);

Parameters

Usage Notes
This is not an auto-commit SQL operation. Two users of the same workspace cannot
CHECKOUT Procedure the same VCR at the same time. If this happens, one user
must rollback. As a result, it is good practice to commit the CHECKOUT Procedure
operation before updating a resource and avoid loss of the update if the transaction
is rolled back. An exception is raised if the given resource is not a VCR, if the VCR
is already checked out, if the resource doesn't exist.

Table 109–3 CHECKOUT Procedure Parameters

Parameter Description

pathname The path name of the VCR to be checked out.

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-5

GETCONTENTSBLOBBYRESID Function

This function obtain contents as a BLOB.

Syntax
DBMS_XDB_VERSION.GETCONTENTSBLOBYRESID(

resid DBMS_XDB.resid_type)
 RETURN BLOB;

Parameters

Table 109–4 GETCONTENTSBLOBYRESID Function Parameters

Parameter Description

resid The resource id.

GETCONTENTSCLOBBYRESID Function

109-6 PL/SQL Packages and Types Reference

GETCONTENTSCLOBBYRESID Function

This function obtains contents as a CLOB.

Syntax
DBMS_XDB_VERSION.GETCONTENTSCLOBYRESID(

resid DBMS_XDB.resid_type)
 RETURN CLOB;

Parameters

Table 109–5 GETCONTENTSCLOBYRESID Function Parameters

Parameter Description

resid The resource id.

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-7

GETCONTENTSXMLBYRESID Function

This function obtains contents as an XMLType.

Syntax
DBMS_XDB_VERSION.GETCONTENTSXMLBYRESID(

resid DBMS_XDB.resid_type)
 RETURN XMLType;

Parameters

Return Values
If the contents are not valid XML, returns NULL.

Table 109–6 GETCONTENTSXMLBYRESID Function Parameters

Parameter Description

resid The resource id.

GETPREDECESSORS Function

109-8 PL/SQL Packages and Types Reference

GETPREDECESSORS Function

This function retrieves the list of predecessors by the path name.

Syntax
DBMS_XDB_VERSION.GETPREDECESSORS(

pathname VARCHAR2)
 RETURN resid_list_type;

Parameters

Return Values
An exception is raised if PATHNAME is illegal.

Table 109–7 GETPREDECESSORS Function Parameters

Parameter Description

pathname The path name of the resource.

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-9

GETPREDSBYRESID Function

This function retrieves the list of predecessors by resource id.

Syntax
DBMS_XDB_VERSION.GETPREDSBYRESID(

resid resid_type)
 RETURN resid_list_type;

Parameters

Usage Notes
Getting predecessors by RESID is more efficient than by PATHNAME.

Exceptions
An exception is raised if the RESID is illegal.

Table 109–8 GETPREDSBYRESID Function Parameters

Parameter Description

resid The resource id.

GETRESOURCEBYRESID Function

109-10 PL/SQL Packages and Types Reference

GETRESOURCEBYRESID Function

This function obtains the resource as an XMLType, given the resource object ID.
Because the system will not create a path name for versions, this function is useful
for retrieving the resource using its resource id.

Syntax
DBMS_XDB_VERSION.GETRESOURCEBYRESID(

resid resid_type)
 RETURN XMLType;

Parameters

Table 109–9 GETRESOURCEBYRESID Function Parameters

Parameter Description

resid The resource id.

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-11

GETSUCCESSORS Function

Given a version resource or a VCR, this function retrieves the list of the successors
of the resource by the path name.

Syntax
DBMS_XDB_VERSION.GETSUCCESSORS(

pathname VARCHAR2)
 RETURN resid_list_type;

Parameters

Usage Notes
Getting successors by RESID is more efficient than by PATHNAME.

Exceptions
An exception is raised if the PATHNAME is illegal.

Table 109–10 GETSUCCESSORS Function Parameters

Parameter Description

pathname The path name of the resource.

GETSUCCSBYRESID Function

109-12 PL/SQL Packages and Types Reference

GETSUCCSBYRESID Function

This function retrieves the list of the successors of the resource by resource id using
version resource or VCR.

Syntax
DBMS_XDB_VERSION.GETSUCCSBYRESID(

resid resid_type)
 RETURN resid_list_type;

Parameters

Usage Notes
Getting successors by RESID is more efficient than by PATHNAME.

Exceptions
An exception is raised if the PATHNAME is illegal.

Table 109–11 GETSUCCSBYRESID Function Parameters

Parameter Description

resid The resource id.

Summary of DBMS_XDB_VERSION Subprograms

DBMS_XDB_VERSION 109-13

MAKEVERSIONED Function

This function turns a regular resource whose path name is given into a
version-controlled resource. This new resource is then put under version control.
All other path names continue to refer to the original resource.

Syntax
DBMS_XDB_VERSION.MAKEVERSIONED(

pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Return Values
This function returns the resource ID of the first version, or root, of the VCR.

Usage Notes
If two or more path names are bound with the same resource, a copy of the resource
will be created, and the given path name will be bound with the newly-created
copy.

This is not an auto-commit SQL operation. An exception is raised if the resource
doesn't exist.

■ This call is legal for VCR, and neither exception nor warning is raised.

■ This call is illegal for folder, version history, version resource, and ACL.

■ No support for Schema-based resources is provided.

Table 109–12 MAKEVERSIONED Function Parameters

Parameter Description

pathname The path name of the resource to be put under version control.

UNCHECKOUT Function

109-14 PL/SQL Packages and Types Reference

UNCHECKOUT Function

This function checks-in a checked-out resource and returns the resource id of the
version before the resource is checked out.

Syntax
DBMS_XDB_VERSION.UNCHECKOUT(

pathname VARCHAR2)
 RETURN DBMS_XDB.resid_type;

Parameters

Usage Notes
This is not an auto-commit SQL operation. UNCHECKOUT Function doesn't have
to take the same path name that was passed to CHECKOUT Procedure operation.
However, the UNCHECKOUT Function path name and the CHECKOUT Procedure
path name must be of the same resource for the operations to function correctly. If
the resource has been renamed, the new name must be used to UNCHECKOUT
Function, because the old name is either invalid or is currently bound with a
different resource. If the path name has been changed, the new path name must be
used to UNCHECKOUT Function the resource.

Exceptions
An exception is raised if the path name doesn't exist.

Table 109–13 UNCHECKOUT Function Parameters

Parameter Description

pathname The path name of the checked-out resource.

DBMS_TTS 110-1

110
 DBMS_TTS

The DBMS_TTS package checks if the transportable set is self-contained. All
violations are inserted into a temporary table that can be selected from the view
TRANSPORT_SET_VIOLATIONS.

This chapter contains the following topics:

■ Using DBMS_TTS

■ Security Model

■ Exceptions

■ Operational Notes

■ Summary of DBMS_TTS Subprograms

See Also:

■ Oracle Database Administrator's Guide

■ Oracle Database Upgrade Guide

Using DBMS_TTS

110-2 PL/SQL Packages and Types Reference

Using DBMS_TTS

■ Security Model

■ Exceptions

■ Operational Notes

Security Model

Only users having the execute_catalog_role can execute this procedure. This
role is initially only assigned to user SYS.

Exceptions

ts_not_found EXCEPTION;
PRAGMA exception_init(ts_not_found, -29304);
ts_not_found_num NUMBER := -29304;

invalid_ts_list EXCEPTION;
PRAGMA exception_init(invalid_ts_list, -29346);
invalid_ts_list_num NUMBER := -29346;

sys_or_tmp_ts EXCEPTION;
PRAGMA exception_init(sys_or_tmp_ts, -29351);
sys_or_tmp_ts_num NUMBER := -29351;

Operational Notes

With respect to transportable tablespaces, disabled and enabled referential integrity
constraints are handled differently:

■ A disabled referential integrity constraint does not violate the transportability
rules and is dropped during the import phase.

■ An enabled referential integrity constraint violates the transportability rules if it
references a table in a tablespace outside the transportable set.

Summary of DBMS_TTS Subprograms

DBMS_TTS 110-3

Summary of DBMS_TTS Subprograms

These two procedures are designed to be called by database administrators.

Table 110–1 DBMS_TTS Package Subprograms

Subprogram Description

DOWNGRADE Procedure on
page 110-4

Downgrades transportable tablespace related data

TRANSPORT_SET_CHECK
Procedure on page 110-5

Checks if a set of tablespaces (to be transported) is
self-contained

DOWNGRADE Procedure

110-4 PL/SQL Packages and Types Reference

DOWNGRADE Procedure

This procedure downgrades transportable tablespace related data.

Syntax
DBMS_TTS.DOWNGRADE;

Summary of DBMS_TTS Subprograms

DBMS_TTS 110-5

TRANSPORT_SET_CHECK Procedure

This procedure checks if a set of tablespaces (to be transported) is self-contained.
After calling this procedure, the user may select from a view to see a list of
violations, if there are any.

Syntax
DBMS_TTS.TRANSPORT_SET_CHECK (
 ts_list IN VARCHAR2,
 incl_constraints IN BOOLEAN DEFAULT FALSE,
 full_check IN BOOLEAN DEFAULT FALSE);

Parameters

Examples
If the view does not return any rows, then the set of tablespaces is self-contained.
For example,

SQLPLUS> EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('foo,bar', TRUE);
SQLPLUS> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

Table 110–2 TRANSPORT_SET_CHECK Procedure Parameters

Parameter Description

ts_list List of tablespace, separated by comma.

incl_constraints TRUE if you want to count in referential integrity constraints when
examining if the set of tablespaces is self-contained. (The incl_
constraints parameter is a default so that TRANSPORT_SET_
CHECK will work if it is called with only the ts_list argument.)

full_check Indicates whether a full or partial dependency check is required. If
TRUE, treats all IN and OUT pointers (dependencies) and captures
them as violations if they are not self-contained in the transportable
set. The parameter should be set to TRUE for TSPITR or if a strict
version of transportable is desired. By default the parameter is set
to false. It will only consider OUT pointers as violations.

TRANSPORT_SET_CHECK Procedure

110-6 PL/SQL Packages and Types Reference

DBMS_XDBT 111-1

111
DBMS_XDBT

The DBMS_XDBT package provides a convenient mechanism for administrators to
set up a CONTEXT index on the Oracle XML DB hierarchy. The package contains
procedures to create default preferences, create the index and set up automatic
synchronization of the CONTEXT index

The DBMS_XDBT package also contains a set of package variables that describe the
configuration settings for the index. These are intended to cover the basic
customizations that installations may require, but is by no means a complete set.

This chapter contains the following topics:

■ Using DBMS_XDBT

■ Overview

■ Operational Notes

■ Summary of DBMS_XDBT Subprograms

See Also: Oracle XML DB Developer's Guide

Using DBMS_XDBT

111-2 PL/SQL Packages and Types Reference

Using DBMS_XDBT

■ Overview

■ Operational Notes

Overview

The DBMS_XDBT package can be used in the following fashion:

■ Customize the package to set up the appropriate configuration.

■ Drop any existing index preferences using the DROPPREFERENCES
Procedure procedure.

■ Create new index preferences using the CREATEPREFERENCES Procedure
procedure.

■ Create the CONTEXT index using the CREATEINDEX Procedure procedure.

■ Set up automatic synchronization of the index using the CONFIGUREAUTOSYNC
Procedure procedure.

Operational Notes

The DBMS_XDBT package can be customized by using a PL/SQL procedure or an
anonymous block to set the relevant package variables, configuration settings, and
then execute the procedures. A more general approach would be to introduce the
appropriate customizations by modifying this package in place, or as a copy. The
system must be configured to use job queues, and the jobs can be viewed through
the USER_JOBS catalog views. This section describes the configuration settings, or
package variables, available to customize the DBMS_XDBT package.

Using DBMS_XDBT

DBMS_XDBT 111-3

Table 111–1 General Indexing Settings for Customizing DBMS_XDBT

Parameter Default Value Description

IndexName XDB$CI The name of the CONTEXT index.

IndexTablespa
ce

XDB$RESINFO Tablespace used by tables and indexes comprising the
CONTEXT index.

IndexMemory 128M Memory used by index creation and SYNC; less than or equal to
the MAX_INDEX_MEMORY system parameter (see the CTX_
ADMIN package).

LogFile 'XdbCtxLog' The log file used for ROWID during indexing. The LOG_
DIRECTORY system parameter must be set already. NULL turn
s off ROWID logging.

Table 111–2 Filtering Settings for Customizing DBMS_XDBT

Parameter Default Value Description

SkipFilter
_Types

image/%, audio/%,
video/%, model/%

List of mime types that should not be indexed.

NullFilter
_Types

text/plain, text/html,
text/xml

List of mime types that do not need to use the INSO filter. Use
this for text-based documents.

FilterPref XDB$CI_FILTER Name of the filter preference.

Table 111–3 Stoplist Settings for Customizing DBMS_XDBT

Parameter Default Value Description

StoplistPref XDB$CI_STOPLIST Name of the stoplist.

StopWords 0..9; 'a'..'z';
'A'..'Z'

List of stopwords, in excess of CTXSYS.DEFAULT_STOPLIST.

Table 111–4 Sectioning and Section Group Settings for Customizing DBMS_XDBT

Parameter Default Value Description

SectionGroup HTML_SECTION_GROUP Default sectioner. Use PATH_SECTION_GROUP or AUTO_
SECTION_GROUP if repository contains mainly XML documents.

SectiongroupP
ref

XDB$CI_SECTIONGROUP Name of the section group.

Operational Notes

111-4 PL/SQL Packages and Types Reference

Table 111–5 Other Index Preference Settings for Customizing DBMS_XDBT

Parameter Default Value Description

DatastorePref XDB$CI_DATASTORE The name of the datastore preference.

StoragePref XDB$CI_STORAGE The name of the storage preference.

WordlistPref XDB$CI_WORDLIST The name of the wordlist preference.

DefaultLexerPr
ef

XDB$CI_DEFAULT_
LEXER

The name of the default lexer preference.

Table 111–6 SYNC (CONTEXT Synchronization) Settings for Customizing DBMS_XDBT

Parameter Default Value Description

AutoSyncPolicy SYNC_BY_
PENDING_COUNT

Indicates when the index should be SYNCed. One of SYNC_
BY_PENDING_COUNT, SYNC_BY_TIME, or SYNC_BY_
PENDING_COUNT_AND_TIME.

MaxPendingCount 2 Maximum number of documents in the CTX_USER_
PENDING queue before an index SYNC is triggered. Only if
the AutoSyncPolicy is SYNC_BY_PENDING_COUNT or
SYNC_BY_PENDING_COUNT_AND_TIME.

CheckPendingCount
Interval

10 minutes How often, in minutes, the pending queue should be
checked. Only if the AutoSyncPolicy is SYNC_BY_
PENDING_COUNT or SYNC_BY_PENDING_COUNT_AND_
TIME.

SyncInterval 60 minutes Indicates how often, in minutes, the index should be
SYNCed. Only if the AutoSyncPolicy is SYNC_BY_TIME or
SYNC_BY_PENDING_COUNT_AND_TIME

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-5

Summary of DBMS_XDBT Subprograms

Table 111–7 DBMS_XDBT Package Subprograms

Subprogram Description

CONFIGUREAUTOSYNC
Procedure on page 111-6

Configures the CONTEXT index for automatic
maintenance, SYNC

CREATEDATASTOREPREF
Procedure on page 111-7

Creates a USER datastore preference for the CONTEXT
index

CREATEFILTERPREF Procedure
on page 111-8

Creates a filter preference for the CONTEXT index

CREATEINDEX Procedure on
page 111-9

Creates the CONTEXT index on the XML DB hierarchy

CREATELEXERPREF Procedure
on page 111-10

Creates a lexer preference for the CONTEXT index

CREATEPREFERENCES
Procedure on page 111-11

Creates preferences required for the CONTEXT index on
the XML DB hierarchy

CREATESECTIONGROUPPREF
Procedure on page 111-12

Creates a storage preference for the CONTEXT index

CREATESTOPLISTPREF
Procedure on page 111-13

Creates a section group for the CONTEXT index

CREATESTORAGEPREF
Procedure on page 111-14

Creates a wordlist preference for the CONTEXT index

CREATEWORLDLISTPREF
Procedure on page 111-15

Creates a stoplist for the CONTEXT index

DROPPREFERENCES
Procedure on page 111-16

Drops any existing preferences

CONFIGUREAUTOSYNC Procedure

111-6 PL/SQL Packages and Types Reference

CONFIGUREAUTOSYNC Procedure

This procedure sets up jobs for automatic SYNCs of the CONTEXT index.

Syntax
DBMS_XDBT.CONFIGUREAUTOSYNC;

Usage Notes
■ The system must be configured for job queues for automatic synchronization.

The jobs can be viewed using the USER_JOBS catalog views

■ The configuration parameter AutoSyncPolicy can be set to choose an
appropriate synchronization policy.

The synchronization can be based on one of the following:

Sync Basis Description

SYNC_BY_PENDING_COUNT The SYNC is triggered when the number of documents
in the pending queue is greater than a threshold (See
the MaxPendingCount configuration setting on
page 111-4). The pending queue is polled at regular
intervals (See the CheckPendingCountInterval
configuration parameter on page 111-4) to determine if
the number of documents exceeds the threshold.

SYNC_BY_TIME The SYNC is triggered at regular intervals. (See the
SyncInterval configuration parameter on
page 111-4).

SYNC_BY_PENDING_COUNT_
AND_TIME

A combination of both of the preceding options.

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-7

CREATEDATASTOREPREF Procedure

This procedure creates a user datastore preference for the CONTEXT index on the
XML DB hierarchy.

Syntax
DBMS_XDBT.CREATEDATASTOREPREF;

Usage Notes
■ The name of the datastore preference can be modified; see the DatastorePref

configuration setting.

■ The default USER datastore procedure also filters the incoming document. The
DBMS_XDBT package provides a set of configuration settings that control the
filtering process.

■ The SkipFilter_Types array contains a list of regular expressions.
Documents with a mime type that matches one of these expressions are not
indexed. Some of the properties of the document metadata, such as author,
remain unindexed.

■ The NullFilter_Types array contains a list of regular expressions.
Documents with a mime type that matches one of these expressions are not
filtered; however, they are still indexed. This is intended to be used for
documents that are text-based, such as HTML, XML and plain-text.

■ All other documents use the INSO filter through the IFILTER API.

CREATEFILTERPREF Procedure

111-8 PL/SQL Packages and Types Reference

CREATEFILTERPREF Procedure

This procedure creates a NULL filter preference for the CONTEXT index on the XML
DB hierarchy.

Syntax
DBMS_XDBT.CREATEFILTERPREF;

Usage Notes
■ The name of the filter preference can be modified; see FilterPref

configuration setting.

■ The USER datastore procedure filters the incoming document; see
CREATEDATASTOREPREF Procedure for more details.

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-9

CREATEINDEX Procedure

This procedure creates the CONTEXT index on the XML DB hierarchy.

Syntax
DBMS_XDBT.CREATEINDEX;

Usage Notes
■ The name of the index can be changed; see the IndexName configuration

setting.

■ Set the LogFile configuration parameter to enable ROWID logging during
index creation.

■ Set the IndexMemory configuration parameter to determine the amount of
memory that index creation, and later SYNCs, will use.

CREATELEXERPREF Procedure

111-10 PL/SQL Packages and Types Reference

CREATELEXERPREF Procedure

This procedure creates a BASIC lexer preference for the CONTEXT index on the
XML DB hierarchy.

Syntax
DBMS_XDBT.CREATELEXERPREF;

Usage Notes
■ The name of the lexer preference can be modified; see LexerPref

configuration setting. No other configuration settings are provided.

■ MultiLexer preferences are not supported.

■ Base letter translation is turned on by default.

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-11

CREATEPREFERENCES Procedure

This procedure creates a set of default preferences based on the configuration
settings.

Syntax
DBMS_XDBT.CREATEPREFERENCES;

CREATESECTIONGROUPPREF Procedure

111-12 PL/SQL Packages and Types Reference

CREATESECTIONGROUPPREF Procedure

This procedure creates a section group for the CONTEXT index on the XML DB
hierarchy.

Syntax
DBMS_XDBT.CREATESECTIONGROUPPREF;

Usage Notes
■ The name of the section group can be changed; see the SectiongroupPref

configuration setting.

■ The HTML sectioner is used by default. No zone sections are created by default.
If the vast majority of documents are XML, consider using the AUTO_SECTION_
GROUP or the PATH_SECTION_GROUP; see the SectionGroup configuration
setting.

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-13

CREATESTOPLISTPREF Procedure

This procedure creates a stoplist for the CONTEXT index on the XML DB hierarchy.

Syntax
DBMS_XDBT.CREATESTOPLISTPREF;

Usage Notes
■ The name of the stoplist can be modified; see the StoplistPref configuration

setting.

■ Numbers are not indexed.

■ The StopWords array is a configurable list of stopwords. These are meant to be
stopwords in addition to the set of stopwords in CTXSYS.DEFAULT_
STOPLIST.

CREATESTORAGEPREF Procedure

111-14 PL/SQL Packages and Types Reference

CREATESTORAGEPREF Procedure

This procedure creates a BASIC_STORAGE preference for the CONTEXT index on
the XML DB hierarchy.

Syntax
DBMS_XDBT.CREATESTORAGEPREF;

Usage Notes
■ The name of the storage preference can be modified; see the StoragePref

configuration setting.

■ A tablespace can be specified for the tables and indexes comprising the
CONTEXT index; see the IndexTablespace configuration setting.

■ Prefix and Substring indexing are not turned on by default.

■ The I_INDEX_CLAUSE uses key compression.

Summary of DBMS_XDBT Subprograms

DBMS_XDBT 111-15

CREATEWORLDLISTPREF Procedure

This procedure creates a wordlist preference for the CONTEXT index on the XML DB
hierarchy.

Syntax
DBMS_XDBT.CREATEWORDLISTPREF;

Usage Notes
■ The name of the wordlist preference can be modified; see the WordlistPref

configuration setting. No other configuration settings are provided.

■ FUZZY_MATCH and STEMMER attributes are set to AUTO (auto-language
detection)

DROPPREFERENCES Procedure

111-16 PL/SQL Packages and Types Reference

DROPPREFERENCES Procedure

This procedure drops any previously created preferences for the CONTEXT index on
the XML DB hierarchy.

Syntax
DBMS_XDBT.DROPPREFERENCES;

DBMS_XDBZ 112-1

112
DBMS_XDBZ

The DBMS_XDBZ package controls the Oracle XML DB repository security, which
is based on Access Control Lists (ACLs).

This chapter contains the following topic:

■ Summary of DBMS_XDBZ Subprograms

See Also: Oracle XML DB Developer's Guide

Summary of DBMS_XDBZ Subprograms

112-2 PL/SQL Packages and Types Reference

Summary of DBMS_XDBZ Subprograms

Table 112–1 DBMS_XDBZ Package Subprograms

Method Description

DISABLE_HIERARCHY
Procedure on page 112-3

Disables repository support for the specified XMLType table
or view

ENABLE_HIERARCHY
Procedure on page 112-4

Enables repository support for the specified XMLType table
or view

GET_ACLOID Function on
page 112-5

Retrieves the ACL Object ID for the specified resource

GET_USERID Function on
page 112-6

Retrieves the user ID for the specified user

IS_HIERARCHY_ENABLED
Function on page 112-7

Determines if repository support for the specified XMLType
table or view is enabled

PURGELDAPCACHE
Function on page 112-8

Purges the LDAP nickname cache

Summary of DBMS_XDBZ Subprograms

DBMS_XDBZ 112-3

DISABLE_HIERARCHY Procedure

This procedure disables repository support for a particular XMLType table or view.

Syntax
DBMS_XDBZ.DISABLE_HIERARCHY(

object_schema IN VARCHAR2,
object_name IN VARCHAR2);

Parameters

Table 112–2 DISABLE_HIERARCHY Procedure Parameters

Parameter Description

object_schema The schema name of the XMLType table or view.

object_name The name of the XMLType table or view.

ENABLE_HIERARCHY Procedure

112-4 PL/SQL Packages and Types Reference

ENABLE_HIERARCHY Procedure

This procedure enables repository support for a particular XMLType table or view.
This allows the use of a uniform ACL-based security model across all documents in
the repository.

Syntax
DBMS_XDBZ.ENABLE_HIERARCHY(

object_schema IN VARCHAR2,
object_name IN VARCHAR2);

Parameters

Table 112–3 ENABLE_HIERARCHY Procedure Parameters

Parameter Description

object_schema The schema name of the XMLType table or view.

object_name The name of the XMLType table or view.

Summary of DBMS_XDBZ Subprograms

DBMS_XDBZ 112-5

GET_ACLOID Function

This function retrieves the ACL Object ID for the specified resource, if the
repository path is known.

Syntax
DBMS_XDBZ.GET_ACLOID(

aclpath IN VARCHAR2,
acloid OUT RAW)

 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if successful.

Table 112–4 GET_ACLOID Function Parameters

Parameter Description

aclpath ACL resource path for the repository.

acloid The returned Object ID.

GET_USERID Function

112-6 PL/SQL Packages and Types Reference

GET_USERID Function

This function retrieves the user ID for the specified user name. The local database is
searched first, and if found, the USERID is returned in 4-byte database format.
Otherwise, the LDAP directory is searched, if available, and if found, the USERID is
returned in 4-byte database format.

Syntax
DBMS_XDBZ.GET_USERID(

username IN VARCHAR2,
userid OUT RAW,
format IN BINARY_INTEGER := NAME_FORMAT_SHORT)

 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if successful.

Table 112–5 GET_USERID Function Parameters

Parameter Description

username Name of the database or LDAP user.

userid Return parameter for the matching user id.

format Format of the specified user name; valid options are:

■ DBMS_XDBZ.NAME_FORMAT_SHORT (default) -- DB user
name or LDAP nickname

■ DBMS_XDBZ.NAME_FORMAT_DISTINGUISHIED --
LDAP distinguished name.

Summary of DBMS_XDBZ Subprograms

DBMS_XDBZ 112-7

IS_HIERARCHY_ENABLED Function

This function determines if repository support for the specified XMLType table or
view is enabled.

Syntax
DBMS_XDBZ.IS_HIERARCHY_ENABLED(

object_schema IN VARCHAR2,
object_name IN VARCHAR2)

 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if enabled.

Table 112–6 IS_HIERARCHY_ENABLED Function Parameters

Parameter Description

object_schema The schema name of the XMLType table or view.

object_name The name of the XMLType table or view.

PURGELDAPCACHE Function

112-8 PL/SQL Packages and Types Reference

PURGELDAPCACHE Function

This function purges the LDAP nickname cache. Returns TRUE if successful.

Syntax
DBMS_XDBZ.PURGELDAPCACHE
 RETURN BOOLEAN;

DBMS_XMLDOM 113-1

113
DBMS_XMLDOM

The DBMS_XMLDOM package is used to access XMLType objects, and implements the
Document Object Model (DOM), an application programming interface for HTML
and XML documents.

This chapter contains the following topics:

■ Using DBMS_XMLDOM

■ Overview

■ Constants

■ Types

■ Exceptions

■ Subprogram Groups

■ Summary of DBMS_XMLDOM Subprograms

See Also: Oracle XML Developer's Kit Programmer's Guide

Using DBMS_XMLDOM

113-2 PL/SQL Packages and Types Reference

Using DBMS_XMLDOM

■ Overview

■ Constants

■ Types

■ Exceptions

■ Subprogram Groups

Overview

The Document Object Model (DOM) is an application programming interface (API)
for HTML and XML documents. It defines the logical structure of documents, and
the manner in which they are accessed and manipulated. In the DOM specification,
the term "document" is used in the broad sense. XML is being increasingly used to
represent many different kinds of information that may be stored in diverse
systems. This information has been traditionally be seen as "data"; nevertheless,
XML presents this data as documents, and the DBMS_XMLDOM package allows you
access to both schema-based and non schema-based documents.

With DOM, anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few
exceptions. In particular, the DOM interfaces for the XML internal and external
subsets have not yet been specified.

One important objective of the W3C DOM specification is to provide a standard
programming interface that can be used in a wide variety of environments,
programming languages, and applications. Because the DOM standard is
object-oriented while PL/SQL is essentially a procedural language, some changes
had to be made:

Note:

■ Before database startup, the read-from and write-to directories
in the initialization.ORA file must be specified; for
example: UTL_FILE_DIR=/mypath/insidemypath.

■ Read-from and write-to files must be on the server file system.

Using DBMS_XMLDOM

DBMS_XMLDOM 113-3

■ Various DOM interfaces such as Node, Element, and others have equivalent
PL/SQL types DOMNode, DOMElement, respectively.

■ Various DOMException codes such as WRONG_DOCUMENT_ERR, HIERARCHY_
REQUEST_ERR, and others, have similarly named PL/SQL exceptions.

■ Various DOM Node type codes such as ELEMENT_NODE, ATTRIBUTE_NODE,
and others, have similarly named PL/SQL constants.

■ Subprograms defined on a DOM type become functions or procedures that
accept it as a parameter. For example, to perform APPENDCHILD Function on
a DOMNode n, the APPENDCHILD Function PL/SQL function on page 113-42
is provided.

■ To perform setAttribute on a DOMElement elem, use SETATTRIBUTE
Procedures PL/SQL procedure on page 113-139.

DOM defines an inheritance hierarchy. For example, Document, Element, and
Attr are defined to be subtypes of Node (see Figure 113–1). Thus, a method defined
in the Node interface should be available in these as well. Since such inheritance is
not supported in PL/SQL, it is implemented through direct invocation of the
MAKENODE function. Calling MAKENODE on various DOM types converts these types
into a DOMNode. The appropriate functions or procedures that accept DOMNodes can
then be called to operate on these types. If, subsequently, type specific functionality
is desired, the DOMNode can be converted back into the original type by the
makeXXX functions, where DOMXXX is the desired DOM type.

Figure 113–1 Inheritance Diagram for DOM Types

Element Entity

Attr CharacterData Document

Node

DocumentFragment DocumentType

EntityReference Notation ProcessingInstruction

Text

CommentCDATASection

Constants

113-4 PL/SQL Packages and Types Reference

The implementation of this interface follows the REC-DOM-Level-1-19981001.

Constants

Defined constants of DBMS_XMLDOM are listed in Table 113–1.

Types

The following types for DBMS_XMLDOM.DOMTYPE are defined in Table 113–2:

Table 113–1 Defined Constants for DBMS_XMLDOM

Constant Description

ATTRIBUTE_NODE The Node is an Attribute.

CDATA_SECTION_NODE The Node is a CDataSection.

COMMENT_NODE The Node is a Comment.

DOCUMENT_FRAGMENT_NODE The Node is a Document fragment.

DOCUMENT_NODE The Node is a Document.

DOCUMENT_TYPE_NODE The Node is a Document Type Definition.

ELEMENT_NODE The Node is an Element.

ENTITY_NODE The Node is an Entity.

ENTITY_REFERENCE_NODE The Node is an Entity Reference.

NOTATION_NODE The Node is a Notation.

PROCESSING_INSTRUCTION_
NODE

The Node is a Processing Instruction.

TEXT_NODE The Node is a Text node.

Table 113–2 XDB_XMLDOM Types

Type Description

DOMATTR Implements the DOM Attribute interface.

DOMCDATASECTION Implements the DOM CDataSection interface.

DOMCHARACTERDATA Implements the DOM Character Data interface.

DOMCOMMENT Implements the DOM Comment interface.

Using DBMS_XMLDOM

DBMS_XMLDOM 113-5

Exceptions

The exceptions listed in Table 113–3 are defined for DBMS_XMLDOM:

DOMDOCUMENT Implements the DOM Document interface.

DOMDOCUMENTFRAGMENT Implements the DOM DocumentFragment interface.

DOMDOCUMENTTYPE Implements the DOM Document Type interface.

DOMELEMENT Implements the DOM Element interface.

DOMENTITY Implements the DOM Entity interface.

DOMENTITYREFERENCE Implements the DOM EntityReference interface.

DOMIMPLEMENTATION Implements the DOM Implementation interface.

DOMNAMEDNODEMAP Implements the DOM Named Node Map interface.

DOMNODE Implements the DOM Node interface.

DOMNODELIST Implements the DOM NodeList interface.

DOMNOTATION Implements the DOM Notation interface.

DOMPROCESSINGINSTRUCT
ION

Implements the DOM Processing instruction interface.

DOMTEXT Implements the DOM Text interface.

Table 113–3 Exceptions for DBMS_XMLDOM

Exception Description

DOMSTRING_SIZE_ERR If the specified range of text does not fit into a
DOMString.

HIERARCHY_REQUEST_ERR If any node is inserted somewhere it doesn't belong.

INDEX_SIZE_ERR If index or size is negative, or greater than the allowed
value.

INUSE_ATTRIBUTE_ERR If an attempt is made to add an attribute that is already
in use elsewhere.

Table 113–2 (Cont.) XDB_XMLDOM Types

Type Description

Exceptions

113-6 PL/SQL Packages and Types Reference

INVALID_CHARACTER_ERR If an invalid or illegal character is specified, such as in a
name. See production 2 in the XML specification for the
definition of a legal character, and production 5 for the
definition of a legal name character.

NO_DATA_ALLOWED_ERROR If data is specified for a node that does not support data.

NO_FOUND_ERR If an attempt is made to reference a node in a context
where it does not exist.

NO_MODIFICATION_ALLOWED_
ERR

If an attempt is made to modify an object where
modifications are not allowed.

NOT_SUPPORTED_ERR If the implementation does not support the requested
type of object or operation.

WRONG_DOCUMENT_ERR If a node is used in a different document than the one
that created it (that doesn't support it).

Table 113–3 (Cont.) Exceptions for DBMS_XMLDOM

Exception Description

Subprogram Groups

DBMS_XMLDOM 113-7

Subprogram Groups

DBMS_XMLDOM subprograms are divided into groups according to W3C Interfaces.

■ DOMNode Subprograms on page 113-8

■ DOMAttr Subprograms on page 113-11

■ DOMCDataSection Subprograms on page 113-12

■ DOMCharacterData Subprograms on page 113-13

■ DOMComment Subprograms on page 113-14

■ DOMDocument Subprograms on page 113-15

■ DOMDocumentFragment Subprograms on page 113-17

■ DOMDocumentType Subprograms on page 113-18

■ DOMElement Subprograms on page 113-19

■ DOMEntity Subprograms on page 113-20

■ DOMEntityReference Subprograms on page 113-21

■ DOMImplementation Subprograms on page 113-22

■ DOMNamedNodeMap Subprograms on page 113-23

■ DOMNodeList Subprograms on page 113-24

■ DOMNotation Subprograms on page 113-25

■ DOMProcessingInstruction Subprograms on page 113-26

■ DOMText Subprograms on page 113-27

DOMNode Subprograms

113-8 PL/SQL Packages and Types Reference

DOMNode Subprograms

Table 113–4 Summary of DOMNode Subprograms; DBMS_XMLDOM

Subprogram Description

ADOPTNODE Procedure on page 113-41 Adopts a node from another document.

APPENDCHILD Function on page 113-42 Appends a new child to the node.

CLONENODE Function on page 113-44 Clones the node.

FREENODE Procedure on page 113-60 Frees all resources associated with the node.

GETATTRIBUTES Function on page 113-62 Retrieves the attributes of the node.

GETCHILDNODES Function on
page 113-64

Retrieves the children of the node.

GETEXPANDEDNAME Procedure and
Functions on page 113-71

Retrieves the expanded name of the node.

GETFIRSTCHILD Function on page 113-72 Retrieves the first child of the node.

GETLASTCHILD Function on page 113-74 Retrieves the last child of the node.

GETLOCALNAME Procedure and
Functions on page 113-76

Retrieves the local part of the qualified name.

GETNAMESPACE Procedure and
Functions on page 113-79

Retrieves the node's namespace URI.

GETNEXTSIBLING Function on
page 113-80

Retrieves the next sibling of the node.

GETNODENAME Function on
page 113-81

Retrieves the Name of the Node.

GETNODETYPE Function on page 113-82 Retrieves the Type of the node.

GETNODEVALUE Function on
page 113-83

Retrieves the Value of the Node.

GETOWNERDOCUMENT Function on
page 113-87

Retrieves the owner document of the node.

GETPARENTNODE Function on
page 113-89

Retrieves the parent of this node.

GETPREFIX Function on page 113-90 Retrieves the namespace prefix.

GETPREVIOUSSIBLING Function on
page 113-91

Retrieves the previous sibling of the node.

Subprogram Groups

DBMS_XMLDOM 113-9

GETSCHEMANODE Function on
page 113-94

Retrieves the associated schema URI.

HASATTRIBUTES Function on
page 113-103

Tests if the node has attributes.

HASCHILDNODES Function on
page 113-104

Tests if the node has child nodes.

IMPORTNODE Function on page 113-106 Imports a node from another document.

INSERTBEFORE Function on page 113-107 Inserts a child before the reference child.

ISNULL Functions on page 113-109 Tests if the node is NULL

MAKEATTR Function on page 113-114 Casts the node to an Attribute.

MAKECDATASECTION Function on
page 113-115

Casts the node to a CData Section.

MAKECHARACTERDATA Function on
page 113-116

Casts the node to Character Data.

MAKECOMMENT Function on
page 113-117

Casts the node to a Comment.

MAKEDOCUMENT Function on
page 113-118

Casts the node to a DOM Document.

MAKEDOCUMENTFRAGMENT
Function on page 113-119

Casts the node to a DOM Document Fragment.

MAKEDOCUMENTTYPE Function on
page 113-120

Casts the node to a DOM Document Type.

MAKEELEMENT Function on
page 113-121

Casts the node to a DOM Element.

MAKEENTITY Function on page 113-122 Casts the node to a DOM Entity.

MAKEENTITYREFERENCE Function on
page 113-123

Casts the node to a DOM Entity Reference.

MAKENOTATION Function on
page 113-127

Casts the node to a DOM Notation.

MAKEPROCESSINGINSTRUCTION
Function on page 113-128

Casts the node to a DOM Processing
Instruction.

MAKETEXT Function on page 113-129 Casts the node to a DOM Text.

Table 113–4 (Cont.) Summary of DOMNode Subprograms; DBMS_XMLDOM

Subprogram Description

DOMNode Subprograms

113-10 PL/SQL Packages and Types Reference

REMOVECHILD Function on
page 113-134

Removes a specified child from a node.

REPLACECHILD Function on
page 113-136

Replaces the old child with a new child.

SETNODEVALUE Procedure on
page 113-143

Sets the Value of the node.

SETPREFIX Procedure on page 113-144 Sets the namespace prefix.

WRITETOBUFFER Procedures on
page 113-150

Writes the contents of the node to a buffer.

WRITETOCLOB Procedures on
page 113-151

Writes the contents of the node to a clob.

WRITETOFILE Procedures on
page 113-152

Writes the contents of the node to a file.

Table 113–4 (Cont.) Summary of DOMNode Subprograms; DBMS_XMLDOM

Subprogram Description

Subprogram Groups

DBMS_XMLDOM 113-11

DOMAttr Subprograms

Table 113–5 Summary of DOMAttr Subprograms; DBMS_XMLDOM

Method Description

GETEXPANDEDNAME Procedure
and Functions on page 113-71

Retrieves the expanded name of the attribute.

GETLOCALNAME Procedure and
Functions on page 113-76

Retrieves the local name of the attribute.

GETNAME Functions on page 113-77 Retrieves the name of the attribute.

GETNAMESPACE Procedure and
Functions on page 113-79

Retrieves the NS URI of the attribute.

GETOWNERELEMENT Function on
page 113-88

Retrieves the Element node, parent of the attribute.

GETQUALIFIEDNAME Functions
on page 113-93

Retrieves the Qualified Name of the attribute.

GETSPECIFIED Function on
page 113-95

Tests if attribute was specified in the element.

GETVALUE Function on page 113-99 Retrieves the value of the attribute.

ISNULL Functions on page 113-109 Tests if the Attribute node is NULL.

MAKENODE Functions on
page 113-124

Casts the Attribute to a node.

SETVALUE Procedure on
page 113-146

Sets the value of the attribute.

DOMCDataSection Subprograms

113-12 PL/SQL Packages and Types Reference

DOMCDataSection Subprograms

Table 113–6 Summary of DOMCdata Subprograms; DBMS_XMLDOM

Method Description

ISNULL Functions on page 113-109 Tests if the CDataSection is NULL.

MAKENODE Functions on
page 113-124

Casts the CDatasection to a node.

Subprogram Groups

DBMS_XMLDOM 113-13

DOMCharacterData Subprograms

Table 113–7 Summary of DOMCharacterData Subprograms; DBMS_XMLDOM

Method Description

APPENDDATA Procedure on
page 113-43

Appends the given data to the node data.

DELETEDATA Procedure on
page 113-54

Deletes the data from the given offSets.

GETDATA Functions on page 113-66 Retrieves the data of the node.

GETLENGTH Functions on
page 113-75

Retrieves the length of the data.

INSERTDATA Procedure on
page 113-108

Inserts the data in the node at the given offSets.

ISNULL Functions on page 113-109 Tests if the CharacterData is NULL.

MAKENODE Functions on
page 113-124

Casts the CharacterData to a node.

REPLACEDATA Procedure on
page 113-137

Changes a range of characters in the node.

SETDATA Procedures on
page 113-141

Sets the data to the node.

SUBSTRINGDATA Function on
page 113-149

Retrieves the substring of the data.

DOMComment Subprograms

113-14 PL/SQL Packages and Types Reference

DOMComment Subprograms

Table 113–8 Summary of DOMComment Subprograms; DBMS_XMLDOM

Method Description

ISNULL Functions on page 113-109 Tests if the comment is NULL.

MAKENODE Functions on
page 113-124

Casts the Comment to a node.

Subprogram Groups

DBMS_XMLDOM 113-15

DOMDocument Subprograms

Table 113–9 Summary of DOMDocument Subprograms; DBMS_XMLDOM

Method Description

CREATEATTRIBUTE Functions on
page 113-45

Creates an Attribute.

CREATECDATASECTION Function on
page 113-46

Creates a CDataSection node.

CREATECOMMENT Function on
page 113-47

Creates a Comment node.

CREATEDOCUMENT Function on
page 113-48

Creates a new Document.

CREATEDOCUMENTFRAGMENT
Function on page 113-49

Creates a new Document Fragment.

CREATEELEMENT Functions on
page 113-50

Creates a new Element.

CREATEENTITYREFERENCE Function on
page 113-51

Creates an Entity reference.

CREATEPROCESSINGINSTRUCTION
Function on page 113-52

Creates a Processing Instruction.

CREATETEXTNODE Function on
page 113-53

Creates a Text node.

FREEDOCFRAG Procedure on page 113-57 Frees the document fragment.

FREEDOCUMENT Procedure on
page 113-59

Frees the document.

GETDOCTYPE Function on page 113-67 Retrieves the DTD of the document.

GETDOCUMENTELEMENT Function on
page 113-68

Retrieves the root element of the document.

GETELEMENTSBYTAGNAME Functions
on page 113-69

Retrieves the elements in the by tag name.

GETIMPLEMENTATION Function on
page 113-73

Retrieves the DOM implementation.

GETSTANDALONE Function on
page 113-96

Retrieves the standalone property of the
document.

GETVERSION Function on page 113-100 Retrieves the version of the document.

DOMDocument Subprograms

113-16 PL/SQL Packages and Types Reference

GETXMLTYPE Function on page 113-101 Retrieves the XMLType associated with the
DOM Document.

ISNULL Functions on page 113-109 Tests if the document is NULL.

MAKENODE Functions on page 113-124 Casts the document to a node.

NEWDOMDOCUMENT Functions on
page 113-130

Creates a new document.

SETSTANDALONE Procedure on
page 113-145

Sets the characterset of the document.

SETSTANDALONE Procedure on
page 113-145

Sets the standalone property of the document.

SETVERSION Procedure on page 113-147 Sets the version of the document.

WRITETOBUFFER Procedures on
page 113-150

Writes the document to a buffer.

WRITETOCLOB Procedures on
page 113-151

Writes the document to a CLOB.

WRITETOFILE Procedures on page 113-152 Writes the document to a file.

Table 113–9 (Cont.) Summary of DOMDocument Subprograms; DBMS_XMLDOM

Method Description

Subprogram Groups

DBMS_XMLDOM 113-17

DOMDocumentFragment Subprograms

Table 113–10 Summary of DOMDocumentFragment Subprograms; DBMS_XMLDOM

Method Description

FREEDOCFRAG Procedure on
page 113-58

Frees the specified document fragment.

ISNULL Functions on page 113-109 Tests if the DocumentFragment is NULL.

MAKENODE Functions on
page 113-124

Casts the Document Fragment to a node.

WRITETOBUFFER Procedures on
page 113-150

Writes the contents of a document fragment into a
buffer.

DOMDocumentType Subprograms

113-18 PL/SQL Packages and Types Reference

DOMDocumentType Subprograms

Table 113–11 Summary of DOMDocumentType Subprograms; DBMS_XMLDOM

Method Description

FINDENTITY Function on
page 113-55

Finds the specified entity in the document type.

FINDNOTATION Function on
page 113-56

Finds the specified notation in the document type.

GETENTITIES Function on
page 113-70

Retrieves the nodemap of entities in the Document
type.

GETNAME Functions on page 113-77 Retrieves the name of the Document type.

GETNOTATIONS Function on
page 113-85

Retrieves the nodemap of the notations in the
Document type.

GETPUBLICID Functions on
page 113-92

Retrieves the public ID of the document type.

GETSYSTEMID Functions on
page 113-97

Retrieves the system ID of the document type.

ISNULL Functions on page 113-109 Tests if the Document Type is NULL.

MAKENODE Functions on
page 113-124

Casts the document type to a node.

Subprogram Groups

DBMS_XMLDOM 113-19

DOMElement Subprograms

Table 113–12 Summary of DOMElement Subprograms; DBMS_XMLDOM

Method Description

GETATTRIBUTE Functions on page 113-61 Retrieves the attribute node by name.

GETATTRIBUTENODE Functions on
page 113-63

Retrieves the attribute node by name.

GETCHILDRENBYTAGNAME Functions
on page 113-65

Retrieves children of the element by tag name.

GETELEMENTSBYTAGNAME Functions
on page 113-69

Retrieves elements in the subtree by tagname.

GETEXPANDEDNAME Procedure and
Functions on page 113-71

Retrieves the expanded name of the element.

GETLOCALNAME Procedure and
Functions on page 113-76

Retrieves the local name of the element.

GETNAMESPACE Procedure and
Functions on page 113-79

Retrieves the NS URI of the element.

GETQUALIFIEDNAME Functions on
page 113-93

Retrieves the qualified name of the element.

GETTAGNAME Function on page 113-98 Retrieves the Tag name of the element.

HASATTRIBUTE Functions on
page 113-102

Tests if an attribute exists.

ISNULL Functions on page 113-109 Tests if the Element is NULL.

MAKENODE Functions on page 113-124 Casts the Element to a node.

NORMALIZE Procedure on page 113-131 Normalizes the text children of the element.

REMOVEATTRIBUTE Procedures on
page 113-132

Removes the attribute specified by the name.

REMOVEATTRIBUTENODE Function on
page 113-133

Removes the attribute node in the element.

RESOLVENAMESPACEPREFIX Function
on page 113-138

Resolve the prefix to a namespace URI.

SETATTRIBUTE Procedures on
page 113-139

Sets the attribute specified by the name.

SETATTRIBUTENODE Functions on
page 113-140

Sets the attribute node in the element.

DOMEntity Subprograms

113-20 PL/SQL Packages and Types Reference

DOMEntity Subprograms

Table 113–13 Summary of DOMEntity Subprograms; DBMS_XMLDOM

Method Description

GETNOTATIONNAME Function on
page 113-84

Retrieves the notation name of the entity.

GETPUBLICID Functions on
page 113-92

Retrieves the public Id of the entity.

GETSYSTEMID Functions on
page 113-97

Retrieves the system Id of the entity.

ISNULL Functions on page 113-109 Tests if the Entity is NULL.

MAKENODE Functions on
page 113-124

Casts the Entity to a node.

Subprogram Groups

DBMS_XMLDOM 113-21

DOMEntityReference Subprograms

Table 113–14 Summary of DOMEntityReference Subprograms; DBMS_XMLDOM

Method Description

ISNULL Functions on page 113-109 Tests if the DOMEntityReference is NULL.

MAKENODE Functions on
page 113-124

Casts the DOMEntityReference to NULL.

DOMImplementation Subprograms

113-22 PL/SQL Packages and Types Reference

DOMImplementation Subprograms

Table 113–15 Summary of DOMImplementation Subprograms; DBMS_XMLDOM

Method Description

ISNULL Functions on
page 113-109

Tests if the DOMImplementation node is NULL.

HASFEATURE Function on
page 113-105

Tests if the DOMImplementation implements a feature.

Subprogram Groups

DBMS_XMLDOM 113-23

DOMNamedNodeMap Subprograms

Table 113–16 Summary of DOMNamedNodeMap Subprograms; DBMS_XMLDOM

Method Description

GETLENGTH Functions on
page 113-75

Retrieves the number of items in the map.

GETNAMEDITEM Function on
page 113-78

Retrieves the item specified by the name.

ISNULL Functions on page 113-109 Tests if the NamedNodeMap is NULL.

IITEM Functions on page 113-113 Retrieves the item given the index in the map.

REMOVENAMEDITEM Function on
page 113-135

Removes the item specified by name.

SETNAMEDITEM Function on
page 113-142

Sets the item in the map specified by the name.

DOMNodeList Subprograms

113-24 PL/SQL Packages and Types Reference

DOMNodeList Subprograms

Table 113–17 Summary of DOMNodeList Subprograms; DBMS_XMLDOM

Method Description

GETLENGTH Functions on
page 113-75

Retrieves the number of items in the list.

ISNULL Functions on page 113-109 Tests if the NodeList is NULL.

IITEM Functions on page 113-113 Retrieves the item given the index in the NodeList.

Subprogram Groups

DBMS_XMLDOM 113-25

DOMNotation Subprograms

Table 113–18 Summary of DOMNotation Subprograms; DBMS_XMLDOM

Method Description

GETPUBLICID Functions on
page 113-92

Retrieves the public Id of the notation.

GETSYSTEMID Functions on
page 113-97

Retrieves the system Id of the notation.

ISNULL Functions on page 113-109 Tests if the Notation is NULL.

MAKENODE Functions on
page 113-124

Casts the notation to a node.

DOMProcessingInstruction Subprograms

113-26 PL/SQL Packages and Types Reference

DOMProcessingInstruction Subprograms

Table 113–19 Summary of DOMProcessingInstruction Subprograms; DBMS_
XMLDOM

Method Description

GETDATA Functions on page 113-66 Retrieves the data of the processing instruction.

GETTARGET Function on
page 113-86

Retrieves the target of the processing instruction.

ISNULL Functions on page 113-109 Tests if the Processing Instruction is NULL.

MAKENODE Functions on
page 113-124

Casts the Processing Instruction to a node.

SETDATA Procedures on
page 113-141

Sets the data of the processing instruction.

Subprogram Groups

DBMS_XMLDOM 113-27

DOMText Subprograms

Table 113–20 Summary of DOMText Subprograms; DBMS_XMLDOM

Method Description

ISNULL Functions on page 113-109 Tests if the text is NULL.

MAKENODE Functions on
page 113-124

Casts the text to a node.

SPLITTEXT Function on page 113-148 Splits the contents of the text node into 2 text nodes.

Summary of DBMS_XMLDOM Subprograms

113-28 PL/SQL Packages and Types Reference

Summary of DBMS_XMLDOM Subprograms

Table 113–21 Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

ADOPTNODE Procedure on page 113-41 Adopts a node from another document (see
DOMNode Subprograms on page 113-8)

APPENDCHILD Function on page 113-42 Appends a new child to the node (see
DOMNode Subprograms on page 113-8)

APPENDDATA Procedure on page 113-43 Appends the given data to the node data (see
DOMCharacterData Subprograms on
page 113-13)

CLONENODE Function on page 113-44 Clones the node (see DOMNode
Subprograms on page 113-8)

CREATEATTRIBUTE Functions on
page 113-45

Creates an Attribute (see DOMDocument
Subprograms on page 113-15)

CREATECDATASECTION Function on
page 113-46

Creates a CDataSection node (see
DOMDocument Subprograms on
page 113-15)

CREATECOMMENT Function on
page 113-47

Creates a Comment node (see
DOMDocument Subprograms on
page 113-15)

CREATEDOCUMENT Function on
page 113-48

Creates a new Document (see
DOMDocument Subprograms on
page 113-15)

CREATEDOCUMENTFRAGMENT
Function on page 113-49

Creates a new Document Fragment (see
DOMDocument Subprograms on
page 113-15)

CREATEELEMENT Functions on
page 113-50

Creates a new Element (see DOMDocument
Subprograms on page 113-15)

CREATEENTITYREFERENCE Function
on page 113-51

Creates an Entity reference (see DOMDocument
Subprograms on page 113-15)

CREATEPROCESSINGINSTRUCTION
Function on page 113-52

Creates a Processing Instruction (see
DOMDocument Subprograms on
page 113-15)

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-29

CREATETEXTNODE Function on
page 113-53

Creates a Text node (see DOMDocument
Subprograms on page 113-15)

DELETEDATA Procedure on page 113-54 Deletes the data from the given offSets (see
DOMCharacterData Subprograms on
page 113-13)

FINDENTITY Function on page 113-55 Finds the specified entity in the document type
(see DOMDocumentType Subprograms on
page 113-18)

FINDNOTATION Function on page 113-56 Finds the specified notation in the document
type (see DOMDocumentType
Subprograms on page 113-18)

FREEDOCFRAG Procedure on
page 113-57

Frees the document fragment (see
DOMDocument Subprograms on
page 113-15)

FREEDOCFRAG Procedure on
page 113-58

Frees the specified document fragment (see
DOMDocumentFragment Subprograms on
page 113-17)

FREEDOCUMENT Procedure on
page 113-59

Frees the document (see DOMDocument
Subprograms on page 113-15)

FREENODE Procedure on page 113-60 Frees all resources associated with the node
(see DOMNode Subprograms on
page 113-8).

GETATTRIBUTE Functions on page 113-61 Retrieves the attribute node by name (see
DOMElement Subprograms on
page 113-19)

GETATTRIBUTES Function on page 113-62 Retrieves the attributes of the node (see
DOMNode Subprograms on page 113-8)

GETATTRIBUTENODE Functions on
page 113-63

Retrieves the attribute node by name (see
DOMElement Subprograms on
page 113-19)

GETCHILDNODES Function on
page 113-64

Retrieves the children of the node (see
DOMNode Subprograms on page 113-8

GETCHILDRENBYTAGNAME Functions
on page 113-65

Retrieves children of the element by tag name
(see DOMCharacterData Subprograms on
page 113-13)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-30 PL/SQL Packages and Types Reference

GETDATA Functions on page 113-66 Retrieves

■ the data of the node (see
DOMCharacterData Subprograms on
page 113-13)

■ the data of the processing instruction (see
DOMProcessingInstruction
Subprograms on page 113-26)

GETDOCTYPE Function on page 113-67 Retrieves the DTD of the document (see
DOMDocument Subprograms on
page 113-15)

GETDOCUMENTELEMENT Function on
page 113-68

Retrieves the root element of the document (see
DOMDocument Subprograms on
page 113-15)

GETELEMENTSBYTAGNAME Functions
on page 113-69

Retrieves

■ the elements in the by tag name (see
DOMDocument Subprograms on
page 113-15)

■ elements in the subtree by tagname (see
DOMElement Subprograms on
page 113-19)

GETENTITIES Function on page 113-70 Retrieves the nodemap of entities in the
Document type (see DOMDocumentType
Subprograms on page 113-18)

GETEXPANDEDNAME Procedure and
Functions on page 113-71

Retrieves

■ the expanded name of the node (see
DOMNode Subprograms on
page 113-8)

■ the expanded name of the attribute (see
DOMAttr Subprograms on
page 113-11)

■ the expanded name of the element
(DOMElement Subprograms on
page 113-19)

GETFIRSTCHILD Function on page 113-72 Retrieves the first child of the node (see
DOMNode Subprograms on page 113-8)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-31

GETIMPLEMENTATION Function on
page 113-73

Retrieves the DOM implementation
(DOMDocument Subprograms on
page 113-15)

GETLASTCHILD Function on page 113-74 Retrieves the last child of the node (see
DOMNode Subprograms on page 113-8)

GETLENGTH Functions on page 113-75 Retrieves

■ the length of the data (see
DOMCharacterData Subprograms on
page 113-13)

■ the number of items in the map (see
DOMNamedNodeMap Subprograms
on page 113-23)

■ the number of items in the list (see
DOMNodeList Subprograms on
page 113-24)

GETLOCALNAME Procedure and
Functions on page 113-76

Retrieves

■ the local part of the qualified name (see
DOMNode Subprograms on
page 113-8)

■ the local name of the attribute (see
DOMAttr Subprograms on
page 113-11)

■ the local name of the element (see
DOMElement Subprograms on
page 113-19)

GETNAME Functions on page 113-77 Retrieves

■ the name of the attribute (see DOMAttr
Subprograms on page 113-11)

■ the name of the Document type
(DOMDocumentType Subprograms on
page 113-18)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-32 PL/SQL Packages and Types Reference

GETNAMEDITEM Function on
page 113-78

Retrieves

■ an item specified by name (see
DOMNamedNodeMap Subprograms
on page 113-23)

■ an item specified by name and
namespace URI (see
DOMNamedNodeMap Subprograms
on page 113-23)

GETNAMESPACE Procedure and
Functions on page 113-79

Retrieves

■ the node's namespace URI (see
DOMNode Subprograms on
page 113-8)

■ the NS URI of the attribute (see DOMAttr
Subprograms on page 113-11)

■ the NS URI of the element (see
DOMElement Subprograms on
page 113-19)

GETNEXTSIBLING Function on
page 113-80

Retrieves the next sibling of the node (see
DOMNode Subprograms on page 113-8)

GETNODENAME Function on
page 113-81

Retrieves the Name of the Node (see
DOMNode Subprograms on page 113-8)

GETNODETYPE Function on page 113-82 Retrieves the Type of the node (see DOMNode
Subprograms on page 113-8)

GETNODEVALUE Function on
page 113-83

Retrieves the Value of the Node (see
DOMNode Subprograms on page 113-8)

GETNOTATIONNAME Function on
page 113-84

Retrieves the notation name of the entity (see
DOMEntity Subprograms on page 113-20)

GETNOTATIONS Function on page 113-85 Retrieves the nodemap of the notations in the
Document type (see DOMDocumentType
Subprograms on page 113-18)

GETTARGET Function on page 113-86 Retrieves the target of the processing
instruction (see DOMProcessingInstruction
Subprograms on page 113-26)

GETOWNERDOCUMENT Function on
page 113-87

Retrieves the owner document of the node (see
DOMNode Subprograms on page 113-8)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-33

GETOWNERELEMENT Function on
page 113-88

Retrieves the Element node, parent of the
attribute (see DOMAttr Subprograms on
page 113-11)

GETPARENTNODE Function on
page 113-89

Retrieves the parent of this node (see
DOMNode Subprograms on page 113-8)

GETPREFIX Function on page 113-90 Retrieves the namespace prefix (see
DOMNode Subprograms on page 113-8)

GETPREVIOUSSIBLING Function on
page 113-91

Retrieves the previous sibling of the node (see
DOMNode Subprograms on page 113-8)

GETPUBLICID Functions on page 113-92 Retrieves

■ the public ID of the document type (see
DOMDocumentType Subprograms on
page 113-18)

■ the public Id of the entity (see DOMEntity
Subprograms on page 113-20)

■ the public Id of the notation (see
DOMNotation Subprograms on
page 113-25)

GETQUALIFIEDNAME Functions on
page 113-93

Retrieves

■ the Qualified Name of the attribute (see
DOMAttr Subprograms on
page 113-11)

■ the qualified name of the element (see
DOMElement Subprograms on
page 113-19)

GETSCHEMANODE Function on
page 113-94

Retrieves the associated schema URI (see
DOMNode Subprograms on page 113-8)

GETSPECIFIED Function on page 113-95 Tests if attribute was specified in the element.
(see DOMAttr Subprograms on
page 113-11)

GETSTANDALONE Function on
page 113-96

Retrieves the standalone property of the
document (see DOMDocument
Subprograms on page 113-15)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-34 PL/SQL Packages and Types Reference

GETSYSTEMID Functions on page 113-97 Retrieves

■ the system ID of the document type (see
DOMDocumentType Subprograms on
page 113-18)

■ the system Id of the entity (see
DOMEntity Subprograms on
page 113-20)

■ the system Id of the notation
(DOMNotation Subprograms on
page 113-25)

GETTAGNAME Function on page 113-98 Retrieves the Tag name of the element (see
DOMElement Subprograms on
page 113-19)

GETVALUE Function on page 113-99 Retrieves the value of the attribute (see
DOMAttr Subprograms on page 113-11)

GETVERSION Function on page 113-100 Retrieves the version of the document
(DOMDocument Subprograms on
page 113-15)

GETXMLTYPE Function on page 113-101 Retrieves the XMLType associated with the
DOM Document (see DOMDocument
Subprograms on page 113-15)

HASATTRIBUTES Function on
page 113-103

Tests if the node has attributes (see DOMNode
Subprograms on page 113-8)

HASATTRIBUTE Functions on
page 113-102

Tests if an attribute exists (see DOMElement
Subprograms on page 113-19)

HASCHILDNODES Function on
page 113-104

Tests if the node has child nodes (see
DOMNode Subprograms on page 113-8)

HASFEATURE Function on page 113-105 Tests if the DOMImplementation implements
a feature (see DOMImplementation
Subprograms on page 113-22)

IMPORTNODE Function on page 113-106 Imports a node from another document (see
DOMNode Subprograms on page 113-8)

INSERTBEFORE Function on page 113-107 Inserts a child before the reference child (see
DOMNode Subprograms on page 113-8)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-35

INSERTDATA Procedure on page 113-108 Inserts the data in the node at the given offSets
(see DOMCharacterData Subprograms on
page 113-13)

ISNULL Functions on page 113-109 Tests

■ if the node is NULL (see DOMNode
Subprograms on page 113-8)

■ if the Attribute node is NULL (see
DOMAttr Subprograms on
page 113-11)

■ if the CDataSection is NULL (see
DOMCDataSection Subprograms on
page 113-12)

■ if the CharacterData is NULL
(DOMCharacterData Subprograms on
page 113-13)

■ if the comment is NULL (see
DOMComment Subprograms on
page 113-14)

■ if the document is NULL (see
DOMDocument Subprograms on
page 113-15)

■ if the DocumentFragment is NULL (see
DOMDocumentFragment
Subprograms on page 113-17)

■ if the Document Type is NULL (see
DOMDocumentType Subprograms on
page 113-18)

■ if the Element is NULL (see DOMElement
Subprograms on page 113-19)

■ if the Entity is NULL (see DOMEntity
Subprograms on page 113-20)

■ if the DOMEntityReference is NULL (see
DOMEntityReference Subprograms)

■ if the DOMImplementation node is NULL
(see DOMImplementation
Subprograms on page 113-22)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-36 PL/SQL Packages and Types Reference

ISNULL Functions on page 113-109
(contd.)

Tests

■ if the NamedNodeMap is NULL (see
DOMNamedNodeMap Subprograms
on page 113-23)

■ if the NodeList is NULL (see
DOMNodeList Subprograms on
page 113-24)

■ if the Notation is NULL (see
DOMNotation Subprograms on
page 113-25)

■ if the Processing Instruction is NULL
(DOMProcessingInstruction
Subprograms on page 113-26)

■ if the text is NULL (see DOMText
Subprograms on page 113-27)

IITEM Functions on page 113-113 Retrieves

■ the item given the index in the map (see
DOMNamedNodeMap Subprograms
on page 113-23)

■ the item given the index in the NodeList
(see DOMNodeList Subprograms on
page 113-24)

MAKEATTR Function on page 113-114 Casts the node to an Attribute (see DOMNode
Subprograms on page 113-8)

MAKECDATASECTION Function on
page 113-115

Casts the node to a CData Section (see
DOMNode Subprograms on page 113-8)

MAKECHARACTERDATA Function on
page 113-116

Casts the node to Character Data (see
DOMNode Subprograms on page 113-8)

MAKECOMMENT Function on
page 113-117

Casts the node to a Comment (see DOMNode
Subprograms on page 113-8)

MAKEDOCUMENT Function on
page 113-118

Casts the node to a DOM Document (see
DOMNode Subprograms on page 113-8)

MAKEDOCUMENTFRAGMENT
Function on page 113-119

Casts the node to a DOM Document Fragment
(see DOMNode Subprograms on
page 113-8)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-37

MAKEDOCUMENTTYPE Function on
page 113-120

Casts the node to a DOM Document Type (see
DOMNode Subprograms on page 113-8)

MAKEELEMENT Function on
page 113-121

Casts the node to a DOM Element (see
DOMNode Subprograms on page 113-8)

MAKEENTITY Function on page 113-122 Casts the node to a DOM Entity (see
DOMNode Subprograms on page 113-8)

MAKEENTITYREFERENCE Function on
page 113-123

Casts the node to a DOM Entity Reference (see
DOMNode Subprograms on page 113-8)

MAKENODE Functions on page 113-124 Casts

■ the Attribute to a node (see DOMAttr
Subprograms on page 113-11)

■ the CDatasection to a node (see
DOMCDataSection Subprograms on
page 113-12)

■ the CharacterData to a node (see
DOMCharacterData Subprograms on
page 113-13)

■ the Comment to a node (see
DOMComment Subprograms on
page 113-14)

■ the document to a node (see
DOMDocument Subprograms on
page 15)

■ the Document Fragment to a node (see
DOMDocumentFragment
Subprograms on page 113-17)

■ the document type to a node (see
DOMDocumentType Subprograms on
page 113-18)

■ the Element to a node (see DOMElement
Subprograms on page 113-19)

■ the Entity to a node (see DOMEntity
Subprograms on page 113-20)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-38 PL/SQL Packages and Types Reference

MAKENODE Functions on page 113-124

(contd.)

Casts

■ the DOMEntityReference to NULL (see
DOMEntityReference Subprograms on
page 113-21)

■ the notation to a node (see DOMNotation
Subprograms on page 113-25)

■ the Processing Instruction to a node (see
DOMProcessingInstruction
Subprograms on page 113-26)

■ the text to a node (see DOMText
Subprograms on page 113-27)

MAKENOTATION Function on
page 113-127

Casts the node to a DOM Notation (see
DOMNode Subprograms on page 113-8)

MAKEPROCESSINGINSTRUCTION
Function on page 113-128

Casts the node to a DOM Processing Instruction
(see DOMNode Subprograms on
page 113-8)

MAKETEXT Function on page 113-129 Casts the node to a DOM Text (see DOMNode
Subprograms on page 113-8)

NEWDOMDOCUMENT Functions on
page 113-130

Creates a new document (see DOMDocument
Subprograms on page 113-15)

NORMALIZE Procedure on page 113-131 Normalizes the text children of the element (see
DOMElement Subprograms on
page 113-19)

REMOVEATTRIBUTE Procedures on
page 113-132

Removes the attribute specified by the name
(see DOMElement Subprograms on
page 113-19)

REMOVEATTRIBUTENODE Function on
page 113-133

Removes the attribute node in the element (see
DOMElement Subprograms on
page 113-19)

REMOVECHILD Function on
page 113-134

Removes a specified child from a node (see
DOMNode Subprograms on page 113-8)

REMOVENAMEDITEM Function on
page 113-135

Removes the item specified by name (see
DOMNamedNodeMap Subprograms on
page 113-23)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-39

REPLACECHILD Function on
page 113-136

Replaces the old child with a new child (see
DOMNode Subprograms on page 113-8)

REPLACEDATA Procedure on
page 113-137

Changes a range of characters in the node
(see DOMCharacterData Subprograms on
page 113-13)

RESOLVENAMESPACEPREFIX Function
on page 113-138

Resolve the prefix to a namespace URI (see
DOMElement Subprograms on
page 113-19)

SETATTRIBUTE Procedures on
page 113-139

Sets the attribute specified by the name (see
DOMElement Subprograms on
page 113-19)

SETATTRIBUTENODE Functions on
page 113-140

Sets the attribute node in the element (see
DOMElement Subprograms on
page 113-19)

SETDATA Procedures on page 113-141 Sets

■ the data to the node (see
DOMCharacterData Subprograms on
page 113-13

■ the data of the processing instruction (see
DOMProcessingInstruction
Subprograms on page 113-26))

SETNAMEDITEM Function on
page 113-142

Sets the item in the map specified by the name
(see DOMNamedNodeMap Subprograms
on page 113-23)

SETNODEVALUE Procedure on
page 113-143

Sets the Value of the node (see DOMNode
Subprograms on page 113-8)

SETPREFIX Procedure on page 113-144 Sets the namespace prefix (see DOMNode
Subprograms on page 113-8)

SETSTANDALONE Procedure on
page 113-145

Sets the standalone property of the document
(see DOMDocument Subprograms on
page 113-15)

SETVALUE Procedure on page 113-146 Sets the value of the attribute (see DOMAttr
Subprograms on page 113-11)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

113-40 PL/SQL Packages and Types Reference

SETVERSION Procedure on page 113-147 Sets the version of the document (see
DOMDocument Subprograms on
page 113-15)

SPLITTEXT Function on page 113-148 Splits the contents of the text node into 2 text
nodes (see DOMText Subprograms on
page 113-27)

SUBSTRINGDATA Function on
page 113-149

Retrieves the substring of the data
(DOMCharacterData Subprograms on
page 113-13)

WRITETOBUFFER Procedures on
page 113-150

Writes

■ the contents of the node to a buffer (see
DOMNode Subprograms on
page 113-8)

■ the document to a buffer (see
DOMDocument Subprograms on
page 113-15)

■ the contents of a document fragment into a
buffer (see DOMDocumentFragment
Subprograms on page 113-17)

WRITETOCLOB Procedures on
page 113-151

Writes

■ the contents of the node to a CLOB (see
DOMNode Subprograms on
page 113-8)

■ the document to a CLOB (see
DOMDocument Subprograms on
page 113-15)

WRITETOFILE Procedures on
page 113-152

Writes

■ the contents of the node to a file (see
DOMNode Subprograms on
page 113-8)

■ the document to a file (see
DOMDocument Subprograms on
page 113-15)

Table 113–21 (Cont.) Summary of DBMS_XMLDOM Package Subprogram

Subprogram Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-41

ADOPTNODE Procedure
This procedure adopts a node from another document; returns this new node.

Syntax
DBMS_XMLDOM.ADOPTNODE(

doc IN DOMDocument,
importedNode IN DOMNode)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–22 ADOPTNODE Function Parameters

Parameter Description

doc Document that is adopting the node.

importedNode Node to adopt.

APPENDCHILD Function

113-42 PL/SQL Packages and Types Reference

APPENDCHILD Function
This function adds the node NEWCHILD to the end of the list of children of this
node, and returns the newly added node. If the NEWCHILD is already in the tree, it is
first removed.

Syntax
DBMS_XMLDOM.APPENDCHILD(

n IN DOMNode,
newChild IN DOMNode)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–23 APPENDCHILD Function Parameters

Parameter Description

n DOMNode.

newChild The child to be appended to the list of children of node n.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-43

APPENDDATA Procedure
This procedure appends the string to the end of the character data of the node.
Upon success, data provides access to the concatenation of data and the specified
string argument.

Syntax
DBMS_XMLDOM.APPENDDATA(

cd IN DOMCharacterData,
arg IN VARCHAR2);

Parameters

See Also: DOMCharacterData Subprograms on page 113-13

Table 113–24 APPENDDATA Procedure Parameters

Parameter Description

cd DOMCharacterData.

arg The data to append to the existing data.

CLONENODE Function

113-44 PL/SQL Packages and Types Reference

CLONENODE Function
This function returns a duplicate of this node; serves as a generic copy constructor
for nodes. The duplicate node has no parent; its parent node is NULL.

Cloning an Element copies all attributes and their values, including those generated
by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a
child Text node. Cloning an Attribute directly, as opposed to be cloned as part of an
Element cloning operation, returns a specified attribute (specified is TRUE). Cloning
any other type of node simply returns a copy of this node.

Syntax
DBMS_XMLDOM.CLONENODE(

n IN DOMNode,
deep IN BOOLEAN)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–25 CLONENODE Function Parameters

Parameter Description

n DOMNode.

deep Determines if children are to be cloned.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-45

CREATEATTRIBUTE Functions
This function creates a DOMAttr node.

Syntax
Creates a DOMAttr with the specified name:

DBMS_XMLDOM.CREATEATTRIBUTE(
doc IN DOMDocument,
name IN VARCHAR2)

 RETURN DOMAttr;

Creates a DOMAttr with the specified name and namespace URI:

DBMS_XMLDOM.CREATEATTRIBUTE(
doc IN DOMDocument,
name IN VARCHAR2,
ns IN VARCHAR2)

RETURN DOMAttr;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–26 CREATEATTRIBUTE Function Parameters

Parameter Description

doc DOMDocument.

name New attribute name.

ns Namespace.

CREATECDATASECTION Function

113-46 PL/SQL Packages and Types Reference

CREATECDATASECTION Function
This function creates a DOMCDATASection node.

Syntax
DBMS_XMLDOM.CREATECDATASECTION(

doc IN DOMDocument,
data IN VARCHAR2)

 RETURN DOMCDATASection;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–27 CREATECDATASECTION Function Parameters

Parameter Description

doc DOMDocument.

data Content of the DOMCDATASection node.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-47

CREATECOMMENT Function
This function creates a DOMComment node.

Syntax
DBMS_XMLDOM.CREATECOMMENT(

doc IN DOMDocument,
data IN VARCHAR2)

 RETURN DOMComment;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–28 CREATECOMMENT Function Parameters

Parameter Description

doc DOMDocument.

data Content of the DOMComment node.

CREATEDOCUMENT Function

113-48 PL/SQL Packages and Types Reference

CREATEDOCUMENT Function
This function creates a DOMDocument with specified namespace URI, root element
name, DTD.

Syntax
DBMS_XMLDOM.CREATEDOCUMENT(

namespaceURI IN VARCHAR2,
qualifiedName IN VARCHAR2,
doctype IN DOMType:=NULL)

 RETURN DOMDocument;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–29 CREATEDOCUMENT Function Parameters

Parameter Description

namespaceURI Namespace URI.

qualifiedName Root element name.

doctype Document type.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-49

CREATEDOCUMENTFRAGMENT Function
This function creates a DOMDocumentFragment.

Syntax
DBMS_XMLDOM.CREATEDOCUMENTFRAGMENT(

doc IN DOMDocument)
 RETURN DOMDocumentFragment;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–30 CREATEDOCUMENTFRAGMENT Function Parameters

Parameter Description

doc DOMDocument.

CREATEELEMENT Functions

113-50 PL/SQL Packages and Types Reference

CREATEELEMENT Functions
Creates a DOMElement.

Syntax
Creates a DOMElement with specified name:

DBMS_XMLDOM.CREATEELEMENT(
doc IN DOMDocument,
tagName IN VARCHAR2)

 RETURN DOMElement;

Creates a DOMElement with specified name and namespace URI:

DBMS_XMLDOM.CREATEELEMENT(
doc IN DOMDocument,
tagName IN VARCHAR2,
ns IN VARCHAR2)

 RETURN DOMElement;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–31 CREATEELEMENT Function Parameters

Parameter Description

doc DOMDocument.

tagName Tagname for new DOMElement.

ns Namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-51

CREATEENTITYREFERENCE Function
This function creates a DOMEntityReference node.

Syntax
DBMS_XMLDOM.CREATEENTITYREFERENCE(

doc IN DOMDocument,
name IN VARCHAR2)

 RETURN DOMEntityReference;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–32 CREATEENTITYREFERENCE Function Parameters

Parameter Description

doc DOMDocument.

name New entity reference name.

CREATEPROCESSINGINSTRUCTION Function

113-52 PL/SQL Packages and Types Reference

CREATEPROCESSINGINSTRUCTION Function
This function creates a DOMProcessingInstruction node.

Syntax
DBMS_XMLDOM.CREATEPROCESSINGINSTRUCTION(

doc IN DOMDocument,
target IN VARCHAR2,
data IN VARCHAR2)

 RETURN DOMProcessingInstruction;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–33 CREATEPROCESSINGINSTRUCTION Function Parameters

Parameter Description

doc DOMDocument.

target Target of the new processing instruction.

data Content data of the new processing instruction.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-53

CREATETEXTNODE Function
This function creates a DOMText node.

Syntax
DBMS_XMLDOM.CREATETEXTNODE(

doc IN DOMDocument,
data IN VARCHAR2)

 RETURN DOMText;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–34 CREATETEXTNODE Function Parameters

Parameter Description

doc DOMDocument.

data Content of the DOMText node.

DELETEDATA Procedure

113-54 PL/SQL Packages and Types Reference

DELETEDATA Procedure
This procedure removes a range of characters from the node. Upon success, data
and length reflect the change.

Syntax
DBMS_XMLDOM.DELETEDATA(

cd IN DOMCharacterData,
offset IN NUMBER,
cnt IN NUMBER);

Parameters

See Also: DOMCharacterData Subprograms on page 113-13

Table 113–35 DELETEDATA PROCEDURE Parameters

Parameter Description

cd DOMCharacterData.

offset The offset from which to delete the data.

cnt The number of characters (starting from offset) to delete.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-55

FINDENTITY Function
This function finds an entity in the given DTD; returns that entity if found.

Syntax
DBMS_XMLDOM.FINDENTITY(

dt IN DOMDocumentType,
name IN VARCHAR2,
par IN BOOLEAN)

 RETURN DOMEntity;

Parameters

See Also: DOMDocumentType Subprograms on page 113-18

Table 113–36 FINDENTITY Function Parameters

Parameter Description

dt The DTD.

name Entity to find.

par Flag to indicate type of entity; TRUE for parameter entity and
FALSE for normal entity.

FINDNOTATION Function

113-56 PL/SQL Packages and Types Reference

FINDNOTATION Function
This function finds the notation in the given DTD; returns it, if found.

Syntax
DBMS_XMLDOM.FINDNOTATION(

dt IN DOMDocumentType,
name IN VARCHAR2)

 RETURN DOMNotation;

Parameters

See Also: DOMDocumentType Subprograms on page 113-18

Table 113–37 FINDNOTATION Function Parameters

Parameter Description

dt The DTD.

name The notation to find.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-57

FREEDOCFRAG Procedure
This procedure frees the specified document fragment.

Syntax
DBMS_XMLDOM.FREEDOCFRAG(

df IN DOMDocumentFragment);

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–38 FREEDOCFRAG Procedure Parameters

Parameter Description

df DOM document fragment.

FREEDOCFRAG Procedure

113-58 PL/SQL Packages and Types Reference

FREEDOCFRAG Procedure
This procedure frees the specified document fragment.

Syntax
DBMS_XMLDOM.FREEDOCFRAG(

df IN DOMDocumentFragment);

Parameters

See Also: DOMDocumentFragment Subprograms on page 113-17

Table 113–39 FREEDOCFRAG Procedure Parameters

Parameter Description

df DOM document fragment.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-59

FREEDOCUMENT Procedure
This procedure frees DOMDocument object.

Syntax
DBMS_XMLDOM.FREEDOCUMENT(

doc IN DOMDocument);

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–40 FREEDOCUMENT Procedure Parameters

Parameter Description

doc DOMDocument.

FREENODE Procedure

113-60 PL/SQL Packages and Types Reference

FREENODE Procedure
This procedure frees all resources associated with a Node.

Syntax
DBMS_XMLDOM.FREENODE(

n IN DOMNode);

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–41 FREENODE Procedure Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-61

GETATTRIBUTE Functions
Returns the value of a DOMElement's attribute by name.

Syntax
Returns the value of a DOMElement's attribute by name:

DBMS_XMLDOM.GETATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2)

 RETURN VARCHAR2;

Returns the value of a DOMElement's attribute by name and namespace URI:

DBMS_XMLDOM.GETATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2)

 RETURN VARCHAR2;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–42 GETATTRIBUTE Function Parameters

Parameter Description

elem The DOMElement.

name Attribute name.

ns Namespace.

GETATTRIBUTES Function

113-62 PL/SQL Packages and Types Reference

GETATTRIBUTES Function
This function retrieves a NamedNodeMap containing the attributes of this node (if it
is an Element) or NULL otherwise.

Syntax
DBMS_XMLDOM.GETATTRIBUTES(

n IN DOMNode)
 RETURN DOMNamedNodeMap;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–43 GETATTRIBUTES Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-63

GETATTRIBUTENODE Functions
Returns an attribute node from the DOMElement by name.

Syntax
Returns an attribute node from the DOMElement by name:

DBMS_XMLDOM.GETATTRIBUTENODE(
elem IN DOMElement,
name IN VARCHAR2)

 RETURN DOMAttr;

Returns an attribute node from the DOMElement by name and namespace URI:

DBMS_XMLDOM.GETATTRIBUTENODE(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2)

RETURN DOMAttr;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–44 GETATTRIBUTENODE Function Parameters

Parameter Description

elem The DOMElement.

name Attribute name; * matches any attribute.

ns Namespace.

GETCHILDNODES Function

113-64 PL/SQL Packages and Types Reference

GETCHILDNODES Function
This function retrieves a NodeList that contains all children of this node. If there
are no children, this is a NodeList containing no nodes.

Syntax
DBMS_XMLDOM.GETCHILDNODES(

n IN DOMNode)
 RETURN DOMNodeList;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–45 GETCHILDNODES Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-65

GETCHILDRENBYTAGNAME Functions
Returns the children of the DOMElement.

Syntax
Returns children of the DOMElement given the tag name:

DBMS_XMLDOM.GETCHILDRENBYTAGNAME(
elem IN DOMElement,
name IN VARCHAR2)

 RETURN DOMNodeList;

Returns children of the DOMElement given the tag name and namespace:

DBMS_XMLDOM.GETCHILDRENBYTAGNAME(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2)

RETURN DOMNodeList;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–46 GETCHILDRENBYTAGNAME Function Parameters

Parameter Description

elem The DOMElement.

name Tag name.

ns Namespace.

GETDATA Functions

113-66 PL/SQL Packages and Types Reference

GETDATA Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Gets the character data of the node that implements this interface (See Also:
DOMCharacterData Subprograms on page 113-13):

DBMS_XMLDOM.GETDATA(
cd IN DOMCharacterData)

 RETURN VARCHAR2;

Returns the content data of the DOMProcessingInstruction (See Also:
DOMProcessingInstruction Subprograms on page 113-26):

DBMS_XMLDOM.GETDATA(
pi IN DOMProcessingInstruction)

 RETURN VARCHAR2;

Parameters

Table 113–47 GETDATA Function Parameters

Parameter Description

cd DOMCharacterData.

pi The DOMProcessingInstruction.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-67

GETDOCTYPE Function
This function returns the DTD associated to the DOMDocument.

Syntax
DBMS_XMLDOM.GETDOCTYPE(

doc IN DOMDocument)
RETURN domdocumenttype;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–48 GETDOCTYPE Function Parameters

Parameter Description

doc DOMDocument.

GETDOCUMENTELEMENT Function

113-68 PL/SQL Packages and Types Reference

GETDOCUMENTELEMENT Function
This function returns the root element of the DOMDocument.

Syntax
DBMS_XMLDOM.GETDOCUMENTELEMENT(

doc IN DOMDocument)
 RETURN DOMElement;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–49 GETDOCUMENTELEMENT Function Parameters

Parameter Description

doc DOMDocument.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-69

GETELEMENTSBYTAGNAME Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns a DOMNodeList of all the elements with a given tagname (See Also:
DOMDocument Subprograms on page 113-15):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
doc IN DOMDocument,
tagname IN VARCHAR2)

 RETURN DOMNodeList;

Returns the element children of the DOMElement given the tag name (See Also:
DOMElement Subprograms on page 113-19):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
elem IN DOMElement,
name IN VARCHAR2)

 RETURN DOMNodeList;

Returns the element children of the DOMElement given the tag name and
namespace (See Also: DOMElement Subprograms on page 113-19):

DBMS_XMLDOM.GETELEMENTSBYTAGNAME(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2)

 RETURN DOMNodeList;

Parameters

Table 113–50 GETELEMENTSBYTAGNAME Function Parameters

Parameter Description

doc DOMDocument.

tagname Name of the tag to match on.

elem The DOMElement.

name Tag name; using a wildcard(*) would match any tag.

ns Namespace.

GETENTITIES Function

113-70 PL/SQL Packages and Types Reference

GETENTITIES Function
This function retrieves a NamedNodeMap containing the general entities, both
external and internal, declared in the DTD.

Syntax
DBMS_XMLDOM.GETENTITIES(

dt IN DOMDocumentType)
 RETURN DOMNamedNodeMap;

Parameters

See Also: DOMDocumentType Subprograms on page 113-18

Table 113–51

Parameter Description

dt DOMDocumentType.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-71

GETEXPANDEDNAME Procedure and Functions
GETEXPANDEDNAME is overloaded as a procedure and two functions. The
specific forms of functionality are described alongside the syntax declarations.

Syntax
Retrieves the expanded name of the Node if is in an Element or Attribute type;
otherwise, returns NULL (See Also: DOMNode Subprograms on page 113-8)

DBMS_XMLDOM.GETEXPANDEDNAME(
n IN DOMNode
data OUT VARCHAR);

Returns the expanded name of the DOMAttr (See Also: DOMAttr Subprograms on
page 113-11):

DBMS_XMLDOM.GETEXPANDEDNAME(
a IN DOMAttr)

 RETURN VARCHAR2;

Returns the expanded name of the DOMElement (See Also: DOMElement
Subprograms on page 113-19):

DBMS_XMLDOM.GETEXPANDEDNAME(
elem IN DOMElement)

 RETURN VARCHAR2;

Parameters

Table 113–52 GETEXPANDEDNAME Procedure and Function Parameters

Parameter Description

n DOMNode.

data Returned expanded name of the Node.

a DOMAttr.

elem DOMElement.

GETFIRSTCHILD Function

113-72 PL/SQL Packages and Types Reference

GETFIRSTCHILD Function
This function retrieves the first child of this node. If there is no such node, this
returns NULL.

Syntax
DBMS_XMLDOM.GETFIRSTCHILD(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–53 GETFIRSTCHILD Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-73

GETIMPLEMENTATION Function
This function returns the DOMImplementation object that handles this
DOMDocument.

Syntax
DBMS_XMLDOM.GETIMPLEMENTATION(

doc IN DOMDocument)
 RETURN DOMImplementation;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–54 GETIMPLEMENTATION Function Parameters

Parameter Description

doc DOMDocument.

GETLASTCHILD Function

113-74 PL/SQL Packages and Types Reference

GETLASTCHILD Function
This function retrieves the last child of this node. If there is no such node, this
returns NULL.

Syntax
DBMS_XMLDOM.GETLASTCHILD(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–55 GETLASTCHILD Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-75

GETLENGTH Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Gets the number of characters in the data. This may have the value zero, because
CharacterData nodes may be empty (See Also: DOMCharacterData Subprograms
on page 113-13):

DBMS_XMLDOM.GETLENGTH(
cd IN DOMCharacterData)

 RETURN NUMBER;

Gets the number of nodes in this map. The range of valid child node indexes is 0 to
length-1, inclusive (See Also: DOMNamedNodeMap Subprograms on
page 113-23):

DBMS_XMLDOM.GETLENGTH(
nnm IN DOMNamedNodeMap)

 RETURN NUMBER;

Gets the number of nodes in the list. The range of valid child node indexes is 0 to
length-1, inclusive (See Also: DOMNodeList Subprograms on page 113-24):

DBMS_XMLDOM.GETLENGTH(
nl IN DOMNodeList)

 RETURN NUMBER;

Parameters

Table 113–56 GETLENGTH Function Parameters

Parameter Description

cd DOMCharacterData.

nnm DOMNamedNodeMap.

nl DOMNodeList.

GETLOCALNAME Procedure and Functions

113-76 PL/SQL Packages and Types Reference

GETLOCALNAME Procedure and Functions
This function is overloaded as a procedure and two functions. The specific forms of
functionality are described alongside the syntax declarations.

Syntax
Retrieves the local part of the node's qualified name (See Also: DOMNode
Subprograms on page 113-8):

DBMS_XMLDOM.GETLOCALNAME(
n IN DOMNode,
data OUT VARCHAR2);

Returns the local name of the DOMAttr (See Also: DOMAttr Subprograms on
page 113-11):

DBMS_XMLDOM.GETLOCALNAME(
a IN DOMAttr)

 RETURN VARCHAR2;

Returns the local name of the DOMElement (See Also: DOMElement Subprograms
on page 113-19)

DBMS_XMLDOM.GETLOCALNAME(
elem IN DOMElement)

 RETURN VARCHAR2;

Parameters

Table 113–57 GETLOCALNAME Procedure and Function Parameters

Parameter Description

n DOMNode

data Returned local name.

a DOMAttr.

elem DOMElement.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-77

GETNAME Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns the name of this attribute (See Also: DOMAttr Subprograms on
page 113-11):

DBMS_XMLDOM.GETNAME(
a IN DOMAttr)

 RETURN VARCHAR2;

Retrieves the name of DTD, or the name immediately following the DOCTYPE
keyword (See Also: DOMDocumentType Subprograms on page 113-18):

DBMS_XMLDOM.GETNAME(
dt IN DOMDocumentType)

 RETURN VARCHAR2;

Parameters

Table 113–58 GETNAME Function Parameters

Parameter Description

a DOMAttr.

dt DOMDocumentType.

GETNAMEDITEM Function

113-78 PL/SQL Packages and Types Reference

GETNAMEDITEM Function
This function retrieves a node specified by name.

Syntax
Retrieves a node specified by name:

DBMS_XMLDOM.GETNAMEDITEM(
nnm DOMNamedNodeMap,
name IN VARCHAR2)

 RETURN DOMNode;

Retrieves a node specified by name and namespace URI:

DBMS_XMLDOM.GETNAMEDITEM(
nnm DOMNamedNodeMap,
name IN VARCHAR2,
ns IN VARCHAR2)

RETURN DOMNode;

Parameters

See Also: DOMNamedNodeMap Subprograms on page 113-23

Table 113–59 GETNAMEDITEM Function Parameters

Parameter Description

nnm DOMNamedNodeMap.

name Name of the item to be retrieved.

ns Namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-79

GETNAMESPACE Procedure and Functions
GETNAMESPACE is overloaded as a procedure and two functions. The specific
forms of functionality are described alongside the syntax declarations.

Syntax
Retrieves the namespace URI associated with the node (See Also: DOMNode
Subprograms on page 113-8):

DBMS_XMLDOM.GETNAMESPACE(
n IN DOMNode,
data OUT VARCHAR2);

Retrieves the namespace of the DOMAttr (See Also: DOMAttr Subprograms on
page 113-11):

DBMS_XMLDOM.GETNAMESPACE(
a IN DOMAttr)

 RETURN VARCHAR2;

Retrieves the namespace of the DOMElement (See Also: DOMElement Subprograms
on page 113-19):

DBMS_XMLDOM.GETNAMESPACE(
elem IN DOMElement)

 RETURN VARCHAR2;

Parameters

Table 113–60 GETNAMESPACE Procedure and Function Parameters

Parameter Description

n DOMNode.

data Returned namespace URI.

a DOMAttr.

elem DOMElement.

GETNEXTSIBLING Function

113-80 PL/SQL Packages and Types Reference

GETNEXTSIBLING Function
This function retrieves the node immediately following this node. If there is no such
node, this returns NULL.

Syntax
DBMS_XMLDOM.GETNEXTSIBLING(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–61 GETNEXTSIBLING Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-81

GETNODENAME Function
This function gets the name of the node depending on its type.

Syntax
DBMS_XMLDOM.GETNODENAME(

n IN DOMNode)
RETURN VARCHAR2;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–62 GETNODENAME Function Parameters

Parameter Description

n DOMNode.

GETNODETYPE Function

113-82 PL/SQL Packages and Types Reference

GETNODETYPE Function
This function retrieves a code representing the type of the underlying object.

Syntax
DBMS_XMLDOM.GETNODETYPE(

n IN DOMNode)
 RETURN NUMBER;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–63 GETNODETYPE Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-83

GETNODEVALUE Function
This function gets the value of this node, depending on its type.

Syntax
DBMS_XMLDOM.GETNODEVALUE(

n IN DOMNode)
 RETURN VARCHAR2;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–64 GETNODEVALUE Function Parameters

Parameter Description

n DOMNode.

GETNOTATIONNAME Function

113-84 PL/SQL Packages and Types Reference

GETNOTATIONNAME Function
This function returns the notation name of the DOMEntity.

Syntax
DBMS_XMLDOM.GETNOTATIONNAME(

ent IN DOMEntity)
 RETURN VARCHAR2;

Parameters

See Also: DOMEntity Subprograms on page 113-20

Table 113–65 GETNOTATIONNAME Function Parameters

Parameter Description

ent DOMEntity.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-85

GETNOTATIONS Function
This function retrieves a NamedNodeMap containing the notations declared in the
DTD.

Syntax
DBMS_XMLDOM.GETNOTATIONS(

dt IN DOMDocumentType)
 RETURN DOMNamedNodeMap;

Parameters

See Also: DOMDocumentType Subprograms on page 113-18

Table 113–66 GETNOTATIONS Function Parameters

Parameter Description

dt DOMDocumentType.

GETTARGET Function

113-86 PL/SQL Packages and Types Reference

GETTARGET Function
This function returns the target of the DOMProcessingInstruction.

Syntax
DBMS_XMLDOM.GETTARGET(

pi IN DOMProcessingInstruction)
 RETURN VARCHAR2;

Parameters

See Also: DOMProcessingInstruction Subprograms on
page 113-26

Table 113–67 GETTARGET Function Parameters

Parameter Description

pi DOMProcessingInstruction.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-87

GETOWNERDOCUMENT Function
This function retrieves the Document object associated with this node. This is also
the Document object used to create new nodes. When this node is a Document or a
Document Type that is not used with any Document yet, this is NULL.

Syntax
DBMS_XMLDOM.GETOWNERDOCUMENT(

n IN DOMNode)
 RETURN DOMDocument;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–68 GETOWNERDOCUMENT Function Parameters

Parameter Description

n DOMNode.

GETOWNERELEMENT Function

113-88 PL/SQL Packages and Types Reference

GETOWNERELEMENT Function
This function retrieves the Element node to which the specified Attribute is
attached.

Syntax
DBMS_XMLDOM.GETOWNERELEMENT(

a IN DOMAttr)
 RETURN DOMElement;

Parameters

See Also: DOMAttr Subprograms on page 113-11

Table 113–69 GETOWNERELEMENT Function Parameters

Parameter Description

a Attribute.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-89

GETPARENTNODE Function
This function retrieves the parent of this node. All nodes, except Attr, Document,
DocumentFragment, Entity, and Notation may have a parent. However, if a
node has just been created and not yet added to the tree, or if it has been removed
from the tree, this is NULL.

Syntax
DBMS_XMLDOM.GETPARENTNODE(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–70 GETPARENTNODE Function Parameters

Parameter Description

n DOMNode.

GETPREFIX Function

113-90 PL/SQL Packages and Types Reference

GETPREFIX Function
This function retrieves the namespace prefix of the node.

Syntax
DBMS_XMLDOM.GETPREFIX(

n IN DOMNode)
 RETURN VARCHAR2;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–71 GETPREFIX Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-91

GETPREVIOUSSIBLING Function
This function retrieves the node immediately preceding this node. If there is no such
node, this returns NULL.

Syntax
DBMS_XMLDOM.GETPREVIOUSSIBLING(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–72 GETPREVIOUSSIBLING Function Parameters

Parameter Description

n DOMNode.

GETPUBLICID Functions

113-92 PL/SQL Packages and Types Reference

GETPUBLICID Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns the public identifier of the given DTD (See Also: DOMDocumentType
Subprograms on page 113-18):

DBMS_XMLDOM.GETPUBLICID(
dt IN DOMDocumentType)

 RETURN VARCHAR2;

Returns the public identifier of the DOMEntity (See Also: DOMEntity Subprograms
on page 113-20):

DBMS_XMLDOM.GETPUBLICID(
ent IN DOMEntity)

 RETURN VARCHAR2;

Returns the public identifier of the DOMNotation (See Also: DOMNotation
Subprograms on page 113-25):

DBMS_XMLDOM.GETPUBLICID(
n IN DOMNotation)

 RETURN VARCHAR2;

Parameters

Table 113–73 GETPUBLICID Function Parameters

Parameter Description

dt The DTD.

ent DOMEntity.

n DOMNotation.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-93

GETQUALIFIEDNAME Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns the qualified name of the DOMAttr (See Also: DOMAttr Subprograms on
page 113-11):

DBMS_XMLDOM.GETQUALIFIEDNAME(
a IN DOMAttr)

 RETURN VARCHAR2;

Returns the qualified name of the DOMElement (See Also: DOMElement
Subprograms on page 113-19):

DBMS_XMLDOM.GETQUALIFIEDNAME(
elem IN DOMElement)

 RETURN VARCHAR2;

Parameters

Table 113–74 GETQUALIFIEDNAME Functions Parameters

Parameter Description

a DOMAttr.

elem DOMElement.

GETSCHEMANODE Function

113-94 PL/SQL Packages and Types Reference

GETSCHEMANODE Function
This function retrieves the schema URI associated with the node.

Syntax
DBMS_XMLDOM.GETSCHEMANODE(

n IN DOMNode)
 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–75 GETSCHEMANODE Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-95

GETSPECIFIED Function
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false.

Syntax
DBMS_XMLDOM.GETSPECIFIED(

a IN DOMAttr)
 RETURN BOOLEAN;

Parameters

See Also: DOMAttr Subprograms on page 113-11

Table 113–76 GETSPECIFIED Function Parameters

Parameter Description

a DOMAttr.

GETSTANDALONE Function

113-96 PL/SQL Packages and Types Reference

GETSTANDALONE Function
This function returns the standalone property associated with the DOMDocument.

Syntax
DBMS_XMLDOM.GETSTANDALONE(

doc IN DOMDocument)
 RETURN VARCHAR2;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–77 GETSTANDALONE Function Parameters

Parameter Description

doc DOMDocument.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-97

GETSYSTEMID Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns the system id of the given DTD (See Also: DOMDocumentType
Subprograms on page 113-18):

DBMS_XMLDOM.GETSYSTEMID(
dt IN DOMDocumentType)

 RETURN VARCHAR2;

Returns the system identifier of the DOMEntity (See Also: DOMEntity
Subprograms on page 113-20):

DBMS_XMLDOM.GETSYSTEMID(
ent IN DOMEntity)

 RETURN VARCHAR2;

Returns the system identifier of the DOMNotation (See Also: DOMNotation
Subprograms on page 113-25):

DBMS_XMLDOM.GETSYSTEMID(
n IN DOMNotation)

 RETURN VARCHAR2;

Parameters

Table 113–78 GETSYSTEMID Function Parameters

Parameter Description

dt The DTD.

ent DOMEntity.

n DOMNotation.

GETTAGNAME Function

113-98 PL/SQL Packages and Types Reference

GETTAGNAME Function
This function returns the name of the DOMElement.

Syntax
DBMS_XMLDOM.GETTAGNAME(

elem IN DOMElement)
 RETURN VARCHAR2;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–79 GETTAGNAME Function Parameters

Parameter Description

elem The DOMElement.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-99

GETVALUE Function
This function retrieves the value of the attribute.

Syntax
DBMS_XMLDOM.GETVALUE(

a IN DOMAttr)
 RETURN VARCHAR2;

Parameters

See Also: DOMAttr Subprograms on page 113-11

Table 113–80 GETVALUE Function Parameters

Parameter Description

a DOMAttr.

GETVERSION Function

113-100 PL/SQL Packages and Types Reference

GETVERSION Function
This function returns the version of the DOMDocument.

Syntax
DBMS_XMLDOM.GETVERSION(

doc IN DOMDocument)
 RETURN VARCHAR2;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–81 GETVERSION Function Parameters

Parameter Description

doc DOMDocument.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-101

GETXMLTYPE Function
This function returns the XMLType associated with the DOMDocument.

Syntax
DBMS_XMLDOM.GETXMLTYPE(

doc IN DOMDocument)
 RETURN SYS.XMLType;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–82 GETXMLTYPE Function Parameters

Parameter Description

doc DOMDocument.

HASATTRIBUTE Functions

113-102 PL/SQL Packages and Types Reference

HASATTRIBUTE Functions
Verifies whether an attribute has been defined for DOMElement, or has a default
value.

Syntax
Verifies whether an attribute with the specified name has been defined for
DOMElement:

DBMS_XMLDOM.HASATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2)

 RETURN VARCHAR2;

Verifies whether an attribute with specified name and namespace URI has been
defined for DOMElement; namespace enabled:

DBMS_XMLDOM.HASATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2)

 RETURN VARCHAR2;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–83 HASATTRIBUTE Function Parameters

Parameter Description

elem The DOMElement.

name Attribute name; * matches any attribute.

ns Namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-103

HASATTRIBUTES Function
This function returns whether this node has any attributes.

Syntax
DBMS_XMLDOM.HASATTRIBUTES(

n IN DOMNode)
 RETURN BOOLEAN;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–84 HASATTRIBUTES Function Parameters

Parameter Description

n DOMNode.

HASCHILDNODES Function

113-104 PL/SQL Packages and Types Reference

HASCHILDNODES Function
This function determines whether this node has any children.

Syntax
DBMS_XMLDOM.HASCHILDNODES(

n IN DOMNode)
 RETURN BOOLEAN;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–85 HASCHILDNODES Function Parameters

Parameter Description

n DOMNode.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-105

HASFEATURE Function
This function tests if the DOMImplementation implements a specific feature.

Syntax
DBMS_XMLDOM.HASFEATURE(

di IN OMImplementation,
feature IN VARCHAR2,
version IN VARCHAR2)

 RETURN BOOLEAN;

Parameters

See Also: DOMImplementation Subprograms on page 113-22

Table 113–86 HASFEATURE Function Parameters

Parameter Description

di DOMImplementation.

feature The feature to check for.

version The version of the DOM to check in.

IMPORTNODE Function

113-106 PL/SQL Packages and Types Reference

IMPORTNODE Function
This function imports a node from an external document and returns this new node.

Syntax
DBMS_XMLDOM.IMPORTNODE(

doc IN DOMDocument,
importedNode IN DOMNode,
deep IN BOOLEAN)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–87 IMPORTNODE Function Parameters

Parameter Description

doc Document from which the node is imported.

importedNode Node to import.

deep Setting for recursive import.

■ If this value is TRUE, the entire subtree of the node will be
imported with the node.

■ If this value is FALSE, only the node itself will be
imported.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-107

INSERTBEFORE Function
This function inserts the node NEWCHILD before the existing child node REFCHILD.
If REFCHILD is NULL, insert NEWCHILD at the end of the list of children.

If NEWCHILD is a DocumentFragment object, all of its children are inserted, in the
same order, before REFCHILD. If the NEWCHILD is already in the tree, it is first
removed.

Syntax
DBMS_XMLDOM.INSERTBEFORE(

n IN DOMNode,
newChild IN DOMNode,
refChild IN DOMNode)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–88 INSERTBEFORE Function Parameters

Parameter Description

n DOMNode.

newChild The child to be inserted in the DOMNode.

refChild The reference node before which the NEWCHILD is to be
inserted.

INSERTDATA Procedure

113-108 PL/SQL Packages and Types Reference

INSERTDATA Procedure
This procedure inserts a string at the specified character offset.

Syntax
DBMS_XMLDOM.INSERTDATA(

cd IN DOMCharacterData,
offset IN NUMBER,
arg IN VARCHAR2);

Parameters

See Also: DOMCharacterData Subprograms on page 113-13

Table 113–89 INSERTDATA Procedure Parameters

Parameter Description

cd DOMCharacterData.

offset The offset at which to insert the data.

arg The value to be inserted.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-109

ISNULL Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Checks if the given DOMNode is NULL. Returns TRUE if it is NULL, FALSE otherwise
(See Also: DOMNode Subprograms on page 113-8):

DBMS_XMLDOM.ISNULL(
n IN DOMNode)

 RETURN BOOLEAN;

Checks that the given DOMAttr is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMAttr Subprograms on page 113-11):

DBMS_XMLDOM.ISNULL(
a IN DOMAttr)

 RETURN BOOLEAN;

Checks that the given DOMCDataSection is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMCDataSection Subprograms on page 113-12):

DBMS_XMLDOM.ISNULL(
cds IN DOMCDataSection)

 RETURN BOOLEAN;

Checks that the given DOMCharacterData is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMCharacterData Subprograms on page 113-13):

DBMS_XMLDOM.ISNULL(
cd IN DOMCharacterData)

 RETURN BOOLEAN;

Checks that the given DOMComment is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMComment Subprograms on page 113-14):

DBMS_XMLDOM.ISNULL(
com IN DOMComment)

 RETURN BOOLEAN;

Checks that the given DOMDocument is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMDocument Subprograms on page 113-15):

DBMS_XMLDOM.ISNULL(
doc IN DOMDocument)

ISNULL Functions

113-110 PL/SQL Packages and Types Reference

 RETURN BOOLEAN;

Checks that the given DOMDocumentFragment is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMDocumentFragment Subprograms on
page 113-17):

DBMS_XMLDOM.ISNULL(
df IN DOMDocumentFragment)

 RETURN BOOLEAN;

Checks that the given DOMDocumentType is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMDocumentType Subprograms on page 113-18):

DBMS_XMLDOM.ISNULL(
dt IN DOMDocumentType)

 RETURN BOOLEAN;

 Checks that the given DOMElement is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMElement Subprograms on page 113-19):

DBMS_XMLDOM.ISNULL(
elem IN DOMElement)

 RETURN BOOLEAN;

Checks that the given DOMEntity is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMEntity Subprograms on page 113-20):

DBMS_XMLDOM.ISNULL(
ent IN DOMEntity)

 RETURN BOOLEAN;

 Checks that the given DOMEntityReference is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMEntityReference Subprograms on page 113-21):

DBMS_XMLDOM.ISNULL(
eref IN DOMEntityReference)

 RETURN BOOLEAN;

Checks that the DOMImplementation is NULL; returns TRUE if it is NULL (See Also:
DOMImplementation Subprograms on page 113-22):

DBMS_XMLDOM.ISNULL(
di IN DOMImplementation)

 RETURN BOOLEAN;

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-111

Checks that the given DOMNamedNodeMap is NULL; returns TRUE if it is NULL,
FALSE otherwise (See Also: DOMNamedNodeMap Subprograms on page 113-23):

DBMS_XMLDOM.ISNULL(
nnm IN DOMNamedNodeMap)

 RETURN BOOLEAN;

Checks that the given DOMNodeList is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMNodeList Subprograms on page 113-24):

DBMS_XMLDOM.ISNULL(
nl IN DOMNodeList)

 RETURN BOOLEAN;

Checks that the given DOMNotation is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMNotation Subprograms on page 113-25):

DBMS_XMLDOM.ISNULL(
n IN DOMNotation)

 RETURN BOOLEAN;

Checks that the given DOMProcessingInstruction is NULL; returns TRUE if it is
(See Also: DOMProcessingInstruction Subprograms on page 113-26):

DBMS_XMLDOM.ISNULL(
pi IN DOMProcessingInstruction)

 RETURN BOOLEAN;

Checks that the given DOMText is NULL; returns TRUE if it is NULL, FALSE
otherwise (See Also: DOMText Subprograms on page 113-27):

DBMS_XMLDOM.ISNULL(
t IN DOMText)

 RETURN BOOLEAN;

Parameters

Table 113–90 ISNULL Function Parameters

Parameter Description

n DOMNode to check.

a DOMAttr to check.

cds DOMCDataSection to check.

cd DOMCharacterData to check.

ISNULL Functions

113-112 PL/SQL Packages and Types Reference

com DOMComment to check.

doc DOMDocument to check.

dF DOMDocumentFragment to check.

dt DOMDocumentType to check.

elem DOMElement to check.

ent DOMEntity to check.

eref DOMEntityReference to check.

di DOMImplementation to check.

nnm DOMNameNodeMap to check.

nl DOMNodeList to check.

n DOMNotation to check.

pi DOMProcessingInstruction to check.

t DOMText to check.

Table 113–90 (Cont.) ISNULL Function Parameters

Parameter Description

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-113

IITEM Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Returns the item in the map which corresponds to the INDEX parameter. If INDEX
is greater than or equal to the number of nodes in this map, this returns NULL (See
Also: DOMNamedNodeMap Subprograms on page 113-23):

DBMS_XMLDOM.ITEM(
nnm IN DOMNamedNodeMap,
index IN NUMBER)

 RETURN DOMNode;

Returns the item in the collection which corresponds to the INDEX parameter. If
index is greater than or equal to the number of nodes in the list, this returns NULL
(See Also: DOMNodeList Subprograms on page 113-24):

DBMS_XMLDOM.ITEM(
nl IN DOMNodeList,
index IN NUMBER)

 RETURN DOMNode;

Parameters

Table 113–91 ITEM Function Parameters

Parameter Description

nnm DOMNamedNodeMap.

index The index in the node map at which the item is to be retrieved.

nl DOMNodeList

index The index in the NodeList used to retrieve the item.

MAKEATTR Function

113-114 PL/SQL Packages and Types Reference

MAKEATTR Function
This function casts a given DOMNode to a DOMAttr, and returns the DOMAttr.

Syntax
DBMS_XMLDOM.MAKEATTR(

n IN DOMNode)
 RETURN DOMAttr;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–92 MAKEATTR Function Parameters

Parameter Description

n DOMNode to cast

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-115

MAKECDATASECTION Function
This function casts a given DOMNode to a DOMCDataSection.

Syntax
DBMS_XMLDOM.MAKECDATASECTION(

n IN DOMNode)
 RETURN DOMCDataSection;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–93 MAKECDATASECTION Function Parameters

Parameter Description

n DOMNode to cast.

MAKECHARACTERDATA Function

113-116 PL/SQL Packages and Types Reference

MAKECHARACTERDATA Function
This function casts a given DOMNode to a DOMCharacterData, and returns the
DOMCharacterData.

Syntax
DBMS_XMLDOM.MAKECHARACTERDATA(

n IN DOMNode)
 RETURN DOMCharacterData;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–94 MAKECHARACTERDATA Function Parameters

Parameter Description

n DOMNode to cast.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-117

MAKECOMMENT Function
This function casts a given DOMNode to a DOMComment, and returns the
DOMComment.

Syntax
DBMS_XMLDOM.MAKECOMMENT(

n IN DOMNode)
 RETURN DOMComment;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–95 MAKECOMMENT Function Parameters

Parameter Description

n DOMNode to cast.

MAKEDOCUMENT Function

113-118 PL/SQL Packages and Types Reference

MAKEDOCUMENT Function
This function casts a given DOMNode to a DOMDocument, and returns the
DOMDocument.

Syntax
DBMS_XMLDOM.MAKEDOCUMENT(

n IN DOMNode)
 RETURN DOMDocument;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–96 MAKEDOCUMENT Function Parameters

Parameter Description

n DOMNode to cast.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-119

MAKEDOCUMENTFRAGMENT Function
This function casts a given DOMNode to a DOMDocumentFragment, and returns the
DOMDocumentFragment.

Syntax
DBMS_XMLDOM.MAKEDOCUMENTFRAGMENT(

n IN DOMNode)
 RETURN DOMDocumentFragment;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–97 MAKEDOCUMENTFRAGMENT Function Parameters

Parameter Description

n DOMNode to cast.

MAKEDOCUMENTTYPE Function

113-120 PL/SQL Packages and Types Reference

MAKEDOCUMENTTYPE Function
This function casts a given DOMNode to a DOMDocumentType and returns the
DOMDocumentType.

Syntax
DBMS_XMLDOM.MAKEDOCUMENTTYPE(

n IN DOMNode)
 RETURN DOMDocumentType;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–98 MAKEDOCUMENTTYPE Function Parameters

Parameter Description

n DOMNode to cast.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-121

MAKEELEMENT Function
This function casts a given DOMNode to a DOMElement, and returns the
DOMElement.

Syntax
DBMS_XMLDOM.MAKEELEMENT(

n IN DOMNode)
 RETURN DOMElement;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–99 MAKEELEMENT Function Parameters

Parameter Description

n DOMNode to cast.

MAKEENTITY Function

113-122 PL/SQL Packages and Types Reference

MAKEENTITY Function
This function casts a given DOMNode to a DOMEntity, and returns the DOMEntity.

Syntax
DBMS_XMLDOM.MAKEENTITY(

n IN DOMNode)
 RETURN DOMEntity;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–100 MAKEENTITY Function Parameters

Parameter Description

n DOMNode to cast.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-123

MAKEENTITYREFERENCE Function
This function casts a given DOMNode to a DOMEntityReference, and returns the
DOMEntityReference.

Syntax
DBMS_XMLDOM.MAKEENTITYREFERENCE(

n IN DOMNode)
 RETURN DOMEntityReference;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–101 MAKEENTITYREFERENCE Function Parameters

Parameter Description

n DOMNode to cast.

MAKENODE Functions

113-124 PL/SQL Packages and Types Reference

MAKENODE Functions
This function is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Casts given DOMAttr to a DOMNode, and returns the DOMNode (See Also: DOMAttr
Subprograms on page 113-11):

DBMS_XMLDOM.MAKENODE(
a IN DOMAttr)

 RETURN DOMNode;

Casts the DOMCDataSection to a DOMNode, and returns that DOMNode (See Also:
DOMCDataSection Subprograms on page 113-12):

DBMS_XMLDOM.MAKENODE(
cds IN DOMCDataSection)

 RETURN DOMNode;

Casts the given DOMCharacterData as a DOMNode, and returns that DOMNode (See
Also: DOMCharacterData Subprograms on page 113-13):

DBMS_XMLDOM.MAKENODE(
cd IN DOMCharacterData)

 RETURN DOMNode;

Casts the given DOMComment to a DOMNode, and returns that DOMNode (See Also:
DOMComment Subprograms on page 113-14):

DBMS_XMLDOM.MAKENODE(
com IN DOMComment)

 RETURN DOMNode;

Casts the DOMDocument to a DOMNode, and returns that DOMNode (See Also:
DOMDocument Subprograms on page 113-15):

DBMS_XMLDOM.MAKENODE(
doc IN DOMDocument)

 RETURN DOMNode;

Casts the given DOMDocumentFragment to a DOMNode, and returns that DOMNode
(See Also: DOMDocumentFragment Subprograms on page 113-17):

DBMS_XMLDOM.MAKENODE(
df IN DOMDocumentFragment)

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-125

 RETURN DOMNode;

Casts the given DOMDocumentType to a DOMNode, and returns that DOMNode (See
Also: DOMDocumentType Subprograms on page 113-18):

DBMS_XMLDOM.MAKENODE(
dt IN DOMDocumentType)

 RETURN DOMNode;

Casts the given DOMElement to a DOMNode, and returns that DOMNode (See Also:
DOMElement Subprograms on page 113-19):

DBMS_XMLDOM.MAKENODE(
elem IN DOMElement)

 RETURN DOMNode;

 Casts given DOMEntity to a DOMNode, and returns that DOMNode (See Also:
DOMEntity Subprograms on page 113-20):

DBMS_XMLDOM.MAKENODE(
ent IN DOMEntity)

 RETURN DOMNode;

Casts the DOMEntityReference to a DOMNode, and returns that DOMNode (See
Also: DOMEntityReference Subprograms on page 113-21):

DBMS_XMLDOM.MAKENODE(
eref IN DOMEntityReference)

 RETURN DOMNode;

Casts the DOMNotation to a DOMNode, and returns that DOMNode (See Also:
DOMNotation Subprograms on page 113-25):

DBMS_XMLDOM.MAKENODE(
n IN DOMNotation)

 RETURN DOMNode;

Casts the DOMProcessingInstruction to a DOMNode, and returns the DOMNode
(See Also: DOMProcessingInstruction Subprograms on page 113-26):

DBMS_XMLDOM.MAKENODE(
pi IN DOMProcessingInstruction)

 RETURN DOMNode;

MAKENODE Functions

113-126 PL/SQL Packages and Types Reference

Casts the DOMText to a DOMNode, and returns that DOMNode (See Also: DOMText
Subprograms on page 113-27):

DBMS_XMLDOM.MAKENODE(
t IN DOMText)

 RETURN DOMNode;

Parameters

Table 113–102 MAKENODE Function Parameters

Parameter Description

a DOMAttr to cast.

cds DOMCDataSection to cast.

cd DOMCharacterData to cast.

com DOMComment to cast.

doc DOMDocument to cast.

df DOMDocumentFragment to cast.

dt DOMDocumentType to cast.

elem DOMElement to cast.

ent DOMEntity to cast.

eref DOMEntityReference to cast.

n DOMNotation to cast.

pi DOMProcessingInstruction to cast.

t DOMText to cast.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-127

MAKENOTATION Function
This function casts a given DOMNode to a DOMNotation, and returns the
DOMNotation.

Syntax
DBMS_XMLDOM.MAKENOTATION(

n IN DOMNode)
 RETURN DOMNotation;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–103 MAKENOTATION Function Parameters

Parameter Description

n DOMNode to cast

MAKEPROCESSINGINSTRUCTION Function

113-128 PL/SQL Packages and Types Reference

MAKEPROCESSINGINSTRUCTION Function
This function casts a given DOMNode to a DOMProcessingInstruction, and
returns the DOMProcessingInstruction.

Syntax
DBMS_XMLDOM.MAKEPROCESSINGINSTRUCTION(

n IN DOMNode)
 RETURN DOMProcessingInstruction;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–104 MAKEPROCESSINGINSTRUCTION Function Parameters

Parameter Description

n DOMNode to cast

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-129

MAKETEXT Function
This function casts a given DOMNode to a DOMText, and returns the DOMText.

Syntax
DBMS_XMLDOM.MAKETEXT(

n IN DOMNode)
 RETURN DOMText;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–105 MAKETEXT Function Parameters

Parameter Description

n DOMNode to cast

NEWDOMDOCUMENT Functions

113-130 PL/SQL Packages and Types Reference

NEWDOMDOCUMENT Functions
Returns a new DOMDocument instance.

Syntax
Returns a new DOMDocument instance:

DBMS_XMLDOM.NEWDOMDOCUMENT
 RETURN DOMDocument;

Returns a new DOMDocument instance created from the specified XMLType object:

DBMS_XMLDOM.NEWDOMDOCUMENT(
xmldoc IN sys.XMLType)

 RETURN DOMDocument;

Returns a new DOMDocument instance created from the specified CLOB:

DBMS_XMLDOM.NEWDOMDOCUMENT(
cl IN CLOB)

 RETURN DOMDocument;

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–106 NEWDOMDOCUMENT Function Parameters

Parameter Description

xmldoc XMLType source for the DOMDocument.

cl CLOB source for the DOMDocument.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-131

NORMALIZE Procedure
This procedure normalizes the text children of the DOMElement.

Syntax
DBMS_XMLDOM.NORMALIZE(

elem IN DOMElement);

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–107 NORMALIZE Procedure Parameters

Parameter Description

elem The DOMElement.

REMOVEATTRIBUTE Procedures

113-132 PL/SQL Packages and Types Reference

REMOVEATTRIBUTE Procedures
Removes an attribute from the DOMElement by name.

Syntax
Removes the value of a DOMElement's attribute by name:

DBMS_XMLDOM.REMOVEATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2);

Removes the value of a DOMElement's attribute by name and namespace URI.

DBMS_XMLDOM.REMOVEATTRIBUTE(
elem IN DOMElement,
name IN VARCHAR2,
ns IN VARCHAR2);

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–108 REMOVEATTRIBUTE Procedure Parameters

Parameter Description

elem The DOMElement.

name Attribute name.

ns Namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-133

REMOVEATTRIBUTENODE Function
This function removes the specified attribute node from the DOMElement. The
method returns the removed node.

Syntax
DBMS_XMLDOM.REMOVEATTRIBUTENODE(

elem IN DOMElement,
oldAttr IN DOMAttr)

 RETURN DOMAttr;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–109 REMOVEATTRIBUTENODE Function Parameters

Parameter Description

elem The DOMElement.

oldAttr The old DOMAttr.

REMOVECHILD Function

113-134 PL/SQL Packages and Types Reference

REMOVECHILD Function
This function removes the child node indicated by OLDCHILD from the list of
children, and returns it.

Syntax
DBMS_XMLDOM.REMOVECHILD(

n IN DOMNode,
oldChild IN DOMNode)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–110 REMOVECHILD Function Parameters

Parameter Description

n DOMNode.

oldCHild The child of the node n to be removed.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-135

REMOVENAMEDITEM Function
This function removes from the map a node specified by name; returns this node.
When this map contains the attributes attached to an element, if the removed
attribute is known to have a default value, an attribute immediately appears
containing the default value as well as the corresponding namespace URI, local
name, and prefix when applicable.

Syntax
Removes a node specified by name:

DBMS_XMLDOM.REMOVENAMEDITEM(
nnm IN DOMNamedNodeMap,
name IN VARCHAR2)

 RETURN DOMNode;

Removes a node specified by name and namespace URI:

DBMS_XMLDOM.REMOVENAMEDITEM(
nnm IN DOMNamedNodeMap,
name IN VARCHAR2,
ns IN VARCHAR2)

 RETURN DOMNode;

Parameters

See Also: DOMNamedNodeMap Subprograms on page 113-23

Table 113–111 REMOVENAMEDITEM Function Parameters

Parameter Description

nnm DOMNamedNodeMap

name The name of the item to be removed from the map

ns Namespace

REPLACECHILD Function

113-136 PL/SQL Packages and Types Reference

REPLACECHILD Function
This function replaces the child node OLDCHILD with NEWCHILD in the list of
children, and returns the OLDCHILD node. If NEWCHILD is a DocumentFragment
object, OLDCHILD is replaced by all of the DocumentFragment children, which are
inserted in the same order. If the NEWCHILD is already in the tree, it is first removed.

Syntax
DBMS_XMLDOM.REPLACECHILD(

n IN DOMNode,
newChild IN DOMNode,
oldChild IN DOMNode)

 RETURN DOMNode;

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–112 REPLACECHILD Function Parameters

Parameter Description

n DOMNode.

newChild The new child which is to replace the old child.

oldChild The child of the node n which is to be replaced.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-137

REPLACEDATA Procedure
This procedure changes a range of characters in the node. Upon success, data and
length reflect the change.

Syntax
DBMS_XMLDOM.REPLACEDATA(

cd IN DOMCharacterData,
offset IN NUMBER,
cnt IN NUMBER,
arg IN VARCHAR2);

Parameters

See Also: DOMCharacterData Subprograms on page 113-13

Table 113–113 REPLACEDATA Procedure Parameters

Parameter Description

cd DOMCharacterData.

offset The offset at which to replace.

cnt The number of characters to replace.

arg The value to replace with.

RESOLVENAMESPACEPREFIX Function

113-138 PL/SQL Packages and Types Reference

RESOLVENAMESPACEPREFIX Function
This function resolves the given namespace prefix, and returns the resolved
namespace.

Syntax
DBMS_XMLDOM.RESOLVENAMESPACEPREFIX(

elem IN DOMElement,
prefix IN VARCHAR2)

 RETURN VARCHAR2;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–114 RESOLVENAMESPACEPREFIX Function Parameters

Parameter Description

elem The DOMElement.

prefix Namespace prefix.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-139

SETATTRIBUTE Procedures
Sets the value of a DOMElement's attribute by name.

Syntax
Sets the value of a DOMElement's attribute by name:

DBMS_XMLDOM.SETATTRIBUTE(
elem DOMElement,
name IN VARCHAR2,
value IN VARCHAR2);

Sets the value of a DOMElement's attribute by name and namespace URI:

DBMS_XMLDOM.SETATTRIBUTE(
elem DOMElement,
name IN VARCHAR2,
value IN VARCHAR2,
ns IN VARCHAR2);

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–115 SETATTRIBUTE Function Parameters

Parameter Description

elem The DOMElement.

name Attribute name.

value Attribute value.

ns Namespace.

SETATTRIBUTENODE Functions

113-140 PL/SQL Packages and Types Reference

SETATTRIBUTENODE Functions
Adds a new attribute node to the DOMElement.

Syntax
Adds a new attribute node to the DOMElement:

DBMS_XMLDOM.SETATTRIBUTENODE(
elem DOMElement,
newAttr IN DOMAttr)

 RETURN DOMAttr;

Adds a new attribute node to the DOMElement; namespace enabled:

DBMS_XMLDOM.SETATTRIBUTENODE(
elem DOMElement,
newAttr IN DOMAttr,
ns IN VARCHAR2)

 RETURN DOMAttr;

Parameters

See Also: DOMElement Subprograms on page 113-19

Table 113–116 SETATTRIBUTENODE Function Parameters

Parameter Description

elem The DOMElement.

newAttr The new DOMAttr.

ns The namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-141

SETDATA Procedures
This procedure is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
 Sets the character data of the node that implements this interface (See Also:
DOMCharacterData Subprograms on page 113-13):

DBMS_XMLDOM.SETDATA(
cd IN DOMCharacterData,
data IN VARCHAR2);

Sets the content data of the DOMProcessingInstruction (See Also:
DOMProcessingInstruction Subprograms on page 113-13):

DBMS_XMLDOM.SETDATA(
pi IN DOMProcessingInstruction,
data IN VARCHAR2);

Parameters

Table 113–117 SETDATA Procedure Parameters

Parameter Description

cd DOMCharacterData.

data The data to which the node is set.

pi DOMProcessingInstruction.

data New processing instruction content data.

SETNAMEDITEM Function

113-142 PL/SQL Packages and Types Reference

SETNAMEDITEM Function
This function adds a node using its NodeName attribute. If a node with that name is
already present in this map, it is replaced by the new one. The old node is returned
on replacement; if no replacement is made, NULL is returned.

As the NodeName attribute is used to derive the name under which the node must
be stored, multiple nodes of certain types, those that have a "special" string value,
cannot be stored because the names would clash. This is seen as preferable to
allowing nodes to be aliased.

Syntax
Adds a node using its NodeName attribute:

DBMS_XMLDOM.SETNAMEDITEM(
nnm IN DOMNamedNodeMap,
arg IN DOMNode)

 RETURN DOMNode;

Adds a node using its NodeName attribute and namespace URI:

DBMS_XMLDOM.SETNAMEDITEM(
nnm IN DOMNamedNodeMap,
arg IN DOMNode,
ns IN VARCHAR2)

 RETURN DOMNode;

Parameters

See Also: DOMNamedNodeMap Subprograms on page 113-23

Table 113–118 SETNAMEDITEM Function Parameters

Parameter Description

nnm DOMNamedNodeMap.

arg The Node to be added using its NodeName attribute.

ns Namespace.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-143

SETNODEVALUE Procedure
This procedure sets the value of this node, depending on its type. When it is defined
to be NULL, setting it has no effect.

Syntax
DBMS_XMLDOM.SETNODEVALUE(

n IN DOMNode,
nodeValue IN VARCHAR2);

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–119 SETNODEVALUE Procedure Parameters

Parameter Description

n DOMNode.

nodeValue The value to which node is set.

SETPREFIX Procedure

113-144 PL/SQL Packages and Types Reference

SETPREFIX Procedure
This procedure sets the namespace prefix for this node to the given value.

Syntax
DBMS_XMLDOM.SETPREFIX(

n IN DOMNode,
prefix IN VARCHAR2);

Parameters

See Also: DOMNode Subprograms on page 113-8

Table 113–120 SETPREFIX Procedure Parameters

Parameter Description

n DOMNode.

prefix The value for the namespace prefix of the node.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-145

SETSTANDALONE Procedure
This procedure sets the standalone property of the DOMDocument.

Syntax
DBMS_XMLDOM.SETSTANDALONE(

doc IN DOMDocument,
newvalue IN VARCHAR2);

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–121 SETSTANDALONE Procedure Parameters

Parameter Description

doc DOMDocument.

newvalue Value of the standalone property of the document.

SETVALUE Procedure

113-146 PL/SQL Packages and Types Reference

SETVALUE Procedure
This procedure sets the value of the attribute.

Syntax
DBMS_XMLDOM.SETVALUE(

a IN DOMAttr,
value IN VARCHAR2);

Parameters

See Also: DOMAttr Subprograms on page 113-11

Table 113–122 SETVALUE Procedure Parameters

Parameter Description

a DOMAttr.

value The value to set the attribute to.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-147

SETVERSION Procedure
This procedure sets the version of the DOMDocument.

Syntax
DBMS_XMLDOM.SETVERSION(

doc IN DOMDocument,
version IN VARCHAR2);

Parameters

See Also: DOMDocument Subprograms on page 113-15

Table 113–123 SETVERSION Procedure Parameters

Parameter Description

doc DOMDocument.

version The version of the document.

SPLITTEXT Function

113-148 PL/SQL Packages and Types Reference

SPLITTEXT Function
This function breaks this DOMText node into two DOMText nodes at the specified
offset.

Syntax
DBMS_XMLDOM.SPLITTEXT(

t IN DOMText,
offset IN NUMBER)

 RETURN DOMText;

Parameters

See Also: DOMText Subprograms on page 113-27

Table 113–124 SPLITTEXT Function Parameters

Parameter Description

t DOMText.

offset Offset at which to split.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-149

SUBSTRINGDATA Function
This function extracts a range of data from the node.

Syntax
DBMS_XMLDOM.SUBSTRINGDATA(

cd IN DOMCharacterData,
offset IN NUMBER,
cnt IN NUMBER)

 RETURN VARCHAR2;

Parameters

See Also: DOMCharacterData Subprograms on page 113-13

Table 113–125 SUBSTRINGDATA Function Parameters

Parameter Description

cd DOMCharacterData.

offset The starting offset of the data from which to get the data.

cnt The number of characters (from the offset) of the data to get.

WRITETOBUFFER Procedures

113-150 PL/SQL Packages and Types Reference

WRITETOBUFFER Procedures
This procedure is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Writes XML node to specified buffer using the database character set (See Also:
DOMNode Subprograms on page 113-8):

DBMS_XMLDOM.WRITETOBUFFER(
n IN DOMNode,
buffer IN OUT VARCHAR2);

Writes XML document to a specified buffer using database character set (See Also:
DOMDocument Subprograms on page 113-15):

DBMS_XMLDOM.WRITETOBUFFER(
doc IN DOMdocument,
buffer IN OUT VARCHAR2);

Writes the contents of the specified document fragment into a buffer using the
database character set (See Also: DOMDocumentFragment Subprograms on
page 113-17):

DBMS_XMLDOM.WRITETOBUFFER(
df IN DOMDocumentFragment,
buffer IN OUT VARCHAR2);

Parameters

Table 113–126 WRITETOBUFFER Procedure Parameters

Parameter Description

n DOMNode.

buffer Buffer to write to.

doc DOMDocument.

df DOM document fragment.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-151

WRITETOCLOB Procedures
This procedure is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Writes XML node to specified CLOB using the database character set (See Also:
DOMNode Subprograms on page 113-8):

DBMS_XMLDOM.WRITETOCLOB(
n IN DOMNode,
cl IN OUT CLOB);

Writes XML document to a specified CLOB using database character set (See Also:
DOMDocument Subprograms on page 113-15):

DBMS_XMLDOM.WRITETOCLOB(
doc IN DOMdocument,
cl IN OUT CLOB);

Parameters

Table 113–127 WRITETOCLOB Procedure Parameters

Parameter Description

n DOMNode.

cl CLOB to write to.

doc DOMDocument.

WRITETOFILE Procedures

113-152 PL/SQL Packages and Types Reference

WRITETOFILE Procedures
This procedure is overloaded. The specific forms of functionality are described
alongside the syntax declarations.

Syntax
Writes XML node to specified file using the database character set (See Also:
DOMNode Subprograms):

DBMS_XMLDOM.WRITETOFILE(
n IN DOMNode,
fileName IN VARCHAR2);

Writes XML node to specified file using the given character set, which is passed in
as a separate parameter (See Also: DOMNode Subprograms):

DBMS_XMLDOM.WRITETOFILE(n DOMNode,
fileName IN VARCHAR2,
charset IN VARCHAR2);

Writes an XML document to a specified file using database character set (See Also :
DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOFILE(
doc IN DOMDocument,
fileName IN VARCHAR2);

Writes an XML document to a specified file using given character set (See Also :
DOMDocument Subprograms):

DBMS_XMLDOM.WRITETOFILE(
doc IN DOMDocument,
fileName IN VARCHAR2,
charset IN VARCHAR2);

Parameters

Table 113–128 WRITETOFILE Procedure Parameters

Parameter Description

n DOMNode.

fileName File to write to.

charset Given character set.

Summary of DBMS_XMLDOM Subprograms

DBMS_XMLDOM 113-153

doc DOMDocument.

charset Character set.

Table 113–128 WRITETOFILE Procedure Parameters

Parameter Description

WRITETOFILE Procedures

113-154 PL/SQL Packages and Types Reference

DBMS_XMLGEN 114-1

114
DBMS_XMLGEN

The DBMS_XMLGEN package converts the results of a SQL query to a canonical XML
format. The package takes an arbitrary SQL query as input, converts it to XML
format, and returns the result as a CLOB. This package is similar to the DBMS_
XMLQUERY package, except that it is written in C and compiled into the kernel. This
package can only be run on the database.

This chapter contains the following topic:

■ Summary of DBMS_XMLGEN Subprograms

See Also: Oracle XML DB Developer's Guide, for more information
on XML support and on examples of using DBMS_XMLGEN

Summary of DBMS_XMLGEN Subprograms

114-2 PL/SQL Packages and Types Reference

Summary of DBMS_XMLGEN Subprograms

Table 114–1 Summary of DBMS_XMLGEN Package Subprograms

Subprogram Description

CLOSECONTEXT Procedure
on page 114-4

Closes the context and releases all resources

CONVERT Functions on
page 114-5

Converts the XML into the escaped or unescaped XML
equivalent

GETNUMROWSPROCESSED
Function on page 114-6

Gets the number of SQL rows that were processed in the
last call to GETXML Functions

GETXML Functions on
page 114-7

Gets the XML document

GETXMLTYPE Functions on
page 114-9

Gets the XML document and returns it as XMLType

NEWCONTEXT Functions on
page 114-10

Creates a new context handle

RESTARTQUERY Procedure
on page 114-11

Restarts the query to start fetching from the beginning

SETCONVERTSPECIALCHA
RS Procedure on page 114-12

Sets whether special characters such as $, which are
non-XML characters, should be converted or not to their
escaped representation

SETMAXROWS Procedure on
page 114-13

Sets the maximum number of rows to be fetched each time

SETNULLHANDLING
Procedure on page 114-14

Sets NULL handling options

SETROWSETTAG Procedure
on page 114-15

Sets the name of the element enclosing the entire result

SETROWTAG Procedure on
page 114-16

Sets the name of the element enclosing each row of the
result

SETSKIPROWS Procedure on
page 114-17

Sets the number of rows to skip every time before
generating the XML.

USEITEMTAGSFORCOLL
Procedure on page 114-18

Forces the use of the collection column name appended
with the tag _ITEM for collection elements

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-3

USENULLATTRIBUTEINDIC
ATOR Procedure on
page 114-19

Specified weather to use an XML attribute to indicate
NULLness, or to do it by omitting the inclusion of the
particular entity in the XML document.

Table 114–1 (Cont.) Summary of DBMS_XMLGEN Package Subprograms

Subprogram Description

CLOSECONTEXT Procedure

114-4 PL/SQL Packages and Types Reference

CLOSECONTEXT Procedure

This procedure closes a given context and releases all resources associated with it,
including the SQL cursor and bind and define buffers. After this call, the handle
cannot be used for a subsequent function call.

Syntax
DBMS_XMLGEN.CLOSECONTEXT (

ctx IN ctxHandle);

Parameters

Table 114–2 CLOSECONTEXT Procedure Parameters

Parameter Description

ctx The context handle to close.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-5

CONVERT Functions

This function converts the XML data into the escaped or unescapes XML
equivalent, and returns XML CLOB data in encoded or decoded format. There are
several version of the function.

Syntax
Uses XMLDATA in string form (VARCHAR2):

DBMS_XMLGEN.CONVERT (
xmlData IN VARCHAR2,
flag IN NUMBER := ENTITY_ENCODE)

RETURN VARCHAR2;

Uses XMLDATA in CLOB form:

DBMS_XMLGEN.CONVERT (
xmlData IN CLOB,
flag IN NUMBER := ENTITY_ENCODE)

 RETURN CLOB;

Parameters

Usage Notes
This function escapes the XML data if the ENTITY_ENCODE is specified. For
example, the escaped form of the character < is <. Unescaping is the reverse
transformation.

Table 114–3 CONVERT Function Parameters

Parameter Description

xmlData The XML CLOB data to be encoded or decoded.

flag The flag setting; ENTITY_ENCODE (default) for encode, and
ENTITY_DECODE for decode.

GETNUMROWSPROCESSED Function

114-6 PL/SQL Packages and Types Reference

GETNUMROWSPROCESSED Function

This function retrieves the number of SQL rows processed when generating the
XML using the GETXML Functions call. This count does not include the number
of rows skipped before generating the XML. Note that GETXML Functions
always generates an XML document, even if there are no rows present.

Syntax
DBMS_XMLGEN.GETNUMROWSPROCESSED (

ctx IN ctxHandle)
RETURN NUMBER;

Parameters

Usage Notes
This function is used to determine the terminating condition if calling GETXML
Functions in a loop.

Table 114–4 GETNUMROWSPROCESSED Function Parameters

Parameter Description

ctx The context handle obtained from the NEWCONTEXT
Functions call.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-7

GETXML Functions

This function gets the XML document. The function is overloaded.

Syntax
Gets the XML document by fetching the maximum number of rows specified. It
appends the XML document to the CLOB passed in. Use this version of GETXML
Functions to avoid any extra CLOB copies and to reuse the same CLOB for
subsequent calls. Because of the CLOB reuse, this GETXML Functions call is
potentially more efficient:

DBMS_XMLGEN.GETXML (
ctx IN ctxHandle,
tmpclob IN OUT NCOPY CLOB,
dtdOrSchema IN number := NONE)

 RETURN BOOLEAN;

Generates the XML document and returns it as a temporary CLOB. The temporary
CLOB obtained from this function must be freed using the DBMS_
LOB.FREETEMPORARY call:

DBMS_XMLGEN.GETXML (
ctx IN ctxHandle,
dtdOrSchema IN number := NONE)

 RETURN CLOB;

Converts the results from the SQL query string to XML format, and returns the
XML as a temporary CLOB, which must be subsequently freed using the DBMS_
LOB.FREETEMPORARY call:

DBMS_XMLGEN.GETXML (
sqlQuery IN VARCHAR2,
dtdOrSchema IN number := NONE)

 RETURN CLOB;

Parameters

Table 114–5 GETXML Function Parameters

Parameter Description

CTX The context handle obtained from the newContext call.

TMPCLOB The CLOB to which the XML document is appended.

GETXML Functions

114-8 PL/SQL Packages and Types Reference

Usage Notes
When the rows indicated by the SETSKIPROWS Procedure call are skipped, the maximum
number of rows as specified by the SETMAXROWS Procedure call (or the entire result if
not specified) is fetched and converted to XML. Use the GETNUMROWSPROCESSED
Function to check if any rows were retrieved.

sqlQuery The SQL query string.

dtdOrSchema Generate a DTD or a schema? Only NONE is supported.

Table 114–5 (Cont.) GETXML Function Parameters

Parameter Description

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-9

GETXMLTYPE Functions

This function gets the XML document and returns it as an XMLTYPE. XMLTYPE
operations can be performed on the results. This function is overloaded.

Syntax
Generates the XML document and returns it as a sys.XMLType:

DBMS_XMLGEN.GETXMLTYPE (
ctx IN ctxhandle,
dtdOrSchema IN number := NONE)

 RETURN sys.XMLType;

Converts the results from the SQL query string to XML format, and returns the XML as a
sys.XMLType:

DBMS_XMLGEN.GETXMLTYPE (
sqlQuery IN VARCHAR2,
dtdOrSchema IN number := NONE)

 RETURN sys.XMLType

Parameters

Table 114–6 GETXMLTYPE Function Parameters

Parameter Description

ctx The context handle obtained from the newContext call.

sqlQuery The SQL query string.

dtdOrSchema Generate a DTD or a schema? Only NONE is supported.

NEWCONTEXT Functions

114-10 PL/SQL Packages and Types Reference

NEWCONTEXT Functions

This function generates and returns a new context handle. This context handle is
used in GETXML Functions and other functions to get XML back from the result.
There are several version of the function.

Syntax
Generates a new context handle from a query:

DBMS_XMLGEN.NEWCONTEXT (
query IN VARCHAR2)

 RETURN ctxHandle;

Generates a new context handle from a query string in the form of a PL/SQL ref
cursor:

DBMS_XMLGEN.NEWCONTEXT (
queryString IN SYS_REFCURSOR)

 RETURN ctxHandle;

Parameters

Table 114–7 NEWCONTEXT Function Parameters

Parameter Description

query The query, in the form of a VARCHAR, the result of which must
be converted to XML.

queryString The query string in the form of a PL/SQL ref cursor, the result
of which must be converted to XML.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-11

RESTARTQUERY Procedure

This procedure restarts the query and generates the XML from the first row. It can
be used to start executing the query again, without having to create a new context.

Syntax
DBMS_XMLGEN.RESTARTQUERY (

ctx IN ctxHandle);

Parameters

Table 114–8 RESTARTQUERY Procedure Parameters

Parameter Description

ctx The context handle corresponding to the current query.

SETCONVERTSPECIALCHARS Procedure

114-12 PL/SQL Packages and Types Reference

SETCONVERTSPECIALCHARS Procedure

This procedure sets whether or not special characters in the XML data must be
converted into their escaped XML equivalent. For example, the < sign is converted
to <. The default is to perform conversions. This function improves
performance of XML processing when the input data cannot contain any special
characters such as <, >, ",', which must be escaped. It is expensive to scan the
character data to replace the special characters, particularly if it involves a lot of
data.

Syntax
DBMS_XMLGEN.SETCONVERTSPECIALCHARS (

ctx IN ctxHandle,
conv IN BOOLEAN);

Parameters

Table 114–9 SETCONVERTSPECIALCHARS Procedure Parameters

Parameter Description

ctx The context handle obtained from one of the NEWCONTEXT
Functions calls.

conv TRUE indicates that conversion is needed.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-13

SETMAXROWS Procedure

This procedure sets the maximum number of rows to fetch from the SQL query
result for every invokation of the GETXML Functions call. It is used when
generating paginated results. For example, when generating a page of XML or
HTML data, restrict the number of rows converted to XML or HTML by setting the
maxrows parameter.

Syntax
DBMS_XMLGEN.SETMAXROWS (

ctx IN ctxHandle,
maxRows IN NUMBER);

Parameters

Table 114–10 SETMAXROWS Procedure Parameters

Parameter Description

ctx The context handle corresponding to the query executed.

maxRows The maximum number of rows to get for each call to GETXML
Functions.

SETNULLHANDLING Procedure

114-14 PL/SQL Packages and Types Reference

SETNULLHANDLING Procedure

This procedure sets NULL handling options, handled through the flag parameter
setting.

Syntax
DBMS_XMLGEN.SETNULLHANDLING(

ctx IN ctx,
flag IN NUMBER);

Parameters

Table 114–11 SETNULLHANDLING Procedure Parameters

Parameter Description

ctx The context handle corresponding to the query executed.

flag The NULL handling option set.

■ DROP_NULLS CONSTANT NUMBER:= 0; (Default)
Leaves out the tag for NULL elements.

■ NULL_ATTR CONSTANT NUMBER:= 1; Sets
xsi:nil="true".

■ EMPTY_TAG CONSTANT NUMBER:= 2; Sets, for
example, <foo/>.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-15

SETROWSETTAG Procedure

This procedure sets the name of the root element of the document. The default
name is ROWSET.

Syntax
DBMS_XMLGEN.SETROWSETTAG (

ctx IN ctxHandle,
rowSetTagName IN VARCHAR2);

Parameters

Usage Notes
The user can set the ROWSETTAG to NULL to suppress the printing of this element.
However, an error is produced if both the row and the rowset are NULL and there is
more than one column or row in the output . This is because the generated XML
would not have a top-level enclosing tag, and so would be invalid.

Table 114–12 SETROWSETTAG Procedure Parameters

Parameter Description

ctx The context handle obtained from the NEWCONTEXT
Functions call.

rowSetTagName The name of the document element. Passing NULL indicates
that you do not want the ROWSET element present.

SETROWTAG Procedure

114-16 PL/SQL Packages and Types Reference

SETROWTAG Procedure

This procedure sets the name of the element separating all the rows. The default
name is ROW.

Syntax
DBMS_XMLGEN.SETROWTAG (

ctx IN ctxHandle,
rowTagName IN VARCHAR2);

Parameters

Usage Notes
The user can set the name of the element to NULL to suppress the ROW element itself.
However, an error is produced if both the row and the rowset are NULL and there is
more than one column or row in the output. This is because the generated XML
would not have a top-level enclosing tag, and so would be invalid.

Table 114–13 SETROWTAG Procedure Parameters

Parameter Description

ctx The context handle obtained from the NEWCONTEXT
Functions call.

rowTagName The name of the ROW element. Passing NULL indicates that you
do not want the ROW element present.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-17

SETSKIPROWS Procedure

This procedure skips a given number of rows before generating the XML output for
every call to the GETXML Functions. It is used when generating paginated results
for stateless Web pages using this utility. For example, when generating the first
page of XML or HTML data, set skiprows to zero. For the next set, set the
skiprows to the number of rows obtained in the first case. See
GETNUMROWSPROCESSED Function on page 114-6.

Syntax
DBMS_XMLGEN.SETSKIPROWS (

ctx IN ctxHandle,
skipRows IN NUMBER);

Parameters

Table 114–14 SETSKIPROWS Procedure Parameters

Parameter Description

ctx The context handle corresponding to the query executed.

skipRows The number of rows to skip for each call to getXML.

USEITEMTAGSFORCOLL Procedure

114-18 PL/SQL Packages and Types Reference

USEITEMTAGSFORCOLL Procedure

This procedure overrides the default name of the collection elements. The default
name for collection elements is the type name itself.

Syntax
DBMS_XMLGEN.USEITEMTAGSFORCOLL (

ctx IN ctxHandle);

Parameters

Usage Notes
Using this function, you can override the default to use the name of the column
with the _ITEM tag appended to it. If there is a collection of NUMBER, the default tag
name for the collection elements is NUMBER.

Table 114–15 USEITEMTAGSFORCOLL Procedure Parameters

Parameter Description

ctx The context handle.

Summary of DBMS_XMLGEN Subprograms

DBMS_XMLGEN 114-19

USENULLATTRIBUTEINDICATOR Procedure

This procedure specifies whether to use an XML attribute to indicate NULLness, or
to do it by omitting the inclusion of the particular entity in the XML document. It is
used as a shortcut for the SETNULLHANDLING Procedure.

Syntax
DBMS_XMLGEN.USENULLATTRIBUTEINDICATOR(

ctx IN ctxType,
attrind IN BOOLEAN := TRUE);

Parameters

Table 114–16 USENULLATTRIBUTEINDICATOR Procedure Parameters

Parameter Description

ctx Context handle.

attrind Use attribute to indicate NULL?

USENULLATTRIBUTEINDICATOR Procedure

114-20 PL/SQL Packages and Types Reference

DBMS_XMLPARSER 115-1

115
DBMS_XMLPARSER

Using DBMS_XMLPARSER, you can access the contents and structure of XML
documents. XML describes a class of data XML document objects. It partially
describes the behavior of computer programs which process them. By construction,
XML documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document's storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and
provide access to their content and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the application. This PL/SQL
implementation of the XML processor (or parser) follows the W3C XML
specification REC-xml-19980210 and includes the required behavior of an XML
processor in terms of how it must read XML data and the information it must
provide to the application.

The default behavior for this PL/SQL XML parser is to build a parse tree that can be
accessed by DOM APIs, validate it if a DTD is found (otherwise, it is
non-validating), and record errors if an error log is specified. If parsing fails, an
application error is raised.

This chapter contains the following topics:

■ Summary of DBMS_XMLPARSER Subprograms

See Also: Oracle XML DB Developer's Guide

Summary of DBMS_XMLPARSER Subprograms

115-2 PL/SQL Packages and Types Reference

Summary of DBMS_XMLPARSER Subprograms

FREEPARSER

Frees a parser object.

Table 115–1 DBMS_XMLPARSER Package Subprograms

Method Description

FREEPARSER on page 115-2 Frees a parser object.

GETDOCTYPE on page 115-3 Gets parsed DTD.

GETDOCUMENT on page 115-3 Gets DOM document.

GETRELEASEVERSION on page 115-4 Returns the release version of Oracle XML
Parser for PL/SQL.

GETVALIDATIONMODE on page 115-4 Returns validation mode.

NEWPARSER on page 115-4 Returns a new parser instance

PARSE on page 115-4 Parses XML stored in the given url/file.

PARSEBUFFER on page 115-5 Parses XML stored in the given buffer

PARSECLOB on page 115-6 Parses XML stored in the given clob

PARSEDTD on page 115-6 Parses DTD stored in the given url/file

PARSEDTDBUFFER on page 115-7 Parses DTD stored in the given buffer

PARSEDTDCLOB on page 115-7 Parses DTD stored in the given clob

SETBASEDIR on page 115-8 Sets base directory used to resolve relative
URLs.

SETDOCTYPE on page 115-8 Sets DTD.

SETERRORLOG on page 115-8 Sets errors to be sent to the specified file

SETPRESERVEWHITESPACE on page 115-9 Sets white space preserve mode

SETVALIDATIONMODE on page 115-9 Sets validation mode.

SHOWWARNINGS on page 115-10 Turns warnings on or off.

Summary of DBMS_XMLPARSER Subprograms

DBMS_XMLPARSER 115-3

Syntax
PROCEDURE FREEPARSER(

P PARSER);

GETDOCTYPE

Returns the parsed DTD; this function must be called only after a DTD is parsed.

Syntax
FUNCTION GETDOCTYPE(

P PARSER)
RETURN DOMDOCUMENTTYPE;

GETDOCUMENT

Returns the document node of a DOM tree document built by the parser; this
function must be called only after a document is parsed.

Syntax
FUNCTION GETDOCUMENT(

P PARSER)
RETURN DOMDOCUMENT;

Parameter IN / OUT Description

P (IN) Parser instance.

Parameter IN / OUT Description

P (IN) Parser instance.

Parameter IN / OUT Description

P (IN) Parser instance.

GETRELEASEVERSION

115-4 PL/SQL Packages and Types Reference

GETRELEASEVERSION

Returns the release version of the Oracle XML parser for PL/SQL.

Syntax
FUNCTION GETRELEASEVERSION
RETURN VARCHAR2;

GETVALIDATIONMODE

Retrieves validation mode; TRUE for validating, FALSE otherwise.

Syntax
FUNCTION GETVALIDATIONMODE(

P PARSER)
RETURN BOOLEAN;

NEWPARSER

Returns a new parser instance. This function must be called before the default
behavior of Parser can be changed and if other parse methods need to be used.

Syntax
FUNCTION NEWPARSER
RETURN PARSER;

PARSE

Parses XML stored in the given URL or file. An application error is raised if parsing
fails. There are several versions of this method.

Parameter IN / OUT Description

P (IN) Parser instance.

Summary of DBMS_XMLPARSER Subprograms

DBMS_XMLPARSER 115-5

PARSEBUFFER

Parses XML stored in the given buffer. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE PARSEBUFFER(

P PARSER,
DOC VARCHAR2);

Syntax Description

FUNCTION PARSE(
URL VARCHAR2)

RETURN DOMDOCUMENT;

Returns the built DOM Document. This is meant to be used
when the default parser behavior is acceptable and just a url/file
needs to be parsed.

PROCEDURE PARSE(
P PARSER,
URL VARCHAR2);

Any changes to the default parser behavior should be effected
before calling this procedure.

Parameter IN / OUT Description

URL (IN) Complete path of the url/file to be parsed.

P (IN) Parser instance.

Parameter IN / OUT Description

P (IN) Parser instance.

DOC (IN) XML document buffer to parse.

PARSECLOB

115-6 PL/SQL Packages and Types Reference

PARSECLOB

Parses XML stored in the given clob. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE PARSECLOB(

P PARSER,
DOC CLOB);

PARSEDTD

Parses the DTD stored in the given URL or file. Any changes to the default parser
behavior should be effected before calling this procedure. An application error is
raised if parsing fails.

Syntax
PROCEDURE PARSEDTD(

P PARSER,
URL VARCHAR2,
ROOT VARCHAR2);

Parameter IN / OUT Description

P (IN) Parser instance.

DOC (IN) XML document buffer to parse.

Parameter IN / OUT Description

P (IN) Parser instance.

URL (IN) Complete path of the URL or file to be parsed.

ROOT (IN) Name of the root element.

Summary of DBMS_XMLPARSER Subprograms

DBMS_XMLPARSER 115-7

PARSEDTDBUFFER

Parses the DTD stored in the given buffer. Any changes to the default parser
behavior should be effected before calling this procedure. An application error is
raised if parsing fails.

Syntax
PROCEDURE PARSEDTDBUFFER(

P PARSER,
DTD VARCHAR2,
ROOT VARCHAR2);

PARSEDTDCLOB

Parses the DTD stored in the given clob. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE PARSEDTDCLOB(

P PARSER,
DTD CLOB,
ROOT VARCHAR2);

Parameter IN / OUT Description

P (IN) Parser instance.

DTD (IN) DTD buffer to parse.

ROOT (IN) Name of the root element.

Parameter IN / OUT Description

P (IN) Parser instance.

DTD (IN) DTD Clob to parse.

ROOT (IN) Name of the root element.

SETBASEDIR

115-8 PL/SQL Packages and Types Reference

SETBASEDIR
Sets base directory used to resolve relative URLs. An application error is raised if
parsing fails.

Syntax
PROCEDURE SETBASEDIR(

P PARSER,
DIR VARCHAR2);

SETDOCTYPE
Sets a DTD to be used by the parser for validation. This call should be made before
the document is parsed.

Syntax
PROCEDURE SETDOCTYPE(

P PARSER,
DTD DOMDOCUMENTTYPE);

SETERRORLOG
Sets errors to be sent to the specified file.

Syntax
PROCEDURE SETERRORLOG(

P PARSER,
FILENAME VARCHAR2);

Parameter IN / OUT Description

P (IN) Parser instance.

DIR (IN) Directory used as a base directory.

Parameter IN / OUT Description

P (IN) Parser instance.

DTD (IN) DTD to set.

Summary of DBMS_XMLPARSER Subprograms

DBMS_XMLPARSER 115-9

SETPRESERVEWHITESPACE

Sets whitespace preserving mode.

Syntax
PROCEDURE SETPRESERVEWHITESPACE(

P PARSER,
YES BOOLEAN);

SETVALIDATIONMODE

Sets validation mode.

Syntax
PROCEDURE SETVALIDATIONMODE(

P PARSER,
YES BOOLEAN);

Parameter IN / OUT Description

P (IN) Parser instance.

FILENAME (IN) Complete path of the file to use as the error log.

Parameter IN / OUT Description

P (IN) Parser instance.

YES (IN) Mode to set: TRUE - preserve, FALSE - don't preserve.

Parameter IN / OUT Description

P (IN) Parser instance.

YES (IN) Mode to set: TRUE - validate, FALSE - don't validate.

SHOWWARNINGS

115-10 PL/SQL Packages and Types Reference

SHOWWARNINGS

Turns warnings on or off.

Syntax
PROCEDURE SHOWWARNINGS(

P PARSER,
YES BOOLEAN);

Parameter IN / OUT Description

P (IN) Parser instance.

YES (IN) Mode to set: TRUE - show warnings, FALSE - don't show
warnings.

DBMS_XMLQUERY 116-1

116
 DBMS_XMLQUERY

DBMS_XMLQUERY provides database-to-XMLType functionality. Whenever possible,
use DBMS_XMLGEN, a built-in package in C, instead of DBMS_XMLQUERY.

This chapter contains the following topics:

■ Using DBMS_XMLQUERY

■ Constants

■ Types

■ Summary of DBMS_XMLQUERY Subprograms

See Also: Oracle XML DB Developer's Guide

Using DBMS_XMLQUERY

116-2 PL/SQL Packages and Types Reference

Using DBMS_XMLQUERY

■ Constants

Constants

Types

Table 116–1 Constants of DBMS_XMLQUERY

Constant Description

DB_ENCODING Used to signal that the DB character encoding is to be used.

DEFAULT_ROWSETTAG The tag name for the element enclosing the XML generated from
the result set (that is, for most cases the root node tag name) --
ROWSET.

DEFAULT_ERRORTAG The default tag to enclose raised errors -- ERROR.

DEFAULT_ROWIDATTR The default name for the cardinality attribute of XML elements
corresponding to db.records -- NUM

DEFAULT_ROWTAG The default tag name for the element corresponding to db.
records -- ROW

DEFAULT_DATE_FORMAT Default date mask --'MM/dd/yyyy HH:mm:ss'

ALL_ROWS Indicates that all rows are needed in the output.

NONE Used to specifies that the output should not contain any XML
metadata (for example, no DTD).

DTD Used to specify that the generation of the DTD is desired.

SCHEMA Used to specify that the generation of the XML Schema is desired.

LOWER_CASE Use lower case tag names.

UPPER_CASE Use upper case tag names.

Table 116–2 Types of DBMS_XMLQUERY

Type Description

ctxType The type of the query context handle. This is the return type of
NEWCONTEXT.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-3

Summary of DBMS_XMLQUERY Subprograms

Table 116–3 DBMS_XMLQUERY Package Subprograms

Method Description

CLOSECONTEXT on page 116-4 Closes or deallocates a particular query context.

GETDTD on page 116-5 Generates the DTD.

GETEXCEPTIONCONTENT on
page 116-5

Returns the thrown exception's error code and error
message.

GETNUMROWSPROCESSED on
page 116-6

Returns the number of rows processed for the query.

GETVERSION on page 116-6 Prints the version of the XSU in use.

GETXML on page 116-7 Generates the XML document.

NEWCONTEXT on page 116-8 Creates a query context and it returns the context
handle.

PROPAGATEORIGINALEXCEPTION
on page 116-8

Tells the XSU that if an exception is raised, and is
being thrown, the XSU should throw the very
exception raised; rather then, wrapping it with an
OracleXMLSQLException.

REMOVEXSLTPARAM on page 116-9 Removes a particular top-level stylesheet parameter.

SETBINDVALUE on page 116-9 Sets a value for a particular bind name.

SETCOLLIDATTRNAME on
page 116-10

Sets the name of the id attribute of the collection
element's separator tag.

SETDATAHEADER on page 116-10 Sets the XML data header.

SETDATEFORMAT on page 116-11 Sets the format of the generated dates in the XML
document.

SETENCODINGTAG on page 116-11 Sets the encoding processing instruction in the XML
document.

SETERRORTAG on page 116-12 Sets the tag to be used to enclose the XML error
documents.

SETMAXROWS on page 116-12 Sets the maximum number of rows to be converted to
XML.

SETMETAHEADER on page 116-13 Sets the XML meta header.

CLOSECONTEXT

116-4 PL/SQL Packages and Types Reference

CLOSECONTEXT

Closes or deallocates a particular query context

Syntax
PROCEDURE CLOSECONTEXT(

CTXHDL IN CTXTYPE);

SETRAISEEXCEPTION on
page 116-13

Tells the XSU to throw the raised exceptions.

SETRAISENOROWSEXCEPTION on
page 116-14

Tells the XSU to throw or not to throw an
OracleXMLNoRowsException in the case when for
one reason or another, the XML document generated
is empty.

SETROWIDATTRNAME on
page 116-14

Sets the name of the id attribute of the row enclosing
tag.

SETROWIDATTRVALUE on
page 116-15

Specifies the scalar column whose value is to be
assigned to the id attribute of the row enclosing tag.

SETROWSETTAG on page 116-15 Sets the tag to be used to enclose the XML dataset.

SETROWTAG on page 116-15 Sets the tag to be used to enclose the XML element.

SETSKIPROWS on page 116-16 Sets the number of rows to skip.

SETSQLTOXMLNAMEESCAPING on
page 116-16

This turns on or off escaping of XML tags in the case
that the SQL object name, which is mapped to a XML
identifier, is not a valid XML identifier.

SETSTYLESHEETHEADER on
page 116-17

Sets the stylesheet header.

SETTAGCASE on page 116-17 Specified the case of the generated XML tags.

SETXSLT on page 116-18 Registers a stylesheet to be applied to generated XML.

SETXSLTPARAM on page 116-19 Sets the value of a top-level stylesheet parameter.

USENULLATTRIBUTEINDICATOR
on page 116-19

Specifies weather to use an XML attribute to indicate
NULLness.

USETYPEFORCOLLELEMTAG on
page 116-20

Tells the XSU to use the collection element's type
name as the collection element tag name.

Table 116–3 (Cont.) DBMS_XMLQUERY Package Subprograms

Method Description

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-5

GETDTD

Generates and returns the DTD based on the SQL query used to initialize the
context. The options are described in the following table.

GETEXCEPTIONCONTENT

Returns the thrown exception's SQL error code and error message through the
procedure's OUT parameters. This procedure is a work around the JVM functionality

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Syntax Description

FUNCTION GETDTD(
CTXHDL IN CTXTYPE,
WITHVER IN BOOLEAN := FALSE)

RETURN CLOB;

Function that generates the DTD based on the SQL
query used to initialize the context.

PROCEDURE GETDTD(
CTXHDL IN CTXTYPE,
XDOC IN CLOB,
WITHVER IN BOOLEAN :=

FALSE);

Procedure that generates the DTD based on the SQL
query used to initialize the context; specifies the
output CLOB for XML document result.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

WITHVER (IN) Generate the version information? TRUE for yes.

XDOC (IN) CLOB into which to write the generated XML document.

GETNUMROWSPROCESSED

116-6 PL/SQL Packages and Types Reference

that obscures the original exception by its own exception, rendering PL/SQL unable
to access the original exception content.

Syntax
PROCEDURE GETEXCEPTIONCONTENT(

CTXHDL IN CTXTYPE,
ERRNO OUT NUMBER,
ERRMSG OUT VARCHAR2);

GETNUMROWSPROCESSED

Return the number of rows processed for the query.

Syntax
FUNCTION GETNUMROWSPROCESSED(

CTXHDL IN CTXTYPE)
RETURN NUMBER;

GETVERSION

Prints the version of the XSU in use.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ERRNO (OUT) Error number.

ERRMSG (OUT) Error message.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-7

Syntax
PROCEDURE GETVERSION();

GETXML

Creates the new context, executes the query, gets the XML back and closes the
context. This is a convenience function. The context doesn't have to be explicitly
opened or closed. The options are described in the following table.

Syntax Description

FUNCTION GETXML(
SQLQUERY IN VARCHAR2,
METATYPE IN NUMBER := NONE)

RETURN CLOB;

This function uses a SQL query in string form.

FUNCTION GETXML(
SQLQUERY IN CLOB,
METATYPE IN NUMBER := NONE)

RETURN CLOB;

This function uses a SQL query in CLOB form.

FUNCTION GETXML(
CTXHDL IN CTXTYPE,
METATYPE IN NUMBER := NONE)

RETURN CLOB;

This function generates the XML document based on
a SQL query used to initialize the context.

PROCEDURE GETXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB,
METATYPE IN NUMBER := NONE);

This procedure generates the XML document based
on the SQL query used to initialize the context.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

METATYPE (IN) XML metadata type (NONE, DTD, or SCHEMA).

SQLQUERY (IN) SQL query.

XDOC (IN) CLOB into which to write the generated XML document.

NEWCONTEXT

116-8 PL/SQL Packages and Types Reference

NEWCONTEXT

Creates a query context and it returns the context handle. The options are described
in the following table.

PROPAGATEORIGINALEXCEPTION

Specifies whether to throw every original exception raised or to wrap it in an
OracleXMLSQLException.

Syntax
PROCEDURE propagateOriginalException(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN);

Syntax Description

FUNCTION NEWCONTEXT(
SQLQUERY IN VARCHAR2)

RETURN CTXTYPE;

Creates a query context from a string.

FUNCTION NEWCONTEXT(
SQLQUERY IN CLOB)

RETURN CTXTYPE;

Creates a query context from a CLOB.

Parameter IN / OUT Description

SQLQUERY (IN) SQL query, the results of which to convert to XML.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) TRUE if want to propagate original exception, FALSE to wrap
in OracleXMLException.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-9

REMOVEXSLTPARAM

Removes the value of a top-level stylesheet parameter. If no stylesheet is registered,
this method is not operational.

Syntax
PROCEDURE REMOVEXSLTPARAM(

CTXHDL IN CTXTYPE,
NAME IN VARCHAR2);

SETBINDVALUE

Sets a value for a particular bind name.

Syntax
PROCEDURE SETBINDVALUE(

CTXHDL IN CTXTYPE,
BINDNAME IN VARCHAR2,
BINDVALUE IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

NAME (IN) Name of the top level stylesheet parameter.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

BINDNAME (IN) Bind name.

BINDVALUE (IN) Bind value.

SETCOLLIDATTRNAME

116-10 PL/SQL Packages and Types Reference

SETCOLLIDATTRNAME

Sets the name of the id attribute of the collection element's separator tag. Passing
NULL or an empty string for the tag causes the row id attribute to be omitted.

Syntax
PROCEDURE SETCOLLIDATTRNAME(

CTXHDL IN CTXTYPE,
ATTRNAME IN VARCHAR2);

SETDATAHEADER

Sets the XML data header. The data header is an XML entity that is appended at the
beginning of the query-generated XML entity, the rowset. The two entities are
enclosed by the docTag argument. The last data header specified is used. Passing
in NULL for the header parameter unsets the data header.

Syntax
PROCEDURE SETDATAHEADER(

CTXHDL IN CTXTYPE,
HEADER IN CLOB := NULL,
TAG IN VARCHAR2 := NULL);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ATTRNAME (IN) Attribute name.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

HEADER (IN) Header.

TAG (IN) Tag used to enclose the data header and the rowset.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-11

SETDATEFORMAT

Sets the format of the generated dates in the XML document. The syntax of the date
format pattern, the date mask, should conform to the requirements of the
java.text.SimpleDateFormat class. Setting the mask to NULL or an empty
string sets the default mask -- DEFAULT_DATE_FORMAT.

Syntax
PROCEDURE SETDATEFORMAT(

CTXHDL IN CTXTYPE,
MASK IN VARCHAR2);

SETENCODINGTAG

Sets the encoding processing instruction in the XML document.

Syntax
PROCEDURE SETENCODINGTAG(

CTXHDL IN CTXTYPE,
ENC IN VARCHAR2 := DB_ENCODING);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

MASK (IN) The date mask.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ENC (IN) The encoding to use.

SETERRORTAG

116-12 PL/SQL Packages and Types Reference

SETERRORTAG

Sets the tag to be used to enclose the XML error documents.

Syntax
PROCEDURE SETERRORTAG(

CTXHDL IN CTXTYPE,
TAG IN VARCHAR2);

SETMAXROWS

Sets the maximum number of rows to be converted to XML. By default, there is no
set maximum.

Syntax
PROCEDURE SETMAXROWS (

CTXHDL IN CTXTYPE,
ROWS IN NUMBER);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TAG (IN) Tag name.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ROWS (IN) Maximum number of rows to generate.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-13

SETMETAHEADER

Sets the XML meta header. When set, the header is inserted at the beginning of the
metadata part (DTD or XMLSchema) of each XML document generated by this
object. The last meta header specified is used. Passing in NULL for the header
parameter unsets the meta header.

Syntax
PROCEDURE SETMETAHEADER(

CTXHDL IN CTXTYPE,
HEADER IN CLOB := NULL);

SETRAISEEXCEPTION

Specifies whether to throw raised exceptions. If this call isn't made or if FALSE is
passed to the FLAG argument, the XSU catches the SQL exceptions and generates an
XML document from the exception message.

Syntax
PROCEDURE SETRAISEEXCEPTION(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN:=TRUE);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

HEADER (IN) Header.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Throw raised exceptions? TRUE for yes, otherwise FALSE.

SETRAISENOROWSEXCEPTION

116-14 PL/SQL Packages and Types Reference

SETRAISENOROWSEXCEPTION

Specifies whether to throw an OracleXMLNoRowsException when the generated
XML document is empty. By default, the exception is not thrown.

Syntax
PROCEDURE SETRAISENOROWSEXCEPTION(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN:=FALSE);

SETROWIDATTRNAME

Sets the name of the id attribute of the row enclosing tag. Passing NULL or an empty
string for the tag causes the row id attribute to be omitted.

Syntax
PROCEDURE SETROWIDATTRNAME(

CTXHDL IN CTXTYPE,
ATTRNAME IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Throws an OracleXMLNoRowsException if set to TRUE.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ATTRNAME (IN) Attribute name.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-15

SETROWIDATTRVALUE

Specifies the scalar column whose value is to be assigned to the id attribute of the
row enclosing tag. Passing NULL or an empty string for the colName assigns the
row count value (0, 1, 2 and so on) to the row id attribute.

Syntax
PROCEDURE SETROWIDATTRVALUE(

CTXHDL IN CTXTYPE,
COLNAME IN VARCHAR2);

SETROWSETTAG

Sets the tag to be used to enclose the XML dataset.

Syntax
PROCEDURE SETROWSETTAG(

CTXHDL IN CTXTYPE,
TAG IN VARCHAR2);

SETROWTAG

Sets the tag to be used to enclose the XML element corresponding to a db.record.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

COLNAME (IN) Column whose value is to be assigned to the row id attribute.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TAG (IN) Tag name.

SETSKIPROWS

116-16 PL/SQL Packages and Types Reference

Syntax
PROCEDURE SETROWTAG(

CTXHDL IN CTXTYPE,
TAG IN VARCHAR2);

SETSKIPROWS

Sets the number of rows to skip. By default, 0 rows are skipped.

Syntax
PROCEDURE SETSKIPROWS(

CTXHDL IN CTXTYPE,
ROWS IN NUMBER);

SETSQLTOXMLNAMEESCAPING

This turns on or off escaping of XML tags in the case that the SQL object name,
which is mapped to a XML identifier, is not a valid XML identifier.

Syntax
PROCEDURE SETSQLTOXMLNAMEESCAPING(

CTXHDL IN CTXTYPE,

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TAG (IN) Tag name.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ROWS (IN) Maximum number of rows to skip.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-17

FLAG IN BOOLEAN := TRUE);

SETSTYLESHEETHEADER

Sets the stylesheet header (the stylesheet processing instructions) in the generated
XML document. Passing NULL for the uri argument will unset the stylesheet
header and the stylesheet type.

Syntax
PROCEDURE SETSTYLESHEETHEADER(

CTXHDL IN CTXTYPE,
URI IN VARCHAR2,
TYPE IN VARCHAR2 := 'TEXT/XSL');

SETTAGCASE

Specifies the case of the generated XML tags.

Syntax
PROCEDURE SETTAGCASE(

CTXHDL IN CTXTYPE,

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Turn on escaping? TRUE for yes, otherwise FALSE.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

URI (IN) Stylesheet URI.

TYPE (IN) Stylesheet type; defaults to "text/xsl".

SETXSLT

116-18 PL/SQL Packages and Types Reference

TCASE IN NUMBER);

SETXSLT

Registers a stylesheet to be applied to generated XML. If a stylesheet was already
registered, it is replaced by the new one. The options are described in the following
table. Passing NULL for the uri argument or an empty string for the stylesheet
argument will unset the stylesheet header and type.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TCASE (IN) The tag's case:

■ 0 for as are

■ 1 for lower case

■ 2 for upper case

Syntax Description

PROCEDURE SETXSLT(
CTXHDL IN CTXTYPE,
URI IN VARCHAR2,
REF IN VARCHAR2 := NULL);

To un-register the stylesheet pass in a null for the uri.

PROCEDURE SETXSLT(
CTXHDL IN CTXTYPE,
STYLESHEET CLOB,
REF IN VARCHAR2 := NULL);

To un-register the stylesheet pass in a null or an
empty string for the stylesheet.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

URI (IN) Stylesheet URI.

STYLESHEET (IN) Stylesheet.

Summary of DBMS_XMLQUERY Subprograms

DBMS_XMLQUERY 116-19

SETXSLTPARAM

Sets the value of a top-level stylesheet parameter. The parameter value is expected
to be a valid XPath expression; the string literal values would therefore have to be
quoted explicitly. If no stylesheet is registered, this method is not operational.

Syntax
PROCEDURE SETXSLTPARAM(

CTXHDL IN CTXTYPE,
NAME IN VARCHAR2,
VALUE IN VARCHAR2);

USENULLATTRIBUTEINDICATOR

Specifies whether to use an XML attribute to indicate NULLness, or to do this by
omitting the particular entity in the XML document.

Syntax
PROCEDURE SETNULLATTRIBUTEINDICATOR(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN);

REF (IN) URL to include, imported and external entities.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

NAME (IN) Name of the top level stylesheet parameter.

VALUE (IN) Value to be assigned to the stylesheet parameter.

Parameter IN / OUT Description

USETYPEFORCOLLELEMTAG

116-20 PL/SQL Packages and Types Reference

USETYPEFORCOLLELEMTAG

Specifies whether to use the collection element's type name as its element tag name.
By default, the tag name for elements of a collection is the collection's tag name
followed by _item.

Syntax
PROCEDURE USETYPEFORCOLLELEMTAG(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN := TRUE);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Sets attribute to NULL if TRUE, omits from XML document if
FALSE.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Turn on use of the type name?

DBMS_XMLSAVE 117-1

117
 DBMS_XMLSAVE

DBMS_XMLSAVE provides XML to database-type functionality.

This chapter contains the following topics:

■ Using DBMS_XMLSAVE

■ Constants

■ Types

■ Summary of DBMS_XMLSAVE Subprograms

See Also: Oracle XML DB Developer's Guide

Using DBMS_XMLSAVE

117-2 PL/SQL Packages and Types Reference

Using DBMS_XMLSAVE

■ Constants

■ Types

Constants

Types

Table 117–1 Constants of DBMS_XMLSAVE

Constant Description

DEFAULT_ROWTAG The default tag name for the element corresponding to database
records -- ROW

DEFAULT_DATE_FORMAT Default date mask:'MM/dd/yyyy HH:mm:ss'

MATCH_CASE Used to specify that when mapping XML elements to database
entities; the XSU should be case sensitive.

IGNORE_CASE Used to specify that when mapping XML elements to database.
entities the XSU should be case insensitive.

Table 117–2 Types of DBMS_XMLSAVE

Type Description

ctxType The type of the query context handle. The type of the query context
handle. This the return type of NEWCONTEXT.

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-3

Summary of DBMS_XMLSAVE Subprograms

Table 117–3 DBMS_XMLSAVE Package Subprograms

Method Description

CLEARKEYCOLUMNLIST on
page 117-4

Clears the key column list.

CLEARUPDATECOLUMNLIST on
page 117-4

Clears the update column list.

CLOSECONTEXT on page 117-5 It closes/deallocates a particular save context.

DELETEXML on page 117-5 Deletes records specified by data from the XML
document, from the table specified at the context
creation time.

GETEXCEPTIONCONTENT on
page 117-6

Via its arguments, this method returns the thrown
exception's error code and error message.

INSERTXML on page 117-6 Inserts the XML document into the table specified at
the context creation time.

NEWCONTEXT on page 117-7 Creates a save context, and returns the context handle.

PROPAGATEORIGINALEXCEPTION
on page 117-7

Tells the XSU that if an exception is raised, and is being
thrown, the XSU should throw the very exception
raised; rather then, wrapping it with an
OracleXMLSQLException.

REMOVEXSLTPARAM on page 117-8 Removes the value of a top-level stylesheet parameter

SETBATCHSIZE on page 117-8 Changes the batch size used during DML operations.

SETDATEFORMAT on page 117-9 Sets the commit batch size.

SETCOMMITBATCH on page 117-9 Sets the format of the generated dates in the XML
document.

SETIGNORECASE on page 117-10 The XSU does mapping of XML elements to database.

SETKEYCOLUMN on page 117-10 This methods adds a column to the key column list.

SETPRESERVEWHITESPACE on
page 117-11

Tells the XSU whether to preserve whitespace or not.

SETROWTAG on page 117-11 Names the tag used in the XML document to enclose
the XML elements corresponding to database.

CLEARKEYCOLUMNLIST

117-4 PL/SQL Packages and Types Reference

CLEARKEYCOLUMNLIST

Clears the key column list.

Syntax
PROCEDURE CLEARKEYCOLUMNLIST(

CTXHDL IN CTXTYPE);

CLEARUPDATECOLUMNLIST

Clears the update column list.

Syntax
PROCEDURE CLEARUPDATECOLUMNLIST(

CTXHDL IN CTXTYPE);

SETSQLTOXMLNAMEESCAPING on
page 117-11

This turns on or off escaping of XML tags in the case
that the SQL object name, which is mapped to a XML
identifier, is not a valid XML identifier.

SETUPDATECOLUMN on
page 117-12

Adds a column to the update column list.

SETXSLT on page 117-12 Registers a XSL transform to be applied to the XML to
be saved.

SETXSLTPARAM on page 117-13 Sets the value of a top-level stylesheet parameter.

UPDATEXML on page 117-14 Updates the table given the XML document.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Table 117–3 (Cont.) DBMS_XMLSAVE Package Subprograms

Method Description

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-5

CLOSECONTEXT

Closes/deallocates a particular save context.

Syntax
PROCEDURE CLOSECONTEXT(

CTXHDL IN CTXTYPE);

DELETEXML

Deletes records specified by data from the XML document from the table specified
at the context creation time, and returns the number of rows deleted. The options
are described in the following table.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Syntax Description

FUNCTION DELETEXML(
CTXHDL IN CTXPTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Uses a VARCHAR2 type for the XDOC parameter.

FUNCTION DELETEXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Uses a CLOB type for the XDOC parameter.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

GETEXCEPTIONCONTENT

117-6 PL/SQL Packages and Types Reference

GETEXCEPTIONCONTENT

Through its arguments, this method returns the thrown exception's error code and
error message, SQL error code. This is to get around the fact that the JVM throws an
exception on top of whatever exception was raised; thus, rendering PL/SQL unable
to access the original exception.

Syntax
PROCEDURE GETEXCEPTIONCONTENT(

CTXHDL IN CTXTYPE,
ERRNO OUT NUMBER,
ERRMSG OUT VARCHAR2);

INSERTXML

Inserts the XML document into the table specified at the context creation time, and
returns the number of rows inserted. The options are described in the following
table.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

ERRNO (IN) Error number.

ERRMSG (IN) Error message.

Syntax Description

FUNCTION INSERTXML(
CTXHDL IN CTXTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Passes in the XDOC parameter as a VARCHAR2.

FUNCTION INSERTXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Passes in the XDOC parameter as a CLOB.

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-7

NEWCONTEXT

Creates a save context, and returns the context handle.

Syntax
FUNCTION NEWCONTEXT(

TARGETTABLE IN VARCHAR2)
RETURN CTXTYPE;

PROPAGATEORIGINALEXCEPTION

Tells the XSU that if an exception is raised, and is being thrown, the XSU should
throw the very exception raised; rather then, wrapping it with an
OracleXMLSQLException.

Syntax
PROCEDURE PROPAGATEORIGINALEXCEPTION(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

Parameter IN / OUT Description

TARGETTABLE (IN) The target table into which to load the XML document.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Propagate the original exception? 0=FALSE, 1=TRUE.

REMOVEXSLTPARAM

117-8 PL/SQL Packages and Types Reference

REMOVEXSLTPARAM

Removes the value of a top-level stylesheet parameter.

Syntax
PROCEDURE REMOVEXSLTPARAM(

CTXHDL IN CTXTYPE,
NAME IN VARCHAR2);

SETBATCHSIZE

Changes the batch size used during DML operations. When performing inserts,
updates or deletes, it is better to batch the operations so that they get executed in
one shot rather than as separate statements. The flip side is that more memory is
needed to buffer all the bind values. Note that when batching is used, a commit
occurs only after a batch is executed. So if one of the statement inside a batch fails,
the whole batch is rolled back. This is a small price to pay considering the
performance gain; nevertheless, if this behavior is unacceptable, then set the batch
size to 1.

Syntax
PROCEDURE SETBATCHSIZE(

CTXHDL IN CTXTYPE,
BATCHSIZE IN NUMBER);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

NAME (IN) Parameter name.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

BATCHSIZE (IN) Batch size.

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-9

SETCOMMITBATCH

Sets the commit batch size. The commit batch size refers to the number or records
inserted after which a commit should follow. If BATCHSIZE is less than 1 or the
session is in "auto-commit" mode, using the XSU does not make any explicit
commits. By default, COMMITBATCH is 0.

Syntax
PROCEDURE SETCOMMITBATCH(

CTXHDL IN CTXTYPE,
BATCHSIZE IN NUMBER);

SETDATEFORMAT

Sets the format of the generated dates in the XML document. The syntax of the date
format patern, the date mask, should conform to the requirements of the class
java.text.SimpleDateFormat. Setting the mask to <code>null</code> or
an empty string unsets the date mask.

Syntax
PROCEDURE SETDATEFORMAT(

CTXHDL IN CTXTYPE,
MASK IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

BATCHSIZE (IN) Commit batch size.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

MASK (IN) Syntax of the date format pattern..

SETIGNORECASE

117-10 PL/SQL Packages and Types Reference

SETIGNORECASE

The XSU does mapping of XML elements to db columns/attributes based on the
element names (XML tags). This function tells the XSU to do this match case
insensitive.

Syntax
PROCEDURE SETIGNORECASE(

CTXHDL IN CTXTYPE,
FLAG IN NUMBER);

SETKEYCOLUMN

This method adds a column to the "key column list". The value for the column
cannot be NULL. In case of update or delete, the columns in the key column list
make up the WHERE clause of the statement. The key columns list must be specified
before updates can complete; this is optional for delete operations.

Syntax
PROCEDURE SETKEYCOLUMN(

CTXHDL IN CTXTYPE,
COLNAME IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Ignore tag case in the XML doc? 0=FALSE, 1=TRUE.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

COLNAME (IN) Column to be added to the key column list; cannot be NULL.

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-11

SETPRESERVEWHITESPACE

Tells the XSU whether or not to preserve whitespace.

Syntax
PROCEDURE SETPRESERVEWHITESPACE(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN := TRUE);

SETROWTAG

Names the tag used in the XML document to enclose the XML elements
corresponding to db. records.

Syntax
PROCEDURE SETROWTAG(

CTXHDL IN CTXTYPE,
TAG IN VARCHAR2);

SETSQLTOXMLNAMEESCAPING

Turns on or off escaping of XML tags in the case that the SQL object name, which is
mapped to a XML identifier, is not a valid XML identifier.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Should XSU preserve whitespace?

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TAG (IN) Tag name.

SETUPDATECOLUMN

117-12 PL/SQL Packages and Types Reference

Syntax
PROCEDURE SETSQLTOXMLNAMEESCAPING(

CTXHDL IN CTXTYPE,
FLAG IN BOOLEAN := TRUE);

SETUPDATECOLUMN

Adds a column to the update column list. In case of insert, the default is to insert
values to all the columns in the table; on the other hand, in case of updates, the
default is to only update the columns corresponding to the tags present in the ROW
element of the XML document. When the update column list is specified, the
columns making up this list alone will get updated or inserted into.

Syntax
PROCEDURE SETUPDATECOLUMN(

CTXHDL IN CTXTYPE,
COLNAME IN VARCHAR2);

SETXSLT

Registers an XSL transform to be applied to the XML to be saved. If a stylesheet was
already registered, it gets replaced by the new one. To un-register the stylesheet,
pass in null for the URI. The options are described in the following table.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

FLAG (IN) Turn on escaping?

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

COLNAME (IN) Column to be added to the update column list.

Summary of DBMS_XMLSAVE Subprograms

DBMS_XMLSAVE 117-13

SETXSLTPARAM

Sets the value of a top-level stylesheet parameter. The parameter is expected to be a
valid XPath expression; literal values would therefore have to be explicitly quoted.

Syntax
PROCEDURE SETXSLTPARAM(

CTXHDL IN CTXTYPE,
NAME IN VARCHAR2,
VALUE IN VARCHAR2);

Syntax Description

PROCEDURE setXSLT(
ctxHdl IN ctxType,
uri IN VARCHAR2,
ref IN VARCHAR2 := null);

Passes in the stylesheet through a URI.

PROCEDURE setXSLT(
ctxHdl IN ctxType,
stylesheet IN CLOB,
ref IN VARCHAR2 := null);

Passes in the stylesheet through a CLOB.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

URI (IN) URI to the stylesheet to register.

REF (IN) URL for include, import, and external entities.

STYLESHEET (IN) CLOB containing the stylesheet to register.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

NAME (IN) Parameter name.

VALUE (IN) Parameter value as an XPath expression

UPDATEXML

117-14 PL/SQL Packages and Types Reference

UPDATEXML

Updates the table specified at the context creation time with data from the XML
document, and returns the number of rows updated. The options are described in
the following table.

Syntax Description

FUNCTION UPDATEXML(
CTXHDL IN CTXTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Passes in the XDOC parameter as a VARCHAR2.

FUNCTION UPDATEXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Passes in the XDOC parameter as a CLOB.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

DBMS_XMLSCHEMA 118-1

118
DBMS_XMLSCHEMA

DBMS_XMLSCHEMA package provides procedures to register and delete XML
schemas. It is created by script dbmsxsch.sql during Oracle database installation.

This chapter contains the following topics:

■ Constants of DBMS_XMLSCHEMA

■ Summary of DBMS_XMLSCHEMA Subprograms

■ Catalog Views of the DBMS_XMLSCHEMA

See Also: Oracle XML DB Developer's Guide

Constants of DBMS_XMLSCHEMA

118-2 PL/SQL Packages and Types Reference

Constants of DBMS_XMLSCHEMA

Table 118–1 Constants of DBMS_XMLSCHEMA

Constant Description

DELETE_RESTRICT CONSTANT NUMBER := 1;

DELETE_INVALIDATE CONSTANT NUMBER := 2;

DELETE_CASCADE CONSTANT NUMBER := 3;

DELETE_CASCADE_FORCE CONSTANT NUMBER := 4;

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-3

Summary of DBMS_XMLSCHEMA Subprograms

Table 118–2 DBMS_XMLSCHEMA Package Subprograms

Method Description

COMPILESCHEMA on
page 118-4

Used to re-compile an already registered XML schema. This is
useful for bringing a schema in an invalid state to a valid state.

COPYEVOLVE on
page 118-5

Evolves registered schemas so that existing XML instances
remain valid.

DELETESCHEMA on
page 118-8

Removes the schema from the database.

GENERATEBEAN on
page 118-10

Generates the Java bean code corresponding to a registered
XML schema

GENERATESCHEMA on
page 118-11

Generates an XML schema from an oracle type name.

GENERATESCHEMAS on
page 118-12

Generates several XML schemas from an oracle type name.

REGISTERSCHEMA on
page 118-13

Registers the specified schema for use by Oracle. This schema
can then be used to store documents conforming to this.

REGISTERURI on
page 118-16

Registers an XMLSchema specified by a URI name.

COMPILESCHEMA

118-4 PL/SQL Packages and Types Reference

COMPILESCHEMA

This procedure can be used to re-compile an already registered XML schema. This is
useful for bringing a schema in an invalid state to a valid state. Can result in a
ORA-31001 exception: invalid resource handle or path name.

Syntax
PROCEDURE COMPILESCHEMA(

SCHEMAURL IN VARCHAR2);

Parameter IN / OUT Description

SCHEMAURL (IN) URL identifying the schema.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-5

COPYEVOLVE

Evolves registered schemas so that existing XML instances remain valid. You
should back up all schemas and documents prior to invocation because
COPYEVOLVE deletes all conforming documents prior to implementing the
schema evolution.

This procedure is accomplished in according to the following basic scenario
(alternative actions are controlled by the procedure's parameters):

■ copies data in schema based XMLType tables to temporary table storage

■ drops old tables

■ deletes old schemas

■ registers new schemas

■ creates new XMLType tables

■ Populates new tables with data in temporary storage; auxiliary structures
(constraints, triggers, indexes, and others) are not preserved

■ drops temporary tables

\

Syntax
PROCEDURE COPYEVOLVE(

SCHEMAURLS IN XDB$STRUBG_LIST_T,
NEWSCHEMAS IN XMLSEQUENCETYPE,
TRANSFORMS IN XMLSEQUENCETYPE:=NULL,
PRESERVEOLDDOCS IN BOOLEAN:=FALSE,
MAPTABLENAME IN VARCHAR2:=NULL,
GENERATETABLES IN BOOLEAN:=TRUE,
FORCE IN BOOLEAN:=FALSE,
SCHEMAOWNERS IN XDB$STRING_LIST_T:=NULL);

See Also:

■ Schema Evolution chapter of the Oracle XML DB Developer's Guide
for examples on how to evolve existing schemas

■ Oracle Database Error Messages for information on exceptions
specific to schema evolution, ORA-30142 through ORA-30946.

COPYEVOLVE

118-6 PL/SQL Packages and Types Reference

Parameter IN / OUT Description

SCHEMAURLS (IN) Varray of URLs of all schemas to be evolved. Should include
the dependent schemas. Unless the FORCE parameter is TRUE,
URLs should be in the order of dependency.

NEWSCHEMAS (IN) Varray of new schema documents. Should be specified in
same order as the corresponding URLs.

TRANSFORMS (IN) Varray of transforming XSL documents to be applied to
schema-based documents. Should be specified in same order
as the corresponding URLs. Optional if no transformations are
required.

PRESERVEOLDDOCS (IN) Default is FALSE, and temporary tables with old data are
dropped. If TRUE, these table are still available after schema
evolution is complete.

MAPTABNAME (IN) Specifies the name of the table mapping permanent to
temporary tables during the evolution process. Valid columns
are:

■ SCHEMA_URL - VARCHAR2(700) - URL of schema to which
this table conforms

■ SCHEMA_OWNER -VARCHAR2(30) - Owner of the schema

■ ELEMENT_NAME - VARCHAR2(256)- Element to which this
table conforms

■ TAB_NAME - VARCHAR2(65) - Qualified table name:
<owner_name>.<table_name>

■ COL_NAME - VARCHAR2(4000) - Name of the column (NULL
for XMLType tables)

■ TEMP_TABNAME - VARCHAR2(30) - Name of temporary tables
which holds data for this table.

GENERATETABLES (IN) Default is TRUE, and new tables will be generated.

If FALSE:

■ new tables will not be generated after registration of new
schemas

■ PRESERVEOLDDOCS must be TRUE

■ MAPTABLENAME must be non-NULL

FORCE (IN) Default is FALSE.

If TRUE, ignores errors generated during schema evolution.
Used when there are circular dependencies among schemas to
ensure that all schemas are stored despite possible errors in
registration.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-7

SCHEMAOWNERS (IN) Varray of names of schema owners. Should be specified in
same order as the corresponding URLs. Default is NULL,
assuming that all schemas are owned by the current user.

Parameter IN / OUT Description

DELETESCHEMA

118-8 PL/SQL Packages and Types Reference

DELETESCHEMA

Deletes the XML Schema specified by the URL. Can result in a ORA-31001
exception: invalid resource handle or path name.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-9

Syntax
PROCEDURE DELETESCHEMA(

SCHEMAURL IN VARCHAR2,
DELETE_OPTION IN PLS_INTEGER := DELETE_RESTRICT);

Parameter IN / OUT Description

SCHEMAURL (IN) URL identifying the schema to be deleted.

DELETE_OPTION (IN) Option for deleting schema. Valid values are:

■ DELETE_RESTRICT - Schema deletion fails if there are any
tables or schemas that depend on this schema.

■ DELETE_INVALIDATE - Schema deletion does not fail if
there are any dependencies. Instead, it simply invalidates
all dependent objects.

■ DELETE_CASCADE - Schema deletion will also drop all
default SQL types and default tables. The deletion fails if
there are any stored instances conforming to this schema.

■ DELETE_CASCADE_FORCE - Similar to DELETE_CASCADE,
except that it does not check for any stored instances
conforming to this schema. Also ignores any errors.

GENERATEBEAN

118-10 PL/SQL Packages and Types Reference

GENERATEBEAN

This procedure can be used to generate the Java bean code corresponding to a
registered XML schema. Note that there is also an option to generate the beans as
part of the registration procedure itself. Can result in a ORA-31001 exception:
invalid resource handle or path name.

Syntax
PROCEDURE GENERATEBEAN(

SCHEMAURL IN VARCHAR2);

Parameter IN / OUT Description

SCHEMAURL (IN) Name identifying a registered XML schema.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-11

GENERATESCHEMA

These functions generate XML schema(s) from an Oracle type name. Inlines all in
one schema (XMLType). Can result in a ORA-31001 exception: invalid resource
handle or path name.

Syntax
FUNCTION GENERATESCHEMA(

SCHEMANAME IN VARCHAR2,
TYPENAME IN VARCHAR2,
ELEMENTNAME IN VARCHAR2 := NULL,
RECURSE IN BOOLEAN := TRUE,
ANNOTATE IN BOOLEAN := TRUE,
EMBEDCOLL IN BOOLEAN := TRUE)

RETURN SYS.XMLTYPE;

Parameter IN / OUT Description

SCHEMANAME (IN) Name of the database schema containing the type.

TYPENAME (IN) Name of the Oracle type.

ELEMENTNAME (IN) The name of the top level element in the XML Schema
defaults to TYPENAME.

RECURSE (IN) Whether or not to also generate schema for all types referred
to by the type specified.

ANNOTATE (IN) Whether or not to put the SQL annotations in the XML
Schema.

EMBEDCOLL (IN) Should the collections be embedded in the type which refers
to them, or create a complexType? Cannot be FALSE if
annotations are turned on.

GENERATESCHEMAS

118-12 PL/SQL Packages and Types Reference

GENERATESCHEMAS

These functions generate XML schema(s) from an Oracle type name. Returns a
collection of XMLTypes, one XML Schema document for each database schema.
Can result in a ORA-31001 exception: invalid resource handle or path name.

Syntax
FUNCTION GENERATESCHEMA(

SCHEMANAME IN VARCHAR2,
TYPENAME IN VARCHAR2,
ELEMENTNAME IN VARCHAR2 := NULL,
SCHEMAURL IN VARCHAR2 := NULL,
ANNOTATE IN BOOLEAN := TRUE,
EMBEDCOLL IN BOOLEAN := TRUE)

RETURN SYS.XMLTYPE;

Parameter IN / OUT Description

SCHEMANAME (IN) Name of the database schema containing the type.

TYPENAME (IN) Name of the Oracle type.

ELEMENTNAME (IN) The name of the top level element in the XML Schema
defaults to TYPENAME.

SCHEMAURL (IN) Specifies base URL where schemas will be stored, needed by
top level schema for import statement.

ANNOTATE (IN) Whether or not to put the SQL annotations in the XML
Schema.

EMBEDCOLL (IN) Should the collections be embedded in the type which refers
to them, or create a complexType? Cannot be FALSE if
annotations are turned on.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-13

REGISTERSCHEMA

Registers the specified schema for use by the database.

Syntax Description

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN VARCHAR2,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FALSE,
GENTABLES IN BOOLEAN := TRUE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers a schema specified as a
VARCHAR2.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN BFILE,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FALSE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers the schema specified as a BFILE.
The contents of the schema document must
be in the database character set.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN BFILE,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := TRUE,
GENTABLES IN BOOLEAN := TRUE,
FORCE IN BOOLEAN := TRUE,
OWNER IN VARCHAR2 := '',
CSID IN NUMBER);

Registers the schema specified as a BFILE
and identifies the character set id of the
schema document.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN BLOB,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FASLE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers the schema specified as a BLOB.
The contents of the schema document must
be in the database character set.

REGISTERSCHEMA

118-14 PL/SQL Packages and Types Reference

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN BLOB,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := TRUE,
GENTABLES IN BOOLEAN := TRUE,
FORCE IN BOOLEAN := TRUE,
OWNER IN VARCHAR2 := '',
CSID IN NUMBER);

Registers the schema specified as a BLOB
and identifies the character set id of the
schema document.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN CLOB,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FASLE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers the schema specified as a CLOB.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN SYS.XMLTYPE,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FALSE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers the schema specified as an
XMLType.

PROCEDURE REGISTERSCHEMA(
SCHEMAURL IN VARCHAR2,
SCHEMADOC IN SYS.URITYPE,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FALSE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Registers the schema specified as a
URIType.

Syntax Description

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-15

Parameter IN / OUT Description

SCHEMAURL (IN) URL that uniquely identifies the schema document. This
value is used to derive the path name of the schema
document within the database hierarchy. Can be used inside
SCHEMALOCATION attribute of XML Schema import element.

SCHEMADOC (IN) A valid XML schema document.

LOCAL (IN) Is this a local or global schema?

■ By default, all schemas are registered as local schemas,
under /sys/schemas/<username>/...

■ If a schema is registered as global, it is added under
/sys/schemas/PUBLIC/...

You need write privileges on the directory to be able to
register a schema as global.

GENTYPES (IN) Should the schema compiler generate object types? By
default, TRUE.

GENBEAN (IN) Should the schema compiler generate Java beans? By default,
FALSE.

GENTABLES (IN) Should the schema compiler generate default tables? By
default, TRUE

FORCE (IN) If this parameter is set to TRUE, the schema registration will
not raise errors. Instead, it creates an invalid XML schema
object in case of any errors. By default, the value of this
parameter is FALSE.

OWNER (IN) This parameter specifies the name of the database user
owning the XML schema object. By default, the user
registering the schema owns the XML schema object. This
parameter can be used to register a XML schema to be owned
by a different database user.

CSID (IN) Identifies the character set of the input schema document; if
this value is 0, the schema document's encoding is
determined by the current rule for "text/xml" MIME type.

REGISTERURI

118-16 PL/SQL Packages and Types Reference

REGISTERURI

Registers an XML Schema specified by a URI name.

Syntax
PROCEDURE REGISTERURI(

SCHEMAURL IN VARCHAR2,
SCHEMADOCURI IN VARCHAR2,
LOCAL IN BOOLEAN := TRUE,
GENTYPES IN BOOLEAN := TRUE,
GENBEAN IN BOOLEAN := FALSE,
GENTABLES IN BOOLEAN := TRUE,
FORCE IN BOOLEAN := FALSE,
OWNER IN VARCHAR2 := NULL);

Parameter IN / OUT Description

SCHEMAURL (IN) Uniquely identifies the schema document. Can be used inside
SCHEMALOCATION attribute of XML Schema import element.

SCHEMADOCURI (IN) Pathname (URI) corresponding to the physical location of the
schema document. The URI path could be based on HTTP,
FTP, DB or Oracle XML DB protocols. This function
constructs a URIType instance using the URIFactory - and
invokes the REGISTERSCHEMA function.

LOCAL (IN) Is this a local or global schema? By default, all schemas are
registered as local schemas, under /sys/schemas/
<username>/... If a schema is registered as global, it is
added under /sys/schemas/PUBLIC/... The user needs
write privileges on the directory to register a global schema.

GENTYPES (IN) Should the compiler generate object types? By default, TRUE.

GENBEAN (IN) Should the compiler generate Java beans? By default, FALSE.

GENTABLES (IN) Should the compiler generate default tables? TRUE by default.

FORCE (IN) TRUE: schema registration will not raise errors. Instead, it
creates an invalid XML schema object in case of any errors. By
default, the value of this parameter is FALSE.

Summary of DBMS_XMLSCHEMA Subprograms

DBMS_XMLSCHEMA 118-17

OWNER (IN) This parameter specifies the name of the database user
owning the XML schema object. By default, the user
registering the schema owns the XML schema object. This
parameter can be used to register a XML schema to be owned
by a different database user.

Parameter IN / OUT Description

Catalog Views of the DBMS_XMLSCHEMA

118-18 PL/SQL Packages and Types Reference

Catalog Views of the DBMS_XMLSCHEMA

Table 118–3 Summary of Catalog View Schemas

Schema Description

USER_XML_SCHEMAS on
page 118-19

All registered XML Schemas owned by the user.

ALL_XML_SCHEMAS on
page 118-20

All registered XML Schemas usable by the current user.

DBA_XML_SCHEMAS on
page 118-21

All registered XML Schemas in the database.

DBA_XML_TABLES on page 118-22 All XMLType tables in the system.

USER_XML_TABLES on
page 118-23

All XMLType tables owned by the current user.

ALL_XML_TABLES on page 118-24 All XMLType tables usable by the current user.

DBA_XML_TAB_COLS on
page 118-25

All XMLType table columns in the system.

USER_XML_TAB_COLS on
page 118-26

All XMLType table columns in tables owned by the
current user.

ALL_XML_TAB_COLS on
page 118-27

All XMLType table columns in tables usable by the
current user.

DBA_XML_VIEWS on page 118-28 All XMLType views in the system.

USER_XML_VIEWS on page 118-29 All XMlType views owned by the current user.

ALL_XML_VIEWS on page 118-30 All XMLType views usable by the current user.

DBA_XML_VIEW_COLS on
page 118-31

All XMLType view columns in the system.

USER_XML_VIEW_COLS on
page 118-32

All XMLType view columns in views owned by the
current user.

ALL_XML_VIEW_COLS on
page 118-33

All XMLType view columns in views usable by the
current user.

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-19

USER_XML_SCHEMAS

Lists all schemas (local and global) belonging to the current user.

Column Datatype Description

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document

ALL_XML_SCHEMAS

118-20 PL/SQL Packages and Types Reference

ALL_XML_SCHEMAS

Lists all local schemas belonging to the current user and all global schemas.

Column Datatype Description

OWNER VARCHAR2 Database user owning XML schema

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-21

DBA_XML_SCHEMAS

Lists all registered local and global schemas in the system.

Column Datatype Description

OWNER VARCHAR2 Database user owning XML schema

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document

DBA_XML_TABLES

118-22 PL/SQL Packages and Types Reference

DBA_XML_TABLES

Lists all XMLType tables in the system.

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-23

USER_XML_TABLES

Lists all local XMLType tables belonging to the current user.

Column Datatype Description

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

ALL_XML_TABLES

118-24 PL/SQL Packages and Types Reference

ALL_XML_TABLES

Lists all local XMLType tables belonging to the current user and all global tables
visible to the current user.

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-25

DBA_XML_TAB_COLS

Lists all XMLType columns in the system.

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

USER_XML_TAB_COLS

118-26 PL/SQL Packages and Types Reference

USER_XML_TAB_COLS

Lists all XMLType columns in tables belonging to the current user.

Column Datatype Description

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-27

ALL_XML_TAB_COLS

Lists all XMLType columns in tables belonging to the current user and all global
tables visible to the current user.

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

DBA_XML_VIEWS

118-28 PL/SQL Packages and Types Reference

DBA_XML_VIEWS

Lists all XMLType views in the system.

Column Datatype Description

OWNER VARCHAR2 Database user owning view

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-29

USER_XML_VIEWS

Lists all local XMLType views belonging to the current user.

Column Datatype Description

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

ALL_XML_VIEWS

118-30 PL/SQL Packages and Types Reference

ALL_XML_VIEWS

Lists all local XMLType views belonging to the current user and all global views
visible to the current user.

Column Datatype Description

OWNER VARCHAR2 Database user owning view

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-31

DBA_XML_VIEW_COLS

Lists all XMLType columns in the system.

Column Datatype Description

OWNER VARCHAR2 Database user owning view.

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

USER_XML_VIEW_COLS

118-32 PL/SQL Packages and Types Reference

USER_XML_VIEW_COLS

Lists all XMLType columns in views belonging to the current user.

Column Datatype Description

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

Catalog Views of the DBMS_XMLSCHEMA

DBMS_XMLSCHEMA 118-33

ALL_XML_VIEW_COLS

Lists all XMLType columns in views belonging to the current user and all global
views visible to the current user.

Column Datatype Description

OWNER VARCHAR2 Database user owning view.

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

ALL_XML_VIEW_COLS

118-34 PL/SQL Packages and Types Reference

DBMS_XMLSTORE 119-1

119
 DBMS_XMLSTORE

DBMS_XMLSTORE provides the ability to store XML data in relational tables.

This chapter contains the following sections:

■ Using DBMS_XMLSTORE

■ Types

■ Summary of DBMS_XMLSTORE Subprograms

See Also:

■ Oracle XML DB Developer's Guide

Using DBMS_XMLSTORE

119-2 PL/SQL Packages and Types Reference

Using DBMS_XMLSTORE

Types

Table 119–1 Types of DBMS_XMLSTORE

Type Description

ctxType The type of the query context handle. This is the return type of
NEWCONTEXT.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-3

Summary of DBMS_XMLSTORE Subprograms

Table 119–2 DBMS_XMLSTORE Package Subprograms

Method Description

CLEARKEYCOLUMNLIST on
page 119-4

Clears the key column list.

CLEARUPDATECOLUMNLIST
on page 119-5

Clears the update column list.

CLOSECONTEXT on
page 119-6

It closes/deallocates a particular save context.

DELETEXML on page 119-7 Deletes records specified by data from the XML document,
from the table specified at the context creation time.

INSERTXML on page 119-8 Inserts the XML document into the table specified at the
context creation time.

NEWCONTEXT on page 119-9 Creates a save context, and returns the context handle.

SETKEYCOLUMN on
page 119-10

This method adds a column to the key column list.

SETROWTAG on page 119-11 Names the tag used in the XML doument., to enclose the
XML elements corresponding to the database.

SETUPDATECOLUMN on
page 119-12

Adds a column to the "update column list".

UPDATEXML on page 119-13 Updates the table given the XML document.

CLEARKEYCOLUMNLIST

119-4 PL/SQL Packages and Types Reference

CLEARKEYCOLUMNLIST

Clears the key column list.

Syntax
PROCEDURE CLEARKEYCOLUMNLIST(

CTXHDL IN CTXTYPE);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-5

CLEARUPDATECOLUMNLIST

Clears the update column list.

Syntax
PROCEDURE CLEARUPDATECOLUMNLIST(

CTXHDL IN CTXTYPE);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

CLOSECONTEXT

119-6 PL/SQL Packages and Types Reference

CLOSECONTEXT

Closes/deallocates a particular save context.

Syntax
PROCEDURE CLOSECONTEXT(

CTXHDL IN CTXTYPE);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-7

DELETEXML

Deletes records specified by data from the XML document from the table specified
at the context creation time, and returns the number of rows deleted.

Syntax Description

FUNCTION DELETEXML(
CTXHDL IN CTXPTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Uses a VARCHAR2 type for the XDOC parameter.

FUNCTION DELETEXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Uses a CLOB type for the XDOC parameter.

FUNCTION DELETEXML(
CTXHDL IN CTXTYPE,
XDOC IN XMLTYPE)

RETURN NUMBER;

Uses an XMLType type for the XDOC parameter.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

INSERTXML

119-8 PL/SQL Packages and Types Reference

INSERTXML

Inserts the XML document into the table specified at the context creation time, and
returns the number of rows inserted.

Syntax Description

FUNCTION INSERTXML(
CTXHDL IN CTXTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Passes in the XDOC parameter as a VARCHAR2.

FUNCTION INSERTXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Passes in the XDOC parameter as a CLOB.

FUNCTION INSERTXML(
CTXHDL IN CTXTYPE,
XDOC IN XMLTYPE)

RETURN NUMBER;

Passes in the XDOC parameter as an XMLType.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-9

NEWCONTEXT

Creates a save context, and returns the context handle.

Syntax
FUNCTION NEWCONTEXT(

TARGETTABLE IN VARCHAR2)
RETURN CTXTYPE;

Parameter IN / OUT Description

TARGETTABLE (IN) The target table into which to load the XML document.

SETKEYCOLUMN

119-10 PL/SQL Packages and Types Reference

SETKEYCOLUMN

This method adds a column to the "key column list". The value for the column
cannot be NULL. In case of update or delete, the columns in the key column list
make up the WHERE clause of the statement. The key columns list must be specified
before updates can complete; this is optional for delete operations

Syntax
PROCEDURE SETKEYCOLUMN(

CTXHDL IN CTXTYPE,
COLNAME IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

COLNAME (IN) Column to be added to the key column list; cannot be NULL.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-11

SETROWTAG

Names the tag used in the XML document, to enclose the XML elements
corresponding to databse records.

Syntax
PROCEDURE SETROWTAG(

CTXHDL IN CTXTYPE,
TAG IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

TAG (IN) Tag name.

SETUPDATECOLUMN

119-12 PL/SQL Packages and Types Reference

SETUPDATECOLUMN

Adds a column to the update column list. In case of insert, the default is to insert
values to all the columns in the table; on the other hand, in case of updates, the
default is to only update the columns corresponding to the tags present in the ROW
element of the XML document. When the update column list is specified, the
columns making up this list alone will get updated or inserted into.

Syntax
PROCEDURE SETUPDATECOLUMN(

CTXHDL IN CTXTYPE,
COLNAME IN VARCHAR2);

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

COLNAME (IN) Column to be added to the update column list.

Summary of DBMS_XMLSTORE Subprograms

DBMS_XMLSTORE 119-13

UPDATEXML

Updates the table specified at the context creation time with data from the XML
document, and returns the number of rows updated. The options are described in
the following table.

Syntax Description

FUNCTION UPDATEXML(
CTXHDL IN CTXTYPE,
XDOC IN VARCHAR2)

RETURN NUMBER;

Passes in the XDOC parameter as a VARCHAR2.

FUNCTION UPDATEXML(
CTXHDL IN CTXTYPE,
XDOC IN CLOB)

RETURN NUMBER;

Passes in the XDOC parameter as a CLOB.

FUNCTION UPDATEXML(
CTXHDL IN CTXTYPE,
XDOC IN XMLTYPE)

RETURN NUMBER;

Passes in the XDOC parameter as a XMLType.

Parameter IN / OUT Description

CTXHDL (IN) Context handle.

XDOC (IN) String containing the XML document.

UPDATEXML

119-14 PL/SQL Packages and Types Reference

DBMS_XPLAN 120-1

120
 DBMS_XPLAN

The DBMS_XPLAN package provides an easy way to display the output of the
EXPLAIN PLAN command in several, predefined formats. You can also use the
DBMS_XPLAN package to display the plan of a statement stored in the Automatic
Workload Repository (AWR).It further provides a way to display the SQL execution
plan and SQL execution runtime statistics for cached SQL cursors based on the
information stored in the V$SQL_PLAN and V$SQL_PLAN_STATISTICS_ALL fixed
views.

For more information on the EXPLAIN PLAN command and the AWR, see Oracle
Database Performance Tuning Guide. For more information on the V$SQL_PLAN and
V$SQL_PLAN_STATISTICS fixed views, see Oracle Database Reference.

This chapter contains the following topics:

■ Using DBMS_XPLAN

■ Overview

■ Security Model

■ Examples

■ Summary of DBMS_XPLAN Subprograms

Using DBMS_XPLAN

120-2 PL/SQL Packages and Types Reference

Using DBMS_XPLAN

■ Overview

■ Security Model

■ Examples

Overview

The DBMS_XPLAN package supplies three table functions:

■ DISPLAY, to format and display the contents of a plan table

■ DISPLAY_CURSOR, to format and display the contents of the execution plan of
any loaded cursor.

■ DISPLAY_AWR to format and display the contents of the execution plan of a
stored SQL statement in the AWR.

Security Model

This package runs with the privileges of the calling user, not the package owner
(SYS). The table function DISPLAY_CURSOR requires to have select privileges on
the following fixed views: VSQL_PLAN, VSESSION and V$SQL_PLAN_
STATISTICS_ALL.

Using the DISPLAY_AWR function requires to have SELECT privileges on DBA_
HIST_SQL_PLAN, DBA_HIST_SQLTEXT, and V$DATABASE.

All these privileges are automatically granted as part of the SELECT_CATALOG
role.

Examples

Displaying a Plan Table Using DBMS_XPLAN.DISPLAY
Execute an explain plan command on a SELECT statement:

EXPLAIN PLAN FOR
SELECT * FROM emp e, dept d
 WHERE e.deptno = d.deptno

Using DBMS_XPLAN

DBMS_XPLAN 120-3

 AND e.ename='benoit';

Display the plan using the DBMS_XPLAN.DISPLAY table function

SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);

This query produces the following output:

Plan hash value: 3693697075

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	57	6 (34)	00:00:01
* 1	HASH JOIN		1	57	6 (34)	00:00:01
* 2	TABLE ACCESS FULL	EMP	1	37	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	80	3 (34)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPTNO"="D"."DEPTNO")
 2 - filter("E"."ENAME"='benoit')

15 rows selected.

Displaying a Cursor Execution Plan Using DBMS_XPLAN.DISPLAY_CURSOR
By default, the table function DISPLAY_CURSOR formats the execution plan for the
last SQL statement executed by the session. For example:

SELECT ename FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND e.empno=7369;

ENAME

SMITH

To display the execution plan of the last executed statement for that session:

SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR);

This query produces the following output:

Examples

120-4 PL/SQL Packages and Types Reference

Plan hash value: 3693697075, SQL hash value: 2096952573, child number: 0
--
SELECT ename FROM emp e, dept d WHERE e.deptno = d.deptno
AND e.empno=7369

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT					
* 1	HASH JOIN		1	16	6 (34)	00:00:01
* 2	TABLE ACCESS FULL	EMP	1	13	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	12	3 (34)	00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."DEPTNO"="D"."DEPTNO")
 2 - filter("E"."EMPNO"=7369)

21 rows selected.

You can also use the table function DISPLAY_CURSOR to display the execution plan
for any loaded cursor stored in the cursor cache. In that case, you must supply a
reference to the child cursor to the table function. This includes the SQL ID of the
statement and optionally the child number.

Run a query with a distinctive comment:

SELECT /* TOTO */ ename, dname
FROM dept d join emp e USING (deptno);

Get sql_id and child_number for the preceding statement:

SELECT sql_id, child_number
FROM v$sql
WHERE sql_text LIKE '%TOTO%';

SQL_ID CHILD_NUMBER
---------- -----------------------------
gwp663cqh5qbf 0

Display the execution plan for the cursor:

SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR(('gwp663cqh5qbf',0));

Plan hash value: 3693697075, SQL ID: gwp663cqh5qbf, child number: 0

Using DBMS_XPLAN

DBMS_XPLAN 120-5

--
SELECT /* TOTO */ ename, dname
FROM dept d JOIN emp e USING (deptno);

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT				7 (100)	
1	SORT GROUP BY		4	64	7 (43)	00:00:01
* 2	HASH JOIN		14	224	6 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	44	3 (34)	00:00:01
4	TABLE ACCESS FULL	EMP	14	70	3 (34)	00:00:01
--

Predicate Information (identified by operation id):

 2 - access("E"."DEPTNO"="D"."DEPTNO")

Instead of issuing two queries, one to the get the sql_id and child_number pair and
one to display the plan, you can combine these in a single query:

Display the execution plan of all cursors matching the string 'TOTO':

SELECT t.*
FROM v$sql s, table(DBMS_XPLAN.DISPLAY_CURSOR(s.sql_id, s.child_number)) t WHERE
sql_text LIKE '%TOTO%';

Displaying a Plan Table with Parallel Information
By default, only relevant information is reported by the display and display_cursor
table functions. In Displaying a Plan Table Using DBMS_XPLAN.DISPLAY on
page 120-2, the query does not execute in parallel. Hence, information related to the
parallelization of the plan is not reported. As shown in the following example,
parallel information is reported only if the query executes in parallel.

ALTER TABLE emp PARALLEL;
EXPLAIN PLAN for
SELECT * FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND e.ename ='hermann'
 ORDER BY e.empno;

Display the plan using the DBMS_XPLAN.DISPLAY table function

SET LINESIZE 130

Examples

120-6 PL/SQL Packages and Types Reference

SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Plan hash value: 3693697345

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |INOUT |PQ Distrib |

0	SELECT STATEMENT		1	117	6 (50)	00:00:01			
1	PX COORDINATOR								
2	PX SEND QC (ORDER)	:TQ10003	1	117	6 (50)	00:00:01	Q1,03	P->S	QC (ORDER)
3	SORT ORDER BY		1	117	6 (50)	00:00:01	Q1,03	PCWP	
4	PX RECEIVE		1	117	5 (40)	00:00:01	Q1,03	PCWP	
5	PX SEND RANGE	:TQ10002	1	117	5 (40)	00:00:01	Q1,02	P->P	RANGE
* 6	HASH JOIN		1	117	5 (40)	00:00:01	Q1,02	PCWP	
7	PX RECEIVE		1	87	2 (50)	00:00:01	Q1,02	PCWP	
8	PX SEND HASH	:TQ10001	1	87	2 (50)	00:00:01	Q1,01	P->P	HASH
9	PX BLOCK ITERATOR		1	87	2 (50)	00:00:01	Q1,01	PCWC	
* 10	TABLE ACCESS FULL	EMP	1	87	2 (50)	00:00:01	Q1,01	PCWP	
11	BUFFER SORT						Q1,02	PCWC	
12	PX RECEIVE		4	120	3 (34)	00:00:01	Q1,02	PCWP	
13	PX SEND HASH	:TQ10000	4	120	3 (34)	00:00:01		S->P	HASH
14	TABLE ACCESS FULL	DEPT	4	120	3 (34)	00:00:01			

Predicate Information (identified by operation id):

6 - access("E"."DEPTNO"="D"."DEPTNO")
10 - filter("E"."ENAME"='hermann')

When the query is parallel, information related to parallelism is reported: table
queue number (TQ column), table queue type (INOUT) and table queue distribution
method (PQ Distrib).

By default, if several plans in the plan table match the statement_id parameter
passed to the display table function (default value is NULL), only the plan
corresponding to the last EXPLAIN PLAN command is displayed. Hence, there is no
need to purge the plan table after each EXPLAIN PLAN. However, you should purge
the plan table regularly (for example, by using the TRUNCATE TABLE command) to
ensure good performance in the execution of the DISPLAY table function.

For ease of use, you can define a view on top of the display table function and then
use that view to display the output of the EXPLAIN PLAN command:

Using a View to Display Last Explain Plan
define plan view
CREATE VIEW PLAN AS SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

Using DBMS_XPLAN

DBMS_XPLAN 120-7

display the output of the last explain plan command
SELECT * FROM PLAN;

Summary of DBMS_XPLAN Subprograms

120-8 PL/SQL Packages and Types Reference

Summary of DBMS_XPLAN Subprograms

Table 120–1 DBMS_XPLAN Package Subprograms

Subprogram Description

DISPLAY_AWR Function
on page 120-9

Displays the contents of an execution plan stored in the
AWR

DISPLAY Function on
page 120-11

Displays the contents of the plan table

DISPLAY_CURSOR
Function on page 120-13

Displays the execution plan of any cursor in the cursor cache

Summary of DBMS_XPLAN Subprograms

DBMS_XPLAN 120-9

DISPLAY_AWR Function

This table function displays the contents of an execution plan stored in the AWR.

Syntax
DBMS_XPLAN.DISPLAY_AWR(
 sql_id IN VARCHAR2,
 plan_hash_value IN NUMBER DEFAULT NULL,
 db_id IN NUMBER DEFAULT NULL,
 format IN VARCHAR2 DEFAULT TYPICAL);

Parameters

Usage Notes
 To use the DISPLAY_AWR functionality, the calling user must have SELECT
privilege on DBA_HIST_SQL_PLAN. DBA_HIST_SQLTEXT, and V$DATABASE,
otherwise it will show an appropriate error message.

Examples
To display the execution plan of all children associated to the SQL ID
'atfwcg8anrykp':

Table 120–2 DISPLAY_AWR Table Function Parameters

Parameter Description

sql_id Specifies the SQL_ID of the SQL statement. You can retrieve the
appropriate value for the SQL statement of interest by querying the
column SQL_ID in DBA_HIST_SQLTEXT.

plan_hash_value Specifies the PLAN_HASH_VALUE of a SQL statement. This
parameter is optional. If omitted, the table function will return all
stored execution plans for a given SQL_ID.

db_id Specifies the database_id for which the plan of the SQL
statement, identified by SQL_ID should be displayed. If not
supplied, the database_id of the local database will be used, as
shown in V$DATABASE.

format Controls the level of details for the plan. It has the same set of
values than the table function DISPLAY, that is, BASIC, TYPICAL,
SERIAL and ALL.

DISPLAY_AWR Function

120-10 PL/SQL Packages and Types Reference

SELECT * FROM table(DBMS_XPLAN.DISPLAY_AWR('atfwcg8anrykp'));

To display the execution plan of all stored SQL statements containing the string
'TOTO':

SELECT tf.* FROM DBA_HIST_SQLTEXT ht, table
 (DBMS_XPLAN.DISPLAY_AWR(ht.sql_id,null, null, 'ALL')) tf
 WHERE ht.sql_text like '%TOTO%';

Summary of DBMS_XPLAN Subprograms

DBMS_XPLAN 120-11

DISPLAY Function

This table function displays the contents of the plan table.

Syntax
DBMS_XPLAN.DISPLAY(
 table_name IN VARCHAR2 DEFAULT 'PLAN_TABLE',
 statement_id IN VARCHAR2 DEFAULT NULL,
 format IN VARCHAR2 DEFAULT 'TYPICAL');

Parameters

Examples
To display the result of the last EXPLAIN PLAN command stored in the plan table:

Table 120–3 DISPLAY Table Function Parameters

Parameter Description

table_name Specifies the table name where the plan is stored. This parameter
defaults to PLAN_TABLE, which is the default plan table for the
EXPLAIN PLAN command. If NULL is specified it also defaults to
PLAN_TABLE.

statement_id Specifies the statement_id of the plan to be displayed. This
parameter defaults to NULL, which is the default when the
EXPLAIN PLAN command is executed without a set statement_
id clause.If no statement_id is specified, the function will show
you the plan of the most recent explained statement.

format Controls the level of details for the plan. It accepts four values:

■ BASIC: Displays the minimum information in the plan—the
operation ID, the object name, and the operation option.

■ TYPICAL: This is the default. Displays the most relevant
information in the plan. Partition pruning, parallelism, and
predicates are displayed only when available.

■ ALL: Maximum level. Includes information displayed with the
TYPICAL level and adds projection information as well as SQL
statements generated for parallel execution servers (only if
parallel).

■ SERIAL: Like TYPICAL except that the parallel information is
not displayed, even if the plan executes in parallel.

DISPLAY Function

120-12 PL/SQL Packages and Types Reference

SELECT * FROM table(DBMS_XPLAN.DISPLAY);

To display from other than the default plan table, "my_plan_table":

SELECT * FROM table(DBMS_XPLAN.DISPLAY('my_plan_table'));

To display the minimum plan information:

SELECT * FROM table(DBMS_XPLAN.DISPLAY('plan_table', null, 'basic'));

To display the plan for a statement identified by 'foo', such as statement_
id='foo':

SELECT * FROM table(DBMS_XPLAN.DISPLAY('plan_table', 'foo'));

Summary of DBMS_XPLAN Subprograms

DBMS_XPLAN 120-13

DISPLAY_CURSOR Function

This table function displays the explain plan of any cursor loaded in the cursor
cache.

Syntax
DBMS_XPLAN.DISPLAY_CURSOR(
 sql_id IN VARCHAR2 DEFAULT NULL,
 child_number IN NUMBER DEFAULT NULL,
 format IN VARCHAR2 DEFAULT 'TYPICAL');

Parameters

Table 120–4 DISPLAY_CURSOR Function Parameters

Parameter Description

sql_id Specifies the SQL_ID of the SQL statement in the cursor cache. You
can retrieve the appropriate value by querying the column SQL_ID
in V$SQL or V$SQLAREA. Alternatively, you could choose the
column PREV_SQL_ID for a specific session out of V$SESSION.
This parameter defaults to NULL in which case the plan of the last
cursor executed by the session will be displayed.

child_number Child number of the cursor to display. If not supplied, the
execution plan of all cursors matching the supplied sql_id
parameter are displayed. The child_number can be specified only
if sql_id is specified.

format Controls the level of details for the plan. It has the same set of
values than the table function 'DISPLAY', that is, 'BASIC',
'TYPICAL', 'SERIAL' and 'ALL'. Two additional values are also
supported to display run-time statistics for the cursor:

■ RUNSTATS_LAST: Displays the runtime statistics for the last
execution of the cursor.

■ RUNSTATS_TOT: Displays the total aggregated runtime
statistics for all executions of a specific SQL statement since the
statement was first parsed and executed.

Format options 'RUNSTATS_LAST' and 'RUNSTATS_TOT' can only
be used if the target cursor was compiled and executed with the
initialization parameter 'statistics_level' set to 'ALL'.

DISPLAY_CURSOR Function

120-14 PL/SQL Packages and Types Reference

Usage Notes:
To use the DISPLAY_CURSOR functionality, the calling user must have SELECT
privilege on the fixed views V$SQL_PLAN_STATISTICS_ALL, V$SQL and V$SQL_
PLAN, otherwise it will show an appropriate error message.

Examples
To display the execution plan of the last SQL statement executed by the current
session:

SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR);

To display the execution plan of all children associated to the SQL ID
'atfwcg8anrykp':

SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR('atfwcg8anrykp'));

To display runtime statistics for the cursor included in the preceding statement:

SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR('atfwcg8anrykp', null, 'RUNSTATS_
LAST');

DBMS_XSLPROCESSOR 121-1

121
DBMS_XSLPROCESSOR

With DBMS_XSLPROCESSOR, you can access the contents and structure of XML
documents. The Extensible Stylesheet Language Transformation (XSLT) describes
rules for transforming a source tree into a result tree. A transformation expressed in
XSLT is called a stylesheet. The transformation specified is achieved by associating
patterns with templates defined in the stylesheet. A template is instantiated to
create part of the result tree. This PL/SQL implementation of the XSL processor
followed the W3C XSLT working draft rev WD-xslt-19990813 and included the
required behavior of an XSL processor in terms of how it must read XSLT
stylesheets and the transformation it must effect.

The following is the default behavior for this PL/SQL XSL Processor:

■ A result tree which can be accessed by DOM APIs is built

■ Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

This chapter contains the following topics:

■ Summary of DBMS_XSLPROCESSOR Subprograms

See Also:

■ Oracle XML DB Developer's Guide

Summary of DBMS_XSLPROCESSOR Subprograms

121-2 PL/SQL Packages and Types Reference

Summary of DBMS_XSLPROCESSOR Subprograms

CLOB2FILE

Write content of a CLOB into a file.

Syntax
PROCEDURE CLOB2FILE(

CL CLOB;
FLOCATION VARCHAR2,
FNAME VARCHAR2,

Table 121–1 DBMS_XSLPROCESSOR Package Subprograms

Method Description

CLOB2FILE on page 121-2 Writes content of a CLOB into a file.

FREEPROCESSOR on page 121-3 Frees a processor object.

FREESTYLESHEET on
page 121-3

Frees a stylesheet object.

NEWPROCESSOR on page 121-4 Returns a new processor instance.

NEWSTYLESHEET on page 121-4 Creates a new stylesheet from input and reference URLs.

PROCESSXSL on page 121-5 Transforms an input XML document.

READ2CLOB on page 121-7 Reads content of the file into a CLOB.

REMOVEPARAM on page 121-7 Removes a top-level stylesheet parameter

RESETPARAMS on page 121-8 Resets the top-level stylesheet parameters

SELECTNODES on page 121-8 Selects nodes from a DOM tree that match apattern.

SELECTSINGLENODE on
page 121-8

Selects the first node from the tree that matches a pattern.

SETERRORLOG on page 121-9 Sets errors to be sent to the specified file.

SETPARAM on page 121-9 Sets a top-level parameter in the stylesheet.

SHOWWARNINGS on page 121-10 Turns warnings on or off.

TRANSFORMNODE on page 121-10 Transforms a node in a DOM tree using a stylesheet.

VALUEOF on page 121-11 Gets the value of the first node that matches a pattern.

Summary of DBMS_XSLPROCESSOR Subprograms

DBMS_XSLPROCESSOR 121-3

CSID IN NUMBER:=0);

FREEPROCESSOR

Frees a Processor object.

Syntax
PROCEDURE FREEPROCCESSOR(

P PROCESSOR);

FREESTYLESHEET

Frees a Stylesheet object.

Syntax
PROCEDURE FREESTYLESHEET(

SS STYLESHEET);

Parameter IN / OUT Description

CLOB - File directory

FLOCATION - File directory

FNAME - File name

CSID (IN) Character set id of the file

■ Must be a valid Oracle id; otherwise returns an error

■ If 0, content of the output file will be in the database
character set.

Parameter IN / OUT Description

P (IN) Processor.

NEWPROCESSOR

121-4 PL/SQL Packages and Types Reference

NEWPROCESSOR

Returns a new Processor instance. This function must be called before the default
behavior of Processor can be changed and if other processor methods need to be
used.

Syntax
FUNCTION NEWPROCESSOR
RETURN PROCESSOR;

NEWSTYLESHEET

Creates and returns a new Stylesheet instance. The options are described in the
following table.

Parameter IN / OUT Description

SS (IN) Stylesheet.

Syntax Description

FUNCTION NEWSTYLESHEET(
XMLDOC DOMDOCUMENT,
REF VARCHAR2)

RETURN STYLESHEET;

Creates and returns a new stylesheet instance using the
given DOMDocument and reference URLs.

FUNCTION NEWSTYLESHEET(
INP VARCHAR2,
REF VARCHAR2)

RETURN STYLESHEET;

Creates and returns a new Stylesheet instance using the
given input and reference URLs.

Parameter IN / OUT Description

XMLDOC (IN) DOMDocument to use for construction.

INP (IN) Input URL to use for construction.

REF (IN) Reference URL

Summary of DBMS_XSLPROCESSOR Subprograms

DBMS_XSLPROCESSOR 121-5

PROCESSXSL

Transforms input XMLDocument. Any changes to the default processor behavior
should be effected before calling this procedure. An application error is raised if
processing fails. The options are described in the following table.

Syntax Description

FUNCTION PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDOC DOMDOCUMENT),

RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given
DOMDocument and stylesheet, and returns the
resultant document fragment.

FUNCTION PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
URL VARCHAR2,

RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given
document as URL and the Stylesheet, and
returns the resultant document fragment.

FUNCTION PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
CLB CLOB)

RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocument using given
document as CLOB and the Stylesheet, and
returns the resultant document fragment.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDOC DOMDOCUMENT,
DIR VARCHAR2,
FILENAME VARCHAR2);

Transforms input XMLDocument using given
DOMDocument and the stylesheet, and writes the
output to the specified file.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
URL VARCHAR2,
DIR VARCHAR2,
FILENAME VARCHAR2);

Transforms input XMLDocument using given
URL and the stylesheet, and writes the output to
the specified file in a specified directory.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDOC DOMDOCUMENT,
CL IN OUT CLOB);

Transforms input XMLDocument using given
DOMDocument and the stylesheet, and writes the
output to a CLOB.

PROCESSXSL

121-6 PL/SQL Packages and Types Reference

FUNCTION PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDF DOMDOCUMENTFRAGMENT)

RETURN DOMDOCUMENTFRAGMENT;

Transforms input XMLDocumentFragment
using given DOMDocumentFragment and the
stylesheet, and returns the resultant document
fragment.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDF DOMDOCUMENTFRAGMENT,
DIR VARCHAR2,
FILENAME VARCHAR2);

Transforms input XMLDocumentFragment
using given DOMDocumentFragment and the
stylesheet, and writes the output to the specified
file in a specified directory.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDF DOMDOCUMENTFRAGMENT,
BUF IN OUT VARCHAR2);

Transforms input XMLDocumentFragment
using given DOMDocumentFragment and the
stylesheet, and writes the output to a buffer.

PROCEDURE PROCESSXSL(
P PROCESSOR,
SS STYLESHEET,
XMLDF DOMDOCUMENTFRAGMENT,
CL IN OUT CLOB);

Transforms input XMLDocumentFragment
using given DOMDocumentFragment and the
stylesheet, and writes the output to a CLOB.

Parameter IN / OUT Description

P (IN) Processor instance.

SS (IN) Stylesheet instance.

XMLDOC (IN) XML document being transformed.

URL (IN) URL for the information being transformed.

CLB (IN) CLOB containing information to be transformed.

DIR (IN) Directory where processing output file is saved.

FILENAME (IN) Processing output file.

CL (IN/OUT) CLOB to which the processing output is saved.

XMLDF (IN) XMLDocumentFragment being transformed.

Syntax Description

Summary of DBMS_XSLPROCESSOR Subprograms

DBMS_XSLPROCESSOR 121-7

READ2CLOB

Read content of a file into a CLOB.

Syntax
FUJNCTION READ2CLOB(

FLOCATION VARCHAR2,
FNAME VARCHAR2,
CSID IN NUMBER:=0)

RETURN CLOB;

REMOVEPARAM

Removes a top level stylesheet parameter.

Syntax
PROCEDURE REMOVEPARAM(

SS STYLESHEET,
NAME VARCHAR2);

Parameter IN / OUT Description

FLOCATION - File directory

FNAME - File name

CSID (IN) Character set id of the file

■ Must be a valid Oracle id; otherwise returns an error

■ If 0, input file is assumed to be in the database character
set.

Parameter IN / OUT Description

SS (IN) Stylesheet instance.

NAME (IN) Name of the parameter.

RESETPARAMS

121-8 PL/SQL Packages and Types Reference

RESETPARAMS

Resets the top-level stylesheet parameters.

Syntax
PROCEDURE RESETPARAMS(

SS STYLESHEET);

SELECTNODES

Selects nodes which match the given pattern from a DOM tree, and returns the
result of the selection.

Syntax
FUNCTION SELECTNODES(

N DOMNODE,
PATTERN VARCHAR2)

RETURN DOMNODELIST;

SELECTSINGLENODE

Selects the first node from the tree that matches the given pattern, and returns that
node.

Parameter IN / OUT Description

ss (IN) Stylesheet instance.

Parameter IN / OUT Description

N (IN) Root DOMNode of the tree.

PATTERN (IN) Pattern to use.

Summary of DBMS_XSLPROCESSOR Subprograms

DBMS_XSLPROCESSOR 121-9

Syntax
FUNCTION SELECTSINGLENODE(

N DOMNODE,
PATTERN VARCHAR2)

RETURN DOMNODE;

SETERRORLOG

Sets errors to be sent to the specified file.

Syntax
PROCEDURE SETERRORLOG(

P PROCESSOR,
FILENAME VARCHAR2);

SETPARAM

Sets a top level parameter in the stylesheet. The parameter value must be a valid
XPath expression. Literal string values must be quoted.

Syntax
PROCEDURE SETPARAM(

SS STYLESHEET,
NAME VARCHAR2,
VALUE VARCHAR2);

Parameter IN / OUT Description

N (IN) Root DOMNode of the tree.

PATTERN (IN) Pattern to use.

Parameter IN / OUT Description

P (IN) Processor instance.

FILENAME (IN) complete path of the file to use as the error log.

SHOWWARNINGS

121-10 PL/SQL Packages and Types Reference

SHOWWARNINGS

Turns warnings on (TRUE) or off (FALSE).

Syntax
PROCEDURE SHOWWARNINGS(

P PROCESSOR,
YES BOOLEAN);

TRANSFORMNODE

Transforms a node in a DOM tree using the given stylesheet, and returns the result
of the transformation as a DOMDocumentFragment.

Syntax
FUNCTION TRANSFORMNODE(

N DOMNODE,
SS STYLESHEET)

RETURN DOMDOCUMENTFRAGMENT;

Parameter IN / OUT Description

SS (IN) Stylesheet instance.

NAME (IN) Name of the parameter.

VALUE (IN) Value of the parameter.

Parameter IN / OUT Description

P (IN) Processor instance.

YES (IN) Mode to set: TRUE to show warnings, FALSE otherwise

Parameter IN / OUT Description

N (IN) DOMNode to transform.

SS (IN) Stylesheet to use.

Summary of DBMS_XSLPROCESSOR Subprograms

DBMS_XSLPROCESSOR 121-11

VALUEOF

Retrieves the value of the first node from the tree that matches the given pattern.

Syntax
PROCEDURE VALUEOF(

N DOMNODE,
PATTERN VARCHAR2,
VAL OUT VARCHAR2);

Parameter IN / OUT Description

N (IN) Node whose value is being retrieved.

PATTERN (IN) Pattern to use.

VAL (OUT) Retrieved value.

VALUEOF

121-12 PL/SQL Packages and Types Reference

DEBUG_EXTPROC 122-1

122
DEBUG_EXTPROC

The DEBUG_EXTPROC package enables you to start up the extproc agent within a
session. This utility package can help you debug external procedures.

This chapter contains the following topics:

■ Using DEBUG_EXTPROC

■ Security Model

■ Operational Notes

■ Rules and Limits

■ Summary of DEBUG_EXTPROC Subprograms

Using DEBUG_EXTPROC

122-2 PL/SQL Packages and Types Reference

Using DEBUG_EXTPROC

■ Security Model

■ Operational Notes

■ Rules and Limits

Security Model

Your Oracle account must have EXECUTE privileges on the package and CREATE
LIBRARY privileges.

Operational Notes

To install the package, run the script DBGEXTP.SQL.

■ Install/load this package in the Oracle USER where you want to debug the
'extproc' process.

■ Ensure that you have execute privileges on package DEBUG_EXTPROC

 SELECT SUBSTR(OBJECT_NAME, 1, 20)
 FROM USER_OBJECTS
 WHERE OBJECT_NAME = 'DEBUG_EXTPROC';

■ You can install this package as any other user, as long as you have EXECUTE
privileges on the package.

Having installed the package, proceed accordingly:

■ Start a brand new oracle session through SQL*Plus or OCI program by
connecting to ORACLE.

Note: These notes assumes that you built your shared library with
debug symbols to aid in the debugging process. Please check the C
compiler manual pages for the appropriate C compiler switches to
build the shared library with debug symbols.

Using DEBUG_EXTPROC

DEBUG_EXTPROC 122-3

■ Execute procedure DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT to startup the
extproc agent in this session; for example, execute DEBUG_EXTPROC.STARTUP_
EXTPROC_AGENT; Do not exit this session, because that terminates the extproc
agent.

■ Determine the PID of the extproc agent that was started up for this session.

■ Using a debugger (for example, gdb, dbx, or the native system debugger), load
the extproc executable and attach to the running process.

■ Set a breakpoint on function 'pextproc' and let the debugger continue with its
execution.

■ Now execute your external procedure in the same session where you first
executed DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT

■ Your debugger should now break in function 'pextproc'. At this point in time,
the shared library referenced by your PL/SQL external function would have
been loaded and the function resolved. Now set a breakpoint in your C function
and let the debugger continue its execution.

Because PL/SQL loads the shared library at runtime, the debugger you use may or
may not automatically be able to track the new symbols from the shared library. You
may have to issue some debugger command to load the symbols (for example,
'share' in gdb)

■ The debugger should now break in your C function. Its assumed that you had
built the shared library with debugging symbols.

■ Now proceed with your debugging.

Rules and Limits

Note: DEBUG_EXTPROC works only on platforms with debuggers
that can attach to a running process.

Summary of DEBUG_EXTPROC Subprograms

122-4 PL/SQL Packages and Types Reference

Summary of DEBUG_EXTPROC Subprograms

Table 122–1 DEBUG_EXTPROC Package Subprograms

Subprogram Description

STARTUP_EXTPROC_
AGENT Procedure on
page 122-5

Starts up the extproc agent process in the session

Summary of DEBUG_EXTPROC Subprograms

DEBUG_EXTPROC 122-5

STARTUP_EXTPROC_AGENT Procedure

This procedure starts up the extproc agent process in the session.This enables you to
get the PID of the executing process. This PID is needed to be able to attach to the
running process using a debugger.

Syntax
DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT;

STARTUP_EXTPROC_AGENT Procedure

122-6 PL/SQL Packages and Types Reference

HTF 123-1

123
 HTF

The HTF (hypertext functions) and HTP (hypertext procedures) packages generate
HTML tags. For example, the HTF.ANCHOR function generates the HTML anchor
tag, <A>.

This chapter contains the following topics:

■ Using HTF

■ Operational Notes

■ Rules and Limits

■ Examples

■ Summary of Tags

■ Summary of HTF Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using HTF

123-2 PL/SQL Packages and Types Reference

Using HTF

■ Operational Notes

■ Rules and Limits

■ Examples

Operational Notes

For every HTF function that generates one or more HTML tags, there is a
corresponding HTP procedure with identical parameters with the following
exception:

■ The PRINTS Procedure and the PS Procedure do not have HTF function
equivalents. Use the ESCAPE_SC Function or the ESCAPE_URL Function if
you need a string conversion function. Note that while there is a ESCAPE_SC
Procedure that performs the same operation as the PRINTS Procedure and the
PS Procedure, there is no procedural equivalent for the ESCAPE_URL Function.

■ The FORMAT_CELL Function does not have an HTP equivalent. The function
formats column values inside an HTML table using TABLEDATA Function
which does have an HTP equivalent in the TABLEDATA Procedure. The
advantage of this using the FORMAT_CELL Function is that it allows for better
control over the HTML tables.

The function versions do not directly generate output in your web page. Instead,
they pass their output as return values to the statements that invoked them. Use
these functions when you need to nest calls. To print the output of HTF functions,
call the functions from within the HTF.PRINT function. It then prints its parameters
to the generated web page.

Rules and Limits

If you use values of the LONG data type in functions such as HTF.PRINT,
HTF.PRN, HTF.PA or OWA_UTIL.CELLSPRINT, only the first 32 K of the LONG data
is used. The LONG data is bound to a VARCHAR2 data type in the function.

Using HTF

HTF 123-3

Examples

The following commands generate a simple HTML document:

CREATE OR REPLACE PROCEDURE hello AS
BEGIN
 HTP.P (HTF.HTMLOPEN); -- generates <HTML>
 HTP.P (HTF.HEADOPEN); -- generates <HEAD>
 HTP.P (HTF.TITLE('Hello')); -- generates <TITLE>Hello</TITLE>
 HTP.P (HTF.HEADCLOSE); -- generates </HEAD>
 HTP.P (HTF.BODYOPEN); -- generates <BODY>
 HTP.P (HTF.HEADER(1, 'Hello')); -- generates <H1>Hello</H1>
 HTP.P (HTF.BODYCLOSE); -- generates </BODY>
 HTP.P (HTF.HTMLCLOSE); -- generates </HTML>
END;

Summary of Tags

123-4 PL/SQL Packages and Types Reference

Summary of Tags

HTML, HEAD, and BODY Tags
HTMLOPEN Function, HTMLCLOSE Function - generate <HTML> and </HTML>

HEADOPEN Function, HEADCLOSE Function - generate <HEAD> and </HEAD>

BODYOPEN Function, BODYCLOSE Function - generate <BODY> and </BODY>

Comment Tag
COMMENT Function - generates <!-- and -->

Tags in the <HEAD> Area
BASE Function - generates <BASE>

LINKREL Function - generates <LINK> with the REL attribute

LINKREV Function - generates <LINK> with the REV attribute

TITLE Function - generates <TITLE>

META Function - generates <META>

SCRIPT Function - generates <SCRIPT>

STYLE Function - generates <STYLE>

ISINDEX Function - generates <ISINDEX>

Applet Tags
APPLETOPEN Function, APPLETCLOSE Function - generate <APPLET> and
</APPLET>

PARAM Function - generates <PARAM>

List Tags
OLISTOPEN Function, OLISTCLOSE Function - generate and

ULISTOPEN Function, ULISTCLOSE Function - generate and

DLISTOPEN Function, DLISTCLOSE Function- generate <DL> and </DL>

DLISTTERM Function - generates <DT>

Summary of Tags

HTF 123-5

DLISTDEF Function - generates <DD>

DIRLISTOPEN Function, DIRLISTCLOSE Function - generate <DIR> and </DIR>

LISTHEADER Function - generates <LH>

LISTINGOPEN Function, LISTINGCLOSE Function - generate <LISTING> and
</LISTING>

MENULISTOPEN Function - generate <MENU> and </MENU>

LISTITEM Function - generates

Form Tags
FORMOPEN Function, FORMCLOSE Function - generate <FORM> and </FORM>

FORMCHECKBOX Function - generates <INPUT TYPE="CHECKBOX">

FORMHIDDEN Function - generates <INPUT TYPE="HIDDEN">

FORMIMAGE Function - generates <INPUT TYPE="IMAGE">

FORMPASSWORD Function - generates <INPUT TYPE="PASSWORD">

FORMRADIO Function - generates <INPUT TYPE="RADIO">

FORMSELECTOPEN Function, FORMSELECTCLOSE Function - generate
<SELECT> and </SELECT>

FORMSELECTOPTION Function - generates <OPTION>

FORMTEXT Function - generates <INPUT TYPE="TEXT">

FORMTEXTAREA Function - generate <TEXTAREA>

FORMTEXTAREAOPEN Function, FORMTEXTAREACLOSE Function - generate
<TEXTAREA> and </TEXTAREA>

FORMRESET Function - generates <INPUT TYPE="RESET">

FORMSUBMIT Function - generates <INPUT TYPE="SUBMIT">

Table Tags
TABLEOPEN Function, TABLECLOSE Function - generate <TABLE> and
</TABLE>

TABLECAPTION Function - generates <CAPTION>

Summary of Tags

123-6 PL/SQL Packages and Types Reference

TABLEROWOPEN Function, TABLEROWCLOSE Function - generate <TR> and
</TR>

TABLEHEADER Function - generates <TH>

TABLEDATA Function - generates <TD>

IMG, HR, and A Tags
HR Function, LINE Function - generate <HR>

IMG Function, IMG2 Function - generate

ANCHOR Function, ANCHOR2 Function - generate <A>

MAPOPEN Function, MAPCLOSE Function - generate <MAP> and </MAP>

Paragraph Formatting Tags
HEADER Function - generates heading tags (<H1> to <H6>)

PARA Function, PARAGRAPH Function - generate <P>

PRN Functions, PRINT Functions - generate any text that is passed in

PRN Functions, S Function - generate any text that is passed in; special characters in
HTML are escaped

PREOPEN Function, PRECLOSE Function - generate <PRE> and </PRE>

BLOCKQUOTEOPEN Function, BLOCKQUOTECLOSE Function - generate
<BLOCKQUOTE> and </BLOCKQUOTE>

DIV Function - generates <DIV>

NL Function, BR Function - generate

NOBR Function - generates <NOBR>

WBR Function - generates <WBR>

PLAINTEXT Function - generates <PLAINTEXT>

ADDRESS Function - generates <ADDRESS>

MAILTO Function - generates <A> with the MAILTO attribute

AREA Function - generates <AREA>

BGSOUND Function - generates <BGSOUND>

Summary of Tags

HTF 123-7

Character Formatting Tags
BASEFONT Function - generates <BASEFONT>

BIG Function - generates <BIG>

BOLD Function - generates

CENTER Function - generates <CENTER> and </CENTER>

CENTEROPEN Function, CENTERCLOSE Function - generate <CENTER> and
</CENTER>

CITE Function - generates <CITE>

CODE Function - generates <CODE>

DFN Function - generates <DFN>

EM Function, EMPHASIS Function - generate

FONTOPEN Function, FONTCLOSE Function - generate and

ITALIC Function - generates <I>

KBD Function, KEYBOARD Function - generate <KBD> and </KBD>

S Function - generates <S>

SAMPLE Function - generates <SAMP>

SMALL Function - generates <SMALL>

STRIKE Function - generates <STRIKE>

STRONG Function - generates

SUB Function - generates <SUB>

SUP Function - generates <SUP>

TELETYPE Function - generates <TT>

UNDERLINE Function - generates <U>

VARIABLE Function - generates <VAR>

Frame Tags
FRAME Function - generates <FRAME>

FRAMESETOPEN Function, FRAMESETCLOSE Function - generate <FRAMESET>
and </FRAMESET>

Summary of Tags

123-8 PL/SQL Packages and Types Reference

NOFRAMESOPEN Function, NOFRAMESCLOSE Function - generate
<NOFRAMES> and </NOFRAMES>

Summary of HTF Subprograms

HTF 123-9

Summary of HTF Subprograms

Table 123–1 HTF Package Subprograms

Subprogram Description

ADDRESS Function on
page 123-17

Generates the <ADDRESS> and </ADDRESS> tags
which specify the address, author and signature of a
document

ANCHOR Function on
page 123-18

Generates the <A> and tags which specify the
source or destination of a hypertext link

ANCHOR2 Function on
page 123-19

Generates the <A> and tags which specify the source
or destination of a hypertext link

APPLETCLOSE Function on
page 123-20

Closes the applet invocation with the </APPLET> tag

APPLETOPEN Function on
page 123-21

Generates the <APPLET> tag which begins the invocation of
a Java applet

AREA Function on
page 123-23

Generates the <AREA> tag, which defines a client-side
image map

BASE Function on page 123-24 Generates the <BASE> tag which records the URL of the
document

BASEFONT Function on
page 123-25

Generates the <BASEFONT> tag which specifies the base
font size for a Web page

BGSOUND Function on
page 123-26

Generates the <BGSOUND> tag which includes audio for a
Web page

BIG Function on page 123-27 Generates the <BIG> and </BIG> tags which direct the
browser to render the text in a bigger font

BLOCKQUOTECLOSE
Function on page 123-28

Generates the </BLOCKQUOTE> tag which mark the end of
a section of quoted text

BLOCKQUOTEOPEN
Function on page 123-29

Generates the <BLOCKQUOTE> tag, which marks the
beginning of a section of quoted text

BODYCLOSE Function on
page 123-30

Generates the </BODY> tag which marks the end of a body
section of an HTML document

BODYOPEN Function on
page 123-31

Generates the <BODY> tag which marks the beginning of
the body section of an HTML document

Summary of HTF Subprograms

123-10 PL/SQL Packages and Types Reference

BOLD Function on
page 123-32

Generates the and tags which direct the browser
to display the text in boldface

BR Function on page 123-33 Generates the
 tag which begins a new line of text

CENTER Function on
page 123-34

Generates the <CENTER> and </CENTER> tags which
center a section of text within a Web page

CENTERCLOSE Function on
page 123-35

Generates the </CENTER> tag which marks the end of a
section of text to center

CENTEROPEN Function on
page 123-36

Generates the <CENTER> tag which mark the beginning of a
section of text to center

CITE Function on page 123-37 Generates the <CITE> and </CITE> tags which direct the
browser to render the text as a citation

CODE Function on
page 123-38

Generates the <CODE> and </CODE> tags which direct the
browser to render the text in monospace font or however
"code" is defined stylistically

COMMENT Function on
page 123-39

Generates This function generates the comment tags
<!-- ctext -->

DFN Function on page 123-40 Generates the <DFN> and </DFN> tags which direct the
browser to mark the text as italics or however "definition" is
defined stylistically

DIRLISTCLOSE Function on
page 123-41

Generates the </DIR> tag which ends a directory list
section

DIRLISTOPEN Function on
page 123-42

Generates the <DIR> which starts a directory list section

DIV Function on page 123-43 Generates the <DIV> tag which creates document divisions

DLISTCLOSE Function on
page 123-44

Generates the </DL> tag which ends a definition list

DLISTOPEN Function on
page 123-45

Generates the <DL> tag which starts a definition list

DLISTDEF Function on
page 123-46

Generates the <DD> tag, which inserts definitions of terms

DLISTTERM Function on
page 123-47

Generates the <DT> tag which defines a term in a definition
list <DL>

EM Function on page 123-48 Generates the and tags, which define text to be
emphasized

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

HTF 123-11

EMPHASIS Function on
page 123-49

Generates the and tags, which define text to be
emphasized

ESCAPE_SC Function on
page 123-50

Replaces characters that have special meaning in HTML
with their escape sequences

ESCAPE_URL Function on
page 123-51

Replaces characters that have special meaning in HTML
and HTTP with their escape sequences

FONTCLOSE Function on
page 123-53

Generates the tag which marks the end of a
section of text with the specified font characteristics

FONTOPEN Function on
page 123-53

Generates the which marks the beginning of
section of text with the specified font characteristics

FORMAT_CELL Function on
page 123-54

formats column values inside an HTML table using the
TABLEDATA Function

FORMCHECKBOX Function
on page 123-55

Generates the <INPUT> tag with TYPE="checkbox"
which inserts a checkbox element in a form

FORMCLOSE Function on
page 123-56

Generates the </FORM> tag which marks the end of a form
section in an HTML document

FORMFILE Function on
page 123-57

Generates the <INPUT> tag with TYPE="file" which
inserts a file form element, and is used for file uploading for
a given page

FORMHIDDEN Function on
page 123-58

Generates the <INPUT> tag with TYPE="hidden"which
inserts a hidden form element

FORMIMAGE Function on
page 123-59

Generates the <INPUT> tag with TYPE="image" which
creates an image field that the user clicks to submit the form
immediately

FORMOPEN Function on
page 123-60

Generates the <FORM> tag which marks the beginning of a
form section in an HTML document

FORMPASSWORD Function
on page 123-61

Generates the <INPUT> tag with TYPE="password"
which creates a single-line text entry field

FORMRADIO Function on
page 123-62

Generates the <INPUT> tag with TYPE="radio", which
creates a radio button on the HTML form

FORMRESET Function on
page 123-63

Generates the <INPUT> tag with TYPE="reset"
which creates a button that, when selected, resets the
form fields to their initial values

FORMSELECTCLOSE
Function on page 123-64

Generates the </SELECT> tag which marks the end of a
Select form element

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

123-12 PL/SQL Packages and Types Reference

FORMSELECTOPEN
Function on page 123-65

Generates the </SELECT> tag which marks the beginning
of a Select form element

FORMSELECTOPTION
Function on page 123-67

Generates the <OPTION> tag which represents one choice in
a Select element

FORMSUBMIT Function on
page 123-68

Generates the <INPUT> tag with TYPE="submit" which
creates a button that, when clicked, submits the form

FORMTEXT Function on
page 123-69

Generates the <INPUT> tag with TYPE="text", which
creates a field for a single line of text

FORMTEXTAREA Function
on page 123-70

Generates the <TEXTAREA> tag, which creates a text field
that has no predefined text in the text area

FORMTEXTAREA2 Function
on page 123-71

Generates the <TEXTAREA> tag, which creates a text field
that has no predefined text in the text area with the ability
to specify a wrap style

FORMTEXTAREACLOSE
Function on page 123-72

Generates the </TEXTAREA> tag which ends a text area
form element

FORMTEXTAREAOPEN
Function on page 123-73

Generates the <TEXTAREA> which marks the beginning of a
text area form element

FORMTEXTAREAOPEN2
Function on page 123-74

Generates the <TEXTAREA> which marks the beginning of a
text area form element with the ability to specify a wrap
style

FRAME Function on
page 123-75

Generates the <FRAME> tag which defines the
characteristics of a frame created by a <FRAMESET> tag

FRAMESETCLOSE Function
on page 123-76

Generates the </FRAMESET> tag which ends a frameset
section

FRAMESETOPEN Function
on page 123-77

Generates the </FRAMESET> tag which begins a frameset
section

HEADCLOSE Function on
page 123-78

Generates the </HEAD> tag which marks the end of an
HTML document head section

HEADOPEN Function on
page 123-79

Generates the <HEAD> tag which marks the beginning of
the HTML document head section

HEADER Function on
page 123-80

Generates opening heading tags (<H1> to <H6>) and their
corresponding closing tags (</H1> to </H6>)

HR Function on page 123-81 Generates the <HR> tag, which generates a line in the
HTML document

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

HTF 123-13

HTMLCLOSE Function on
page 123-83

Generates the </HTML> tag which marks the end of an
HTML document

HTMLOPEN Function on
page 123-83

Generates the <HTML> tag which marks the beginning of an
HTML document

IMG Function on page 123-84 Generates the tag which directs the browser to load
an image onto the HTML page

IMG2 Function on page 123-85 Generates the tag which directs the browser to
load an image onto the HTML page with the option
of specifying values for the USEMAP attribute

ISINDEX Function on
page 123-86

Creates a single entry field with a prompting text, such as
"enter value," then sends that value to the URL of the page or
program

ITALIC Function on
page 123-87

Generates the <I> and </I> tags which direct the browser
to render the text in italics

KBD Function on page 123-88 Generates the <KBD> and </KBD> tags which direct the
browser to render the text in monospace font

KEYBOARD Function on
page 123-89

Generates the <KBD> and </KBD> tags, which direct the
browser to render the text in monospace font

LINE Function on page 123-90 Generates the <HR> tag, which generates a line in the
HTML document

LINKREL Function on
page 123-91

Generates the <LINK> tag with the REL attribute which
delineates the relationship described by the hypertext link
from the anchor to the target

LINKREV Function on
page 123-92

Generates the <LINK> tag with the REV attribute which
delineates the relationship described by the hypertext link
from the target to the anchor

LISTHEADER Function on
page 123-93

Generates the <LH> and </LH> tags which print an HTML
tag at the beginning of the list

LISTINGCLOSE Function on
page 123-94

Generates the </LISTING> tags which marks the end of a
section of fixed-width text in the body of an HTML page

LISTINGOPEN Function on
page 123-95

Generates the <LISTING> tag which marks the beginning
of a section of fixed-width text in the body of an HTML
page

LISTITEM Function on
page 123-96

Generates the tag, which indicates a list item

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

123-14 PL/SQL Packages and Types Reference

MAILTO Function on
page 123-97

Generates the <A> tag with the HREF set to 'mailto'
prepended to the mail address argument

MAPCLOSE Function on
page 123-98

Generates the </MAP> tag which marks the end of a set of
regions in a client-side image map

MAPOPEN Function on
page 123-99

Generates the <MAP> tag which mark the beginning of a set
of regions in a client-side image map

MENULISTCLOSE Function
on page 123-100

Generates the </MENU> tag which ends a list that presents
one line for each item

MENULISTOPEN Function
on page 123-101

Generates the <MENU> tag which create a list that presents
one line for each item

META Function on
page 123-102

Generates the <META> tag, which embeds meta-information
about the document and also specifies values for HTTP
headers

NL Function on page 123-103 Generates the
 tag which begins a new line of text

NOBR Function on
page 123-104

Generates the <NOBR> and </NOBR> tags which turn off
line-breaking in a section of text

NOFRAMESCLOSE Function
on page 123-105

Generates the </NOFRAMES> tag which marks the end of a
no-frames section

NOFRAMESOPEN Function
on page 123-106

Generates the <NOFRAMES> tag which mark the beginning
of a no-frames section

OLISTCLOSE Function on
page 123-107

Generates the tag which defines the end of an
ordered list

OLISTOPEN Function on
page 123-108

Generates the tag which marks the beginning of an
ordered list

PARA Function on
page 123-109

Generates the <P> tag which indicates that the text that
comes after the tag is to be formatted as a paragraph

PARAGRAPH Function on
page 123-110

Adds attributes to the <P> tag

PARAM Function on
page 123-111

Generates the <PARAM> tag which specifies parameter
values for Java applets

PLAINTEXT Function on
page 123-112

Generates the <PLAINTEXT> and </PLAINTEXT> tags
which direct the browser to render the text they surround in
fixed-width type

PRECLOSE Function on
page 123-113

Generates the </PRE> tag which marks the end of a section
of preformatted text in the body of the HTML page

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

HTF 123-15

PREOPEN Function on
page 123-114

Generates the <PRE> tag which marks the beginning of a
section of preformatted text in the body of the HTML page

PRINT Functions on
page 123-115

Generates the specified parameter as a string terminated
with the \n newline character

PRN Functions on
page 123-116

Generates the specified parameter as a string

S Function on page 123-117 Generates the <S> and </S> tags which direct the browser
to render the text they surround in strikethrough type

SAMPLE Function on
page 123-118

Generates the <SAMP> and </SAMP> tags which direct the
browser to render the text they surround in monospace font
or however "sample" is defined stylistically

SCRIPT Function on
page 123-119

Generates the <SCRIPT> and </SCRIPT> tags which
contain a script written in languages such as JavaScript and
VBscript

SMALL Function on
page 123-120

Generates the <SMALL> and </SMALL> tags, which direct
the browser to render the text they surround using a small
font

STRIKE Function on
page 123-121

Generates the <STRIKE> and </STRIKE> tags which direct
the browser to render the text they surround in
strikethrough type

STRONG Function on
page 123-122

Generates the and tags which direct
the browser to render the text they surround in bold or
however "strong" is defined stylistically

STYLE Function on
page 123-123

Generates the <STYLE> and </STYLE> tags which include
a style sheet in a Web page

SUB Function on page 123-124 Generates the _{and} tags which direct the
browser to render the text they surround as subscript

SUP Function on page 123-125 Generates the ^{and} tags which direct the
browser to render the text they surround as superscript

TABLECAPTION Function on
page 123-126

Generates the <CAPTION> and </CAPTION> tags which
place a caption in an HTML table

TABLEDATA Function on
page 123-127

Generates the <TD> and </TD> tags which insert data into
a cell of an HTML table

TABLEHEADER Function on
page 123-128

Generates the <TH> and </TH> tags which insert a header
cell in an HTML table.

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

123-16 PL/SQL Packages and Types Reference

TABLECLOSE Function on
page 123-129

Generates the </TABLE> tag which marks the end of an
HTML table

TABLEOPEN Function on
page 123-130

Generates the <TABLE> tag which marks the beginning of
an HTML table

TABLEROWCLOSE Function
on page 123-131

Generates the </TR> tag which marks the end of a new row
in an HTML table

TABLEROWOPEN Function
on page 123-132

Generates the <TR> tag which marks the beginning of a
new row in an HTML table

TELETYPE Function on
page 123-133

Generates the <TT> and </TT> tags which direct the
browser to render the text they surround in a fixed width
typewriter font, for example, the courier font

TITLE Function on
page 123-134

Generates the <TITLE> and </TITLE> tags which specify
the text to display in the titlebar of the browser window

ULISTCLOSE Function on
page 123-135

Generates the tag which marks the end of an
unordered list

ULISTOPEN Function on
page 123-136

Generates the tag which marks the beginning of an
unordered list

UNDERLINE Function on
page 123-137

Generates the <U> and </U> tags, which direct the browser
to render the text they surround with an underline

VARIABLE Function on
page 123-138

Generates the <VAR> and </VAR> tags which direct the
browser to render the text they surround in italics or
however "variable" is defined stylistically.

WBR Function on
page 123-139

Generates the <WBR> tag, which inserts a soft line break
within a section of NOBR text

Table 123–1 (Cont.) HTF Package Subprograms

Subprogram Description

Summary of HTF Subprograms

HTF 123-17

ADDRESS Function

This function generates the <ADDRESS> and </ADDRESS> tags which specify the
address, author and signature of a document.

Syntax
HTF.ADDRESS (

cvalue IN VARCHAR2
cnowrap IN VARCHAR2 DEFAULT NULL
cclear IN VARCHAR2 DEFAULT NULL
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<ADDRESS CLEAR="cclear" NOWRAP cattributes>cvalue</ADDRESS>

Table 123–2 ADDRESS Function Parameters

Parameter Description

cvalue The string that goes between the <ADDRESS> and </ADDRESS> tags.

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
included in the tag

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag

ANCHOR Function

123-18 PL/SQL Packages and Types Reference

ANCHOR Function

This function and the ANCHOR2 Function functions generate the <A> and
HTML tags which specify the source or destination of a hypertext link. The
difference between these subprograms is that the ANCHOR2 Function provides a
target and therefore can be used for a frame.

Syntax
HTF.ANCHOR (

curl IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

ctext

Usage Notes
This tag accepts several attributes, but either HREF or NAME is required. HREF
specifies to where to link. NAME allows this tag to be a target of a hypertext link.

Table 123–3 ANCHOR Function Parameters

Parameter Description

curl The value for the HREF attribute.

ctext The string that goes between the <A> and tags.

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-19

ANCHOR2 Function

This function and the ANCHOR Function generate the <A> and HTML tags
which specify the source or destination of a hypertext link. The difference between
these subprograms is that this functions provides a target and therefore can be
used for a frame.

Syntax
HTF.ANCHOR2 (

curl IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
ctarget in varchar2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

ctext

Table 123–4 ANCHOR2 Function Parameters

Parameter Description

curl The value for the HREF attribute.

ctext The string that goes between the <A> and tags.

cname The value for the NAME attribute

ctarget The value for the TARGET attribute.

cattributes The other attributes to be included as-is in the tag

APPLETCLOSE Function

123-20 PL/SQL Packages and Types Reference

APPLETCLOSE Function

This function closes the applet invocation with the </APPLET> tag. You must first
invoke the a Java applet using APPLETOPEN Function on page 123-21

Syntax
HTF.APPLETCLOSE
 RETURN VARCHAR2;

Summary of HTF Subprograms

HTF 123-21

APPLETOPEN Function

This function generates the <APPLET> tag which begins the invocation of a Java
applet. You close the applet invocation with APPLETCLOSE Function on
page 123-20 which generates the </APPLET> tag.

Syntax
HTF.APPLETOPEN (

ccode IN VARCHAR2,
cheight IN NUMBER,
cwidth IN NUMBER,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<APPLET CODE=ccode HEIGHT=cheight WIDTH=cwidth cattributes>

so that, for example,

HTF.appletopen('testclass.class', 100, 200, 'CODEBASE="/ows-applets"')

generates

<APPLET CODE="testclass.class" height=100 width=200 CODEBASE="/ows-applets">

Table 123–5 APPLETOPEN Function Parameters

Parameter Description

ccode The the value for the CODE attribute which specifies the name of the
applet class.

cheight The value for the HEIGHT attribute.

cwidth The value for the WIDTH attribute.

cattributes The other attributes to be included as-is in the tag.

APPLETOPEN Function

123-22 PL/SQL Packages and Types Reference

Usage Notes
■ Specify parameters to the Java applet using the PARAM Function function on

page 123-111.

■ Use the cattributes parameter to specify the CODEBASE attribute since the
PL/SQL cartridge does not know where to find the class files. The CODEBASE
attribute specifies the virtual path containing the class files.

Summary of HTF Subprograms

HTF 123-23

AREA Function

This function generates the <AREA> tag, which defines a client-side image map. The
<AREA> tag defines areas within the image and destinations for the areas.

Syntax
HTF.AREA (

ccoords IN VARCHAR2
cshape IN VARCHAR2 DEFAULT NULL,
chref IN VARCHAR2 DEFAULT NULL,
cnohref IN VARCHAR2 DEFAULT NULL,
ctarget IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<AREA COORDS="ccoords" SHAPE="cshape" HREF="chref" NOHREF TARGET="ctarget"
cattributes>

Table 123–6 AREA Function Parameters

Parameter Description

ccords The the value for the COORDS attribute.

cshape The value for the SHAPE attribute.

chref The value for the HREF attribute.

cnohref If the value for this parameter is not NULL, the NOHREF attribute is
added to the tag.

ctarget The value for the TARGET attribute.

cattributes The other attributes to be included as-is in the tag.

BASE Function

123-24 PL/SQL Packages and Types Reference

BASE Function

This function generates the <BASE> tag which records the URL of the document.

Syntax
HTF.BASE (

ctarget IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BASE HREF="<current URL>" TARGET="ctarget" cattributes>

Table 123–7 BASE Function Parameters

Parameter Description

ctarget The value for the TARGET attribute which establishes a window name to
which all links in this document are targeted.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-25

BASEFONT Function

This function generates the <BASEFONT> tag which specifies the base font size for a
Web page.

Syntax
HTF.BASEFONT (

nsize IN INTEGER)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BASEFONT SIZE="nsize">

Table 123–8 BASEFONT Function Parameters

Parameter Description

nsize The value for the SIZE attribute.

BGSOUND Function

123-26 PL/SQL Packages and Types Reference

BGSOUND Function

This function generates the <BGSOUND> tag which includes audio for a Web page.

Syntax
HTF.BGSOUND (

csrc IN VARCHAR2,
cloop IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

Table 123–9 BGSOUND Function Parameters

Parameter Description

csrc The value for the SRC attribute.

cloop The value for the LOOP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-27

BIG Function

This function generates the <BIG> and </BIG> tags which direct the browser to
render the text in a bigger font.

Syntax
HTF.BIG (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BIG cattributes>ctext</BIG>

Table 123–10 BIG Function Parameters

Parameter Description

ctext The the text that goes between the tags.

cattributes The other attributes to be included as-is in the tag.

BLOCKQUOTECLOSE Function

123-28 PL/SQL Packages and Types Reference

BLOCKQUOTECLOSE Function

This function generates the </BLOCKQUOTE> tag which mark the end of a section of
quoted text. You mark the beginning of a section of text by means of the
BLOCKQUOTEOPEN Function.

Syntax
HTF.BLOCKQUOTECLOSE
 RETURN VARCHAR2;

Examples
This function generates

</BLOCKQUOTE>

Summary of HTF Subprograms

HTF 123-29

BLOCKQUOTEOPEN Function

This function generates the <BLOCKQUOTE> tag, which marks the beginning of a
section of quoted text. You mark the end of a section of text by means of the
BLOCKQUOTECLOSE Function.

Syntax
HTF.BLOCKQUOTEOPEN (

cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BLOCKQUOTE CLEAR="cclear" NOWRAP cattributes>

Table 123–11 BLOCKQUOTEOPEN Function Parameters

Parameter Description

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
added to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

BODYCLOSE Function

123-30 PL/SQL Packages and Types Reference

BODYCLOSE Function

This function generates the </BODY> tag which marks the end of a body section of
an HTML document.You mark the beginning of a body section by means of the
BODYOPEN Function.

Syntax
HTF.BODYCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</BODY>

Summary of HTF Subprograms

HTF 123-31

BODYOPEN Function

This function generates the <BODY> tag which marks the beginning of the body
section of an HTML document. You mark the end of a body section by means of the
BODYCLOSE Function.

Syntax
HTF.BODYOPEN (

cbackground IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BODY background="cbackground" cattributes>

so that

HTF.BODYOPEN('/img/background.gif')
 RETURN VARCHAR2;

generates:

<BODY background="/img/background.gif">

Table 123–12 BODYOPEN Function Parameters

Parameter Description

cbackground The value for the BACKGROUND attribute which specifies a graphic file to
use for the background of the document.

cattributes The other attributes to be included as-is in the tag.

BOLD Function

123-32 PL/SQL Packages and Types Reference

BOLD Function

This function generates the and tags which direct the browser to display
the text in boldface.

Syntax
HTF.BOLD (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<B cattributes>ctext

Table 123–13 BOLD Function Parameters

Parameter Description

ctext The text that goes between the tags.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-33

BR Function

This function generates the
 tag which begins a new line of text. It performs
the same operation as the NL Function.

Syntax
HTF.BR(

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BR CLEAR="cclear" cattributes>

Table 123–14 BR Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

CENTER Function

123-34 PL/SQL Packages and Types Reference

CENTER Function

This function generates the <CENTER> and </CENTER> tags which center a section
of text within a Web page.

Syntax
HTF.CENTER (

ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<CENTER>ctext</CENTER>

Table 123–15 CENTER Parameters

Parameter Description

ctext The text that goes between the tags.

Summary of HTF Subprograms

HTF 123-35

CENTERCLOSE Function

This function generates the </CENTER> tag which marks the end of a section of text
to center. You mark the beginning of a of a section of text to center by means of the
CENTEROPEN Function.

Syntax
HTF.CENTERCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</CENTER>

CENTEROPEN Function

123-36 PL/SQL Packages and Types Reference

CENTEROPEN Function

This function generates the <CENTER> tag which mark the beginning of a section of
text to center.You mark the beginning of a of a section of text to center by means of
the CENTERCLOSE Function.

Syntax
HTF.CENTEROPEN
 RETURN VARCHAR2;

Examples
This function generates

<CENTER>

Summary of HTF Subprograms

HTF 123-37

CITE Function

This function generates the <CITE> and </CITE> tags which direct the browser to
render the text as a citation.

Syntax
HTF.CITE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<CITE cattributes>ctext</CITE>

Table 123–16 CITE Function Parameters

Parameter Description

ctext The text to render as citation.

cattributes The other attributes to be included as-is in the tag.

CODE Function

123-38 PL/SQL Packages and Types Reference

CODE Function

This function generates the <CODE> and </CODE> tags which direct the browser to
render the text in monospace font or however "code" is defined stylistically.

Syntax
HTF.CODE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<CODE cattributes>ctext</CODE>

Table 123–17 CODE Function Parameters

Parameter Description

ctext The text to render as code.

cattributes The other attributes to be included as-is in the tag

Summary of HTF Subprograms

HTF 123-39

COMMENT Function

This function generates the comment tags.

Syntax
HTF.COMMENT (

ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<!-- ctext -->

Table 123–18 COMMENT Function Parameters

Parameter Description

ctext The comment.

DFN Function

123-40 PL/SQL Packages and Types Reference

DFN Function

This function generates the <DFN> and </DFN> tags which direct the browser to
mark the text in italics or however "definition" is described stylistically.

Syntax
HTF.DFN (

ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<DFN>ctext</DFN>

Table 123–19 DFN Function Parameters

Parameter Description

ctext The text to render in italics.

Summary of HTF Subprograms

HTF 123-41

DIRLISTCLOSE Function

This function generates the </DIR> tag which ends a directory list section. You start
a directory list section with the DIRLISTOPEN Function.

Syntax
HTF.DIRLISTCLOSE
 RETURN VARCHAR2;

Usage Notes
A directory list presents a list of items that contains up to 20 characters. Items in this
list are typically arranged in columns, 24 characters wide. Insert the tag
directly or invoke the LISTITEM Function so that the tag appears directly
after the </DIR> tag to define the items as a list.

Examples
This function generates

</DIR>

DIRLISTOPEN Function

123-42 PL/SQL Packages and Types Reference

DIRLISTOPEN Function

This function generates the <DIR> which starts a directory list section. You end a
directory list section with the DIRLISTCLOSE Function.

Syntax
HTF.DIRLISTOPEN
 RETURN VARCHAR2;

Usage Notes
A directory list presents a list of items that contains up to 20 characters. Items in this
list are typically arranged in columns, 24 characters wide. Insert the tag
directly or invoke the LISTITEM Function so that the tag appears directly
after the </DIR> tag to define the items as a list.

Examples
This function generates

<DIR>

Summary of HTF Subprograms

HTF 123-43

DIV Function

This function generates the <DIV> tag which creates document divisions.

Syntax
HTF.DIV (

calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<DIV ALIGN="calign" cattributes>

Table 123–20 DIV Function Parameters

Parameter Description

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

DLISTCLOSE Function

123-44 PL/SQL Packages and Types Reference

DLISTCLOSE Function

This function generates the </DL> tag which ends a definition list. You start a
definition list by means of the DLISTOPEN Function.

Syntax
HTF.DLISTCLOSE
 RETURN VARCHAR2;

Usage Notes
A definition list looks like a glossary: it contains terms and definitions. Terms are
inserted using the DLISTTERM Function and definitions are inserted using the
DLISTDEF Function.

Examples
This function generates

</DL>

Summary of HTF Subprograms

HTF 123-45

DLISTOPEN Function

This function generates the <DL> tag which starts a definition list. You end a
definition list by means of the DLISTCLOSE Function.

Syntax
HTF.DLISTOPEN (

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Usage Notes
A definition list looks like a glossary: it contains terms and definitions. Terms are
inserted using the DLISTTERM Function and definitions are inserted using the
DLISTDEF Function.

Examples
This function generates

<DL CLEAR="cclear" cattributes>

Table 123–21 DLISTOPEN Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

DLISTDEF Function

123-46 PL/SQL Packages and Types Reference

DLISTDEF Function

This function generates the <DD> tag, which inserts definitions of terms. Use this
tag for a definition list <DL>. Terms are tagged <DT> and definitions are tagged
<DD>.

Syntax
HTF.DLISTDEF (

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<DD CLEAR="cclear" cattributes>ctext

Table 123–22 DLISTDEF Function Parameters

Parameter Description

ctext The definition of the term.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-47

DLISTTERM Function

This function generates the <DT> tag which defines a term in a definition list <DL>.

Syntax
HTF.DLISTTERM (

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<DT CLEAR="cclear" cattributes>ctext

Table 123–23 DLISTTERM Function Parameters

Parameter Description

ctext The term.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

EM Function

123-48 PL/SQL Packages and Types Reference

EM Function

This function generates the and tags, which define text to be
emphasized. It performs the same task as the EMPHASIS Function.

Syntax
HTF.EM(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<EM cattributes>ctext

Table 123–24 EM Function Parameters

Parameter Description

ctext The text to emphasize.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-49

EMPHASIS Function

This function generates the and tags, which define text to be
emphasized. It performs the same task as the EM Function.

Syntax
HTF.EMPHASIS(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<EM cattributes>ctext

Table 123–25 EMPHASIS Function Parameters

Parameter Description

ctext The text to emphasize.

cattributes The other attributes to be included as-is in the tag.

ESCAPE_SC Function

123-50 PL/SQL Packages and Types Reference

ESCAPE_SC Function

This function replaces characters that have special meaning in HTML with their
escape sequences. The following characters are converted:

■ & to &

■ " to ":

■ < to <

■ > to >

This function performs the same operation as HTP. PRINTS Procedure and HTP. PS
Procedure.

Syntax
HTF.ESCAPE_SC(

ctext IN VARCHAR2);

Parameters

Table 123–26 ESCAPE_SC Procedure Parameters

Parameter Description

ctext The text string to convert.

Summary of HTF Subprograms

HTF 123-51

ESCAPE_URL Function

This function replaces characters that have special meaning in HTML and HTTP
with their escape sequences. The following characters are converted:

■ & to &

■ " to ":

■ < to <

■ > to >

■ % to &25

Syntax
HTF.ESCAPE_URL(

p_url IN VARCHAR2);

Parameters

Table 123–27 ESCAPE_URL Procedure Parameters

Parameter Description

p_url The string to convert.

FONTCLOSE Function

123-52 PL/SQL Packages and Types Reference

FONTCLOSE Function

This function generates the tag which marks the end of a section of text
with the specified font characteristics. You mark the beginning of the section text by
means of the FONTOPEN Function.

Syntax
HTF.FONTCLOSE
 RETURN VARCHAR2;

Examples
This function generates

Summary of HTF Subprograms

HTF 123-53

FONTOPEN Function

This function generates the which marks the beginning of section of text
with the specified font characteristics. You mark the end of the section text by
means of the FONTCLOSE Function.

Syntax
HTF.FONTOPEN(

ccolor IN VARCHAR2 DEFAULT NULL,
cface IN VARCHAR2 DEFAULT NULL,
csize IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

Table 123–28 FONTOPEN Function Parameters

Parameter Description

ccolor The value for the COLOR attribute.

cface The value for the FACE attribute

csize The value for the SIZE attribute

cattributes The other attributes to be included as-is in the tag.

FORMAT_CELL Function

123-54 PL/SQL Packages and Types Reference

FORMAT_CELL Function

This function formats column values inside an HTML table using the TABLEDATA
Function. It allows for better control over the HTML tables.

Syntax
HTF.FORMAT_CELL(

columnValue IN VARCHAR2
format_numbers IN VARCHAR2 DEFAULT NULL

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TD >columnValue</TD>

Table 123–29 FORMAT_CELL Function Parameters

Parameter Description

columnValue The value that needs to be formatted in an HTML table.

format_numbers The format that numeric data is displayed in. If the value of this
parameter is not NULL, the number fields are right-justified and
rounded to two decimal places.

Summary of HTF Subprograms

HTF 123-55

FORMCHECKBOX Function

This function generates the <INPUT> tag with TYPE="checkbox" which inserts a
checkbox element in a form. A checkbox element is a button that the user toggles on
or off.

Syntax
HTF.FORMCHECKBOX(

cname IN VARCHAR2,
cvalue IN VARCHAR2 DEFAULT 'ON',
cchecked IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue" CHECKED cattributes>

Table 123–30 FORMCHECKBOX Function Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cchecked If the value for this parameter is not NULL, the CHECKED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FORMCLOSE Function

123-56 PL/SQL Packages and Types Reference

FORMCLOSE Function

This function generates the </FORM> tag which marks the end of a form section in
an HTML document.You mark the beginning of the form section by means of the
FORMOPEN Function.

Syntax
HTF.FORMCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</FORM>

Summary of HTF Subprograms

HTF 123-57

FORMFILE Function

This function generates the <INPUT> tag with TYPE="file" which inserts a file
form element. This is used for file uploading for a given page.

Syntax
HTF.FORMFILE(

cname IN VARCHAR2,
caccept IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="file" NAME="cname" ACCEPT="caccept" cattributes>

Table 123–31 FORMFILE Function Parameters

Parameter Description

cname The value for the NAME attribute.

caccept A comma-delimited list of MIME types for upload.

cattributes The other attributes to be included as-is in the tag.

FORMHIDDEN Function

123-58 PL/SQL Packages and Types Reference

FORMHIDDEN Function

This function generates the <INPUT> tag with TYPE="hidden", which inserts a
hidden form element. This element is not seen by the user. It submits additional
values to the script.

Syntax
HTF.FORMHIDDEN(

cname IN VARCHAR2,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="hidden" NAME="cname" VALUE="cvalue" cattributes>

Table 123–32 FORMHIDDEN Function Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-59

FORMIMAGE Function

This function generates the <INPUT> tag with TYPE="image" which creates an
image field that the user clicks to submit the form immediately. The coordinates of
the selected point are measured in pixels, and returned (along with other contents
of the form) in two name/value pairs. The x coordinate is submitted under the
name of the field with .x appended, and the y coordinate with .y appended. Any
VALUE attribute is ignored.

Syntax
HTF.FORMIMAGE(

cname IN VARCHAR2,
csrc IN VARCHAR2,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="image" NAME="cname" SRC="csrc" ALIGN="calign" cattributes>

Table 123–33 FORMIMAGE Function Parameters

Parameter Description

cname The value for the NAME attribute.

csrc The value for the SRC attribute that specifies the image file.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

FORMOPEN Function

123-60 PL/SQL Packages and Types Reference

FORMOPEN Function

This function generates the <FORM> tag which marks the beginning of a form
section in an HTML document. You mark the end of the form section by means of
the FORMCLOSE Function.

Syntax
HTF.FORMOPEN(

curl IN VARCHAR2,
cmethod IN VARCHAR2 DEFAULT 'POST',
ctarget IN VARCHAR2 DEFAULT NULL,
cenctype IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<FORM ACTION="curl" METHOD="cmethod" TARGET="ctarget" ENCTYPE="cenctype"
cattributes>

Table 123–34 FORMOPEN Function Parameters

Parameter Description

curl The URL of the Web Request Broker or CGI script where the contents of
the form is sent. This parameter is required.

cmethod The value for the METHOD attribute. The value can be "GET" or "POST".

ctarget The value for the TARGET attribute.

cenctype The value for the ENCTYPE attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-61

FORMPASSWORD Function

This function generates the <INPUT> tag with TYPE="password" which creates a
single-line text entry field. When the user enters text in the field, each character is
represented by one asterisk. This is used for entering passwords.

Syntax
HTF.FORMPASSWORD(

cname IN VARCHAR2,
csize IN VARCHAR2,
cmaxlength IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="password" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength"
VALUE="cvalue" cattributes>

Table 123–35 FORMPASSWORD Function Parameters

Parameter Description

cname The value for the NAME attribute.

csize The value for the SIZE attribute.

cmaxlength The value for the MAXLENGTH attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMRADIO Function

123-62 PL/SQL Packages and Types Reference

FORMRADIO Function

This function generates the <INPUT> tag with TYPE="radio", which creates a
radio button on the HTML form. Within a set of radio buttons, the user selects only
one. Each radio button in the same set has the same name, but different values. The
selected radio button generates a name/value pair.

Syntax
HTF.FORMRADIO(

cname IN VARCHAR2,
cvalue IN VARCHAR2,
cchecked IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="radio" NAME="cname" VALUE="cvalue" CHECKED cattributes>

Table 123–36 FORMRADIO Function Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cchecked If the value for this parameter is not NULL, the CHECKED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-63

FORMRESET Function

This function generates the <INPUT> tag with TYPE="reset" which creates a
button that, when selected, resets the form fields to their initial values.

Syntax
HTF.FORMRESET(

cvalue IN VARCHAR2 DEFAULT 'Reset',
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="reset" VALUE="cvalue" cattributes>

Table 123–37 FORMRESET Function Parameters

Parameter Description

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMSELECTCLOSE Function

123-64 PL/SQL Packages and Types Reference

FORMSELECTCLOSE Function

This function generates the </SELECT> tag which marks the end of a Select form
element. A Select form element is a listbox where the user selects one or more
values. You mark the beginning of Select form element by means of the
FORMSELECTOPEN Function.The values are inserted using
FORMSELECTOPTION Function.

Syntax
HTF.FORMSELECTCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</SELECT>

as shown under Examples of the FORMSELECTOPEN Function.

Summary of HTF Subprograms

HTF 123-65

FORMSELECTOPEN Function

This function generates the <SELECT> tags which creates a Select form element. A
Select form element is a listbox where the user selects one or more values. You mark
the end of Select form element by means of the FORMSELECTCLOSE Function.The
values are inserted using FORMSELECTOPTION Function.

Syntax
HTF.FORMSELECTOPEN(

cname IN VARCHAR2,
cprompt IN VARCHAR2 DEFAULT NULL,
nsize IN INTEGER DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

cprompt <SELECT NAME="cname" SIZE="nsize" cattributes>
</SELECT>

so that

HTF.FORMSELECTOPEN('greatest_player';
'Pick the greatest player:');

HTF.FORMSELECTOPTION('Messier');
HTF.FORMSELECTOPTION('Howe');
HTF.FORMSELECTOPTION('Gretzky');.
HTF.FORMSELECTCLOSE;

Table 123–38 FORMSELECTOPEN Function Parameters

Parameter Description

cname The value for the NAME attribute.

cprompt The string preceding the list box.

nsize The value for the SIZE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMSELECTOPEN Function

123-66 PL/SQL Packages and Types Reference

generates

Pick the greatest player:
<SELECT NAME="greatest_player">
<OPTION>Messier
<OPTION>Howe
<OPTION>Gretzky
</SELECT>

Summary of HTF Subprograms

HTF 123-67

FORMSELECTOPTION Function

This function generates the <OPTION> tag which represents one choice in a Select
element.

Syntax
HTF.FORMSELECTOPTION(

cvalue IN VARCHAR2,
cselected IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<OPTION SELECTED cattributes>cvalue

as shown under Examples of the FORMSELECTOPEN Function.

Table 123–39 FORMSELECTOPTION Function Parameters

Parameter Description

cvalue The text for the option.

cvalue If the value for this parameter is not NULL, the SELECTED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FORMSUBMIT Function

123-68 PL/SQL Packages and Types Reference

FORMSUBMIT Function

This function generates the <INPUT> tag with TYPE="submit" which creates a
button that, when clicked, submits the form. If the button has a NAME attribute, the
button contributes a name/value pair to the submitted data.

Syntax
HTF.FORMSUBMIT(

cname IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT 'Submit',
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="submit" NAME="cname" VALUE="cvalue" cattributes>

Table 123–40 FORMSUBMIT Function Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-69

FORMTEXT Function

This function generates the <INPUT> tag with TYPE="text", which creates a field
for a single line of text.

Syntax
HTF.FORMTEXT(

cname IN VARCHAR2,
csize IN VARCHAR2 DEFAULT NULL,
cmaxlength IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<INPUT TYPE="text" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength"
VALUE="cvalue" cattributes>

Table 123–41 FORMTEXT Function Parameters

Parameter Description

cname The value for the NAME attribute.

csize The value for the SIZE attribute.

cmaxlength The value for the MAXLENGTH attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREA Function

123-70 PL/SQL Packages and Types Reference

FORMTEXTAREA Function

This function generates the <TEXTAREA> tag, which creates a text field that has no
predefined text in the text area. This field enables entering several lines of text. The
same operation is performed by the FORMTEXTAREA2 Function which in addition
has the cwrap parameter that lets you specify a wrap style.

Syntax
HTF.FORMTEXTAREA(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign"
cattributes></TEXTAREA>

Table 123–42 FORMTEXTAREA Function Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-71

FORMTEXTAREA2 Function

This function generates the <TEXTAREA> tag, which creates a text field that has no
predefined text in the text area. This field enables entering several lines of text.The
same operation is performed by the FORMTEXTAREA Function except that in that
case you cannot specify a wrap style.

Syntax
HTF.FORMTEXTAREA2(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP="cwrap"
cattributes></TEXTAREA>

Table 123–43 FORMTEXTAREA2 Function Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREACLOSE Function

123-72 PL/SQL Packages and Types Reference

FORMTEXTAREACLOSE Function

This function generates the </TEXTAREA> tag which ends a text area form element.
You open a text area element by means of eitherFORMTEXTAREAOPEN Function
or FORMTEXTAREAOPEN2 Function.

Syntax
HTF.FORMTEXTAREACLOSE
 RETURN VARCHAR2;

Examples
This function generates

</TEXTAREA>

Summary of HTF Subprograms

HTF 123-73

FORMTEXTAREAOPEN Function

This function generates the <TEXTAREA> which marks the beginning of a text area
form element. The same operation is performed by the FORMTEXTAREAOPEN2
Function which in addition has the cwrap parameter that lets you specify a wrap
style. You mark the end of a text area form element by means of the
FORMTEXTAREACLOSE Function.

Syntax
HTF.FORMTEXTAREAOPEN(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes>

Table 123–44 FORMTEXTAREAOPEN Function Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREAOPEN2 Function

123-74 PL/SQL Packages and Types Reference

FORMTEXTAREAOPEN2 Function

This function generates the <TEXTAREA> which marks the beginning of a text area
form element. The same operation is performed by the FORMTEXTAREAOPEN
Function except that in that case you cannot specify a wrap style. You mark the end
of a text area form element by means of the FORMTEXTAREACLOSE Function.

Syntax
HTF.FORMTEXTAREAOPEN2(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP =
"cwrap" cattributes>

Table 123–45 FORMTEXTAREAOPEN2 Function Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-75

FRAME Function

This function generates the <FRAME> tag which defines the characteristics of a
frame created by a <FRAMESET> tag.

Syntax
HTF.FRAME(

csrc IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
cmarginwidth IN VARCHAR2 DEFAULT NULL,
cmarginheight IN VARCHAR2 DEFAULT NULL,
cscrolling IN VARCHAR2 DEFAULT NULL,
cnoresize IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<FRAME SRC="csrc" NAME="cname" MARGINWIDTH="cmarginwidth"
MARGINHEIGHT="cmarginheight" SCROLLING="cscrolling" NORESIZE cattributes>

Table 123–46 FRAME Function Parameters

Parameter Description

csrc The URL to display in the frame.

cname The value for the NAME attribute.

cmarginwidth The value for the MARGINWIDTH attribute.

cscrolling The value for the SCROLLING attribute.

cnoresize If the value for this parameter is not NULL, the NORESIZE attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FRAMESETCLOSE Function

123-76 PL/SQL Packages and Types Reference

FRAMESETCLOSE Function

This function generates the </FRAMESET> tag which ends a frameset section. You
mark the beginning of a frameset section by means of the FRAMESETOPEN
Function.

Syntax
HTF.FRAMESETCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</FRAMESET>

Summary of HTF Subprograms

HTF 123-77

FRAMESETOPEN Function

This function generates the <FRAMESET> tag which define a frameset section. You
mark the end of a frameset section by means of the FRAMESETCLOSE Function.

Syntax
HTF.FRAMESETOPEN(

crows IN VARCHAR2 DEFAULT NULL,
ccols IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<FRAMESET ROWS="crows" COLS="ccols" cattributes>

Table 123–47 FRAMESETOPEN Function Parameters

Parameter Description

crows The value for the ROWS attribute.

ccols The value for the COLS attribute.

cattributes The other attributes to be included as-is in the tag.

HEADCLOSE Function

123-78 PL/SQL Packages and Types Reference

HEADCLOSE Function

This function generates the </HEAD> tag which marks the end of an HTML
document head section. You mark the beginning of an HTML document head
section by means of the HEADOPEN Function.

Syntax
HTF.HEADCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</HEAD>

Summary of HTF Subprograms

HTF 123-79

HEADOPEN Function

This function generates the <HEAD> tag which marks the beginning of the HTML
document head section. You mark the end of an HTML document head section by
means of the HEADCLOSE Function.

Syntax
HTF.HEADOPEN
 RETURN VARCHAR2;

Examples
This function generates

<HEAD>

HEADER Function

123-80 PL/SQL Packages and Types Reference

HEADER Function

This function generates opening heading tags (<H1> to <H6>) and their
corresponding closing tags (</H1> to </H6>).

Syntax
HTF.HEADER(

nsize IN INTEGER,
cheader IN VARCHAR2,
calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
HTF.header (1,'Overview')
 RETURN VARCHAR2;

produces:

<H1>Overview</H1>

Table 123–48 HEADER Function Parameters

Parameter Description

nsize The the heading level. This is an integer between 1 and 6.

cheader The text to display in the heading.

calign The value for the ALIGN attribute.

cnowrap The value for the NOWRAP attribute.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-81

HR Function

This function generates the <HR> tag, which generates a line in the HTML
document.This subprogram performs the same operation as the LINE Function.

Syntax
HTF.HR(

cclear IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

Table 123–49 HR Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

csrc The value for the SRC attribute which specifies a custom image as the
source of the line.

cattributes The other attributes to be included as-is in the tag.

HTMLCLOSE Function

123-82 PL/SQL Packages and Types Reference

HTMLCLOSE Function

This function generates the </HTML> tag which marks the end of an HTML
document. You use the HTMLOPEN Function to mark the beginning of an HTML
document.

Syntax
HTF.HTMLCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</HTML>

Summary of HTF Subprograms

HTF 123-83

HTMLOPEN Function

This function generates the <HTML> tag which marks the beginning of an HTML
document. You use the HTMLCLOSE Function to mark the end of the an HTML
document.

Syntax
HTF.HTMLOPEN
 RETURN VARCHAR2;

Examples
This function generates

<HTML>

IMG Function

123-84 PL/SQL Packages and Types Reference

IMG Function

This function generates the tag which directs the browser to load an image
onto the HTML page. The IMG2 Function performs the same operation but
additionally uses the cusemap parameter.

Syntax
HTF.IMG(

curl IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
calt IN VARCHAR2 DEFAULT NULL,
cismap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

Table 123–50 IMG Function Parameters

Parameter Description

curl The value for the SRC attribute.

calign The value for the ALIGN attribute.

calt The value for the ALT attribute which specifies alternative text to
display if the browser does not support images.

cismap If the value for this parameter is not NULL, the ISMAP attribute is added
to the tag. The attribute indicates that the image is an imagemap.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-85

IMG2 Function

This function generates the tag, which directs the browser to load an image
onto the HTML page. The IMG Function performs the same operation but does not
use the cusemap parameter.

Syntax
HTF.IMG2(

curl IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
calt IN VARCHAR2 DEFAULT NULL,
cismap IN VARCHAR2 DEFAULT NULL,
cusemap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

Table 123–51 IMG2 Function Parameters

Parameter Description

curl The value for the SRC attribute.

calign The value for the ALIGN attribute.

calt The value for the ALT attribute which specifies alternative text to
display if the browser does not support images.

cismap If the value for this parameter is not NULL, the ISMAP attribute is added
to the tag. The attribute indicates that the image is an imagemap.

cusemap The value for the USEMAP attribute which specifies a client-side image
map.

cattributes The other attributes to be included as-is in the tag.

ISINDEX Function

123-86 PL/SQL Packages and Types Reference

ISINDEX Function

This function creates a single entry field with a prompting text, such as "enter value,"
then sends that value to the URL of the page or program.

Syntax
HTF.ISINDEX(

cprompt IN VARCHAR2 DEFAULT NULL,
curl IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<ISINDEX PROMPT="cprompt" HREF="curl">

Table 123–52 ISINDEX Function Parameters

Parameter Description

cprompt The value for the PROMPT attribute.

curl The value for the HREF attribute.

Summary of HTF Subprograms

HTF 123-87

ITALIC Function

This function generates the <I> and </I> tags which direct the browser to render the text
in italics.

Syntax
HTF.ITALIC(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<I cattributes>ctext</I>

Table 123–53 ITALIC Function Parameters

Parameter Description

ctext The text to be rendered in italics.

cattributes The other attributes to be included as-is in the tag.

KBD Function

123-88 PL/SQL Packages and Types Reference

KBD Function

This function generates the <KBD> and </KBD> tags which direct the browser to
render the text in monospace font. This subprogram performs the same operation as
the KEYBOARD Function.

Syntax
HTF.KBD(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<KBD cattributes>ctext</KBD>

Table 123–54 KBD Function Parameters

Parameter Description

ctext The text to be rendered in monospace.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-89

KEYBOARD Function

This function generates the <KBD> and </KBD> tags, which direct the browser to
render the text in monospace font. This subprogram performs the same operation as
the KBD Function.

Syntax
HTF.KEYBOARD(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<KBD cattributes>ctext</KBD>

Table 123–55 KEYBOARD Function Parameters

Parameter Description

ctext The text to be rendered in monospace.

cattributes The other attributes to be included as-is in the tag.

LINE Function

123-90 PL/SQL Packages and Types Reference

LINE Function

This function generates the <HR> tag, which generates a line in the HTML
document. This subprogram performs the same operation as the HR Function.

Syntax
HTF.LINE(

cclear IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

Table 123–56 LINE Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

csrc The value for the SRC attribute which specifies a custom image as the
source of the line.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-91

LINKREL Function

This function generates the <LINK> tag with the REL attribute which delineates the
relationship described by the hypertext link from the anchor to the target. This is
only used when the HREF attribute is present. This is the opposite of LINKREV
Function. This tag indicates a relationship between documents but does not create a
link. To create a link, use the ANCHOR Function.

Syntax
HTF.LINKREL(

crel IN VARCHAR2,
curl IN VARCHAR2,
ctitle IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<LINK REL="crel" HREF="curl" TITLE="ctitle">

Table 123–57 LINKREL Function Parameters

Parameter Description

crel The value for the REL attribute.

curl The value for the URL attribute.

ctitle The value for the TITLE attribute.

LINKREV Function

123-92 PL/SQL Packages and Types Reference

LINKREV Function

This function generates the <LINK> tag with the REV attribute which delineates the
relationship described by the hypertext link from the target to the anchor. This is the
opposite of the LINKREL Function. This tag indicates a relationship between
documents, but does not create a link. To create a link, use the ANCHOR Function.

Syntax
HTF.LINKREV(

crev IN VARCHAR2,
curl IN VARCHAR2,
ctitle IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<LINK REV="crev" HREF="curl" TITLE="ctitle">

Table 123–58 LINKREV Function Parameters

Parameter Description

crel The value for the REV attribute.

curl The value for the URL attribute.

ctitle The value for the TITLE attribute.

Summary of HTF Subprograms

HTF 123-93

LISTHEADER Function

This function generates the <LH> and </LH> tags which print an HTML tag at the
beginning of the list.

Syntax
HTF.LISTHEADER(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<LH cattributes>ctext</LH>

Table 123–59 LISTHEADER Function Parameters

Parameter Description

ctext The text to place between <LH> and </LH>.

cattributes The other attributes to be included as-is in the tag.

LISTINGCLOSE Function

123-94 PL/SQL Packages and Types Reference

LISTINGCLOSE Function

This function generates the </LISTING> tags which marks the end of a section of
fixed-width text in the body of an HTML page. To mark the beginning of a section
of fixed-width text in the body of an HTML page, use the LISTINGOPEN Function.

Syntax
HTF.LISTINGCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</LISTING>

Summary of HTF Subprograms

HTF 123-95

LISTINGOPEN Function

This function generates the <LISTING> tag which marks the beginning of a section
of fixed-width text in the body of an HTML page. To mark the end of a section of
fixed-width text in the body of an HTML page, use the LISTINGCLOSE Function.

Syntax
HTF.LISTINGOPEN
 RETURN VARCHAR2;

Examples
This function generates

<LISTING>

LISTITEM Function

123-96 PL/SQL Packages and Types Reference

LISTITEM Function

This function generates the tag, which indicates a list item.

Syntax
HTF.LISTITEM(

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cdingbat IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<LI CLEAR="cclear" DINGBAT="cdingbat" SRC="csrc" cattributes>ctext

Table 123–60 LISTITEM Function Parameters

Parameter Description

ctext The text for the list item.

cclear The value for the CLEAR attribute.

cdingbat The value for the DINGBAT attribute.

csrc The value for the SRC attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-97

MAILTO Function

This function generates the <A> tag with the HREF set to 'mailto' prepended to the
mail address argument.

Syntax
HTF.MAILTO(

caddress IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

ctext

so that

HTF.mailto('pres@white_house.gov','Send Email to the President');

generates:

Send Email to the President

Table 123–61 MAILTO Function Parameters

Parameter Description

caddress The email address of the recipient.

ctext The clickable portion of the link.

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

MAPCLOSE Function

123-98 PL/SQL Packages and Types Reference

MAPCLOSE Function

This function generates the </MAP> tag which marks the end of a set of regions in a
client-side image map. To mark the beginning of a set of regions in a client-side
image map, use the MAPOPEN Function.

Syntax
HTF.MAPCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</MAP>

Summary of HTF Subprograms

HTF 123-99

MAPOPEN Function

This function generates the <MAP> tag which mark the beginning of a set of regions
in a client-side image map. To mark the end of a set of regions in a client-side image
map, use the MAPCLOSE Function.

Syntax
HTF.MAPOPEN(

cname IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<MAP NAME="cname" cattributes>

Table 123–62 MAPOPEN Function Parameters

Parameter Description

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

MENULISTCLOSE Function

123-100 PL/SQL Packages and Types Reference

MENULISTCLOSE Function

This function generates the </MENU> tag which ends a list that presents one line for
each item. To begin a list of this kind, use the MENULISTOPEN Function. The items
in the list appear more compact than an unordered list. The LISTITEM Function
defines the list items in a menu list.

Syntax
HTF.MENULISTCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</MENU>

Summary of HTF Subprograms

HTF 123-101

MENULISTOPEN Function

This function generates the <MENU> tag which create a list that presents one line for
each item. To end a list of this kind, use the MENULISTCLOSE Function.The items
in the list appear more compact than an unordered list. The LISTITEM Function
defines the list items in a menu list.

Syntax
HTF.MENULISTOPEN
 RETURN VARCHAR2;

Examples
This function generates

<MENU>

META Function

123-102 PL/SQL Packages and Types Reference

META Function

This function generates the <META> tag, which embeds meta-information about the
document and also specifies values for HTTP headers. For example, you can specify
the expiration date, keywords, and author name.

Syntax
HTF.META(

chttp_equiv IN VARCHAR2,
cname IN VARCHAR2,
ccontent IN VARCHAR2)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<META HTTP-EQUIV="chttp_equiv" NAME ="cname" CONTENT="ccontent">

so that

HTF.meta ('Refresh', NULL, 120);

generates

<META HTTP-EQUIV="Refresh" CONTENT=120>

On some Web browsers, this causes the current URL to be reloaded automatically
every 120 seconds.

Table 123–63 META Function Parameters

Parameter Description

chttp_equiv The value for the CHTTP_EQUIV attribute.

cname The value for the NAME attribute.

ccontent The value for the CONTENT attribute.

Summary of HTF Subprograms

HTF 123-103

NL Function

This function generates the
 tag which begins a new line of text. It performs
the same operation as the BR Function.

Syntax
HTF.NL(

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<BR CLEAR="cclear" cattributes>

Table 123–64 NL Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

NOBR Function

123-104 PL/SQL Packages and Types Reference

NOBR Function

This function generates the <NOBR> and </NOBR> tags which turn off line-breaking
in a section of text.

Syntax
HTF.NOBR(
ctext IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<NOBR>ctext</NOBR>

Table 123–65 NOBR Function Parameters

Parameter Description

ctext The text that is to be rendered on one line.

Summary of HTF Subprograms

HTF 123-105

NOFRAMESCLOSE Function

This function generates the </NOFRAMES> tag which marks the end of a no-frames
section. To mark the beginning of a no-frames section, use the FRAMESETOPEN
Function. See also FRAME Function, FRAMESETOPEN Function and FRAMESETCLOSE
Function.

Syntax
HTF.NOFRAMESCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</NOFRAMES>

NOFRAMESOPEN Function

123-106 PL/SQL Packages and Types Reference

NOFRAMESOPEN Function

This function generates the <NOFRAMES> tag which mark the beginning of a
no-frames section. To mark the end of a no-frames section, use the
FRAMESETCLOSE Function. See also FRAME Function, FRAMESETOPEN Function
and FRAMESETCLOSE Function.

Syntax
HTF.NOFRAMESOPEN
 RETURN VARCHAR2;

Examples
This function generates

<NOFRAMES>

Summary of HTF Subprograms

HTF 123-107

OLISTCLOSE Function

This function generates the tag which defines the end of an ordered list. An
ordered list presents a list of numbered items. To mark the beginning of a list of this
kind, use the OLISTOPEN Function. Numbered items are added using LISTITEM
Function.

Syntax
HTF.OLISTCLOSE
 RETURN VARCHAR2;

Examples
This function generates

OLISTOPEN Function

123-108 PL/SQL Packages and Types Reference

OLISTOPEN Function

This function generates the tag which marks the beginning of an ordered list.
An ordered list presents a list of numbered items. To mark the end of a list of this
kind, use the OLISTCLOSE Function. Numbered items are added using LISTITEM
Function.

Syntax
HTF.OLISTOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<OL CLEAR="cclear" WRAP="cwrap" cattributes>

Table 123–66 OLISTOPEN Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-109

PARA Function

This function generates the <P> tag which indicates that the text that comes after
the tag is to be formatted as a paragraph. You can add attributes to the tag by means
of the PARAGRAPH Function.

Syntax
HTF.PARA
 RETURN VARCHAR2;

Examples
This function generates

<P>

PARAGRAPH Function

123-110 PL/SQL Packages and Types Reference

PARAGRAPH Function

You can use this function to add attributes to the <P> tag created by the PARA
Function.

Syntax
HTF.PARAGRAPH(

calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<P ALIGN="calign" NOWRAP CLEAR="cclear" cattributes>

Table 123–67 PARAGRAPH Function Parameters

Parameter Description

calign The value for the ALIGN attribute.

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
added to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-111

PARAM Function

This function generates the <PARAM> tag which specifies parameter values for Java
applets. The values can reference HTML variables. To invoke a Java applet from a
Web page, use APPLETOPEN Function to begin the invocation. Use one PARAM
Function for each desired name-value pair, and use APPLETCLOSE Function to end
the applet invocation.

Syntax
HTF.PARAM(

cname IN VARCHAR2
cvalue IN VARCHAR2)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<PARAM NAME=cname VALUE="cvalue">

Table 123–68 PARAM Function Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

PLAINTEXT Function

123-112 PL/SQL Packages and Types Reference

PLAINTEXT Function

This function generates the <PLAINTEXT> and </PLAINTEXT> tags which direct
the browser to render the text they surround in fixed-width type.

Syntax
HTF.PLAINTEXT(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<PLAINTEXT cattributes>ctext</PLAINTEXT>

Table 123–69 PLAINTEXT Function Parameters

Parameter Description

ctext The text to be rendered in fixed-width font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-113

PRECLOSE Function

This function generates the </PRE> tag which marks the end of a section of
preformatted text in the body of the HTML page. To mark the beginning of a section
of preformatted text in the body of the HTML page, use the PREOPEN Function.

Syntax
HTF.PRECLOSE
 RETURN VARCHAR2;

Examples
This function generates

</PRE>

PREOPEN Function

123-114 PL/SQL Packages and Types Reference

PREOPEN Function

This function generates the <PRE> tag which marks the beginning of a section of
preformatted text in the body of the HTML page. To mark the end of a section of
preformatted text in the body of the HTML page, use the PRECLOSE Function.

Syntax
HTF.PREOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwidth IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<PRE CLEAR="cclear" WIDTH="cwidth" cattributes>

Table 123–70 PREOPEN Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwidth The value for the WIDTH attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-115

PRINT Functions

These functions generate the specified parameter as a string terminated with the \n
newline character. The PRN Functions performs the same operation but does not
terminate with a newline character.

Syntax
HTF.PRINT (
 cbuf IN VARCHAR2)
 RETURN VARCHAR2;

HTF.PRINT (
 dbuf IN DATE)
 RETURN VARCHAR2;

HTF.PRINT (
 nbuf IN NUMBER)
 RETURN VARCHAR2;

Parameters

Usage Notes
■ The \n character is not the same as
. The \n character formats the HTML

source but it does not affect how the browser renders the HTML source. Use

 to control how the browser renders the HTML source.

■ These functions do not have function equivalents.

Table 123–71 PRINT Function Parameters

Parameter Description

cbuf The string to generate terminated by a newline.

dbuf The string to generate terminated by a newline.

nbuf The string to generate terminated by a newline.

PRN Functions

123-116 PL/SQL Packages and Types Reference

PRN Functions

These functions generate the specified parameter as a string. Unlike the PRINT
Functions the string is not terminated with the \n newline character.

Syntax
HTF.PRN (
 cbuf IN VARCHAR2)
 RETURN VARCHAR2;

HTF.PRN (
 dbuf IN DATE)
 RETURN VARCHAR2;

HTF.PRN (
 nbuf IN NUMBER)
 RETURN VARCHAR2;

Parameters

Usage Notes
These functions do not have function equivalents.

Table 123–72 PRN Function Parameters

Parameter Description

cbuf The string to generate (not terminated by a newline).

dbuf The string to generate (not terminated by a newline).

nbuf The string to generate (not terminated by a newline).

Summary of HTF Subprograms

HTF 123-117

S Function

This function generates the <S> and </S> tags which direct the browser to render
the text they surround in strikethrough type. This performs the same operation as
STRIKE Function.

Syntax
HTF.S (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<S cattributes>ctext</S>

Table 123–73 S Function Parameters

Parameter Description

ctext The text to be rendered in strikethrough type.

cattributes The other attributes to be included as-is in the tag.

SAMPLE Function

123-118 PL/SQL Packages and Types Reference

SAMPLE Function

This function generates the <SAMP> and </SAMP> tags which direct the browser to
render the text they surround in monospace font or however "sample" is defined
stylistically.

Syntax
HTF.SAMPLE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<SAMP cattributes>ctext</SAMP>

Table 123–74 SAMPLE Function Parameters

Parameter Description

ctext The text to be rendered in monospace font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-119

SCRIPT Function

This function generates the <SCRIPT> and </SCRIPT> tags which contain a script
written in languages such as JavaScript and VBscript.

Syntax
HTF.SCRIPT (

cscript IN VARCHAR2,
clanguage IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<SCRIPT LANGUAGE=clanguage>cscript</SCRIPT>

so that

HTF.script ('Erupting_Volcano', 'Javascript');

generates

<SCRIPT LANGUAGE=Javascript>"script text here"</SCRIPT>

This causes the browser to run the script enclosed in the tags.

Table 123–75 SCRIPT Function Parameters

Parameter Description

cscript The text of the script. This is the text that makes up the script itself, not
the name of a file containing the script.

clanguage The language in which the script is written. If this parameter is omitted,
the user's browser determines the scripting language.

SMALL Function

123-120 PL/SQL Packages and Types Reference

SMALL Function

This function generates the <SMALL> and </SMALL> tags, which direct the browser
to render the text they surround using a small font.

Syntax
HTF.SMALL (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<SMALL cattributes>ctext</SMALL>

Table 123–76 SMALL Function Parameters

Parameter Description

ctext The text to be rendered in small font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-121

STRIKE Function

This function generates the <STRIKE> and </STRIKE> tags which direct the
browser to render the text they surround in strikethrough type. This performs the
same operation as S Function.

Syntax
STRIKE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<STRIKE cattributes>ctext</STRIKE>

Table 123–77 STRIKE Function Parameters

Parameter Description

ctext The text to be rendered in strikethrough type.

cattributes The other attributes to be included as-is in the tag.

STRONG Function

123-122 PL/SQL Packages and Types Reference

STRONG Function

This function generates the and tags which direct the
browser to render the text they surround in bold or however "strong" is defined.

Syntax
HTF.STRONG(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<STRONG cattributes>ctext

Table 123–78 STRONG Function Parameters

Parameter Description

ctext The text to be emphasized.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-123

STYLE Function

This function generates the <STYLE> and </STYLE> tags which include a style
sheet in a Web page. You can get more information about style sheets at
http://www.w3.org. This feature is not compatible with browsers that support only
HTML versions 2.0 or earlier. Such browsers will ignore this tag.

Syntax
HTF.STYLE(

cstyle IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<STYLE>cstyle</STYLE>

Table 123–79 STYLE Function Parameters

Parameter Description

cstyle The the style information to include.

SUB Function

123-124 PL/SQL Packages and Types Reference

SUB Function

This function generates the _{and} tags which direct the browser to
render the text they surround as subscript.

Syntax
HTF.SUB(

ctext IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

_{ctext}

Table 123–80 SUB Function Parameters

Parameter Description

ctext The text to render in subscript.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-125

SUP Function

This function generates the ^{and} tags which direct the browser to
render the text they surround as superscript.

Syntax
HTF.SUP(

ctext IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

^{ctext}

Table 123–81 SUP Function Parameters

Parameter Description

ctext The text to render in superscript.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

TABLECAPTION Function

123-126 PL/SQL Packages and Types Reference

TABLECAPTION Function

This function generates the <CAPTION> and </CAPTION> tags which place a
caption in an HTML table.

Syntax
HTF.TABLECAPTION(

ccaption IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<CAPTION ALIGN="calign" cattributes>ccaption</CAPTION>

Table 123–82 TABLECAPTION Function Parameters

Parameter Description

ctext The text for the caption.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-127

TABLEDATA Function

This function generates the <TD> and </TD> tags which insert data into a cell of an
HTML table.

Syntax
HTF.TABLEDATA(

cvalue IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
crowspan IN VARCHAR2 DEFAULT NULL,
ccolspan IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TD ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP
cattributes>cvalue</TD>

Table 123–83 TABLEDATA Function Parameters

Parameter Description

cvalue The data for the cell in the table.

calign The value for the ALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

ccolspan The value for the COLSPAN attribute.

cattributes The other attributes to be included as-is in the tag.

TABLEHEADER Function

123-128 PL/SQL Packages and Types Reference

TABLEHEADER Function

This function generates the <TH> and </TH> tags which insert a header cell in an
HTML table. The <TH> tag is similar to the <TD> tag except that the text in this case
the rows are usually rendered in bold type.

Syntax
HTF.TABLEHEADER(

cvalue IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
crowspan IN VARCHAR2 DEFAULT NULL,
ccolspan IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TH ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP
cattributes>cvalue</TH>

Table 123–84 TABLEHEADER Function Parameters

Parameter Description

cvalue The data for the cell in the table.

calign The value for the ALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

crispen The value for the ROWSPAN attribute.

ccolspan The value for the COLSPAN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-129

TABLECLOSE Function

This function generates the </TABLE> tag which marks the end of an HTML table.
To define the beginning of an HTML table, use the TABLEOPEN Function.

Syntax
HTF.TABLECLOSE
 RETURN VARCHAR2;

Examples
This function generates

</TABLE>

TABLEOPEN Function

123-130 PL/SQL Packages and Types Reference

TABLEOPEN Function

This function generates the <TABLE> tag which marks the beginning of an HTML
table. To define the end of an HTML table, use the TABLECLOSE Function.

Syntax
HTF.TABLEOPEN(

cborder IN VARCHAR2 DEFAULT NULL
calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TABLE "cborder" NOWRAP ALIGN="calign" CLEAR="cclear" cattributes>

Table 123–85 TABLEOPEN Function Parameters

Parameter Description

border The value for the BORDER attribute.

calign The value for the ALIGN attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-131

TABLEROWCLOSE Function

This function generates the </TR> tag which marks the end of a new row in an
HTML table. To mark the beginning of a new row, use the TABLEROWOPEN
Function.

Syntax
HTF.TABLEROWCLOSE
 RETURN VARCHAR2;

Examples
This function generates

</TABLE>

TABLEROWOPEN Function

123-132 PL/SQL Packages and Types Reference

TABLEROWOPEN Function

This function generates the <TR> tag which marks the beginning of a new row in an
HTML table. To mark the end of a new row, use the TABLEROWCLOSE Function.

Syntax
HTF.TABLEROWOPEN(

calign IN VARCHAR2 DEFAULT NULL,
cvalign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<<TR ALIGN="calign" VALIGN="cvalign" DP="cdp" NOWRAP catttributes>

Table 123–86 TABLEROWOPEN Function Parameters

Parameter Description

calign The value for the ALIGN attribute.

cvalign The value for the VALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-133

TELETYPE Function

This function generates the <TT> and </TT> tags which direct the browser to
render the text they surround in a fixed width typewriter font, for example, the
courier font.

Syntax
HTF.TELETYPE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TT cattributes>ctext</TT>

Table 123–87 TELETYPE Function Parameters

Parameter Description

ctext The text to render in a fixed width typewriter font.

cattributes The other attributes to be included as-is in the tag.

TITLE Function

123-134 PL/SQL Packages and Types Reference

TITLE Function

This function generates the <TITLE> and </TITLE> tags which specify the text to
display in the titlebar of the browser window.

Syntax
HTF.TITLE(

ctitle IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Examples
This function generates

<TITLE>ctitle</TITLE>

Table 123–88 TITLE Function Parameters

Parameter Description

ctitle The text to display in the titlebar of the browser window.

Summary of HTF Subprograms

HTF 123-135

ULISTCLOSE Function

This function generates the tag which marks the end of an unordered list.
An unordered list presents items with bullets. To mark the beginning of an
unordered list, use the ULISTOPEN Function. Add list items with LISTITEM
Function.

Syntax
HTF.ULISTCLOSE
 RETURN VARCHAR2;

Examples
This function generates

ULISTOPEN Function

123-136 PL/SQL Packages and Types Reference

ULISTOPEN Function

This function generates the tag which marks the beginning of an unordered
list. An unordered list presents items with bullets. To mark the end of an unordered
list, use the ULISTCLOSE Function. Add list items with LISTITEM Function.

Syntax
HTF.ULISTOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cdingbat IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<UL CLEAR="cclear" WRAP="cwrap" DINGBAT="cdingbat" SRC="csrc" cattributes>

Table 123–89 ULISTOPEN Function Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwrap The value for the WRAP attribute.

cdingbat The value for the DINGBAT attribute.

csrc The value for the SRC attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-137

UNDERLINE Function

This function generates the <U> and </U> tags, which direct the browser to render
the text they surround with an underline.

Syntax
HTF.UNDERLINE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<U cattributes>ctext</U>

Table 123–90 UNDERLINE Function Parameters

Parameter Description

ctext The text to render with an underline.

cattributes The other attributes to be included as-is in the tag.

VARIABLE Function

123-138 PL/SQL Packages and Types Reference

VARIABLE Function

This function generates the <VAR> and </VAR> tags which direct the browser to
render the text they surround in italics or however "variable" is defined stylistically.

Syntax
HTF.VARIABLE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL)

 RETURN VARCHAR2;

Parameters

Examples
This function generates

<VAR cattributes>ctext</VAR>

Table 123–91 VARIABLE Function Parameters

Parameter Description

ctext The text to render in italics.

cattributes The other attributes to be included as-is in the tag.

Summary of HTF Subprograms

HTF 123-139

WBR Function

This function generates the <WBR> tag, which inserts a soft line break within a
section of NOBR text.

Syntax
HTF.WBR
 RETURN VARCHAR2;

Examples
This function generates

<WBR>

WBR Function

123-140 PL/SQL Packages and Types Reference

HTMLDB_CUSTOM_AUTH 124-1

124
HTMLDB_CUSTOM_AUTH

The HTMLDB_CUSTOM_AUTH package provides an interface for authentication and
session management.

■ Documentation of HTMLDB_CUSTOM_AUTH

Documentation of HTMLDB_CUSTOM_AUTH

124-2 PL/SQL Packages and Types Reference

Documentation of HTMLDB_CUSTOM_AUTH

For a complete description of this package within the context of HTMLDB, see
HTMLDB_CUSTOM_AUTH in the Oracle HTML DB User's Guide.

HTMLDB_APPLICATION 125-1

125
 HTMLDB_APPLICATION

The HTMLDB_APPLICATION package enables users to take advantage of global
variables.

■ Documentation of HTMLDB_APPLICATION

Documentation of HTMLDB_APPLICATION

125-2 PL/SQL Packages and Types Reference

Documentation of HTMLDB_APPLICATION

For a complete description of this package within the context of HTMLDB, see
HTMLDB_APPLICATION in the Oracle HTML DB User's Guide.

HTMLDB_ITEM 126-1

126
HTMLDB_ITEM

The HTMLDB_ITEM package enables users to create form elements dynamically
based on a SQL query instead of creating individual items page by page.

■ Documentation of HTMLDB_ITEM

Documentation of HTMLDB_ITEM

126-2 PL/SQL Packages and Types Reference

Documentation of HTMLDB_ITEM

For a complete description of this package within the context of HTMLDB, see
HTMLDB_ITEM in the Oracle HTML DB User's Guide.

HTMLDB_UTIL 127-1

127
HTMLDB_UTIL

The HTMLDB_UTIL package provides utilities for getting and setting session state,
getting files, checking authorizations for users, resetting different states for users,
and also getting and setting preferences for users.

■ Documentation of HTMLDB_UTIL

Documentation of HTMLDB_UTIL

127-2 PL/SQL Packages and Types Reference

Documentation of HTMLDB_UTIL

For a complete description of this package within the context of HTMLDB, see
HTMLDB_UTIL in the Oracle HTML DB User's Guide.

HTP 128-1

128
 HTP

The HTP (hypertext procedures) and HTF (hypertext functions) packages generate
HTML tags. For example, the HTP.ANCHOR procedure generates the HTML anchor
tag, <A>.

This chapter contains the following topics:

■ Using HTP

■ Operational Notes

■ Rules and Limits

■ Examples

■ Summary of Tags

■ Summary of HTP Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using HTP

128-2 PL/SQL Packages and Types Reference

Using HTP

■ Operational Notes

■ Rules and Limits

■ Examples

Operational Notes

For every HTP procedure that generates one or more HTML tags, there is a
corresponding HTF function with identical parameters with the following
exception:

■ The PRINTS Procedure and the PS Procedure do not have HTF function
equivalents. Use the ESCAPE_SC Function or the ESCAPE_URL Function if
you need a string conversion function. Note that while there is a ESCAPE_SC
Procedure that performs the same operation as the PRINTS Procedure and the
PS Procedure, there is no procedural equivalent for the ESCAPE_URL Function.

■ The FORMAT_CELL Function does not have an HTP equivalent. The function
formats column values inside an HTML table using TABLEDATA Function
which does have an HTP equivalent in the TABLEDATA Procedure. The
advantage of this using the FORMAT_CELL Function is that it allows for better
control over the HTML tables.

The function versions do not directly generate output in your web page. Instead,
they pass their output as return values to the statements that invoked them. Use
these functions when you need to nest calls. To print the output of HTF functions,
call the functions from within the HTP.PRINT procedure. It then prints its
parameters to the generated web page.

Rules and Limits

If you use values of the LONG data type in procedures such as HTP.PRINT,
HTP.PRN, HTP.PRINTS, HTP.PA or OWA_UTIL.CELLSPRINT, only the first 32 K of the
LONG data is used. The LONG data is bound to a VARCHAR2 data type in the
procedure.

Using HTP

HTP 128-3

Examples

The following commands generate a simple HTML document:

CREATE OR REPLACE PROCEDURE hello AS
BEGIN
 HTP.HTMLOPEN; -- generates <HTML>
 HTP.HEADOPEN; -- generates <HEAD>
 HTP.TITLE('Hello'); -- generates <TITLE>Hello</TITLE>
 HTP.HEADCLOSE; -- generates </HEAD>
 HTP.BODYOPEN; -- generates <BODY>
 HTP.HEADER(1, 'Hello'); -- generates <H1>Hello</H1>
 HTP.BODYCLOSE; -- generates </BODY>
 HTP.HTMLCLOSE; -- generates </HTML>
END;

Summary of Tags

128-4 PL/SQL Packages and Types Reference

Summary of Tags

HTML, HEAD, and BODY Tags
HTMLOPEN Procedure, HTMLCLOSE Procedure - generate <HTML> and </HTML>

HEADOPEN Procedure, HEADCLOSE Procedure - generate <HEAD> and </HEAD>

BODYOPEN Procedure, BODYCLOSE Procedure - generate <BODY> and </BODY>

Comment Tag
COMMENT Procedure - generates <!-- and -->

Tags in the <HEAD> Area
BASE Procedure - generates <BASE>

LINKREL Procedure - generates <LINK> with the REL attribute

LINKREV Procedure - generates <LINK> with the REV attribute

TITLE Procedure - generates <TITLE>

META Procedure - generates <META>

SCRIPT Procedure - generates <SCRIPT>

STYLE Procedure - generates <STYLE>

ISINDEX Procedure - generates <ISINDEX>

Applet Tags
APPLETOPEN Procedure, APPLETCLOSE Procedure - generate <APPLET> and
</APPLET>

PARAM Procedure - generates <PARAM>

List Tags
OLISTOPEN Procedure, OLISTCLOSE Procedure - generate and

ULISTOPEN Procedure, ULISTCLOSE Procedure - generate and

DLISTOPEN Procedure, DLISTCLOSE Procedure- generate <DL> and </DL>

DLISTTERM Procedure - generates <DT>

Summary of Tags

HTP 128-5

DLISTDEF Procedure - generates <DD>

DIRLISTOPEN Procedure, DIRLISTCLOSE Procedure - generate <DIR> and
</DIR>

LISTHEADER Procedure - generates <LH>

LISTINGOPEN Procedure, LISTINGCLOSE Procedure - generate <LISTING> and
</LISTING>

MENULISTOPEN Procedure - generate <MENU> and </MENU>

LISTITEM Procedure - generates

Form Tags
FORMOPEN Procedure, FORMCLOSE Procedure - generate <FORM> and </FORM>

FORMCHECKBOX Procedure - generates <INPUT TYPE="CHECKBOX">

FORMHIDDEN Procedure - generates <INPUT TYPE="HIDDEN">

FORMIMAGE Procedure - generates <INPUT TYPE="IMAGE">

FORMPASSWORD Procedure - generates <INPUT TYPE="PASSWORD">

FORMRADIO Procedure - generates <INPUT TYPE="RADIO">

FORMSELECTOPEN Procedure, FORMSELECTCLOSE Procedure - generate
<SELECT> and </SELECT>

FORMSELECTOPTION Procedure - generates <OPTION>

FORMTEXT Procedure - generates <INPUT TYPE="TEXT">

FORMTEXTAREA Procedure - generate <TEXTAREA>

FORMTEXTAREAOPEN Procedure, FORMTEXTAREACLOSE Procedure - generate
<TEXTAREA> and </TEXTAREA>

FORMRESET Procedure - generates <INPUT TYPE="RESET">

FORMSUBMIT Procedure - generates <INPUT TYPE="SUBMIT">

Table Tags
TABLEOPEN Procedure, TABLECLOSE Procedure - generate <TABLE> and
</TABLE>

TABLECAPTION Procedure - generates <CAPTION>

Summary of Tags

128-6 PL/SQL Packages and Types Reference

TABLEROWOPEN Procedure, TABLEROWCLOSE Procedure - generate <TR> and
</TR>

TABLEHEADER Procedure - generates <TH>

TABLEDATA Procedure - generates <TD>

IMG, HR, and A Tags
HR Procedure, LINE Procedure - generate <HR>

IMG Procedure, IMG2 Procedure - generate

ANCHOR Procedure, ANCHOR2 Procedure - generate <A>

MAPOPEN Procedure, MAPCLOSE Procedure - generate <MAP> and </MAP>

Paragraph Formatting Tags
HEADER Procedure - generates heading tags (<H1> to <H6>)

PARA Procedure, PARAGRAPH Procedure - generate <P>

PRN Procedures, PRINT Procedures - generate any text that is passed in

PRINTS Procedure, PS Procedure - generate any text that is passed in; special
characters in HTML are escaped

PREOPEN Procedure, PRECLOSE Procedure - generate <PRE> and </PRE>

BLOCKQUOTEOPEN Procedure, BLOCKQUOTECLOSE Procedure - generate
<BLOCKQUOTE> and </BLOCKQUOTE>

DIV Procedure - generates <DIV>

NL Procedure, BR Procedure - generate

NOBR Procedure - generates <NOBR>

WBR Procedure - generates <WBR>

PLAINTEXT Procedure - generates <PLAINTEXT>

ADDRESS Procedure - generates <ADDRESS>

MAILTO Procedure - generates <A> with the MAILTO attribute

AREA Procedure - generates <AREA>

BGSOUND Procedure - generates <BGSOUND>

Summary of Tags

HTP 128-7

Character Formatting Tags
BASEFONT Procedure - generates <BASEFONT>

BIG Procedure - generates <BIG>

BOLD Procedure - generates

CENTER Procedure - generates <CENTER> and </CENTER>

CENTEROPEN Procedure, CENTERCLOSE Procedure - generate <CENTER> and
</CENTER>

CITE Procedure - generates <CITE>

CODE Procedure - generates <CODE>

DFN Procedure - generates <DFN>

EM Procedure, EMPHASIS Procedure - generate

FONTOPEN Procedure, FONTCLOSE Procedure - generate and

ITALIC Procedure - generates <I>

KBD Procedure, KEYBOARD Procedure - generate <KBD> and </KBD>

S Procedure - generates <S>

SAMPLE Procedure - generates <SAMP>

SMALL Procedure - generates <SMALL>

STRIKE Procedure - generates <STRIKE>

STRONG Procedure - generates

SUB Procedure - generates <SUB>

SUP Procedure - generates <SUP>

TELETYPE Procedure - generates <TT>

UNDERLINE Procedure - generates <U>

VARIABLE Procedure - generates <VAR>

Frame Tags
FRAME Procedure - generates <FRAME>

FRAMESETOPEN Procedure, FRAMESETCLOSE Procedure - generate
<FRAMESET> and </FRAMESET>

Summary of Tags

128-8 PL/SQL Packages and Types Reference

NOFRAMESOPEN Procedure, NOFRAMESCLOSE Procedure - generate
<NOFRAMES> and </NOFRAMES>

Summary of HTP Subprograms

HTP 128-9

Summary of HTP Subprograms

Table 128–1 HTP Package Subprograms

Subprogram Description

ADDRESS Procedure on
page 128-17

Generates the <ADDRESS> and </ADDRESS> tags which
specify the address, author and signature of a
document

ANCHOR Procedure on
page 128-18

Generates the <A> and tags which specify the
source or destination of a hypertext link

ANCHOR2 Procedure on
page 128-19

Generates the <A> and tags which specify the source
or destination of a hypertext link

APPLETCLOSE Procedure on
page 128-20

Closes the applet invocation with the </APPLET> tag

APPLETOPEN Procedure on
page 128-21

Generates the <APPLET> tag which begins the invocation of
a Java applet

AREA Procedure on
page 128-23

Generates the <AREA> tag, which defines a client-side
image map

BASE Procedure on
page 128-24

Generates the <BASE> tag which records the URL of the
document

BASEFONT Procedure on
page 128-25

Generates the <BASEFONT> tag which specifies the base
font size for a Web page

BGSOUND Procedure on
page 128-26

Generates the <BGSOUND> tag which includes audio for a
Web page

BIG Procedure on page 128-27 Generates the <BIG> and </BIG> tags which direct the
browser to render the text in a bigger font

BLOCKQUOTECLOSE
Procedure on page 128-28

Generates the </BLOCKQUOTE> tag which mark the end of
a section of quoted text

BLOCKQUOTEOPEN
Procedure on page 128-29

Generates the <BLOCKQUOTE> tag, which marks the
beginning of a section of quoted text

BODYCLOSE Procedure on
page 128-30

Generates the </BODY> tag which marks the end of a body
section of an HTML document

BODYOPEN Procedure on
page 128-31

Generates the <BODY> tag which marks the beginning of
the body section of an HTML document

Summary of HTP Subprograms

128-10 PL/SQL Packages and Types Reference

BOLD Procedure on
page 128-32

Generates the and tags which direct the browser
to display the text in boldface

BR Procedure on page 128-33 Generates the
 tag which begins a new line of text

CENTER Procedure on
page 128-34

Generates the <CENTER> and </CENTER> tags which
center a section of text within a Web page

CENTERCLOSE Procedure on
page 128-35

Generates the </CENTER> tag which marks the end of a
section of text to center

CENTEROPEN Procedure on
page 128-36

Generates the <CENTER> tag which mark the beginning of a
section of text to center

CITE Procedure on
page 128-37

Generates the <CITE> and </CITE> tags which direct the
browser to render the text as a citation

CODE Procedure on
page 128-38

Generates the <CODE> and </CODE> tags which direct the
browser to render the text in monospace font or however
"code" is defined stylistically

COMMENT Procedure on
page 128-39

Generates This procedure generates the comment
tags <!-- ctext -->

DFN Procedure on
page 128-40

Generates the <DFN> and </DFN> tags which direct the
browser to mark the text as italics or however "definition" is
defined stylistically

DIRLISTCLOSE Procedure on
page 128-41

Generates the </DIR> tag which ends a directory list
section

DIRLISTOPEN Procedure on
page 128-42

Generates the <DIR> which starts a directory list section

DIV Procedure on page 128-43 Generates the <DIV> tag which creates document divisions

DLISTCLOSE Procedure on
page 128-44

Generates the </DL> tag which ends a definition list

DLISTOPEN Procedure on
page 128-45

Generates the <DL> tag which starts a definition list

DLISTDEF Procedure on
page 128-46

Generates the <DD> tag, which inserts definitions of terms

DLISTTERM Procedure on
page 128-47

Generates the <DT> tag which defines a term in a definition
list <DL>

EM Procedure on page 128-48 Generates the and tags, which define text to be
emphasized

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

HTP 128-11

EMPHASIS Procedure on
page 128-49

Generates the and tags, which define text to be
emphasized

ESCAPE_SC Procedure on
page 128-50

Replaces characters that have special meaning in HTML
with their escape sequences

FONTCLOSE Procedure on
page 128-52

Generates the tag which marks the end of a
section of text with the specified font characteristics

FONTOPEN Procedure on
page 128-52

Generates the which marks the beginning of
section of text with the specified font characteristics

FORMCHECKBOX Procedure
on page 128-53

Generates the <INPUT> tag with TYPE="checkbox"
which inserts a checkbox element in a form

FORMCLOSE Procedure on
page 128-54

Generates the </FORM> tag which marks the end of a form
section in an HTML document

FORMOPEN Procedure on
page 128-55

Generates the <FORM> tag which marks the beginning of a
form section in an HTML document

FORMFILE Procedure on
page 128-56

Generates the <INPUT> tag with TYPE="file" which
inserts a file form element, and is used for file uploading for
a given page

FORMHIDDEN Procedure on
page 128-57

Generates the <INPUT> tag with TYPE="hidden"which
inserts a hidden form element

FORMIMAGE Procedure on
page 128-58

Generates the <INPUT> tag with TYPE="image" which
creates an image field that the user clicks to submit the form
immediately

FORMPASSWORD Procedure
on page 128-59

Generates the <INPUT> tag with TYPE="password"
which creates a single-line text entry field

FORMRADIO Procedure on
page 128-60

Generates the <INPUT> tag with TYPE="radio", which
creates a radio button on the HTML form

FORMRESET Procedure on
page 128-61

Generates the <INPUT> tag with TYPE="reset"
which creates a button that, when selected, resets the
form fields to their initial values

FORMSELECTCLOSE
Procedure on page 128-62

Generates the </SELECT> tag which marks the end of a
Select form element

FORMSELECTOPEN
Procedure on page 128-63

Generates the </SELECT> tag which marks the beginning
of a Select form element

FORMSELECTOPTION
Procedure on page 128-65

Generates the <OPTION> tag which represents one choice in
a Select element

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

128-12 PL/SQL Packages and Types Reference

FORMSUBMIT Procedure on
page 128-66

Generates the <INPUT> tag with TYPE="submit" which
creates a button that, when clicked, submits the form

FORMTEXT Procedure on
page 128-67

Generates the <INPUT> tag with TYPE="text", which
creates a field for a single line of text

FORMTEXTAREA Procedure
on page 128-68

Generates the <TEXTAREA> tag, which creates a text field
that has no predefined text in the text area

FORMTEXTAREA2 Procedure
on page 128-69

Generates the <TEXTAREA> tag, which creates a text field
that has no predefined text in the text area with the ability
to specify a wrap style

FORMTEXTAREACLOSE
Procedure on page 128-70

Generates the </TEXTAREA> tag which ends a text area
form element

FORMTEXTAREAOPEN
Procedure on page 128-71

Generates the <TEXTAREA> which marks the beginning of a
text area form element

FORMTEXTAREAOPEN2
Procedure on page 128-72

Generates the <TEXTAREA> which marks the beginning of a
text area form element with the ability to specify a wrap
style

FRAME Procedure on
page 128-73

Generates the <FRAME> tag which defines the
characteristics of a frame created by a <FRAMESET> tag

FRAMESETCLOSE Procedure
on page 128-74

Generates the </FRAMESET> tag which ends a frameset
section

FRAMESETOPEN Procedure
on page 128-75

Generates the </FRAMESET> tag which begins a frameset
section

HEADCLOSE Procedure on
page 128-76

Generates the </HEAD> tag which marks the end of an
HTML document head section

HEADOPEN Procedure on
page 128-77

Generates the <HEAD> tag which marks the beginning of
the HTML document head section

HEADER Procedure on
page 128-78

Generates opening heading tags (<H1> to <H6>) and their
corresponding closing tags (</H1> to </H6>)

HR Procedure on page 128-79 Generates the <HR> tag, which generates a line in the
HTML document

HTMLCLOSE Procedure on
page 128-81

Generates the </HTML> tag which marks the end of an
HTML document

HTMLOPEN Procedure on
page 128-81

Generates the <HTML> tag which marks the beginning of an
HTML document

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

HTP 128-13

IMG Procedure on
page 128-82

Generates the tag which directs the browser to load
an image onto the HTML page

IMG2 Procedure on
page 128-83

Generates the tag which directs the browser to
load an image onto the HTML page with the option
of specifying values for the USEMAP attribute

ISINDEX Procedure on
page 128-84

Creates a single entry field with a prompting text, such as
"enter value," then sends that value to the URL of the page or
program

ITALIC Procedure on
page 128-85

Generates the <I> and </I> tags which direct the browser
to render the text in italics

KBD Procedure on
page 128-86

Generates the <KBD> and </KBD> tags which direct the
browser to render the text in monospace font

KEYBOARD Procedure on
page 128-87

Generates the <KBD> and </KBD> tags, which direct the
browser to render the text in monospace font

LINE Procedure on
page 128-88

Generates the <HR> tag, which generates a line in the
HTML document

LINKREL Procedure on
page 128-89

Generates the <LINK> tag with the REL attribute which
delineates the relationship described by the hypertext link
from the anchor to the target

LINKREV Procedure on
page 128-90

Generates the <LINK> tag with the REV attribute which
delineates the relationship described by the hypertext link
from the target to the anchor

LISTHEADER Procedure on
page 128-91

Generates the <LH> and </LH> tags which print an HTML
tag at the beginning of the list

LISTINGCLOSE Procedure on
page 128-92

Generates the </LISTING> tags which marks the end of a
section of fixed-width text in the body of an HTML page

LISTINGOPEN Procedure on
page 128-93

Generates the <LISTING> tag which marks the beginning
of a section of fixed-width text in the body of an HTML
page

LISTITEM Procedure on
page 128-94

Generates the tag, which indicates a list item

MAILTO Procedure on
page 128-95

Generates the <A> tag with the HREF set to 'mailto'
prepended to the mail address argument

MAPCLOSE Procedure on
page 128-96

Generates the </MAP> tag which marks the end of a set of
regions in a client-side image map

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

128-14 PL/SQL Packages and Types Reference

MAPOPEN Procedure on
page 128-97

Generates the <MAP> tag which mark the beginning of a set
of regions in a client-side image map

MENULISTCLOSE Procedure
on page 128-98

Generates the </MENU> tag which ends a list that presents
one line for each item

MENULISTOPEN Procedure
on page 128-99

Generates the <MENU> tag which create a list that presents
one line for each item

META Procedure on
page 128-100

Generates the <META> tag, which embeds meta-information
about the document and also specifies values for HTTP
headers

NL Procedure on page 128-101 Generates the
 tag which begins a new line of text

NOBR Procedure on
page 128-102

Generates the <NOBR> and </NOBR> tags which turn off
line-breaking in a section of text

NOFRAMESCLOSE
Procedure on page 128-103

Generates the </NOFRAMES> tag which marks the end of a
no-frames section

NOFRAMESOPEN Procedure
on page 128-104

Generates the <NOFRAMES> tag which mark the beginning
of a no-frames section

OLISTCLOSE Procedure on
page 128-105

Generates the tag which defines the end of an
ordered list

OLISTOPEN Procedure on
page 128-106

Generates the tag which marks the beginning of an
ordered list

PARA Procedure on
page 128-107

Generates the <P> tag which indicates that the text that
comes after the tag is to be formatted as a paragraph

PARAGRAPH Procedure on
page 128-108

Adds attributes to the <P> tag

PARAM Procedure on
page 128-109

Generates the <PARAM> tag which specifies parameter
values for Java applets

PLAINTEXT Procedure on
page 128-110

Generates the <PLAINTEXT> and </PLAINTEXT> tags
which direct the browser to render the text they surround in
fixed-width type

PRECLOSE Procedure on
page 128-111

Generates the </PRE> tag which marks the end of a section
of preformatted text in the body of the HTML page

PREOPEN Procedure on
page 128-112

Generates the <PRE> tag which marks the beginning of a
section of preformatted text in the body of the HTML page

PRINT Procedures on
page 128-113

Generates the specified parameter as a string terminated
with the \n newline character

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

HTP 128-15

PRINTS Procedure on
page 128-114

Generates a string and replaces the following characters
with the corresponding escape sequence

PRN Procedures on
page 128-115

Generates the specified parameter as a string

PS Procedure on page 128-116 Generates a string and replaces the following characters
with the corresponding escape sequence.

S Procedure on page 128-117 Generates the <S> and </S> tags which direct the browser
to render the text they surround in strikethrough type

SAMPLE Procedure on
page 128-118

Generates the <SAMP> and </SAMP> tags which direct the
browser to render the text they surround in monospace font
or however "sample" is defined stylistically

SCRIPT Procedure on
page 128-119

Generates the <SCRIPT> and </SCRIPT> tags which
contain a script written in languages such as JavaScript and
VBscript

SMALL Procedure on
page 128-120

Generates the <SMALL> and </SMALL> tags, which direct
the browser to render the text they surround using a small
font

STRIKE Procedure on
page 128-121

Generates the <STRIKE> and </STRIKE> tags which direct
the browser to render the text they surround in
strikethrough type

STRONG Procedure on
page 128-122

Generates the and tags which direct
the browser to render the text they surround in bold or
however "strong" is defined stylistically

STYLE Procedure on
page 128-123

Generates the <STYLE> and </STYLE> tags which include
a style sheet in a Web page

SUB Procedure on
page 128-124

Generates the _{and} tags which direct the
browser to render the text they surround as subscript

SUP Procedure on
page 128-125

Generates the ^{and} tags which direct the
browser to render the text they surround as superscript

TABLECAPTION Procedure
on page 128-126

Generates the <CAPTION> and </CAPTION> tags which
place a caption in an HTML table

TABLEDATA Procedure on
page 128-127

Generates the <TD> and </TD> tags which insert data into
a cell of an HTML table

TABLEHEADER Procedure on
page 128-128

Generates the <TH> and </TH> tags which insert a header
cell in an HTML table.

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

128-16 PL/SQL Packages and Types Reference

TABLECLOSE Procedure on
page 128-129

Generates the </TABLE> tag which marks the end of an
HTML table

TABLEOPEN Procedure on
page 128-130

Generates the <TABLE> tag which marks the beginning of
an HTML table

TABLEROWCLOSE
Procedure on page 128-131

Generates the </TR> tag which marks the end of a new row
in an HTML table

TABLEROWOPEN Procedure
on page 128-132

Generates the <TR> tag which marks the beginning of a
new row in an HTML table

TELETYPE Procedure on
page 128-133

Generates the <TT> and </TT> tags which direct the
browser to render the text they surround in a fixed width
typewriter font, for example, the courier font

TITLE Procedure on
page 128-134

Generates the <TITLE> and </TITLE> tags which specify
the text to display in the titlebar of the browser window

ULISTCLOSE Procedure on
page 128-135

Generates the tag which marks the end of an
unordered list

ULISTOPEN Procedure on
page 128-136

Generates the tag which marks the beginning of an
unordered list

UNDERLINE Procedure on
page 128-137

Generates the <U> and </U> tags, which direct the browser
to render the text they surround with an underline

VARIABLE Procedure on
page 128-138

Generates the <VAR> and </VAR> tags which direct the
browser to render the text they surround in italics or
however "variable" is defined stylistically.

WBR Procedure on
page 128-139

Generates the <WBR> tag, which inserts a soft line break
within a section of NOBR text

Table 128–1 (Cont.) HTP Package Subprograms

Subprogram Description

Summary of HTP Subprograms

HTP 128-17

ADDRESS Procedure

This procedure generates the <ADDRESS> and </ADDRESS> tags which specify the
address, author and signature of a document.

Syntax
HTP.ADDRESS (

cvalue IN VARCHAR2
cnowrap IN VARCHAR2 DEFAULT NULL
cclear IN VARCHAR2 DEFAULT NULL
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<ADDRESS CLEAR="cclear" NOWRAP cattributes>cvalue</ADDRESS>

Table 128–2 ADDRESS Procedure Parameters

Parameter Description

cvalue The string that goes between the <ADDRESS> and </ADDRESS> tags.

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
included in the tag

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag

ANCHOR Procedure

128-18 PL/SQL Packages and Types Reference

ANCHOR Procedure

This procedure and the ANCHOR2 Procedure procedures generate the <A> and
 HTML tags which specify the source or destination of a hypertext link. The
difference between these subprograms is that the ANCHOR2 Procedure provides a
target and therefore can be used for a frame.

Syntax
HTP.ANCHOR (

curl IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

ctext

Usage Notes
This tag accepts several attributes, but either HREF or NAME is required. HREF
specifies to where to link. NAME allows this tag to be a target of a hypertext link.

Table 128–3 ANCHOR Procedure Parameters

Parameter Description

curl The value for the HREF attribute.

ctext The string that goes between the <A> and tags.

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-19

ANCHOR2 Procedure

This procedure and the ANCHOR Procedure generate the <A> and HTML
tags which specify the source or destination of a hypertext link. The difference
between these subprograms is that this procedures provides a target and therefore
can be used for a frame.

Syntax
HTP.ANCHOR2 (

curl IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
ctarget in varchar2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

ctext

Table 128–4 ANCHOR2 Procedure Parameters

Parameter Description

curl The value for the HREF attribute.

ctext The string that goes between the <A> and tags.

cname The value for the NAME attribute

ctarget The value for the TARGET attribute.

cattributes The other attributes to be included as-is in the tag

APPLETCLOSE Procedure

128-20 PL/SQL Packages and Types Reference

APPLETCLOSE Procedure

This procedure closes the applet invocation with the </APPLET> tag. You must first
invoke the a Java applet using APPLETOPEN Procedure on page 128-21

Syntax
HTP.APPLETCLOSE;

Summary of HTP Subprograms

HTP 128-21

APPLETOPEN Procedure

This procedure generates the <APPLET> tag which begins the invocation of a Java
applet. You close the applet invocation with APPLETCLOSE Procedure on
page 128-20 which generates the </APPLET> tag.

Syntax
HTP.APPLETOPEN (

ccode IN VARCHAR2,
cheight IN NUMBER,
cwidth IN NUMBER,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<APPLET CODE=ccode HEIGHT=cheight WIDTH=cwidth cattributes>

so that, for example,

HTP.appletopen('testclass.class', 100, 200, 'CODEBASE="/ows-applets"')

generates

<APPLET CODE="testclass.class" height=100 width=200 CODEBASE="/ows-applets">

Table 128–5 APPLETOPEN Procedure Parameters

Parameter Description

ccode The the value for the CODE attribute which specifies the name of the
applet class.

cheight The value for the HEIGHT attribute.

cwidth The value for the WIDTH attribute.

cattributes The other attributes to be included as-is in the tag.

APPLETOPEN Procedure

128-22 PL/SQL Packages and Types Reference

Usage Notes
■ Specify parameters to the Java applet using the PARAM Procedure procedure

on page 128-109.

■ Use the cattributes parameter to specify the CODEBASE attribute since the
PL/SQL cartridge does not know where to find the class files. The CODEBASE
attribute specifies the virtual path containing the class files.

Summary of HTP Subprograms

HTP 128-23

AREA Procedure

This procedure generates the <AREA> tag, which defines a client-side image map.
The <AREA> tag defines areas within the image and destinations for the areas.

Syntax
HTP.AREA (

ccoords IN VARCHAR2
cshape IN VARCHAR2 DEFAULT NULL,
chref IN VARCHAR2 DEFAULT NULL,
cnohref IN VARCHAR2 DEFAULT NULL,
ctarget IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<AREA COORDS="ccoords" SHAPE="cshape" HREF="chref" NOHREF TARGET="ctarget"
cattributes>

Table 128–6 AREA Procedure Parameters

Parameter Description

ccords The the value for the COORDS attribute.

cshape The value for the SHAPE attribute.

chref The value for the HREF attribute.

cnohref If the value for this parameter is not NULL, the NOHREF attribute is
added to the tag.

ctarget The value for the TARGET attribute.

cattributes The other attributes to be included as-is in the tag.

BASE Procedure

128-24 PL/SQL Packages and Types Reference

BASE Procedure

This procedure generates the <BASE> tag which records the URL of the document.

Syntax
HTP.BASE (

ctarget IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BASE HREF="<current URL>" TARGET="ctarget" cattributes>

Table 128–7 BASE Procedure Parameters

Parameter Description

ctarget The value for the TARGET attribute which establishes a window name to
which all links in this document are targeted.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-25

BASEFONT Procedure

This procedure generates the <BASEFONT> tag which specifies the base font size for
a Web page.

Syntax
HTP.BASEFONT (

nsize IN INTEGER);

Parameters

Examples
This procedure generates

<BASEFONT SIZE="nsize">

Table 128–8 BASEFONT Procedure Parameters

Parameter Description

nsize The value for the SIZE attribute.

BGSOUND Procedure

128-26 PL/SQL Packages and Types Reference

BGSOUND Procedure

This procedure generates the <BGSOUND> tag which includes audio for a Web page.

Syntax
HTP.BGSOUND (

csrc IN VARCHAR2,
cloop IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

Table 128–9 BGSOUND Procedure Parameters

Parameter Description

csrc The value for the SRC attribute.

cloop The value for the LOOP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-27

BIG Procedure

This procedure generates the <BIG> and </BIG> tags which direct the browser to
render the text in a bigger font.

Syntax
HTP.BIG (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BIG cattributes>ctext</BIG>

Table 128–10 BIG Procedure Parameters

Parameter Description

ctext The the text that goes between the tags.

cattributes The other attributes to be included as-is in the tag.

BLOCKQUOTECLOSE Procedure

128-28 PL/SQL Packages and Types Reference

BLOCKQUOTECLOSE Procedure

This procedure generates the </BLOCKQUOTE> tag which mark the end of a section
of quoted text. You mark the beginning of a section of text by means of the
BLOCKQUOTEOPEN Procedure.

Syntax
HTP.BLOCKQUOTECLOSE;

Examples
This procedure generates

</BLOCKQUOTE>

Summary of HTP Subprograms

HTP 128-29

BLOCKQUOTEOPEN Procedure

This procedure generates the <BLOCKQUOTE> tag, which marks the beginning of a
section of quoted text. You mark the end of a section of text by means of the
BLOCKQUOTECLOSE Procedure.

Syntax
HTP.BLOCKQUOTEOPEN (

cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BLOCKQUOTE CLEAR="cclear" NOWRAP cattributes>

Table 128–11 BLOCKQUOTEOPEN Procedure Parameters

Parameter Description

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
added to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

BODYCLOSE Procedure

128-30 PL/SQL Packages and Types Reference

BODYCLOSE Procedure

This procedure generates the </BODY> tag which marks the end of a body section
of an HTML document.You mark the beginning of a body section by means of the
BODYOPEN Procedure.

Syntax
HTP.BODYCLOSE;

Examples
This procedure generates

</BODY>

Summary of HTP Subprograms

HTP 128-31

BODYOPEN Procedure

This procedure generates the <BODY> tag which marks the beginning of the body
section of an HTML document. You mark the end of a body section by means of the
BODYCLOSE Procedure.

Syntax
HTP.BODYOPEN (

cbackground IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BODY background="cbackground" cattributes>

so that

HTP.BODYOPEN('/img/background.gif');

generates:

<BODY background="/img/background.gif">

Table 128–12 BODYOPEN Procedure Parameters

Parameter Description

cbackground The value for the BACKGROUND attribute which specifies a graphic file to
use for the background of the document.

cattributes The other attributes to be included as-is in the tag.

BOLD Procedure

128-32 PL/SQL Packages and Types Reference

BOLD Procedure

This procedure generates the and tags which direct the browser to
display the text in boldface.

Syntax
HTP.BOLD (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<B cattributes>ctext

Table 128–13 BOLD Procedure Parameters

Parameter Description

ctext The text that goes between the tags.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-33

BR Procedure

This procedure generates the
 tag which begins a new line of text. It performs
the same operation as the NL Procedure.

Syntax
HTP.BR(

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BR CLEAR="cclear" cattributes>

Table 128–14 BR Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

CENTER Procedure

128-34 PL/SQL Packages and Types Reference

CENTER Procedure

This procedure generates the <CENTER> and </CENTER> tags which center a
section of text within a Web page.

Syntax
HTP.CENTER (

ctext IN VARCHAR2);

Parameters

Examples
This procedure generates

<CENTER>ctext</CENTER>

Table 128–15 CENTER Parameters

Parameter Description

ctext The text that goes between the tags.

Summary of HTP Subprograms

HTP 128-35

CENTERCLOSE Procedure

This procedure generates the </CENTER> tag which marks the end of a section of
text to center. You mark the beginning of a of a section of text to center by means of
the CENTEROPEN Procedure.

Syntax
HTP.CENTERCLOSE;

Examples
This procedure generates

</CENTER>

CENTEROPEN Procedure

128-36 PL/SQL Packages and Types Reference

CENTEROPEN Procedure

This procedure generates the <CENTER> tag which mark the beginning of a section
of text to center.You mark the beginning of a of a section of text to center by means
of the CENTERCLOSE Procedure.

Syntax
HTP.CENTEROPEN;

Examples
This procedure generates

<CENTER>

Summary of HTP Subprograms

HTP 128-37

CITE Procedure

This procedure generates the <CITE> and </CITE> tags which direct the browser
to render the text as a citation.

Syntax
HTP.CITE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<CITE cattributes>ctext</CITE>

Table 128–16 CITE Procedure Parameters

Parameter Description

ctext The text to render as citation.

cattributes The other attributes to be included as-is in the tag.

CODE Procedure

128-38 PL/SQL Packages and Types Reference

CODE Procedure

This procedure generates the <CODE> and </CODE> tags which direct the browser
to render the text in monospace font or however "code" is defined stylistically.

Syntax
HTP.CODE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<CODE cattributes>ctext</CODE>

Table 128–17 CODE Procedure Parameters

Parameter Description

ctext The text to render as code.

cattributes The other attributes to be included as-is in the tag

Summary of HTP Subprograms

HTP 128-39

COMMENT Procedure

This procedure generates the comment tags.

Syntax
HTP.COMMENT (

ctext IN VARCHAR2);

Parameters

Examples
This procedure generates

<!-- ctext -->

Table 128–18 COMMENT Procedure Parameters

Parameter Description

ctext The comment.

DFN Procedure

128-40 PL/SQL Packages and Types Reference

DFN Procedure

This procedure generates the <DFN> and </DFN> tags which direct the browser to
mark the text in italics or however "definition" is described stylistically.

Syntax
HTP.DFN (

ctext IN VARCHAR2);

Parameters

Examples
This procedure generates

<DFN>ctext</DFN>

Table 128–19 DFN Procedure Parameters

Parameter Description

ctext The text to render in italics.

Summary of HTP Subprograms

HTP 128-41

DIRLISTCLOSE Procedure

This procedure generates the </DIR> tag which ends a directory list section. You
start a directory list section with the DIRLISTOPEN Procedure.

Syntax
HTP.DIRLISTCLOSE;

Usage Notes
A directory list presents a list of items that contains up to 20 characters. Items in this
list are typically arranged in columns, 24 characters wide. Insert the tag
directly or invoke the LISTITEM Procedure so that the tag appears directly
after the </DIR> tag to define the items as a list.

Examples
This procedure generates

</DIR>

DIRLISTOPEN Procedure

128-42 PL/SQL Packages and Types Reference

DIRLISTOPEN Procedure

This procedure generates the <DIR> which starts a directory list section. You end a
directory list section with the DIRLISTCLOSE Procedure.

Syntax
HTP.DIRLISTOPEN;

Usage Notes
A directory list presents a list of items that contains up to 20 characters. Items in this
list are typically arranged in columns, 24 characters wide. Insert the tag
directly or invoke the LISTITEM Procedure so that the tag appears directly
after the </DIR> tag to define the items as a list.

Examples
This procedure generates

<DIR>

Summary of HTP Subprograms

HTP 128-43

DIV Procedure

This procedure generates the <DIV> tag which creates document divisions.

Syntax
HTP.DIV (

calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<DIV ALIGN="calign" cattributes>

Table 128–20 DIV Procedure Parameters

Parameter Description

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

DLISTCLOSE Procedure

128-44 PL/SQL Packages and Types Reference

DLISTCLOSE Procedure

This procedure generates the </DL> tag which ends a definition list. You start a
definition list by means of the DLISTOPEN Procedure.

Syntax
HTP.DLISTCLOSE;

Usage Notes
A definition list looks like a glossary: it contains terms and definitions. Terms are
inserted using the DLISTTERM Procedure and definitions are inserted using the
DLISTDEF Procedure.

Examples
This procedure generates

</DL>

Summary of HTP Subprograms

HTP 128-45

DLISTOPEN Procedure

This procedure generates the <DL> tag which starts a definition list. You end a
definition list by means of the DLISTCLOSE Procedure.

Syntax
HTP.DLISTOPEN (

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
A definition list looks like a glossary: it contains terms and definitions. Terms are
inserted using the DLISTTERM Procedure and definitions are inserted using the
DLISTDEF Procedure.

Examples
This procedure generates

<DL CLEAR="cclear" cattributes>

Table 128–21 DLISTOPEN Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

DLISTDEF Procedure

128-46 PL/SQL Packages and Types Reference

DLISTDEF Procedure

This procedure generates the <DD> tag, which inserts definitions of terms. Use this
tag for a definition list <DL>. Terms are tagged <DT> and definitions are tagged
<DD>.

Syntax
HTP.DLISTDEF (

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<DD CLEAR="cclear" cattributes>ctext

Table 128–22 DLISTDEF Procedure Parameters

Parameter Description

ctext The definition of the term.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-47

DLISTTERM Procedure

This procedure generates the <DT> tag which defines a term in a definition list
<DL>.

Syntax
HTP.DLISTTERM (

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<DT CLEAR="cclear" cattributes>ctext

Table 128–23 DLISTERM Procedure Parameters

Parameter Description

ctext The term.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

EM Procedure

128-48 PL/SQL Packages and Types Reference

EM Procedure

This procedure generates the and tags, which define text to be
emphasized. It performs the same task as the EMPHASIS Procedure.

Syntax
HTP.EM(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<EM cattributes>ctext

Table 128–24 EM Procedure Parameters

Parameter Description

ctext The text to emphasize.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-49

EMPHASIS Procedure

This procedure generates the and tags, which define text to be
emphasized. It performs the same task as the EM Procedure.

Syntax
HTP.EMPHASIS(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<EM cattributes>ctext

Table 128–25 EMPHASIS Procedure Parameters

Parameter Description

ctext The text to emphasize.

cattributes The other attributes to be included as-is in the tag.

ESCAPE_SC Procedure

128-50 PL/SQL Packages and Types Reference

ESCAPE_SC Procedure

This procedure replaces characters that have special meaning in HTML with their
escape sequences. The following characters are converted:

■ & to &

■ " to ":

■ < to <

■ > to >

This procedure performs the same operation as PRINTS Procedures and PS
Procedure.

Syntax
HTP.ESCAPE_SC(

ctext IN VARCHAR2);

Parameters

Table 128–26 ESCAPE_SC Procedure Parameters

Parameter Description

ctext The text string to convert.

Summary of HTP Subprograms

HTP 128-51

FONTCLOSE Procedure

This procedure generates the tag which marks the end of a section of text
with the specified font characteristics. You mark the beginning of the section text by
means of the FONTOPEN Procedure.

Syntax
HTP.FONTCLOSE;

Examples
This procedure generates

FONTOPEN Procedure

128-52 PL/SQL Packages and Types Reference

FONTOPEN Procedure

This procedure generates the which marks the beginning of section of text
with the specified font characteristics. You mark the end of the section text by
means of the FONTCLOSE Procedure.

Syntax
HTP.FONTOPEN(

ccolor IN VARCHAR2 DEFAULT NULL,
cface IN VARCHAR2 DEFAULT NULL,
csize IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

Table 128–27 FONTOPEN Procedure Parameters

Parameter Description

ccolor The value for the COLOR attribute.

cface The value for the FACE attribute

csize The value for the SIZE attribute

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-53

FORMCHECKBOX Procedure

This procedure generates the <INPUT> tag with TYPE="checkbox" which inserts
a checkbox element in a form. A checkbox element is a button that the user toggles
on or off.

Syntax
HTP.FORMCHECKBOX(

cname IN VARCHAR2,
cvalue IN VARCHAR2 DEFAULT 'ON',
cchecked IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue" CHECKED cattributes>

Table 128–28 FORMCHECKBOX Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cchecked If the value for this parameter is not NULL, the CHECKED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FORMCLOSE Procedure

128-54 PL/SQL Packages and Types Reference

FORMCLOSE Procedure

This procedure generates the </FORM> tag which marks the end of a form section in
an HTML document.You mark the beginning of the form section by means of the
FORMOPEN Procedure.

Syntax
HTP.FORMCLOSE;

Examples
This procedure generates

</FORM>

Summary of HTP Subprograms

HTP 128-55

FORMOPEN Procedure

This procedure generates the <FORM> tag which marks the beginning of a form
section in an HTML document. You mark the end of the form section by means of
the FORMCLOSE Procedure.

Syntax
HTP.FORMOPEN(

curl IN VARCHAR2,
cmethod IN VARCHAR2 DEFAULT 'POST',
ctarget IN VARCHAR2 DEFAULT NULL,
cenctype IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<FORM ACTION="curl" METHOD="cmethod" TARGET="ctarget" ENCTYPE="cenctype"
cattributes>

Table 128–29 FORMOPEN Procedure Parameters

Parameter Description

curl The URL of the WRB or CGI script where the contents of the form is
sent. This parameter is required.

cmethod The value for the METHOD attribute. The value can be "GET" or "POST".

ctarget The value for the TARGET attribute.

cenctype The value for the ENCTYPE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMFILE Procedure

128-56 PL/SQL Packages and Types Reference

FORMFILE Procedure

This procedure generates the <INPUT> tag with TYPE="file" which inserts a file
form element. This is used for file uploading for a given page.

Syntax
HTP.FORMFILE(

cname IN VARCHAR2,
caccept IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="file" NAME="cname" ACCEPT="caccept" cattributes>

Table 128–30 FORMFILE Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

caccept A comma-delimited list of MIME types for upload.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-57

FORMHIDDEN Procedure

This procedure generates the <INPUT> tag with TYPE="hidden", which inserts a
hidden form element. This element is not seen by the user. It submits additional
values to the script.

Syntax
HTP.FORMHIDDEN(

cname IN VARCHAR2,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="hidden" NAME="cname" VALUE="cvalue" cattributes>

Table 128–31 FORMHIDDEN Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMIMAGE Procedure

128-58 PL/SQL Packages and Types Reference

FORMIMAGE Procedure

This procedure generates the <INPUT> tag with TYPE="image" which creates an
image field that the user clicks to submit the form immediately. The coordinates of
the selected point are measured in pixels, and returned (along with other contents
of the form) in two name/value pairs. The x coordinate is submitted under the
name of the field with .x appended, and the y coordinate with .y appended. Any
VALUE attribute is ignored.

Syntax
HTP.FORMIMAGE(

cname IN VARCHAR2,
csrc IN VARCHAR2,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="image" NAME="cname" SRC="csrc" ALIGN="calign" cattributes>

Table 128–32 FORMIMAGE Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

csrc The value for the SRC attribute that specifies the image file.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-59

FORMPASSWORD Procedure

This procedure generates the <INPUT> tag with TYPE="password" which creates
a single-line text entry field. When the user enters text in the field, each character is
represented by one asterisk. This is used for entering passwords.

Syntax
HTP.FORMPASSWORD(

cname IN VARCHAR2,
csize IN VARCHAR2,
cmaxlength IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="password" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength"
VALUE="cvalue" cattributes>

Table 128–33 FORMPASSWORD Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

csize The value for the SIZE attribute.

cmaxlength The value for the MAXLENGTH attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMRADIO Procedure

128-60 PL/SQL Packages and Types Reference

FORMRADIO Procedure

This procedure generates the <INPUT> tag with TYPE="radio", which creates a
radio button on the HTML form. Within a set of radio buttons, the user selects only
one. Each radio button in the same set has the same name, but different values. The
selected radio button generates a name/value pair.

Syntax
HTP.FORMRADIO(

cname IN VARCHAR2,
cvalue IN VARCHAR2,
cchecked IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="radio" NAME="cname" VALUE="cvalue" CHECKED cattributes>

Table 128–34 FORMRADIO Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cchecked If the value for this parameter is not NULL, the CHECKED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-61

FORMRESET Procedure

This procedure generates the <INPUT> tag with TYPE="reset" which creates a
button that, when selected, resets the form fields to their initial values.

Syntax
HTP.FORMRESET(

cvalue IN VARCHAR2 DEFAULT 'Reset',
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="reset" VALUE="cvalue" cattributes>

Table 128–35 FORMRESET Procedure Parameters

Parameter Description

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMSELECTCLOSE Procedure

128-62 PL/SQL Packages and Types Reference

FORMSELECTCLOSE Procedure

This procedure generates the </SELECT> tag which marks the end of a Select form
element. A Select form element is a listbox where the user selects one or more
values. You mark the beginning of Select form element by means of the
FORMSELECTOPEN Procedure.The values are inserted using
FORMSELECTOPTION Procedure.

Syntax
HTP.FORMSELECTCLOSE;

Examples
This procedure generates

</SELECT>

as shown under Examples of the FORMSELECTOPEN Procedure.

Summary of HTP Subprograms

HTP 128-63

FORMSELECTOPEN Procedure

This procedure generates the <SELECT> tags which creates a Select form element. A
Select form element is a listbox where the user selects one or more values. You mark
the end of Select form element by means of the FORMSELECTCLOSE
Procedure.The values are inserted using FORMSELECTOPTION Procedure.

Syntax
FORMSELECTOPEN(

cname IN VARCHAR2,
cprompt IN VARCHAR2 DEFAULT NULL,
nsize IN INTEGER DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

cprompt <SELECT NAME="cname" SIZE="nsize" cattributes>
</SELECT>

so that

HTP.FORMSELECTOPEN('greatest_player';
'Pick the greatest player:');

HTP.FORMSELECTOPTION('Messier');
HTP.FORMSELECTOPTION('Howe');
HTP.FORMSELECTOPTION('Gretzky');.
HTP.FORMSELECTCLOSE;

generates

Table 128–36 FORMSELECTOPEN Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cprompt The string preceding the list box.

nsize The value for the SIZE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMSELECTOPEN Procedure

128-64 PL/SQL Packages and Types Reference

Pick the greatest player:
<SELECT NAME="greatest_player">
<OPTION>Messier
<OPTION>Howe
<OPTION>Gretzky
</SELECT>

Summary of HTP Subprograms

HTP 128-65

FORMSELECTOPTION Procedure

This procedure generates the <OPTION> tag which represents one choice in a Select
element.

Syntax
HTP.FORMSELECTOPTION(

cvalue IN VARCHAR2,
cselected IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<OPTION SELECTED cattributes>cvalue

as shown under Examples of the FORMSELECTOPEN Procedure.

Table 128–37 FORMSELECTOPTION Procedure Parameters

Parameter Description

cvalue The text for the option.

cvalue If the value for this parameter is not NULL, the SELECTED attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FORMSUBMIT Procedure

128-66 PL/SQL Packages and Types Reference

FORMSUBMIT Procedure

This procedure generates the <INPUT> tag with TYPE="submit" which creates a
button that, when clicked, submits the form. If the button has a NAME attribute, the
button contributes a name/value pair to the submitted data.

Syntax
HTP.FORMSUBMIT(

cname IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT 'Submit',
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="submit" NAME="cname" VALUE="cvalue" cattributes>

Table 128–38 FORMSUBMIT Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-67

FORMTEXT Procedure

This procedure generates the <INPUT> tag with TYPE="text", which creates a
field for a single line of text.

Syntax
HTP.FORMTEXT(

cname IN VARCHAR2,
csize IN VARCHAR2 DEFAULT NULL,
cmaxlength IN VARCHAR2 DEFAULT NULL,
cvalue IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<INPUT TYPE="text" NAME="cname" SIZE="csize" MAXLENGTH="cmaxlength"
VALUE="cvalue" cattributes>

Table 128–39 FORMTEXT Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

csize The value for the SIZE attribute.

cmaxlength The value for the MAXLENGTH attribute.

cvalue The value for the VALUE attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREA Procedure

128-68 PL/SQL Packages and Types Reference

FORMTEXTAREA Procedure

This procedure generates the <TEXTAREA> tag, which creates a text field that has no
predefined text in the text area. This field enables entering several lines of text. The
same operation is performed by the FORMTEXTAREA2 Procedure which in
addition has the cwrap parameter that lets you specify a wrap style.

Syntax
HTP.FORMTEXTAREA(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign"
cattributes></TEXTAREA>

Table 128–40 FORMTEXTAREA Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-69

FORMTEXTAREA2 Procedure

This procedure generates the <TEXTAREA> tag, which creates a text field that has no
predefined text in the text area. This field enables entering several lines of text.The
same operation is performed by the FORMTEXTAREA Procedure except that in that
case you cannot specify a wrap style.

Syntax
HTP.FORMTEXTAREA2(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP="cwrap"
cattributes></TEXTAREA>

Table 128–41 FORMTEXTAREA2 Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREACLOSE Procedure

128-70 PL/SQL Packages and Types Reference

FORMTEXTAREACLOSE Procedure

This procedure generates the </TEXTAREA> tag which ends a text area form
element. You open a text area element by means of eitherFORMTEXTAREAOPEN
Procedure or FORMTEXTAREAOPEN2 Procedure.

Syntax
HTP.FORMTEXTAREACLOSE;

Examples
This procedure generates

</TEXTAREA>

Summary of HTP Subprograms

HTP 128-71

FORMTEXTAREAOPEN Procedure

This procedure generates the <TEXTAREA> which marks the beginning of a text
area form element. The same operation is performed by the
FORMTEXTAREAOPEN2 Procedure which in addition has the cwrap parameter
that lets you specify a wrap style. You mark the end of a text area form element by
means of the FORMTEXTAREACLOSE Procedure.

Syntax
HTP.FORMTEXTAREAOPEN(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" cattributes>

Table 128–42 FORMTEXTAREAOPEN Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

FORMTEXTAREAOPEN2 Procedure

128-72 PL/SQL Packages and Types Reference

FORMTEXTAREAOPEN2 Procedure

This procedure generates the <TEXTAREA> which marks the beginning of a text
area form element. The same operation is performed by the
FORMTEXTAREAOPEN Procedure except that in that case you cannot specify a
wrap style. You mark the end of a text area form element by means of the
FORMTEXTAREACLOSE Procedure.

Syntax
HTP.FORMTEXTAREAOPEN2(

cname IN VARCHAR2,
nrows IN INTEGER,
ncolumns IN INTEGER,
calign IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TEXTAREA NAME="cname" ROWS="nrows" COLS="ncolumns" ALIGN="calign" WRAP =
"cwrap" cattributes>

Table 128–43 FORMTEXTAREAOPEN2 Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

nrows The value for the ROWS attribute.This is an integer.

ncolumns The value for the COLS attribute.This is an integer.

calign The value for the ALIGN attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-73

FRAME Procedure

This procedure generates the <FRAME> tag which defines the characteristics of a
frame created by a <FRAMESET> tag.

Syntax
HTP.FRAME(

csrc IN VARCHAR2,
cname IN VARCHAR2 DEFAULT NULL,
cmarginwidth IN VARCHAR2 DEFAULT NULL,
cmarginheight IN VARCHAR2 DEFAULT NULL,
cscrolling IN VARCHAR2 DEFAULT NULL,
cnoresize IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<FRAME SRC="csrc" NAME="cname" MARGINWIDTH="cmarginwidth"
MARGINHEIGHT="cmarginheight" SCROLLING="cscrolling" NORESIZE cattributes>

Table 128–44 FRAME Procedure Parameters

Parameter Description

csrc The URL to display in the frame.

cname The value for the NAME attribute.

cmarginwidth The value for the MARGINWIDTH attribute.

cscrolling The value for the SCROLLING attribute.

cnoresize If the value for this parameter is not NULL, the NORESIZE attribute is
added to the tag.

cattributes The other attributes to be included as-is in the tag.

FRAMESETCLOSE Procedure

128-74 PL/SQL Packages and Types Reference

FRAMESETCLOSE Procedure

This procedure generates the </FRAMESET> tag which ends a frameset section. You
mark the beginning of a frameset section by means of the FRAMESETOPEN
Procedure.

Syntax
HTP.FRAMESETCLOSE;

Examples
This procedure generates

</FRAMESET>

Summary of HTP Subprograms

HTP 128-75

FRAMESETOPEN Procedure

This procedure generates the <FRAMESET> tag which define a frameset section. You
mark the end of a frameset section by means of the FRAMESETCLOSE Procedure.

Syntax
HTP.FRAMESETOPEN(

crows IN VARCHAR2 DEFAULT NULL,
ccols IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<FRAMESET ROWS="crows" COLS="ccols" cattributes>

Table 128–45 FRAMESETOPEN Procedure Parameters

Parameter Description

crows The value for the ROWS attribute.

ccols The value for the COLS attribute.

cattributes The other attributes to be included as-is in the tag.

HEADCLOSE Procedure

128-76 PL/SQL Packages and Types Reference

HEADCLOSE Procedure

This procedure generates the </HEAD> tag which marks the end of an HTML
document head section. You mark the beginning of an HTML document head
section by means of the HEADOPEN Procedure.

Syntax
HTP.HEADCLOSE;

Examples
This procedure generates

</HEAD>

Summary of HTP Subprograms

HTP 128-77

HEADOPEN Procedure

This procedure generates the <HEAD> tag which marks the beginning of the HTML
document head section. You mark the end of an HTML document head section by
means of the HEADCLOSE Procedure.

Syntax
HTP.HEADOPEN;

Examples
This procedure generates

<HEAD>

HEADER Procedure

128-78 PL/SQL Packages and Types Reference

HEADER Procedure

This procedure generates opening heading tags (<H1> to <H6>) and their
corresponding closing tags (</H1> to </H6>).

Syntax
HTP.HEADER(

nsize IN INTEGER,
cheader IN VARCHAR2,
calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
HTP.header (1,'Overview');

produces:

<H1>Overview</H1>

Table 128–46 HEADER Procedure Parameters

Parameter Description

nsize The the heading level. This is an integer between 1 and 6.

cheader The text to display in the heading.

calign The value for the ALIGN attribute.

cnowrap The value for the NOWRAP attribute.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-79

HR Procedure

This procedure generates the <HR> tag, which generates a line in the HTML
document.This subprogram performs the same operation as the LINE Procedure.

Syntax
HTP.HR(

cclear IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

Table 128–47 HR Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

csrc The value for the SRC attribute which specifies a custom image as the
source of the line.

cattributes The other attributes to be included as-is in the tag.

HTMLCLOSE Procedure

128-80 PL/SQL Packages and Types Reference

HTMLCLOSE Procedure

This procedure generates the </HTML> tag which marks the end of an HTML
document. You use the HTMLOPEN Procedure to mark the beginning of an HTML
document.

Syntax
HTP.HTMLCLOSE;

Examples
This procedure generates

</HTML>

Summary of HTP Subprograms

HTP 128-81

HTMLOPEN Procedure

This procedure generates the <HTML> tag which marks the beginning of an HTML
document. You use the HTMLCLOSE Procedure to mark the end of the an HTML
document.

Syntax
HTP.HTMLOPEN;

Examples
This procedure generates

<HTML>

IMG Procedure

128-82 PL/SQL Packages and Types Reference

IMG Procedure

This procedure generates the tag which directs the browser to load an image
onto the HTML page. The IMG2 Procedure performs the same operation but
additionally uses the cusemap parameter.

Syntax
HTP.IMG(

curl IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
calt IN VARCHAR2 DEFAULT NULL,
cismap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

Table 128–48 IMG Procedure Parameters

Parameter Description

curl The value for the SRC attribute.

calign The value for the ALIGN attribute.

calt The value for the ALT attribute which specifies alternative text to
display if the browser does not support images.

cismap If the value for this parameter is not NULL, the ISMAP attribute is added
to the tag. The attribute indicates that the image is an imagemap.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-83

IMG2 Procedure

This procedure generates the tag, which directs the browser to load an
image onto the HTML page. The IMG Procedure performs the same operation but
does not use the cusemap parameter.

Syntax
HTP.IMG2(

curl IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
calt IN VARCHAR2 DEFAULT NULL,
cismap IN VARCHAR2 DEFAULT NULL,
cusemap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

Table 128–49 IMG2 Procedure Parameters

Parameter Description

curl The value for the SRC attribute.

calign The value for the ALIGN attribute.

calt The value for the ALT attribute which specifies alternative text to
display if the browser does not support images.

cismap If the value for this parameter is not NULL, the ISMAP attribute is added
to the tag. The attribute indicates that the image is an imagemap.

cusemap The value for the USEMAP attribute which specifies a client-side image
map.

cattributes The other attributes to be included as-is in the tag.

ISINDEX Procedure

128-84 PL/SQL Packages and Types Reference

ISINDEX Procedure

This procedure creates a single entry field with a prompting text, such as "enter
value," then sends that value to the URL of the page or program.

Syntax
HTP.ISINDEX(

cprompt IN VARCHAR2 DEFAULT NULL,
curl IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<ISINDEX PROMPT="cprompt" HREF="curl">

Table 128–50 ISINDEX Procedure Parameters

Parameter Description

cprompt The value for the PROMPT attribute.

curl The value for the HREF attribute.

Summary of HTP Subprograms

HTP 128-85

ITALIC Procedure

This procedure generates the <I> and </I> tags which direct the browser to render the
text in italics.

Syntax
HTP.ITALIC(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<I cattributes>ctext</I>

Table 128–51 ITALIC Procedure Parameters

Parameter Description

ctext The text to be rendered in italics.

cattributes The other attributes to be included as-is in the tag.

KBD Procedure

128-86 PL/SQL Packages and Types Reference

KBD Procedure

This procedure generates the <KBD> and </KBD> tags which direct the browser to
render the text in monospace font. This subprogram performs the same operation as
the KEYBOARD Procedure.

Syntax
HTP.KBD(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<KBD cattributes>ctext</KBD>

Table 128–52 KBD Procedure Parameters

Parameter Description

ctext The text to be rendered in monospace.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-87

KEYBOARD Procedure

This procedure generates the <KBD> and </KBD> tags, which direct the browser to
render the text in monospace font. This subprogram performs the same operation as
the KBD Procedure.

Syntax
HTP.KEYBOARD(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<KBD cattributes>ctext</KBD>

Table 128–53 KEYBOARD Procedure Parameters

Parameter Description

ctext The text to be rendered in monospace.

cattributes The other attributes to be included as-is in the tag.

LINE Procedure

128-88 PL/SQL Packages and Types Reference

LINE Procedure

This procedure generates the <HR> tag, which generates a line in the HTML
document. This subprogram performs the same operation as the HR Procedure.

Syntax
HTP.LINE(

cclear IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<HR CLEAR="cclear" SRC="csrc" cattributes>

Table 128–54 LINE Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

csrc The value for the SRC attribute which specifies a custom image as the
source of the line.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-89

LINKREL Procedure

This procedure generates the <LINK> tag with the REL attribute which delineates
the relationship described by the hypertext link from the anchor to the target. This
is only used when the HREF attribute is present. This is the opposite of LINKREV
Procedure. This tag indicates a relationship between documents but does not create
a link. To create a link, use the ANCHOR Procedure.

Syntax
HTP.LINKREL(

crel IN VARCHAR2,
curl IN VARCHAR2,
ctitle IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<LINK REL="crel" HREF="curl" TITLE="ctitle">

Table 128–55 LINKREL Procedure Parameters

Parameter Description

crel The value for the REL attribute.

curl The value for the URL attribute.

ctitle The value for the TITLE attribute.

LINKREV Procedure

128-90 PL/SQL Packages and Types Reference

LINKREV Procedure

This procedure generates the <LINK> tag with the REV attribute which delineates
the relationship described by the hypertext link from the target to the anchor. This is
the opposite of the LINKREL Procedure. This tag indicates a relationship between
documents, but does not create a link. To create a link, use the ANCHOR Procedure.

Syntax
HTP.LINKREV(

crev IN VARCHAR2,
curl IN VARCHAR2,
ctitle IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<LINK REV="crev" HREF="curl" TITLE="ctitle">

Table 128–56 LINKREV Procedure Parameters

Parameter Description

crel The value for the REV attribute.

curl The value for the URL attribute.

ctitle The value for the TITLE attribute.

Summary of HTP Subprograms

HTP 128-91

LISTHEADER Procedure

This procedure generates the <LH> and </LH> tags which print an HTML tag at the
beginning of the list.

Syntax
HTP.LISTHEADER(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<LH cattributes>ctext</LH>

Table 128–57 LISTHEADER Procedure Parameters

Parameter Description

ctext The text to place between <LH> and </LH>.

cattributes The other attributes to be included as-is in the tag.

LISTINGCLOSE Procedure

128-92 PL/SQL Packages and Types Reference

LISTINGCLOSE Procedure

This procedure generates the </LISTING> tags which marks the end of a section of
fixed-width text in the body of an HTML page. To mark the beginning of a section
of fixed-width text in the body of an HTML page, use the LISTINGOPEN
Procedure.

Syntax
HTP.LISTINGCLOSE;

Examples
This procedure generates

</LISTING>

Summary of HTP Subprograms

HTP 128-93

LISTINGOPEN Procedure

This procedure generates the <LISTING> tag which marks the beginning of a
section of fixed-width text in the body of an HTML page. To mark the end of a
section of fixed-width text in the body of an HTML page, use the LISTINGCLOSE
Procedure.

Syntax
HTP.LISTINGOPEN;

Examples
This procedure generates

<LISTING>

LISTITEM Procedure

128-94 PL/SQL Packages and Types Reference

LISTITEM Procedure

This procedure generates the tag, which indicates a list item.

Syntax
HTP.LISTITEM(

ctext IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cdingbat IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<LI CLEAR="cclear" DINGBAT="cdingbat" SRC="csrc" cattributes>ctext

Table 128–58 LISTITEM Procedure Parameters

Parameter Description

ctext The text for the list item.

cclear The value for the CLEAR attribute.

cdingbat The value for the DINGBAT attribute.

csrc The value for the SRC attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-95

MAILTO Procedure

This procedure generates the <A> tag with the HREF set to 'mailto' prepended to the
mail address argument.

Syntax
HTP.MAILTO(

caddress IN VARCHAR2,
ctext IN VARCHAR2,
cname IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

ctext

so that

HTP.mailto('pres@white_house.gov','Send Email to the President');

generates:

Send Email to the President

Table 128–59 MAILTO Procedure Parameters

Parameter Description

caddress The email address of the recipient.

ctext The clickable portion of the link.

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

MAPCLOSE Procedure

128-96 PL/SQL Packages and Types Reference

MAPCLOSE Procedure

This procedure generates the </MAP> tag which marks the end of a set of regions in
a client-side image map. To mark the beginning of a set of regions in a client-side
image map, use the MAPOPEN Procedure.

Syntax
HTP.MAPCLOSE;

Examples
This procedure generates

</MAP>

Summary of HTP Subprograms

HTP 128-97

MAPOPEN Procedure

This procedure generates the <MAP> tag which mark the beginning of a set of
regions in a client-side image map. To mark the end of a set of regions in a
client-side image map, use the MAPCLOSE Procedure.

Syntax
HTP.MAPOPEN(

cname IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<MAP NAME="cname" cattributes>

Table 128–60 MAPOPEN Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cattributes The other attributes to be included as-is in the tag.

MENULISTCLOSE Procedure

128-98 PL/SQL Packages and Types Reference

MENULISTCLOSE Procedure

This procedure generates the </MENU> tag which ends a list that presents one line
for each item. To begin a list of this kind, use the MENULISTOPEN Procedure. The
items in the list appear more compact than an unordered list. The LISTITEM
Procedure defines the list items in a menu list.

Syntax
HTP.MENULISTCLOSE;

Examples
This procedure generates

</MENU>

Summary of HTP Subprograms

HTP 128-99

MENULISTOPEN Procedure

This procedure generates the <MENU> tag which create a list that presents one line
for each item. To end a list of this kind, use the MENULISTCLOSE Procedure.The
items in the list appear more compact than an unordered list. The LISTITEM
Procedure defines the list items in a menu list.

Syntax
HTP.MENULISTOPEN;

Examples
This procedure generates

<MENU>

META Procedure

128-100 PL/SQL Packages and Types Reference

META Procedure

This procedure generates the <META> tag, which embeds meta-information about
the document and also specifies values for HTTP headers. For example, you can
specify the expiration date, keywords, and author name.

Syntax
HTP.META(

chttp_equiv IN VARCHAR2,
cname IN VARCHAR2,
ccontent IN VARCHAR2);

Parameters

Examples
This procedure generates

<META HTTP-EQUIV="chttp_equiv" NAME ="cname" CONTENT="ccontent">

so that

HTP.meta ('Refresh', NULL, 120);

generates

<META HTTP-EQUIV="Refresh" CONTENT=120>

On some Web browsers, this causes the current URL to be reloaded automatically
every 120 seconds.

Table 128–61 META Procedure Parameters

Parameter Description

chttp_equiv The value for the CHTTP_EQUIV attribute.

cname The value for the NAME attribute.

ccontent The value for the CONTENT attribute.

Summary of HTP Subprograms

HTP 128-101

NL Procedure

This procedure generates the
 tag which begins a new line of text. It performs
the same operation as the BR Procedure.

Syntax
HTP.NL(

cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<BR CLEAR="cclear" cattributes>

Table 128–62 NL Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

NOBR Procedure

128-102 PL/SQL Packages and Types Reference

NOBR Procedure

This procedure generates the <NOBR> and </NOBR> tags which turn off
line-breaking in a section of text.

Syntax
HTP.NOBR(
ctext IN VARCHAR2);

Parameters

Examples
This procedure generates

<NOBR>ctext</NOBR>

Table 128–63 NOBR Procedure Parameters

Parameter Description

ctext The text that is to be rendered on one line.

Summary of HTP Subprograms

HTP 128-103

NOFRAMESCLOSE Procedure

This procedure generates the </NOFRAMES> tag which marks the end of a
no-frames section. To mark the beginning of a no-frames section, use the
FRAMESETOPEN Procedure. See also FRAME Procedure, FRAMESETOPEN Procedure
and FRAMESETCLOSE Procedure.

Syntax
HTP.NOFRAMESCLOSE;

Examples
This procedure generates

</NOFRAMES>

NOFRAMESOPEN Procedure

128-104 PL/SQL Packages and Types Reference

NOFRAMESOPEN Procedure

This procedure generates the <NOFRAMES> tag which mark the beginning of a
no-frames section. To mark the end of a no-frames section, use the
FRAMESETCLOSE Procedure. See also FRAME Procedure, FRAMESETOPEN Procedure
and FRAMESETCLOSE Procedure.

Syntax
HTP.NOFRAMESOPEN;

Examples
This procedure generates

<NOFRAMES>

Summary of HTP Subprograms

HTP 128-105

OLISTCLOSE Procedure

This procedure generates the tag which defines the end of an ordered list.
An ordered list presents a list of numbered items. To mark the beginning of a list of
this kind, use the OLISTOPEN Procedure. Numbered items are added using
LISTITEM Procedure.

Syntax
HTP.OLISTCLOSE;

Examples
This procedure generates

OLISTOPEN Procedure

128-106 PL/SQL Packages and Types Reference

OLISTOPEN Procedure

This procedure generates the tag which marks the beginning of an ordered
list. An ordered list presents a list of numbered items. To mark the end of a list of
this kind, use the OLISTCLOSE Procedure. Numbered items are added using
LISTITEM Procedure.

Syntax
HTP.OLISTOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<OL CLEAR="cclear" WRAP="cwrap" cattributes>

Table 128–64 OLISTOPEN Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwrap The value for the WRAP attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-107

PARA Procedure

This procedure generates the <P> tag which indicates that the text that comes after
the tag is to be formatted as a paragraph. You can add attributes to the tag by means
of the PARAGRAPH Procedure.

Syntax
HTP.PARA;

Examples
This procedure generates

<P>

PARAGRAPH Procedure

128-108 PL/SQL Packages and Types Reference

PARAGRAPH Procedure

You can use this procedure to add attributes to the <P> tag created by the PARA
Procedure.

Syntax
HTP.PARAGRAPH(

calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<P ALIGN="calign" NOWRAP CLEAR="cclear" cattributes>

Table 128–65 PARAGRAPH Procedure Parameters

Parameter Description

calign The value for the ALIGN attribute.

cnowrap If the value for this parameter is not NULL, the NOWRAP attribute is
added to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-109

PARAM Procedure

This procedure generates the <PARAM> tag which specifies parameter values for
Java applets. The values can reference HTML variables. To invoke a Java applet
from a Web page, use APPLETOPEN Procedure to begin the invocation. Use one
PARAM Procedure for each desired name-value pair, and use APPLETCLOSE
Procedure to end the applet invocation.

Syntax
HTP.PARAM(

cname IN VARCHAR2
cvalue IN VARCHAR2);

Parameters

Examples
This procedure generates

<PARAM NAME=cname VALUE="cvalue">

Table 128–66 PARAM Procedure Parameters

Parameter Description

cname The value for the NAME attribute.

cvalue The value for the VALUE attribute.

PLAINTEXT Procedure

128-110 PL/SQL Packages and Types Reference

PLAINTEXT Procedure

This procedure generates the <PLAINTEXT> and </PLAINTEXT> tags which direct
the browser to render the text they surround in fixed-width type.

Syntax
HTP.PLAINTEXT(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<PLAINTEXT cattributes>ctext</PLAINTEXT>

Table 128–67 PLAINTEXT Procedure Parameters

Parameter Description

ctext The text to be rendered in fixed-width font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-111

PRECLOSE Procedure

This procedure generates the </PRE> tag which marks the end of a section of
preformatted text in the body of the HTML page. To mark the beginning of a section
of preformatted text in the body of the HTML page, use the PREOPEN Procedure.

Syntax
HTP.PRECLOSE;

Examples
This procedure generates

</PRE>

PREOPEN Procedure

128-112 PL/SQL Packages and Types Reference

PREOPEN Procedure

This procedure generates the <PRE> tag which marks the beginning of a section of
preformatted text in the body of the HTML page. To mark the end of a section of
preformatted text in the body of the HTML page, use the PRECLOSE Procedure.

Syntax
HTP.PREOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwidth IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<PRE CLEAR="cclear" WIDTH="cwidth" cattributes>

Table 128–68 PREOPEN Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwidth The value for the WIDTH attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-113

PRINT Procedures

These procedures generate the specified parameter as a string terminated with the
\n newline character. The PRN Procedures performs the same operation but does
not terminate with a newline character.

Syntax
HTP.PRINT (
 cbuf IN VARCHAR2);

HTP.PRINT (
 dbuf IN DATE);

HTP.PRINT (
 nbuf IN NUMBER);

Parameters

Usage Notes
■ The \n character is not the same as
. The \n character formats the HTML

source but it does not affect how the browser renders the HTML source. Use

 to control how the browser renders the HTML source.

■ These procedures do not have function equivalents.

Table 128–69 PRINT Procedure Parameters

Parameter Description

cbuf The string to generate terminated by a newline.

dbuf The string to generate terminated by a newline.

nbuf The string to generate terminated by a newline.

PRINTS Procedure

128-114 PL/SQL Packages and Types Reference

PRINTS Procedure

This procedure generates a string and replaces the following characters with the
corresponding escape sequence.

■ < to <

■ > to >

■ " to "

■ & to &

If not replaced, the special characters are interpreted as HTML control characters
and produce garbled output. This procedure an the PS Procedure perform the same
operation as the PRN Procedures but with character substitution.

Syntax
HTP.PRINTS (
 ctext IN VARCHAR2);

Parameters

Usage Notes
This procedure does not have an HTF function equivalent (see Operational Notes
on page 128-2 for the HTF implementation).

Table 128–70 PRINTS Procedure Parameters

Parameter Description

ctext The string where to perform character substitution.

Summary of HTP Subprograms

HTP 128-115

PRN Procedures

These procedures generate the specified parameter as a string. Unlike the PRINT
Procedures the string is not terminated with the \n newline character.

Syntax
HTP.PRN (
 cbuf IN VARCHAR2);

HTP.PRN (
 dbuf IN DATE);

HTP.PRN (
 nbuf IN NUMBER);

Parameters

Usage Notes
These procedures do not have function equivalents.

Table 128–71 PRN Procedure Parameters

Parameter Description

cbuf The string to generate (not terminated by a newline).

dbuf The string to generate (not terminated by a newline).

nbuf The string to generate (not terminated by a newline).

PS Procedure

128-116 PL/SQL Packages and Types Reference

PS Procedure

This procedure generates a string and replaces the following characters with the
corresponding escape sequence.

■ < to <

■ > to >

■ " to "

■ & to &

If not replaced, the special characters are interpreted as HTML control characters
and produce garbled output. This procedure and the PRINTS Procedure perform
the same operation as the PRN Procedures but with character substitution.

Syntax
HTP.PS (
 ctext IN VARCHAR2);

Parameters

Usage Notes
This procedure does not have an HTF function equivalent (see Operational Notes
on page 128-2 for the HTF implementation).

Table 128–72 PS Procedure Parameters

Parameter Description

ctext The string where to perform character substitution.

Summary of HTP Subprograms

HTP 128-117

S Procedure

This procedure generates the <S> and </S> tags which direct the browser to render
the text they surround in strikethrough type. This performs the same operation as
STRIKE Procedure.

Syntax
HTP.S (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<S cattributes>ctext</S>

Table 128–73 S Procedure Parameters

Parameter Description

ctext The text to be rendered in strikethrough type.

cattributes The other attributes to be included as-is in the tag.

SAMPLE Procedure

128-118 PL/SQL Packages and Types Reference

SAMPLE Procedure

This procedure generates the <SAMP> and </SAMP> tags which direct the browser
to render the text they surround in monospace font or however "sample" is defined
stylistically.

Syntax
HTP.SAMPLE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<SAMP cattributes>ctext</SAMP>

Table 128–74 SAMPLE Procedure Parameters

Parameter Description

ctext The text to be rendered in monospace font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-119

SCRIPT Procedure

This procedure generates the <SCRIPT> and </SCRIPT> tags which contain a
script written in languages such as JavaScript and VBscript.

Syntax
HTP.SCRIPT (

cscript IN VARCHAR2,
clanguage IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<SCRIPT LANGUAGE=clanguage>cscript</SCRIPT>

so that

HTP.script ('Erupting_Volcano', 'Javascript');

generates

<SCRIPT LANGUAGE=Javascript>"script text here"</SCRIPT>

This causes the browser to run the script enclosed in the tags.

Table 128–75 SCRIPT Procedure Parameters

Parameter Description

cscript The text of the script. This is the text that makes up the script itself, not
the name of a file containing the script.

clanguage The language in which the script is written. If this parameter is omitted,
the user's browser determines the scripting language.

SMALL Procedure

128-120 PL/SQL Packages and Types Reference

SMALL Procedure

This procedure generates the <SMALL> and </SMALL> tags, which direct the
browser to render the text they surround using a small font.

Syntax
HTP.SMALL (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<SMALL cattributes>ctext</SMALL>

Table 128–76 SMALL Procedure Parameters

Parameter Description

ctext The text to be rendered in small font.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-121

STRIKE Procedure

This procedure generates the <STRIKE> and </STRIKE> tags which direct the
browser to render the text they surround in strikethrough type. This performs the
same operation as S Procedure.

Syntax
HTP.STRIKE (

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<STRIKE cattributes>ctext</STRIKE>

Table 128–77 STRIKE Procedure Parameters

Parameter Description

ctext The text to be rendered in strikethrough type.

cattributes The other attributes to be included as-is in the tag.

STRONG Procedure

128-122 PL/SQL Packages and Types Reference

STRONG Procedure

This procedure generates the and tags which direct the
browser to render the text they surround in bold or however "strong" is defined.

Syntax
HTP.STRONG(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<STRONG cattributes>ctext

Table 128–78 STRONG Procedure Parameters

Parameter Description

ctext The text to be emphasized.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-123

STYLE Procedure

This procedure generates the <STYLE> and </STYLE> tags which include a style
sheet in a Web page. You can get more information about style sheets at
http://www.w3.org. This feature is not compatible with browsers that support only
HTML versions 2.0 or earlier. Such browsers will ignore this tag.

Syntax
HTP.STYLE(

cstyle IN VARCHAR2);

Parameters

Examples
This procedure generates

<STYLE>cstyle</STYLE>

Table 128–79 STYLE Procedure Parameters

Parameter Description

cstyle The the style information to include.

SUB Procedure

128-124 PL/SQL Packages and Types Reference

SUB Procedure

This procedure generates the _{and} tags which direct the browser to
render the text they surround as subscript.

Syntax
HTP.SUB(

ctext IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

_{ctext}

Table 128–80 SUB Procedure Parameters

Parameter Description

ctext The text to render in subscript.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-125

SUP Procedure

This procedure generates the ^{and} tags which direct the browser to
render the text they surround as superscript.

Syntax
HTP.SUP(

ctext IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

^{ctext}

Table 128–81 SUP Procedure Parameters

Parameter Description

ctext The text to render in superscript.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

TABLECAPTION Procedure

128-126 PL/SQL Packages and Types Reference

TABLECAPTION Procedure

This procedure generates the <CAPTION> and </CAPTION> tags which place a
caption in an HTML table.

Syntax
HTP.TABLECAPTION(

ccaption IN VARCHAR2,
calign in VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<CAPTION ALIGN="calign" cattributes>ccaption</CAPTION>

Table 128–82 TABLECAPTION Procedure Parameters

Parameter Description

ctext The text for the caption.

calign The value for the ALIGN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-127

TABLEDATA Procedure

This procedure generates the <TD> and </TD> tags which insert data into a cell of
an HTML table.

Syntax
HTP.TABLEDATA(

cvalue IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
crowspan IN VARCHAR2 DEFAULT NULL,
ccolspan IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TD ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP
cattributes>cvalue</TD>

Table 128–83 TABLEDATA Procedure Parameters

Parameter Description

cvalue The data for the cell in the table.

calign The value for the ALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

ccolspan The value for the COLSPAN attribute.

cattributes The other attributes to be included as-is in the tag.

TABLEHEADER Procedure

128-128 PL/SQL Packages and Types Reference

TABLEHEADER Procedure

This procedure generates the <TH> and </TH> tags which insert a header cell in an
HTML table. The <TH> tag is similar to the <TD> tag except that the text in this case
the rows are usually rendered in bold type.

Syntax
HTP.TABLEHEADER(

cvalue IN VARCHAR2 DEFAULT NULL,
calign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
crowspan IN VARCHAR2 DEFAULT NULL,
ccolspan IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TH ALIGN="calign" DP="cdp" ROWSPAN="crowspan" COLSPAN="ccolspan" NOWRAP
cattributes>cvalue</TH>

Table 128–84 TABLEHEADER Procedure Parameters

Parameter Description

cvalue The data for the cell in the table.

calign The value for the ALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

crispen The value for the ROWSPAN attribute.

ccolspan The value for the COLSPAN attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-129

TABLECLOSE Procedure

This procedure generates the </TABLE> tag which marks the end of an HTML
table. To define the beginning of an HTML table, use the TABLEOPEN Procedure.

Syntax
HTP.TABLECLOSE;

Examples
This procedure generates

</TABLE>

TABLEOPEN Procedure

128-130 PL/SQL Packages and Types Reference

TABLEOPEN Procedure

This procedure generates the <TABLE> tag which marks the beginning of an HTML
table. To define the end of an HTML table, use the TABLECLOSE Procedure.

Syntax
HTP.TABLEOPEN(

cborder IN VARCHAR2 DEFAULT NULL
calign IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cclear IN VARCHAR2 DEFAULT NULL
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TABLE "cborder" NOWRAP ALIGN="calign" CLEAR="cclear" cattributes>

Table 128–85 TABLEOPEN Procedure Parameters

Parameter Description

border The value for the BORDER attribute.

calign The value for the ALIGN attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

cclear The value for the CLEAR attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-131

TABLEROWCLOSE Procedure

This procedure generates the </TR> tag which marks the end of a new row in an
HTML table. To mark the beginning of a new row, use the TABLEROWOPEN
Procedure.

Syntax
HTP.TABLEROWCLOSE;

Examples
This procedure generates

</TABLE>

TABLEROWOPEN Procedure

128-132 PL/SQL Packages and Types Reference

TABLEROWOPEN Procedure

This procedure generates the <TR> tag which marks the beginning of a new row in
an HTML table. To mark the end of a new row, use the TABLEROWCLOSE
Procedure.

Syntax
HTP.TABLEROWOPEN(

calign IN VARCHAR2 DEFAULT NULL,
cvalign IN VARCHAR2 DEFAULT NULL,
cdp IN VARCHAR2 DEFAULT NULL,
cnowrap IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<<TR ALIGN="calign" VALIGN="cvalign" DP="cdp" NOWRAP catttributes>

Table 128–86 TABLEROWOPEN Procedure Parameters

Parameter Description

calign The value for the ALIGN attribute.

cvalign The value for the VALIGN attribute.

cdp The value for the DP attribute.

cnowrap If the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-133

TELETYPE Procedure

This procedure generates the <TT> and </TT> tags which direct the browser to
render the text they surround in a fixed width typewriter font, for example, the
courier font.

Syntax
HTP.TELETYPE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<TT cattributes>ctext</TT>

Table 128–87 TELETYPE Procedure Parameters

Parameter Description

ctext The text to render in a fixed width typewriter font.

cattributes The other attributes to be included as-is in the tag.

TITLE Procedure

128-134 PL/SQL Packages and Types Reference

TITLE Procedure

This procedure generates the <TITLE> and </TITLE> tags which specify the text
to display in the titlebar of the browser window.

Syntax
HTP.TITLE(

ctitle IN VARCHAR2);

Parameters

Examples
This procedure generates

<TITLE>ctitle</TITLE>

Table 128–88 TITLE Procedure Parameters

Parameter Description

ctitle The text to display in the titlebar of the browser window.

Summary of HTP Subprograms

HTP 128-135

ULISTCLOSE Procedure

This procedure generates the tag which marks the end of an unordered list.
An unordered list presents items with bullets. To mark the beginning of an
unordered list, use the ULISTOPEN Procedure. Add list items with LISTITEM
Procedure.

Syntax
HTP.ULISTCLOSE;

Examples
This procedure generates

</TABLE>

ULISTOPEN Procedure

128-136 PL/SQL Packages and Types Reference

ULISTOPEN Procedure

This procedure generates the tag which marks the beginning of an unordered
list. An unordered list presents items with bullets. To mark the end of an unordered
list, use the ULISTCLOSE Procedure. Add list items with LISTITEM Procedure.

Syntax
HTP.ULISTOPEN(

cclear IN VARCHAR2 DEFAULT NULL,
cwrap IN VARCHAR2 DEFAULT NULL,
cdingbat IN VARCHAR2 DEFAULT NULL,
csrc IN VARCHAR2 DEFAULT NULL,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<UL CLEAR="cclear" WRAP="cwrap" DINGBAT="cdingbat" SRC="csrc" cattributes>

Table 128–89 ULISTOPEN Procedure Parameters

Parameter Description

cclear The value for the CLEAR attribute.

cwrap The value for the WRAP attribute.

cdingbat The value for the DINGBAT attribute.

csrc The value for the SRC attribute.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-137

UNDERLINE Procedure

This procedure generates the <U> and </U> tags, which direct the browser to
render the text they surround with an underline.

Syntax
HTP.UNDERLINE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<U cattributes>ctext</U>

Table 128–90 UNDERLINE Procedure Parameters

Parameter Description

ctext The text to render with an underline.

cattributes The other attributes to be included as-is in the tag.

VARIABLE Procedure

128-138 PL/SQL Packages and Types Reference

VARIABLE Procedure

This procedure generates the <VAR> and </VAR> tags which direct the browser to
render the text they surround in italics or however "variable" is defined stylistically.

Syntax
HTP.VARIABLE(

ctext IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
This procedure generates

<VAR cattributes>ctext</VAR>

Table 128–91 VARIABLE Procedure Parameters

Parameter Description

ctext The text to render in italics.

cattributes The other attributes to be included as-is in the tag.

Summary of HTP Subprograms

HTP 128-139

WBR Procedure

This procedure generates the <WBR> tag, which inserts a soft line break within a
section of NOBR text.

Syntax
HTP.WBR;

Examples
This procedure generates

<WBR>

WBR Procedure

128-140 PL/SQL Packages and Types Reference

OWA_CACHE 129-1

129
OWA_CACHE

The OWA_CACHE package provides an interface that enables the PL/SQL Gateway
cache to improve the performance of PL/SQL web applications.

The chapter contains the following topics:

■ Using OWA_CACHE

■ Summary of OWA_CACHE Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_CACHE

129-2 PL/SQL Packages and Types Reference

Using OWA_CACHE

■ Constants

Constants

■ system_level CONSTANT VARCHAR(6) := 'SYSTEM';

■ user_level CONSTANT VARCHAR(4) := 'USER';

Summary of OWA_CACHE Subprograms

OWA_CACHE 129-3

Summary of OWA_CACHE Subprograms

Table 129–1 OWA_CACHE Package Subprograms

Subprogram Description

DISABLE Procedure on
page 129-4

Disables the cache for this particular request

GET_ETAG Function on
page 129-5

Returns the tag associated with the cached content (used
in the Validation technique model only)

GET_LEVEL Function on
page 129-6

Returns the caching level (used in the Validation
technique model only)

SET_CACHE Procedure on
page 129-7

Sets up the cache headers for validation model cache
type

SET_EXPIRES Procedure on
page 129-8

Sets up the cache headers for expires model cache type

SET_NOT_MODIFIED
Procedure on page 129-9

Sets up the headers for a not modified cache hit (used in
the Validation technique model only)

SET_SURROGATE_CONTROL
Procedure on page 129-10

Sets up the headers for a surrogate-control header for
web cache

DISABLE Procedure

129-4 PL/SQL Packages and Types Reference

DISABLE Procedure

This procedure disables the cache for this particular request.

Syntax
OWA_CACHE.DISABLE;

Summary of OWA_CACHE Subprograms

OWA_CACHE 129-5

GET_ETAG Function

This function returns the tag associated with the cached content. It is used in the
Validation technique only.

Syntax
OWA_CACHE.GET_ETAG
 RETURN VARCHAR2;

Return Values
The tag for cache hit, otherwise NULL.

GET_LEVEL Function

129-6 PL/SQL Packages and Types Reference

GET_LEVEL Function

This returns the caching level. It is used in the Validation technique model only.

Syntax
OWA_CACHE.GET_LEVEL
 RETURN VARCHAR2;

Return Values
The caching level string ('USER' or 'SYSTEM') for cache hit, otherwise NULL.

Summary of OWA_CACHE Subprograms

OWA_CACHE 129-7

SET_CACHE Procedure

This sets up the cache headers for validation model cache type.

Syntax
OWA_CACHE.SET_CACHE(
 p_etag IN VARCHAR2,
 p_level IN VARCHAR2);

Parameters

Exceptions
VALUE_ERROR is thrown if

■ p_etag is greater than 55

■ p_level is not 'USER' or 'SYSTEM'

Table 129–2 SET_CACHE Procedure Parameters

Parameter Description

p_etag The etag associated with this content

p_level The caching level ('USER' or 'SYSTEM').

SET_EXPIRES Procedure

129-8 PL/SQL Packages and Types Reference

SET_EXPIRES Procedure

This procedure sets up the cache headers for expires model cache type.

Syntax
OWA_CACHE.SET_EXPIRES(
 p_expires IN NUMBER,
 p_level IN VARCHAR2);

Parameters

Exceptions
VALUE_ERROR is thrown if

■ p_expires is negative or zero

■ p_level is not 'USER' or 'SYSTEM'

■ p_expires is > 525600 (1 year)

Table 129–3 SET_EXPIRES Procedure Parameters

Parameter Description

p_expires The number of minutes this content is valid.

p_level The caching level ('USER' or 'SYSTEM').

Summary of OWA_CACHE Subprograms

OWA_CACHE 129-9

SET_NOT_MODIFIED Procedure

This procedure sets up the headers for a not-modified cache hit. It is used in the
Validation technique only.

Syntax
OWA_CACHE.SET_NOT_MODIFIED;

Exceptions
VALUE_ERROR is thrown if If the etag was not passed in

SET_SURROGATE_CONTROL Procedure

129-10 PL/SQL Packages and Types Reference

SET_SURROGATE_CONTROL Procedure

This procedure sets the headers for a surrogate-control header for web cache

Syntax
OWA_CACHE.SET_SURROGATE_CONTROL(
 p_value IN VARCHAR2);

Parameters

Exceptions
VALUE_ERROR is thrown if If p_value is greater than 55 in length.

Table 129–4 SET_SURROGATE_CONTROL Procedure Parameters

Parameter Description

p_value The value to be passed as the Surrogate-Control header.

OWA_COOKIE 130-1

130
OWA_COOKIE

The OWA_COOKIE package provides an interface for sending and retrieving HTTP
cookies from the client's browser.

The chapter contains the following topics:

■ Using OWA_COOKIE

■ Overview

■ Types

■ Rules and Limits

■ Summary of OWA_COOKIE Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_COOKIE

130-2 PL/SQL Packages and Types Reference

Using OWA_COOKIE

■ Overview

■ Types

■ Rules and Limits

Overview

Cookies are opaque strings sent to the browser to maintain state between HTTP
calls. State can be maintained throughout the client's sessions, or longer if an
expiration date is included. The system date is calculated with reference to the
information specified in the OWA_CUSTOM package.

Types

This data type contains cookie name-value pairs. Since the HTTP standard allows
cookie names to be overloaded (that is, multiple values can be associated with the
same cookie name), there is a PL/SQL RECORD holding all values associated with a
given cookie name.

TYPE vc_arr IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER.

TYPE COOKIE IS RECORD (
name VARCHAR2(4000),
vals vc_arr,
num_vals INTEGER);

Rules and Limits

All HTTP headers must be in English and the ASCII character set. If the headers are
generated from the database, verify they are created in the English language.

Summary of OWA_COOKIE Subprograms

OWA_COOKIE 130-3

Summary of OWA_COOKIE Subprograms

Table 130–1 OWA_COOKIE Package Subprograms

Subprogram Description

GET Function on page 130-4 Gets the value of the specified cookie

GET_ALL Procedure on
page 130-5

Gets all cookie name-value pairs

REMOVE Procedure on
page 130-6

Removes the specified cookie

SEND procedure on page 130-7 Generates a "Set-Cookie" line in the HTTP header

GET Function

130-4 PL/SQL Packages and Types Reference

GET Function

This function returns the values associated with the specified cookie. The values are
returned in a OWA_COOKIE.COOKIE DATA TYPE.

Syntax
OWA_COOKIE.GET(
 name IN VARCHAR2)
 RETURN COOKIE;

Parameters

Return Values
OWA_COOKIE.COOKIE DATA TYPE.

Table 130–2 GET Procedure Parameters

Parameter Description

name The name of the cookie.

Summary of OWA_COOKIE Subprograms

OWA_COOKIE 130-5

GET_ALL Procedure

This procedure returns all cookie names and their values from the client's browser.
The values appear in the order in which they were sent from the browser.

Syntax
OWA_COOKIE.GET_ALL(

names OUT vc_arr,
vals OUT vc_arr,
num_vals OUT INTEGER);

Parameters

Table 130–3 GET_ALL Procedure Parameters

Parameter Description

names The names of the cookies.

vals The values of the cookies.

num_vals The number of cookie-value pairs.

REMOVE Procedure

130-6 PL/SQL Packages and Types Reference

REMOVE Procedure

This procedure forces a cookie to expire immediately by setting the "expires" field of
a Set-Cookie line in the HTTP header to "01-Jan-1990". This procedure must be
called within the context of an HTTP header.

Syntax
OWA_COOKIE.REMOVE(

name IN VARCHAR2,
val IN VARCHAR2,
path IN VARCHAR2 DEFAULT NULL);

Parameters

Table 130–4 REMOVE Procedure Parameters

Parameter Description

name The name of the cookie to expire.

val The value of the cookie.

path [Currently unused]

Summary of OWA_COOKIE Subprograms

OWA_COOKIE 130-7

SEND procedure

This procedure generates a Set-Cookie line, which transmits a cookie to the client.
This procedure must occur in the context of an HTTP header.

Syntax
OWA_COOKIE.SEND(

name in varchar2,
value in varchar2,
expires in date DEFAULT NULL,
path in varchar2 DEFAULT NULL,
domain in varchar2 DEFAULT NULL,
secure in varchar2 DEFAULT NULL);

Parameters

Table 130–5 SEND Procedure Parameters

Parameter Description

name The name of the cookie.

value The value of the cookie.

expires The date at which the cookie will expire

path The value for the path field.

domain The value for the domain field.

secure If the value of this parameter is not NULL, the "secure" field is
added to the line.

SEND procedure

130-8 PL/SQL Packages and Types Reference

OWA_CUSTOM 131-1

131
OWA_CUSTOM

The OWA_CUSTOM package provides a Global PLSQL Agent Authorization callback
function. It is used when PLSQL Agent's authorization scheme is set to GLOBAL or
CUSTOM when there is no overriding OWA_CUSTOM package.

The chapter contains the following topics:

■ Using OWA_CUSTOM

■ Constants

■ Summary of OWA_CUSTOM Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_CUSTOM

131-2 PL/SQL Packages and Types Reference

Using OWA_CUSTOM

■ Constants

Constants

■ dbms_server_timezone CONSTANT VARCHAR2(3) := 'PST';

■ dbms_server_gmtdiff CONSTANT NUMBER := NULL;

Summary of OWA_CUSTOM Subprograms

OWA_CUSTOM 131-3

Summary of OWA_CUSTOM Subprograms

Table 131–1 OWA_CUSTOM Package Subprograms

Subprogram Description

AUTHORIZE Function on
page 131-4

Provides a Global PLSQL Agent Authorization callback
function

AUTHORIZE Function

131-4 PL/SQL Packages and Types Reference

AUTHORIZE Function

This function is used when PLSQL Agent's authorization scheme is set to GLOBAL
or CUSTOM when there is no overriding OWA_CUSTOM package.

Syntax
OWA_CUSTOM.AUTHORIZE
 RETURN BOOLEAN;

OWA_IMAGE 132-1

132
OWA_IMAGE

The OWA_IMAGE package provides an interface to access the coordinates where a
user clicked on an image.

The chapter contains the following topics:

■ Using OWA_IMAGE

■ Overview

■ Types

■ Variables

■ Examples

■ Summary of OWA_IMAGE Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_IMAGE

132-2 PL/SQL Packages and Types Reference

Using OWA_IMAGE

■ Overview

■ Types

■ Variables

■ Examples

Overview

Use this package when you have any image map whose destination links invoke
the PL/SQL Gateway.

Types

This data type (point) contain the X and Y values of a coordinate, and so provides
the coordinates of a user's click on an imagemap. It is defined as:

TYPE POINT IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER

Variables

This package variable (null_point) of TYPE POINT is used to default point
parameters. Both the X and the Y fields of this variable are NULL.

Examples

CREATE OR REPLACE PROCEDURE process_image
 (my_img in OWA_IMAGE.POINT)
 AS
 x integer := OWA_IMAGE.GET_X(my_img);
 y integer := OWA_IMAGE.GET_Y(my_img);
BEGIN
 /* process the coordinate */
END

Summary of OWA_IMAGE Subprograms

OWA_IMAGE 132-3

Summary of OWA_IMAGE Subprograms

Table 132–1 OWA_IMAGE Package Subprograms

Subprogram Description

GET_X Function on page 132-4 Gets the X value of a point type

GET_Y Function on page 132-5 Gets the Y value of a point type

GET_X Function

132-4 PL/SQL Packages and Types Reference

GET_X Function

This function returns the X coordinate of the point where the user clicked on an
image map.

Syntax
OWA_IMAGE.GET_X(
 p IN point)
 RETURN INTEGER;

Parameters

Return Values
The X coordinate as an integer.

Table 132–2 GET_X Procedure Parameters

Parameter Description

p The point where the user clicked.

Summary of OWA_IMAGE Subprograms

OWA_IMAGE 132-5

GET_Y Function

This function returns the Y coordinate of the point where the user clicked on an
image map.

Syntax
OWA_IMAGE.GET_Y(
 p IN point)
 RETURN INTEGER;

Parameters

Return Values
The Y coordinate as an integer.

Table 132–3 GET_Y Procedure Parameters

Parameter Description

p The point where the user clicked.

GET_Y Function

132-6 PL/SQL Packages and Types Reference

OWA_OPT_LOCK 133-1

133
OWA_OPT_LOCK

The OWA_OPT_LOCK package contains subprograms that impose optimistic locking
strategies so as to prevent lost updates.

This chapter contains the following topics:

■ Using OWA_OPT_LOCK

■ Overview

■ Types

■ Summary of OWA_OPT_LOCK Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_OPT_LOCK

133-2 PL/SQL Packages and Types Reference

Using OWA_OPT_LOCK

■ Overview

■ Types

Overview

The OWA_OPT_LOCK package contains subprograms that impose optimistic
locking strategies, so as to prevent lost updates.

 It checks if the row that the user is interested in updating has been changed by
someone else in the meantime.

The PL/SQL Gateway cannot use conventional database locking schemes because
HTTP is a stateless protocol. The OWA_OPT_LOCK package gives you two ways of
dealing with the lost update problem:

■ The hidden fields method stores the previous values in hidden fields in the
HTML page. When the user requests an update, the PL/SQL Gateway checks
these values against the current state of the database. The update operation is
performed only if the values match. To use this method, call the
owa_opt_lock.store_values procedure.

■ The checksum method stores a checksum rather than the values themselves. To
use this method, call the owa_opt_lock.checksum function.

These methods are optimistic. They do not prevent other users from performing
updates, but they do reject the current update if an intervening update has
occurred.

Types

This data type is a PL/SQL table intended to hold ROWIDs.

TYPE VCARRAY IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER

Note that this is different from the OWA_TEXT.VC_ARR DATA TYPE.

Summary of OWA_OPT_LOCK Subprograms

OWA_OPT_LOCK 133-3

Summary of OWA_OPT_LOCK Subprograms

Table 133–1 OWA_CACHE Package Subprograms

Subprogram Description

CHECKSUM Functions on
page 133-4

Returns the checksum value

GET_ROWID Function on
page 133-5

Returns the ROWID value

STORE_VALUES Procedure
on page 133-6

Stores unmodified values in hidden fields for later
verification

VERIFY_VALUES Function
on page 133-7

Verifies the stored values against modified values

CHECKSUM Functions

133-4 PL/SQL Packages and Types Reference

CHECKSUM Functions

This function returns a checksum value for a specified string, or for a row in a
table. For a row in a table, the function calculates the checksum value based on the
values of the columns in the row. This function comes in two versions.

The first version returns a checksum based on the specified string. This is a "pure"
32-bit checksum executed by the database and based on the Internet 1 protocol.

The second version returns a checksum based on the values of a row in a table.
This is a "impure" 32-bit checksum based on the Internet 1 protocol.

Syntax
OWA_OPT_LOCK.CHECKSUM(

p_buff IN VARCHAR2)
 RETURN NUMBER;

OWA_OPT_LOCK.CHECKSUM(
p_owner IN VARCHAR2,
p_tname IN VARCHAR2,
p_rowid IN ROWID)

 RETURN NUMBER;

Parameters

Table 133–2 CHECKSUM Procedure Parameters

Parameter Description

p_buff The nstring where you want to calculate the checksum.

p_owner The owner of the table.

p_tname The table name.

p_rowid The row in p_tname where you want to calculate the
checksum value. Use the GET_ROWID Function to convert
VCARRAY values to proper rowids.

Summary of OWA_OPT_LOCK Subprograms

OWA_OPT_LOCK 133-5

GET_ROWID Function

This function returns the ROWID data type from the specified OWA_OPT_
LOCK.VCARRAY DATA TYPE.

Syntax
OWA_OPT_LOCK.GET_ROWID(
 p_old_values IN vcarray)
 RETURN ROWID;

Parameters

Table 133–3 GET_ROWID Procedure Parameters

Parameter Description

p_old_values This parameter is usually passed in from an HTML form.

STORE_VALUES Procedure

133-6 PL/SQL Packages and Types Reference

STORE_VALUES Procedure

This procedure stores the column values of the row that you want to update later.
The values are stored in hidden HTML form elements.

Syntax
OWA_OPT_LOCK.STORE_VALUES(

p_owner IN VARCHAR2,
p_tname IN VARCHAR2,
p_rowid IN ROWID);

Parameters

Usage Notes
Before updating the row, compare these values with the current row values to
ensure that the values in the row have not been changed. If the values have
changed, you can warn the users and let them decide if the update should take
place.

The procedure generates series of hidden form elements:

■ One hidden form element is created for the table owner. The name of the
element is "old_p_tname", where p_tname is the name of the table. The value
of the element is the owner name.

■ One hidden form element is created for the table name. The name of the
element is "old_p_tname", where p_tname is the name of the table. The value
of the element is the table name.

■ One element is created for each column in the row. The name of the element is
"old_p_tname", where p_tname is the name of the table. The value of the
element is the column value.

See also the VERIFY_VALUES Function.

Table 133–4 STORE_VALUES Procedure Parameters

Parameter Description

p_owner The owner of the table.

p_tname The name of the table.

p_rowid The row where you want to store values.

Summary of OWA_OPT_LOCK Subprograms

OWA_OPT_LOCK 133-7

VERIFY_VALUES Function

This function verifies whether values in the specified row have been updated since
the last query. Use this function with the STORE_VALUES Procedure.

Syntax
OWA_OPT_LOCK.VERIFY_VALUES(
 p_old_values IN vcarray)
 RETURN BOOLEAN;

Parameters

Return Values
TRUE if no other update has been performed, otherwise FALSE.

Table 133–5 VERIFY_VALUES Procedure Parameters

Parameter Description

p_old_values A PL/SQL table containing the following information:

■ p_old_values(1) specifies the owner of the table.

■ p_old_values(2) specifies the table.

■ p_old_values(3) specifies the rowid of the row to
verify.

The remaining indexes contain values for the columns in the
table.

Typically, this parameter is passed in from the HTML form,
where you have previously called the STORE_VALUES
Procedure to store the row values on hidden form elements.

VERIFY_VALUES Function

133-8 PL/SQL Packages and Types Reference

OWA_PATTERN 134-1

134
OWA_PATTERN

The OWA_PATTERN package provides an interface to locate text patterns within
strings and replace the matched string with another string.

The chapter contains the following topics:

■ Using OWA_PATTERN

■ Types

■ Operational Notes

■ Summary of OWA_PATTERN Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_PATTERN

134-2 PL/SQL Packages and Types Reference

Using OWA_PATTERN

■ Types

■ Operational Notes

Types

You can use a pattern as both an input and output parameter. Thus, you can pass
the same regular expression to OWA_PATTERN function calls, and it only has to be
parsed once.

■ OWA_PATTERN.PATTERN

Operational Notes

The OWA_PATTERN subprograms are overloaded. Specifically, there are six
versions of MATCH, and four each of AMATCH and CHANGE. The subprograms use the
following parameters:

■ line - This is the target to be examined for a match. It can be more than one
line of text or a owa_text.multi_line data type.

■ pat - This is the pattern that the subprograms attempt to locate in line. The
pattern can contain regular expressions. In the owa_pattern.change function
and procedure, this parameter is called from_str.

■ flags - This specifies whether the search is case-sensitive or if substitutions are
done globally.

Use regular expressions with the subprograms in this package. You Specify a
regular expression by creating the string you want to match interspersed with
various wildcard tokens and quantifiers.

■ Wildcards

■ Quantifiers

■ Flags

Wildcards
Wildcard tokens match something other than themselves:

Using OWA_PATTERN

OWA_PATTERN 134-3

Quantifiers
Any tokens except & can have their meaning extended by any of the following
quantifiers. You can also apply these quantifiers to literals:
.

Table 134–1 Wildcard tokens recognized by OWA_PATTERN package

Token Description

^ Matches newline or the beginning of the target

$ Matches newline or the end of the target

\n Matches newline

. Matches any character except newline

\t Matches tab

\d Matches digits [0-9]

\D Matches non-digits [not 0-9]

\w Matches word characters (0-9, a-z, A-Z, or _)

\W Matches non-word characters (not 0-9, a-z, A-Z, or _)

\s Matches whitespace characters (blank, tab, or newline).

\S Matches non-whitespace characters (not blank, tab, or newline)

\b Matches "word" boundaries (between \w and \W)

\x<HEX> Matches the value in the current character set of the two hexadecimal digits

\<OCT> Matches the value in the current character set of the two or three octal digits

\ Followed by any character not covered by another case matches that character

& Applies only to CHANGE. This causes the string that matched the regular
expression to be included in the string that replaces it. This differs from the
other tokens in that it specifies how a target is changed rather than how it is
matched. This is explained further under CHANGE Functions and
Procedures.

Table 134–2 Quantifiers

Quantifier Description

? 0 or 1 occurrence(s)

* 0 or more occurrences

+ 1 or more occurrence(s)

Operational Notes

134-4 PL/SQL Packages and Types Reference

Flags
In addition to targets and regular expressions, the OWA_PATTERN functions and
procedures use flags to affect how they are interpreted.

{n} Exactly n occurrences

(n,} At least n occurrences

{n,m} At least n, but not more than m, occurrences

Table 134–3 Flags

Flag Description

i This indicates a case-insensitive search.

g This applies only to CHANGE. It indicates a global replace. That is,
all portions of the target that match the regular expression are
replaced.

Table 134–2 Quantifiers

Quantifier Description

Summary of OWA_PATTERN Subprograms

OWA_PATTERN 134-5

Summary of OWA_PATTERN Subprograms

Table 134–4 OWA_CACHE Package Subprograms

Subprogram Description

AMATCH Function on
page 134-6

Determines if a string contains the specified pattern. It
lets you specify where in the string the match has to
occur

CHANGE Functions and
Procedures on page 134-8

Replaces a pattern within a string. If you call it as a
function it returns the number of times the regular
expression was found and replaced

GETPAT Procedure on
page 134-10

Generates a pattern data type from a VARCHAR2 type

MATCH Function on
page 134-11

Determines if a string contains the specified pattern

AMATCH Function

134-6 PL/SQL Packages and Types Reference

AMATCH Function

This function specifies if a pattern occurs in a particular location in a string. There
are four versions to this function:

■ The first and second versions of the function do not save the matched tokens
(these are saved in the backrefs parameters in the third and fourth versions).
The difference between the first and second versions is the pat parameter,
which can be a VARCHAR2 or a pattern data type.

■ The third and fourth versions of the function save the matched tokens in the
backrefs parameter. The difference between the third and fourth versions is
the pat parameter, which can be a VARCHAR2 or a pattern data type.

Syntax
OWA_PATTERN.AMATCH(

line IN VARCHAR2,
from_loc IN INTEGER,
pat IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

OWA_PATTERN.AMATCH(
line IN VARCHAR2,
from_loc IN INTEGER,
pat IN OUT PATTERN,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

OWA_PATTERN.AMATCH(
line IN VARCHAR2
from_loc IN INTEGER
pat in varchar2
backrefs OUT owa_text.vc_arr
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

OWA_PATTERN.AMATCH(
line IN VARCHAR2

Note: If multiple overlapping strings match the regular
expression, this function takes the longest match.

Summary of OWA_PATTERN Subprograms

OWA_PATTERN 134-7

from_loc IN INTEGER
pat IN OUT PATTERN
backrefs OUT owa_text.vc_arr
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

Parameters

Return Values
The index of the character after the end of the match, counting from the beginning
of line. If there was no match, the function returns 0.

Table 134–5 AMATCH Procedure Parameters

Parameter Description

line The text to search in.

from_loc The location (in number of characters) in line where the
search is to begin.

pat The string to match. It can contain regular expressions. This
can be either a VARCHAR2 or a pattern. If it is a pattern, the
output value of this parameter is the pattern matched.

backrefs The text that is matched. Each token that is matched is placed
in a cell in the OWA_TEXT.VC_ARR DATA TYPE PL/SQL
table.

flags Whether or not the search is case-sensitive. If the value of this
parameter is "i", the search is case-insensitive. Otherwise the
search is case-sensitive.

CHANGE Functions and Procedures

134-8 PL/SQL Packages and Types Reference

CHANGE Functions and Procedures

This function or procedure searches and replaces a string or multi_line data
type. If multiple overlapping strings match the regular expression, this subprogram
takes the longest match.

Syntax
OWA_PATTERN.CHANGE(

line IN OUT VARCHAR2,
from_str IN VARCHAR2,
to_str IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

OWA_PATTERN.CHANGE(
line IN OUT VARCHAR2,
from_str IN VARCHAR2,
to_str IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL);

owa_pattern.change(
mline IN OUT owa_text.multi_line,
from_str IN VARCHAR2,
to_str IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

OWA_PATTERN.CHANGE(
mline IN OUT owa_text.multi_line,
from_str IN VARCHAR2,
to_str IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL);

Parameters

Table 134–6 CHANGE Procedure Parameters

Parameter Description

line The text to search in. The output value of this parameter is the
altered string.

Summary of OWA_PATTERN Subprograms

OWA_PATTERN 134-9

Return Values
As a function, it returns the number of substitutions made. If the flag "g" is not
used, this number can only be 0 or 1 and only the first match is replaced. The flag
"g" specifies to replace all matches with the regular expression.

Examples
Example 1:

OWA_PATTERN.CHANGE('Cats in pajamas', 'C.+in', '& red ')

The regular expression matches the substring "Cats in". It then replaces this string
with "& red". The ampersand character "&" indicates "Cats in" because that is what
matched the regular expression. Thus, this procedure replaces the string "Cats in
pajamas" with "Cats in red" If you call this as a function instead of a procedure,
the value returned is 1, indicating that a single substitution has been made.

Example 2:

CREATE OR REPLACE PROCEDURE test_pattern as theline VARCHAR2(256);
num_found INTEGER;
 BEGIN
 theline := 'what is the goal?';

num_found := OWA_PATTERN.CHANGE(theline, 'goal', 'idea', 'g');
 HTP.PRINT(num_found); -- num_found is 1
 HTP.PRINT(theline); -- theline is 'what is the idea?'
 END;
/
SHOW ERRORS

mline The text to search in. This is a owa_text.multi_line data
type. The output value of this parameter is the altered string.

from_str The regular expression to replace.

to_str The substitution pattern.

flags Whether or not the search is case-sensitive, and whether or not
changes are to be made globally. If "i" is specified, the search is
case-insensitive. If "g" is specified, changes are made to all
matches. Otherwise, the function stops after the first
substitution is made.

Table 134–6 (Cont.) CHANGE Procedure Parameters

Parameter Description

GETPAT Procedure

134-10 PL/SQL Packages and Types Reference

GETPAT Procedure

This procedure converts a VARCHAR2 string into an OWA_PATTERN.PATTERN
DATA TYPE.

Syntax
OWA_PATTERN.GETPAT(
 arg IN VARCHAR2,
 pat IN OUT pattern);

Parameters

Table 134–7 GETPAT Procedure Parameters

Parameter Description

arg The string to convert.

pat the OWA_PATTERN.PATTERN DATA TYPE initialized with
arg.

Summary of OWA_PATTERN Subprograms

OWA_PATTERN 134-11

MATCH Function

This function determines if a string contains the specified pattern. The pattern can
contain regular expressions. If multiple overlapping strings can match the regular
expression, this function takes the longest match.

Syntax
owa_pattern.match(

line IN VARCHAR2,
pat IN VARCHAR2,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

owa_pattern.match(
line IN VARCHAR2,
pat IN OUT PATTERN,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

owa_pattern.match(
line IN VARCHAR2,
pat IN VARCHAR2,
backrefs OUT owa_text.vc_arr,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

OWA_PATTERN.MATCH(
line IN VARCHAR2,
pat IN OUT PATTERN,
backrefs OUT owa_text.vc_arr,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

owa_pattern.match(
mline IN owa_text.multi_line,
pat IN VARCHAR2,
rlist OUT owa_text.row_list,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

OWA_PATTERN.MATCH(
mline IN owa_text.multi_line,
pat IN OUT pattern,

MATCH Function

134-12 PL/SQL Packages and Types Reference

rlist OUT owa_text.row_list,
flags IN VARCHAR2 DEFAULT NULL)

 RETURN BOOLEAN;

Parameters

Return Values
TRUE if a match was found, FALSE otherwise.

Examples
KAZOO is the target where it is searching for the zoo.* regular expression. The
period indicates any character other than newline, and the asterisk matches 0 or
more of the preceding characters. In this case, it matches any character other than
the newline.

Therefore, this regular expression specifies that a matching target consists of zoo,
followed by any set of characters neither ending in nor including a newline (which
does not match the period). The i flag indicates to ignore case in the search. In this
case, the function returns TRUE, which indicates that a match had been found.

boolean foundMatch;

Table 134–8 CHANGE Procedure Parameters

Parameter Description

line The line to search in.

mline The text to search in. This is a owa_text.multi_line data
type..

pat The pattern to match. This is either a VARCHAR2 or a OWA_
PATTERN.PATTERN DATA TYPE. It it is a pattern, the output
value of this parameter is the pattern matched.

backrefs The text that is matched. Each token that is matched is placed
in a cell in the OWA_TEXT.VC_ARR DATA TYPE PL/SQL table.
This parameter is a row_list that holds each string in
the target that was matched by a sequence of tokens in
the regular expression.

rlist An output parameter containing a list of matches.

flags Whether or not the search is case-sensitive. If the value of this
parameter is "i", the search is case-insensitive. Otherwise the
search is case-sensitive.

Summary of OWA_PATTERN Subprograms

OWA_PATTERN 134-13

foundMatch := owa_pattern.match('KAZOO', 'zoo.*', 'i');

The following example searches for the string "goal" followed by any number of
characters in sometext. If found,

sometext VARCHAR2(256);
pat VARCHAR2(256);

sometext := 'what is the goal?'
pat := 'goal.*';
IF OWA_PATTERN.MATCH(sometext, pat)
 THEN

HTP.PRINT('Match found');
 ELSE

HTP.PRINT('Match not found');
END IF;

Operational Notes
■ The regular expression in this function can be either a VARCHAR2 or an OWA_

PATTERN.PATTERN DATA TYPE. Create AN OWA_PATTERN.PATTERN DATA
TYPE from a string using the OWA_PATTERN.GETPAT procedure.

■ Create a MULTI_LINE DATA TYPE from a long string using the OWA_
TEXT.STREAM2MULTI procedure. If a multi_line is used, the rlist
parameter specifies a list of chunks where matches were found.

■ If the line is a string and not a multi_line, you can add an optional output
parameter called backrefs. This parameter is a row_list that holds each
string in the target that was matched by a sequence of tokens in the regular
expression.

MATCH Function

134-14 PL/SQL Packages and Types Reference

OWA_SEC 135-1

135
OWA_SEC

The OWA_SEC package provides an interface for custom authentication.

The chapter contains the following topics:

■ Using OWA_SEC

■ Operational Notes

■ Summary of OWA_SEC Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_SEC

135-2 PL/SQL Packages and Types Reference

Using OWA_SEC

■ Operational Notes

Operational Notes

Parameters that have default values are optional.

Summary of OWA_SEC Subprograms

OWA_SEC 135-3

Summary of OWA_SEC Subprograms

Table 135–1 OWA_SEC Package Subprograms

Subprogram Description

GET_CLIENT_HOSTNAME
Function on page 135-4

Returns the client's hostname

GET_CLIENT_IP Function on
page 135-5

Returns the client's IP address

GET_PASSWORD Function
on page 135-6

Returns the password that the user entered

GET_USER_ID Function on
page 135-7

Returns the username that the user entered

SET_AUTHORIZATION
Procedure on page 135-8

Enables the PL/SQL application to use custom
authentication

SET_PROTECTION_REALM
Procedure on page 135-10

Defines the realm that the page is in

GET_CLIENT_HOSTNAME Function

135-4 PL/SQL Packages and Types Reference

GET_CLIENT_HOSTNAME Function

This function returns the hostname of the client.

Syntax
OWA_SEC.GET_CLIENT_HOSTNAME
 RETURN VARCHAR2;

Return Values
The hostname.

Summary of OWA_SEC Subprograms

OWA_SEC 135-5

GET_CLIENT_IP Function

This function returns the IP address of the client.

Syntax
OWA_SEC.GET_CLIENT_IP
 RETURN OWA_UTIL.IP_ADDRESS;

Return Values
The IP address. The owa_util.ip_address data type is a PL/SQL table
where the first four elements contain the four numbers of the IP address. For
example, if the IP address is 123.45.67.89 and the variable ipaddr is of the
owa_util.ip_address data type, the variable would contain the following values:

ipaddr(1) = 123
ipaddr(2) = 45
ipaddr(3) = 67
ipaddr(4) = 89

GET_PASSWORD Function

135-6 PL/SQL Packages and Types Reference

GET_PASSWORD Function

This function returns the password that the user used to log in.

Syntax
OWA_SEC.GET_PASSWORD
 RETURN VARCHAR2;

Return Values
The password.

Usage Notes
For security reasons, this function returns a true value only when custom
authentication is used. If you call this function when you are not using custom
authentication, the function returns an undefined value. Thus, the database
passwords are not exposed.

Summary of OWA_SEC Subprograms

OWA_SEC 135-7

GET_USER_ID Function

This function returns the username that the user used to log in.

Syntax
OWA_SEC.GET_USER_ID
 RETURN VARCHAR2;

Return Values
The username.

SET_AUTHORIZATION Procedure

135-8 PL/SQL Packages and Types Reference

SET_AUTHORIZATION Procedure

This procedure, called in the initialization portion of the OWA_CUSTOM package,
sets the authorization scheme for the PL/SQL Gateway. This implements your
authorize function, which authorizes the user before his requested procedure is
run. The placement of the authorize function depends on the scheme you select.

Syntax
OWA_SEC.SET_AUTHORIZATION(
 scheme IN INTEGER);

Summary of OWA_SEC Subprograms

OWA_SEC 135-9

Parameters

Table 135–2 SET_AUTHORIZATION Procedure Parameters

Parameter Description

scheme The authorization scheme. It is one of the following schemes
for SET_AUTHORIZATION:

■ OWA_SEC.NO_CHECK - Specifies that the PL/SQL
application is not to do any custom authentication. This is
the default.

■ OWA_SEC.GLOBAL - Defines an authorize function that is
called for all users and all procedures. This is the OWA_
CUSTOM.AUTHORIZE Function in the "sys" schema.

■ OWA_SEC.PER_PACKAGE - Define an authorize
function that is called when procedures in a package or
anonymous procedures are called. If the procedures are in
a package, the package.AUTHORIZE function in the user's
schema is called to authorize the user. If the procedures
are not in a package, then the anonymous authorize
function in the user's schema is called.

■ OWA_SEC.CUSTOM - Implements different authorize
functions for each user. The function OWA_
CUSTOM.AUTHORIZE Function in the user's schema is
called to authorize the user. If the user's schema does not
contain an OWA_CUSTOM.AUTHORIZE Function, the
PL/SQL Gateway looks for it in the "sys" schema.

The custom authorize function has the following
signature:

FUNCTION AUTHORIZE
 RETURN BOOLEAN;

If the function returns TRUE, authentication succeeded. If it
returns FALSE, authentication failed. If the authorize
function is not defined, the Gateway returns an error and fails.

SET_PROTECTION_REALM Procedure

135-10 PL/SQL Packages and Types Reference

SET_PROTECTION_REALM Procedure

This procedure sets the realm of the page that is returned to the user. The user
enters a username and login that already exist in the realm.

Syntax
OWA_SEC.SET_PROTECTION_REALM(
 realm IN VARCHAR2);

Parameters

Table 135–3 SET_PROTECTION_REALM Procedure Parameters

Parameter Description

realm The realm where the page belongs. This string is displayed to
the user.

OWA_TEXT 136-1

136
OWA_TEXT

The OWA_TEXT package contains subprograms used by OWA_PATTERN for
manipulating strings. They are externalized so you can use them directly.

The chapter contains the following topics:

■ Using OWA_TEXT

■ Types

■ Summary of OWA_TEXT Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_TEXT

136-2 PL/SQL Packages and Types Reference

Using OWA_TEXT

■ Types

Types

■ MULTI_LINE DATA TYPE

■ ROW_LIST DATA TYPE

■ VC_ARR DATA TYPE

MULTI_LINE DATA TYPE
This data type is a PL/SQL record that holds large amounts of text. The rows field,
of type OWA_TEXT.VC_ARR DATA TYPE, contains the text data in the record.

TYPE multi_line IS RECORD (
rows vc_arr,
num_rows INTEGER,
partial_row BOOLEAN);

ROW_LIST DATA TYPE
This is the data type for holding data to be processed.

TYPE row_list IS RECORD (
rows int_arr,
num_rows INTEGER);

int_arr IS DEFINED AS:
TYPE int_arr IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;

VC_ARR DATA TYPE
This is a component of the MULTI_LINE DATA TYPE and is used for holding large
amounts of text.

TYPE vc_arr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

Summary of OWA_TEXT Subprograms

OWA_TEXT 136-3

Summary of OWA_TEXT Subprograms

Table 136–1 OWA_TEXT Package Subprograms

Subprogram Description

ADD2MULTI Procedure on
page 136-4

Adds text to an existing multi_line type

NEW_ROW_LIST Function
and Procedure on page 136-5

Creates a new row_list

PRINT_MULTI Procedure on
page 136-6

Prints out the contents of a multi_list

PRINT_ROW_LIST
Procedure on page 136-7

Prints out the contents of a row_list

STREAM2MULTI Procedure
on page 136-8

Converts a varchar2 to a multi_line type

ADD2MULTI Procedure

136-4 PL/SQL Packages and Types Reference

ADD2MULTI Procedure

This procedure adds content to an existing MULTI_LINE DATA TYPE.

Syntax
OWA_TEXT.ADD2MULTI(

stream IN VARCHAR2,
mline IN OUT multi_line,
continue IN BOOLEAN DEFAULT TRUE);

Parameters

Table 136–2 ADD2MULTI Procedure Parameters

Parameter Description

stream The text to add.

mline The OWA_TEXT.MULTI_LINE DATA TYPE. The output of this
parameter contains stream.

continue If TRUE, the procedure appends stream within the previous
final row (assuming it is less than 32K). If FALSE, the
procedure places stream in a new row.

Summary of OWA_TEXT Subprograms

OWA_TEXT 136-5

NEW_ROW_LIST Function and Procedure

This function or procedure creates a new OWA_TEXT.ROW_LIST DATA TYPE. The
function version uses no parameters and returns a new empty row_list. The
procedure version creates the row_list data type as an output parameter.

Syntax
OWA_TEXT.NEW_ROW_LIST
 RETURN ROW_LIST;

OWA_TEXT.NEW_ROW_LIST(
 rlist OUT row_list);

Parameters

Return Values
The function version returns the new row_list data type.

Table 136–3 NEW_ROW_LIST Procedure Parameters

Parameter Description

rlist This is an output parameter containing the new row_list
data type

PRINT_MULTI Procedure

136-6 PL/SQL Packages and Types Reference

PRINT_MULTI Procedure

This procedure uses the PRINT Procedures or the PRN Procedures to print the
"rows" field of the OWA_TEXT.MULTI_LINE DATA TYPE.

Syntax
OWA_TEXT.PRINT_MULTI(
 mline IN multi_line);

Parameters

Return Values
The contents of the multi_line.

Table 136–4 PRINT_MULTI Procedure Parameters

Parameter Description

mline The multi_line data type to print.

Summary of OWA_TEXT Subprograms

OWA_TEXT 136-7

PRINT_ROW_LIST Procedure

This procedure uses PRINT Procedures or the PRN Procedures to print the "rows"
field of the OWA_TEXT.ROW_LIST DATA TYPE.

Syntax
OWA_TEXT.PRINT_ROW_LIST(
 rlist IN multi_line);

Parameters

Return Values
The contents of the row_list.

Table 136–5 PRINT_ROW_LIST Procedure Parameters

Parameter Description

rlist The row_list data type to print.

STREAM2MULTI Procedure

136-8 PL/SQL Packages and Types Reference

STREAM2MULTI Procedure

This procedure converts a string to a multi_line data type.

Syntax
OWA_TEXT.STREAM2MULTI(

stream IN VARCHAR2
mline OUT multi_line);

Parameters

Table 136–6 STREAM2MULTI Procedure Parameters

Parameter Description

stream The string to convert.

mline The stream in OWA_TEXT.MULTI_LINE DATA TYPE format

OWA_UTIL 137-1

137
OWA_UTIL

The OWA_UTIL package contains utility subprograms for performing operations
such as getting the value of CGI environment variables, printing the data that is
returned to the client, and printing the results of a query in an HTML table.

This chapter contains the following topics:

■ Using OWA_UTIL

■ Overview

■ Types

■ Summary of OWA_UTIL Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using OWA_UTIL

137-2 PL/SQL Packages and Types Reference

Using OWA_UTIL

■ Overview

■ Types

Overview

The OWA_UTIL package contains three types of utility subprograms.

■ Dynamic SQL Utilities enable you to produce pages with dynamically
generated SQL code.

■ HTML utilities enable you to retrieve the values of CGI environment variables
and perform URL redirects.

■ Date utilities enable correct date-handling. Date values are simple strings in
HTML, but are treated as a data type by the Oracle database.

Types

■ DATETYPE Data Type

■ IDENT_ARR Data Type

■ IP_ADDRESS Data Type

DATETYPE Data Type
The TODATE Function converts an item of this type to the type DATE, which is
understood and properly handled as data by the database. The procedure
CHOOSE_DATE Procedure enables the user to select the desired date.

TYPE dateType IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

IDENT_ARR Data Type
This data type is used for an array.

TYPE ident_arr IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

Using OWA_UTIL

OWA_UTIL 137-3

IP_ADDRESS Data Type
This data type is used by the GET_CLIENT_IP Function in the OWA_SEC package.

TYPE ip_address IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;

Summary of OWA_UTIL Subprograms

137-4 PL/SQL Packages and Types Reference

Summary of OWA_UTIL Subprograms

Table 137–1 OWA_UTIL Package Subprograms

Subprogram Description

BIND_VARIABLES Function on
page 137-6

prepares a SQL query and binds variables to it

CALENDARPRINT Procedures
on page 137-7

prints a calendar

CELLSPRINT Procedures on
page 137-9

prints the contents of a query in an HTML table

CHOOSE_DATE Procedure on
page 137-12

generates HTML form elements that allow the user to
select a date

GET_CGI_ENV Function on
page 137-14

returns the value of the specified CGI environment
variable

GET_OWA_SERVICE_PATH
Function on page 137-15

returns the full virtual path for the PL/SQL Gateway

GET_PROCEDURE Function on
page 137-16

returns the name of the procedure that is invoked by the
PL/SQL Gateway

HTTP_HEADER_CLOSE
Procedure on page 137-17

closes the HTTP header

LISTPRINT Procedure on
page 137-18

generates a HTML form element that contains data from
a query

MIME_HEADER Procedure on
page 137-20

generates the Content-type line in the HTTP header

PRINT_CGI_ENV Procedure on
page 137-21

generates a list of all CGI environment variables and
their values

REDIRECT_URL Procedure on
page 137-22

generates the Location line in the HTTP header

SHOWPAGE Procedure on
page 137-23

prints a page generated by the HTP and HTF packages in
SQL*Plus

SHOWSOURCE Procedure on
page 137-24

prints the source for the specified subprogram

SIGNATURE procedure on
page 137-25

prints a line that says that the page is generated by the
PL/SQL Agent

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-5

STATUS_LINE Procedure on
page 137-26

generates the Status line in the HTTP header

TABLEPRINT Function on
page 137-27

prints the data from a table in the database as an HTML
table

TODATE Function on
page 137-31

converts dateType data to the standard PL/SQL date
type

WHO_CALLED_ME Procedure
on page 137-32

returns information on the caller of the procedure.

Table 137–1 (Cont.) OWA_UTIL Package Subprograms (Cont.)

Subprogram Description

BIND_VARIABLES Function

137-6 PL/SQL Packages and Types Reference

BIND_VARIABLES Function

This function prepares a SQL query by binding variables to it, and stores the output
in an opened cursor. Use this function as a parameter to a procedure sending a
dynamically generated query. Specify up to 25 bind variables.

Syntax
OWA_UTIL.BIND_VARIABLES(

theQuery IN VARCHAR2 DEFAULT NULL,
bv1Name IN VARCHAR2 DEFAULT NULL,
bv1Value IN VARCHAR2 DEFAULT NULL,
bv2Name IN VARCHAR2 DEFAULT NULL,
bv2Value IN VARCHAR2 DEFAULT NULL,
bv3Name IN VARCHAR2 DEFAULT NULL,
bv3Value IN VARCHAR2 DEFAULT NULL,

...
bv25Name IN VARCHAR2 DEFAULT NULL,
bv25Value IN VARCHAR2 DEFAULT NULL)

 RETURN INTEGER;

Parameters

Return Values
An integer identifying the opened cursor.

Table 137–2 BIND_VARIABLES Function Parameters

Parameter Description

theQuery The SQL query statement which must be a SELECT statement

bv1Name The name of the variable

bv1Value The value of the variable

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-7

CALENDARPRINT Procedures

These procedures creates a calendar in HTML with a visible border. Each date in the
calendar can contain any number of hypertext links.

This procedure has 2 versions.

■ Version 1 uses a hard-coded query stored in a varchar2 string.

■ Version 2 uses a dynamic query prepared with the BIND_VARIABLES
Function.

Syntax
OWA_UTIL.CALENDARPRINT(

p_query IN VARCHAR2,
p_mf_only IN VARCHAR2 DEFAULT 'N');

OWA_UTIL.CALENDARPRINT(
p_cursor IN INTEGER,
p_mf_only IN VARCHAR2 DEFAULT 'N');

Parameters

Usage Notes
Design your query as follows:

■ The first column is a DATE. This correlates the information produced by the
query with the calendar output generated by the procedure.

■ The query output must be sorted on this column using ORDER BY.

■ The second column contains the text, if any, that you want printed for that date.

Table 137–3 CALENDARPRINT Procedure Parameters

Parameter Description

p_query A PL/SQL query.

p_cursor A PL/SQL cursor containing the same format as p_query.

p_mf_only If "N" (the default), the generated calendar includes Sunday
through Saturday. Otherwise, it includes Monday through
Friday only.

CALENDARPRINT Procedures

137-8 PL/SQL Packages and Types Reference

■ The third column contains the destination for generated links. Each item in the
second column becomes a hypertext link to the destination given in this
column. If this column is omitted, the items in the second column are simple
text, not links.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-9

CELLSPRINT Procedures

This procedure generates an HTML table from the output of a SQL query. SQL
atomic data items are mapped to HTML cells and SQL rows to HTML rows. You
must write the code to begin and end the HTML table. There are nine versions of
this procedure:

■ The first version passes the results of a query into an index table. Perform the
query and CELLSPRINT does the formatting. To have more control in
generating an HTML table from the output of an SQL query, use the FORMAT_
CELL Function in the HTF package.

■ The second and third versions display rows (up to the specified maximum)
returned by the query or cursor.

■ The fourth and fifth versions exclude a specified number of rows from the
HTML table. Use the fourth and fifth versions to scroll through result sets by
saving the last row seen in a hidden form element.

■ The sixth through ninth versions are the same as the first four versions, except
that they return a row count output parameter.

Syntax
OWA_UTIL.CELLSPRINT(

p_colCnt IN INTEGER,
p_resultTbl IN vc_arr,
p_format_numbers IN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
p_theQuery IN VARCHAR2,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
p_theCursor IN INTEGER,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers iN VARCHAR2 DEFAULT NULL);

OWA_UTIL.CELLSPRINT(
p_theQuery IN VARCHAR2,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_skip_rec IN NUMBER DEFAULT 0,

CELLSPRINT Procedures

137-10 PL/SQL Packages and Types Reference

p_more_data OUT BOOLEAN);

OWA_UTIL.CELLSPRINT(
p_theCursor IN INTEGER,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_skip_rec IN NUMBER DEFAULT 0,
p_more_data OUT BOOLEAN);

OWA_UTIL.CELLSPRINT(
p_theQuery IN VARCHAR2,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
p_theCursor IN INTEGER,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
p_theQuery IN VARCHAR2,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_skip_rec IN NUMBER DEFAULT 0,
p_more_data OUT BOOLEAN
p_reccnt OUT NUMBER);

OWA_UTIL.CELLSPRINT(
p_theCursor IN INTEGER,
p_max_rows IN NUMBER DEFAULT 100,
p_format_numbers IN VARCHAR2 DEFAULT NULL,
p_skip_rec IN NUMBER DEFAULT 0,
p_more_data OUT BOOLEAN,
p_reccnt OUT NUMBER);

Parameters

Table 137–4 CELLSPRINT Procedure Parameters

Parameter Description

p_query A PL/SQL query.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-11

Examples
This function generates

<tr><td>QueryResultItem</td><td>QueryResultItem</td></tr>...

p_colCnt The number of columns in the table.

p_theQuery A SQL SELECT statement.

p_theCursor A cursor ID. This can be the return value from the BIND_
VARIABLES Function.

p_max_rows The maximum number of rows to print.

p_format_numbers If the value of this parameter is not NULL, number fields are
right justified and rounded to two decimal places.

p_skip_rec The number of rows to exclude from the HTML table.

p_more_data TRUE if there are more rows in the query or cursor, FALSE
otherwise.

p_reccnt The number of rows that have been returned by the query.
This value does not include skipped rows (if any).

p_resultTbl The index table which will contain the result of the query. Each
entry in the query will correspond to one column value.

Table 137–4 (Cont.) CELLSPRINT Procedure Parameters

Parameter Description

CHOOSE_DATE Procedure

137-12 PL/SQL Packages and Types Reference

CHOOSE_DATE Procedure

This procedure generates three HTML form elements that allow the user to select
the day, the month, and the year.

Syntax
OWA_UTIL.CHOOSE_DATE(

p_name IN VARCHAR2,
p_date IN DATE DEFAULT SYSDATE);

Parameters

Usage Notes
■ The parameter in the procedure that receives the data from these elements must

be a GET_CGI_ENV Function.

■ Use the TODATE Function to convert the GET_CGI_ENV Function value to the
standard Oracle DATE data type.

Examples
<SELECT NAME="p_name" SIZE="1">
<OPTION value="01">1

...
<OPTION value="31">31
</SELECT>
-
<SELECT NAME="p_name" SIZE="1">
<OPTION value="01">JAN

...
<OPTION value="12">DEC
</SELECT>

Table 137–5 CHOOSE_DATE Procedure Parameters

Parameter Description

p_name The name of the form elements.

p_date The initial date that is selected when the HTML page is
displayed.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-13

-
<SELECT NAME="p_name" SIZE="1">
<OPTION value="1992">1992

...
<OPTION value="2002">2002
</SELECT>

GET_CGI_ENV Function

137-14 PL/SQL Packages and Types Reference

GET_CGI_ENV Function

This function returns the value of the specified CGI environment variable.

Syntax
OWA_UTIL.GET_CGI_ENV(
 param_name IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Return Values
The value of the specified CGI environment variable. If the variable is not defined,
the function returns NULL.

Table 137–6 GET_CGI_ENV Function Parameters

Parameter Description

param_name The name of the CGI environment variable. It is
case-insensitive.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-15

GET_OWA_SERVICE_PATH Function

This function returns the full virtual path of the PL/SQL Gateway that is handling
the request.

Syntax
OWA_UTIL.GET_OWA_SERVICE_PATH
 RETURN VARCHAR2;

Return Values
A virtual path of the PL/SQL Gateway that is handling the request.

GET_PROCEDURE Function

137-16 PL/SQL Packages and Types Reference

GET_PROCEDURE Function

This function returns the name of the procedure that is being invoked by the
PL/SQL Gateway.

Syntax
OWA_UTIL.GET_PROCEDURE
 RETURN VARCHAR2;

Return Values
The name of a procedure, including the package name if the procedure is defined in
a package.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-17

HTTP_HEADER_CLOSE Procedure

This procedure generates a newline character to close the HTTP header.

Syntax
OWA_UTIL.HTTP_HEADER_CLOSE;

Return Values
A newline character, which closes the HTTP header.

Usage Notes
■ Use this procedure if you have not closed the header by using the bclose_

header parameter in calls such as MIME_HEADER Procedure, REDIRECT_
URL Procedure, or STATUS_LINE Procedure

■ The HTTP header must be closed before any HTP.PRINT or HTP.PRN calls.

LISTPRINT Procedure

137-18 PL/SQL Packages and Types Reference

LISTPRINT Procedure

This procedure generates an HTML selection list form element from the output of a
SQL query. There are two versions of this procedure.

■ The first version contains a hard-coded SQL query.

■ The second version uses a dynamic query prepared with the BIND_
VARIABLES Function.

Syntax
OWA_UTIL.LISTPRINT(

p_theQuery IN VARCHAR2,
p_cname IN VARCHAR2,
p_nsize IN NUMBER,
p_multiple IN BOOLEAN DEFAULT FALSE);

OWA_UTIL.LISTPRINT(
p_theCursor IN INTEGER,
p_cname IN VARCHAR2,
p_nsize IN NUMBER,
p_multiple IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The columns in the output of the query are handled in the following manner:

Table 137–7 LISTPRINT Procedure Parameters

Parameter Description

p_theQuery The SQL query.

p_theCursor The cursor ID. This can be the return value from the BIND_
VARIABLES Function.

p_cname The name of the HTML form element.

p_nsize The size of the form element (this controls how many items the
user can see without scrolling).

p_multiple Whether multiple selection is permitted.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-19

■ The first column specifies the values that are sent back. These values are for the
VALUE attribute of the OPTION tag.

■ The second column specifies the values that the user sees.

■ The third column specifies whether or not the row is marked as SELECTED in
the OPTION tag. If the value is not NULL, the row is selected.

Examples
<SELECT NAME="p_cname" SIZE="p_nsize">
<OPTION SELECTED value='value_from_the_first_column'>value_from_the_second_
column
<OPTION SELECTED value='value_from_the_first_column'>value_from_the_second_
column

...
</SELECT>

MIME_HEADER Procedure

137-20 PL/SQL Packages and Types Reference

MIME_HEADER Procedure

This procedure changes the default MIME header that the script returns. This
procedure must come before any HTP.PRINT or HTP.PRN calls to direct the script
not to use the default MIME header.

Syntax
OWA_UTIL.MIME_HEADER(

ccontent_type IN VARCHAR2 DEFAULT 'text/html',
bclose_header IN BOOLEAN DEFAULT TRUE,
ccharset IN VARCHAR2 DEFAULT NULL);

Parameters

Examples
Content-type: <ccontent_type>; charset=<ccharset>

so that

owa_util.mime_header('text/plain', false, 'ISO-8859-4')

generates

Content-type: text/plain; charset=ISO-8859-4\n

Table 137–8 MIME_HEADER Procedure Parameters

Parameter Description

ccontent_type The MIME type to generate

bclose_header Whether or not to close the HTTP header. If TRUE, two
newlines are sent, which closes the HTTP header. Otherwise,
one newline is sent, and the HTTP header remains open.

ccharset The character set to use.The character set only makes sense if
the MIME type is of type 'text'. Therefore, the character set is
only tagged on to the Content-Type header only if the MIME
type passed in is of type 'text'. Any other MIME type, such as
'image', will not have any character set tagged on.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-21

PRINT_CGI_ENV Procedure

This procedure generates all the CGI environment variables and their values made
available by the PL/SQL Gateway to the stored procedure.

Syntax
OWA_UTIL.PRINT_CGI_ENV;

Examples
This procedure generates a list in the following format:

cgi_env_var_name = value\n

REDIRECT_URL Procedure

137-22 PL/SQL Packages and Types Reference

REDIRECT_URL Procedure

This procedure specifies that the application server is to visit the specified URL. The
URL may specify either a web page to return or a program to execute.

Syntax
OWA_UTIL.REDIRECT_URL(

curl IN VARCHAR2
bclose_header IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
This procedure must come before any HTP or HTF procedure or function call.

Examples
This procedure generates

Location: <curl>\n\n

Table 137–9 REDIRECT_URL Function Parameters

Parameter Description

curl The URL to visit.

bclose_header Whether or not to close the HTTP header. If TRUE, two
newlines are sent, which closes the HTTP header. Otherwise,
one newline is sent, and the HTTP header remains open.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-23

SHOWPAGE Procedure

This procedure prints out the HTML output of a procedure in SQL*Plus. The
procedure must use the HTP or HTF packages to generate the HTML page, and this
procedure must be issued after the HTP or HTF page-generating subprogram has
been called and before any other HTP or HTF subprograms are directly or indirectly
called.

Syntax
OWA_UTIL.SHOWPAGE;

Usage Notes
■ This method is useful for generating pages filled with static data.

■ This procedure uses DBMS_OUTPUT and is limited to 255 characters for each
line and an overall buffer size of 1,000,000 bytes.

Examples
The output of htp procedure is displayed in SQL*Plus, SQL*DBA, or Oracle Server
Manager. For example:

SQL> set serveroutput on
SQL> spool gretzky.html
SQL> execute hockey.pass("Gretzky")
SQL> execute owa_util.showpage
SQL> exit

This would generate an HTML page that could be accessed from Web browsers.

SHOWSOURCE Procedure

137-24 PL/SQL Packages and Types Reference

SHOWSOURCE Procedure

This procedure prints the source of the specified procedure, function, or package. If
a procedure or function which belongs to a package is specified, then the entire
package is displayed.

Syntax
OWA_UTIL.SHOWSOURCE (
 cname IN VARCHAR2);

Parameters

Table 137–10 SHOWSOURCE Procedure Parameters

Parameter Description

cname The function or procedure whose source you want to show.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-25

SIGNATURE procedure

This procedure generates an HTML line followed by a signature line on the HTML
document. If a parameter is specified, the procedure also generates a hypertext link
to view the PL/SQL source for that procedure. The link calls the SHOWSOURCE
Procedure.

Syntax
OWA_UTIL.SIGNATURE;

OWA_UTIL.SIGNATURE (
 cname IN VARCHAR2);

Parameters

Examples
Without a parameter, the procedure generates a line that looks like the following:

This page was produced by the PL/SQL Agent on August 9, 2001 09:30.

With a parameter, the procedure generates a signature line in the HTML document
that looks like the following:

This page was produced by the PL/SQL Agent on 8/09/01 09:30
View PL/SQL Source

Table 137–11 SIGNATURE Procedure Parameters

Parameter Description

cname The function or procedure whose source you want to show.

STATUS_LINE Procedure

137-26 PL/SQL Packages and Types Reference

STATUS_LINE Procedure

This procedure sends a standard HTTP status code to the client. This procedure
must come before any htp.print or htp.prn calls so that the status code is
returned as part of the header, rather than as "content data".

Syntax
OWA_UTIL.STATUS_LINE(

nstatus IN INTEGER,
creason IN VARCHAR2 DEFAULT NULL,
bclose_header IN BOOLEAN DEFAULT TRUE);

Parameters

Examples
This procedure generates

Status: <nstatus> <creason>\n\n

Table 137–12 STATUS_LINE Procedure Parameters

Parameter Description

nstatus The status code.

creason The string for the status code.

bclose_header Whether or not to close the HTTP header. If TRUE, two
newlines are sent, which closes the HTTP header. Otherwise,
one newline is sent, and the HTTP header remains open.

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-27

TABLEPRINT Function

This function generates either preformatted tables or HTML tables (depending on
the capabilities of the user's browser) from database tables.

Syntax
OWA_UTIL.TABLEPRINT(

ctable IN VARCHAR2,
cattributes IN VARCHAR2 DEFAULT NULL,
ntable_type IN INTEGER DEFAULT HTML_TABLE,
ccolumns IN VARCHAR2 DEFAULT '*',
cclauses IN VARCHAR2 DEFAULT NULL,
ccol_aliases IN VARCHAR2 DEFAULT NULL,
nrow_min IN NUMBER DEFAULT 0,
nrow_max IN NUMBER DEFAULT NULL)

 RETURN BOOLEAN;

Parameters

Return Values
Returns TRUE if there are more rows beyond the nrow_max requested, FALSE otherwise.

Table 137–13 TABLEPRINT Function Parameters

Parameter Description

ctable The database table.

cattributes Other attributes to be included as-is in the tag.

ntable_type How to generate the table. Specify "HTML_TABLE" to generate
the table using <TABLE> tags or "PRE_TABLE" to generate the
table using the <PRE> tags.

ccolumns A comma-delimited list of columns from ctable to include in
the generated table.

cclauses WHERE or ORDER BY clauses, which specify which rows to
retrieve from the database table, and how to order them.

ccol_aliases A comma-delimited list of headings for the generated table.

nrow_min The first row, of those retrieved, to display.

nrow_max The last row, of those retrieved, to display.

TABLEPRINT Function

137-28 PL/SQL Packages and Types Reference

Usage Notes
■ RAW columns are supported, but LONG RAW columns are not. References to

LONG RAW columns will print the result 'Not Printable'.

■ Note that in this function, cattributes is the second rather than the last
parameter.

Examples
For browsers that do not support HTML tables, create the following procedure:

CREATE OR REPLACE PROCEDURE showemps IS
 ignore_more BOOLEAN;
BEGIN
 ignore_more := OWA_UTIL.TABLEPRINT('emp', 'BORDER', OWA_UTIL.PRE_TABLE);
END;

Requesting a URL such as

http://myhost:7777/pls/hr/showemps

returns to the following to the client:

<PRE>

| EMPNO |ENAME |JOB |MGR |HIREDATE | SAL | COMM | DEPTNO |

| 7369| SMITH | CLERK | 7902 | 17-DEC-80 | 800 | | 20 |
| 7499| ALLEN | SALESMAN| 7698 | 20-FEB-81 | 1600 | 300 | 30 |
| 7521| WARD | SALESMAN| 7698 | 22-FEB-81 | 1250 | 500 | 30 |
| 7566| JONES | MANAGER | 7839 | 02-APR-81 | 2975 | | 20 |
| 7654| MARTIN | SALESMAN| 7698 | 28-SEP-81 | 1250 | 1400| 30 |
| 7698| BLAKE | MANAGER | 7839 | 01-MAY-81 | 2850 | | 30 |
| 7782| CLARK | MANAGER | 7839 | 09-JUN-81 | 2450 | | 10 |
| 7788| SCOTT | ANALYST | 7566 | 09-DEC-82 | 3000 | | 20 |
| 7839| KING | PRESIDENT | | 17-NOV-81 | 5000 | | 10 |
| 7844| TURNER | SALESMAN| 7698 | 08-SEP-81 | 1500 | 0 | 30 |
| 7876| ADAMS | CLERK | 7788 | 12-JAN-83 | 1100 | | 20 |
| 7900| JAMES | CLERK | 7698 | 03-DEC-81 | 950 | | 30 |
| 7902| FORD | ANALYST | 7566 | 03-DEC-81 | 3000 | | 20 |
| 7934| MILLER | CLERK | 7782 | 23-JAN-82 | 1300 | | 10 |

</PRE>

To view the employees in department 10, and only their employee ids, names, and
salaries, create the following procedure:

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-29

CREATE OR REPLACE PROCEDURE showemps_10 IS
 ignore_more BOOLEAN;
begin
 ignore_more := OWA_UTIL.TABLEPRINT

('EMP', 'BORDER', OWA_UTIL.PRE_TABLE,
 'empno, ename, sal', 'WHERE deptno=10 ORDER BY empno',
 'Employee Number, Name, Salary');
END;

A request for a URL like

http://myhost:7777/pls/hr/showemps_10

would return the following to the client:

<PRE>

| Employee Number |Name | Salary |

| 7782 | CLARK | 2450 |
| 7839 | KING | 5000 |
| 7934 | MILLER | 1300 |

</PRE>

For browsers that support HTML tables, to view the department table in an HTML
table, create the following procedure:

CREATE OR REPLACE PROCEDURE showdept IS
 ignore_more BOOLEAN;
BEGIN
 ignore_more := oWA_UTIL.TABLEPRINT('dept', 'BORDER');
END;

A request for a URL like

http://myhost:7777/pls/hr/showdept

would return the following to the client:

<TABLE BORDER>
<TR>
<TH>DEPTNO</TH>
<TH>DNAME</TH>
<TH>LOC</TH>
</TR>
<TR>

TABLEPRINT Function

137-30 PL/SQL Packages and Types Reference

<TD ALIGN="LEFT">10</TD>
<TD ALIGN="LEFT">ACCOUNTING</TD>
<TD ALIGN="LEFT">NEW YORK</TD>
</TR>
<TR>
<TD ALIGN="LEFT">20</TD>
<TD ALIGN="LEFT">RESEARCH</TD>
<TD ALIGN="LEFT">DALLAS</TD>
</TR>
<TR>
<TD ALIGN="LEFT">30</TD>
<TD ALIGN="LEFT">SALES</TD>
<TD ALIGN="LEFT">CHICAGO</TD>
</TR>
<TR>
<TD ALIGN="LEFT">40</TD>
<TD ALIGN="LEFT">OPERATIONS</TD>
<TD ALIGN="LEFT">BOSTON</TD>
</TR>
</TABLE>

A Web browser would format this to look like the following table:

:

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

Summary of OWA_UTIL Subprograms

OWA_UTIL 137-31

TODATE Function

This function converts the DATETYPE Data Type to the standard Oracle DATE type.

Syntax
OWA_UTIL.TODATE(
 p_dateArray IN dateType)
 RETURN DATE;

Parameters

Table 137–14 TODATE Function Parameters

Parameter Description

p_dateArray The value to convert.

WHO_CALLED_ME Procedure

137-32 PL/SQL Packages and Types Reference

WHO_CALLED_ME Procedure

This procedure returns information (in the form of output parameters) about the
PL/SQL code unit that invoked it.

Syntax
OWA_UTIL.WHO_CALLED_ME(

owner OUT VARCHAR2,
name OUT VARCHAR2,
lineno OUT NUMBER,
caller_t OUT VARCHAR2);

Parameters

Table 137–15 WHO_CALLED_ME Procedure Parameters

Parameter Description

owner The owner of the program unit.

name The name of the program unit. This is the name of the package,
if the calling program unit is wrapped in a package, or the
name of the procedure or function if the calling program unit is
a standalone procedure or function. If the calling program unit
is part of an anonymous block, this is NULL.

lineno The line number within the program unit where the call was
made.

caller_t The type of program unit that made the call. The possibilities
are: package body, anonymous block, procedure, and function.
Procedure and function are only for standalone procedures
and functions.

SDO_CS 138-1

138
SDO_CS

The SDO_CS package contains functions and procedures for working with
coordinate systems. You can perform explicit coordinate transformations on a
single geometry or an entire layer of geometries (that is, all geometries in a specified
column in a table).

■ Documentation of SDO_CS

Documentation of SDO_CS

138-2 PL/SQL Packages and Types Reference

Documentation of SDO_CS

For a complete description of this package within the context of Oracle Spatial, see
SDO_CS in the Oracle Spatial User's Guide and Reference.

SDO_GCDR 139-1

139
SDO_GCDR

The SDO_GCDR package contains the Oracle Spatial geocoding subprograms, which
let you geocode unformatted postal addresses.

■ Documentation of SDO_GCDR

Documentation of SDO_GCDR

139-2 PL/SQL Packages and Types Reference

Documentation of SDO_GCDR
For a complete description of this package within the context of Oracle Spatial, see
SDO_GCDR in Oracle Spatial User's Guide and Reference.

SDO_GEOM 140-1

140
SDO_GEOM

The SDO_GEOM package contains the geometry functions, which can be grouped
into the following categories:

■ Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE

■ Validation: VALIDATE_GEOMETRY, VALIDATE_LAYER

■ Single-object operations: SDO_ARC_DENSIFY, SDO_AREA, SDO_BUFFER, SDO_
CENTROID, SDO_CONVEXHULL, SDO_LENGTH, SDO_MBR, SDO_
POINTONSURFACE

■ Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO_
INTERSECTION, SDO_UNION, SDO_XOR

This chapter contains the following topic:

■ Documentation of SDO_GEOM

Documentation of SDO_GEOM

140-2 PL/SQL Packages and Types Reference

Documentation of SDO_GEOM

For a complete description of this package within the context of Oracle Spatial, see
SDO_GEOM in the Oracle Spatial User's Guide and Reference.

SDO_GEOR 141-1

141
SDO_GEOR

The SDO_GEOR package contains functions and procedures for the Oracle Spatial
GeoRaster feature, which lets you store, index, query, analyze, and deliver raster
image data and its associated spatial vector geometry data and metadata.

■ Documentation of SDO_GEOR

Documentation of SDO_GEOR

141-2 PL/SQL Packages and Types Reference

Documentation of SDO_GEOR

For complete description of this package within the context of Oracle Spatial, see
SDO_GEOR in the Oracle Spatial GeoRaster.

SDO_GEOR_UTL 142-1

142
SDO_GEOR_UTL

The SDO_GEOR_UTL package contains utility functions and procedures for the
Oracle Spatial GeoRaster feature, including those related to using triggers with
GeoRaster data.

■ Documentation of SDO_GEOR_UTL

Documentation of SDO_GEOR_UTL

142-2 PL/SQL Packages and Types Reference

Documentation of SDO_GEOR_UTL

For complete description of this package within the context of Oracle Spatial, see
SDO_GEOR_UTL in the Oracle Spatial GeoRaster.

SDO_LRS 143-1

143
SDO_LRS

The SDO_LRS package contains functions that create, modify, query, and convert
linear referencing elements.

■ Documentation of SDO_LRS

Documentation of SDO_LRS

143-2 PL/SQL Packages and Types Reference

Documentation of SDO_LRS

For a complete description of this package within the context of Oracle Spatial, see
SDO_LRS in the Oracle Spatial User's Guide and Reference.

SDO_MIGRATE 144-1

144
SDO_MIGRATE

The SDO_MIGRATE package lets you upgrade geometry tables from previous
releases of Oracle Spatial.

■ Documentation of SDO_MIGRATE

Documentation of SDO_MIGRATE

144-2 PL/SQL Packages and Types Reference

Documentation of SDO_MIGRATE

For a complete description of this package within the context of Oracle Spatial, see
SDO_MIGRATE in the Oracle Spatial User's Guide and Reference.

SDO_NET 145-1

145
SDO_NET

The SDO_NET package contains functions and procedures for working with data
modeled as nodes and links in a network.

■ Documentation of SDO_NET

Documentation of SDO_NET

145-2 PL/SQL Packages and Types Reference

Documentation of SDO_NET

For a complete description of this package within the context of Oracle Spatial, see
SDO_NET in the Oracle Spatial Topology and Network Data Models.

SDO_SAM 146-1

146
SDO_SAM

The SDO_SAM package contains functions and procedures for spatial analysis and
data mining.

■ Documentation of SDO_SAM

Documentation of SDO_SAM

146-2 PL/SQL Packages and Types Reference

Documentation of SDO_SAM

For a complete description of this package within the context of Oracle Spatial, see
SDO_SAM in the Oracle Spatial User's Guide and Reference.

SDO_TOPO 147-1

147
SDO_TOPO

The SDO_TOPO package contains subprograms for creating and managing Oracle
Spatial topologies.

■ Documentation of SDO_TOPO

Documentation of SDO_TOPO

147-2 PL/SQL Packages and Types Reference

Documentation of SDO_TOPO

For a complete description of this package within the context of Oracle Spatial, see
SDO_TOPO in the Oracle Spatial Topology and Network Data Models.

SDO_TOPO_MAP 148-1

148
SDO_TOPO_MAP

The SDO_TOPO_MAP package contains subprograms for editing Oracle Spatial
topologies using a cache (TopoMap object).

■ Documentation of SDO_TOPO_MAP

Documentation of SDO_TOPO_MAP

148-2 PL/SQL Packages and Types Reference

Documentation of SDO_TOPO_MAP

For a complete description of this package within the context of Oracle Spatial, see
SDO_TOPO_MAP in the Oracle Spatial Topology and Network Data Models.

SDO_TUNE 149-1

149
 SDO_TUNE

The SDO_TUNE package contains Spatial tuning functions and procedures.

■ Documentation of SDO_TUNE

Documentation of SDO_TUNE

149-2 PL/SQL Packages and Types Reference

Documentation of SDO_TUNE

For complete description of this package within the context of Oracle Spatial, see
SDO_TUNE in the Oracle Spatial User's Guide and Reference.

SDO_UTIL 150-1

150
SDO_UTIL

The SDO_UTIL package contains the utility functions and procedures for Oracle
Spatial.

■ Documentation of SDO_UTIL

Documentation of SDO_UTIL

150-2 PL/SQL Packages and Types Reference

Documentation of SDO_UTIL

For complete description of this package within the context of Oracle Spatial, see
SDO_UTIL in the Oracle Spatial User's Guide and Reference.

UTL_COLL 151-1

151
UTL_COLL

The UTL_COLL package lets PL/SQL programs use collection locators to query and
update.

This chapter contains the following topics:

■ Summary of UTL_COLL Subprograms

Summary of UTL_COLL Subprograms

151-2 PL/SQL Packages and Types Reference

Summary of UTL_COLL Subprograms

Table 151–1 UTL_COLL Package Subprograms

Subprogram Description

IS_LOCATOR Function on
page 151-3

Determines whether a collection item is actually a locator or
not

Summary of UTL_COLL Subprograms

UTL_COLL 151-3

IS_LOCATOR Function

This function determines whether a collection item is actually a locator or not.

Syntax
UTL_COLL.IS_LOCATOR (
 coln IN STANDARD)
 RETURNS BOOLEAN;

Pragmas
Asserts WNDS, WNPS and RNPS pragmas

Parameters

Return Values

Examples
CREATE OR REPLACE TYPE list_t as TABLE OF VARCHAR2(20);
/

CREATE OR REPLACE TYPE phone_book_t AS OBJECT (
 pno number,
 ph list_t);
/

CREATE TABLE phone_book OF phone_book_t
 NESTED TABLE ph STORE AS nt_ph;

Table 151–2 IS_LOCATOR Function Parameters

Parameter Description

coln Nested table or varray item.

Table 151–3 IS_LOCATOR Function Return Values

Return Value Description

1 Collection item is indeed a locator.

0 Collection item is not a locator.

IS_LOCATOR Function

151-4 PL/SQL Packages and Types Reference

CREATE TABLE phone_book1 OF phone_book_t
 NESTED TABLE ph STORE AS nt_ph_1 RETURN LOCATOR;

INSERT INTO phone_book VALUES(1, list_t('650-633-5707','650-323-0953'));
INSERT INTO phone_book1 VALUES(1, list_t('415-555-1212'));

CREATE OR REPLACE PROCEDURE chk_coll IS
 plist list_t;
 plist1 list_t;
BEGIN
 SELECT ph INTO plist FROM phone_book WHERE pno=1;

 SELECT ph INTO plist1 FROM phone_book1 WHERE pno=1;

 IF (UTL_COLL.IS_LOCATOR(plist)) THEN
 DBMS_OUTPUT.PUT_LINE('plist is a locator');
 ELSE
 DBMS_OUTPUT.PUT_LINE('plist is not a locator');
 END IF;

 IF (UTL_COLL.IS_LOCATOR(plist1)) THEN
 DBMS_OUTPUT.PUT_LINE('plist1 is a locator');
 ELSE
 DBMS_OUTPUT.PUT_LINE('plist1 is not a locator');
 END IF;

END chk_coll;

SET SERVEROUTPUT ON
EXECUTE chk_coll;

UTL_COMPRESS 152-1

152
UTL_COMPRESS

The UTL_COMPRESS package provides a set of data compression utilities.

This chapter contains the following topics:

■ Using UTL_COMPRESS

■ Constants

■ Exceptions

■ Operational Notes

■ Summary of UTL_COMPRESS Subprograms

Using UTL_COMPRESS

152-2 PL/SQL Packages and Types Reference

Using UTL_COMPRESS

■ Constants

■ Exceptions

■ Operational Notes

Constants

Define max number of handles for piecewise operations:

UTLCOMP_MAX_HANDLE CONSTANT PLS_INTEGER := 5;

Exceptions

Operational Notes

■ It is the caller's responsibility to free the temporary LOB returned by the LZ*
functions with DBMS_LOB.FREETEMPORARY call.

■ A BFILE passed into LZ_COMPRESS* or lZ_UNCOMPRESS* has to be opened by
DBMS_LOB.FILEOPEN.

■ Under special circumstances (especially if the input has already been
compressed) the output produced by one of the UTL_COMPRESS subprograms
may be the same size, or even slightly larger than, the input.

Table 152–1 UTL_COMPRESS Exceptions

Exception Description

BUFFER_TOO_SMALL The compressed representation is too big.

DATA_ERROR The input or output data stream was found to be an
invalid format.

INVALID_ARGUMENT One of the arguments was an invalid type or value.

INVALID_HANDLE Invalid handle for piecewise compress or uncompress.

STREAM_ERROR An error occurred during compression or uncompression
of the data stream

Using UTL_COMPRESS

UTL_COMPRESS 152-3

■ The output of the UTL_COMPRESS compressed data is compatible with
gzip(with -n option)/gunzip on a single file.

Summary of UTL_COMPRESS Subprograms

152-4 PL/SQL Packages and Types Reference

Summary of UTL_COMPRESS Subprograms

Table 152–2 UTL_COMPRESS Package Subprograms

Subprogram Description

ISOPEN Function on page 152-5 Checks to see if the handle to a piecewise (un)compress
context is open or closed

LZ_COMPRESS Functions and
Procedures on page 152-6

Compresses data using Lempel-Ziv compression
algorithm

LZ_COMPRESS_ADD
Procedure on page 152-8

Adds a piece of compressed data

LZ_COMPRESS_CLOSE on
page 152-9

Closes and finishes piecewise compress operation

LZ_COMPRESS_OPEN on
page 152-10

Initializes a piecewise context that maintains the
compress state and data

LZ_UNCOMPRESS Functions
and Procedures on page 152-11

Accepts compressed input, verifies it to be a valid and
uncompresses it

LZ_UNCOMPRESS_EXTRACT
Procedure on page 152-13

Extracts a piece of uncompressed data

LZ_UNCOMPRESS_OPEN
Function on page 152-14

Initializes a piecewise context that maintains the
uncompress state and data

LZ_UNCOMPRESS_CLOSE
Procedure on page 152-15

Closes and finishes the piecewise uncompress

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-5

ISOPEN Function

This function checks to see if the handle to a piecewise (un)compress context is
open or closed.

Syntax
UTL_COMPRESS.ISOPEN(
 handle in binary_integer)
 RETURN BOOLEAN;

Parameters

Return Values
TRUE if the given piecewise handle is opened, otherwise FALSE.

Examples
IF (UTL_COMPRESS.ISOPEN(myhandle) = TRUE) then
 UTL_COMPRESS.LZ_COMPRESS_CLOSE(myhandle, lob_1);
END IF;

Alternatively:

IF (UTL_COMPRESS.ISOPEN(myhandle) = TRUE) THEN
 UTL_COMPRESS.LZ_UNCOMPRESS_CLOSE(myhandle);
END IF;

Table 152–3 ISOPEN Function Parameters

Parameter Description

handle The handle to a piecewise uncompress context.

LZ_COMPRESS Functions and Procedures

152-6 PL/SQL Packages and Types Reference

LZ_COMPRESS Functions and Procedures

These functions and procedures compress data using Lempel-Ziv compression
algorithm.

Syntax
This function accept a RAW as input, compress it and return the compressed RAW
result and metadata:

UTL_COMPRESS.LZ_COMPRESS (
 src IN RAW,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN RAW;

This function accept a BLOB as input, compress it and returns a temporary BLOB for
the compressed data:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BLOB,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BLOB;

This procedure returns the compressed data into the existing BLOB(dst) which is
trimmed to the compressed data size:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BLOB,
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6);

This function returns a temporary BLOB for the compressed data:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BFILE,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BLOB;

This procedure will return the compressed data into the existing BLOB(dst) which is
trimmed to the compressed data size:

UTL_COMPRESS.LZ_COMPRESS (
 src IN BFILE,
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6);

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-7

Parameters

Usage Notes
■ quality is an optional compression tuning value. It allows the UTL_

COMPRESS user to choose between speed and compression quality, meaning the
percentage of reduction in size. A faster compression speed will result in less
compression of the data. A slower compression speed will result in more
compression of the data. Valid values are [1..9], with 1=fastest and 9=slowest.
The default 'quality' value is 6.

Table 152–4 LZ_COMPRESS Function and Procedures Parameters

Parameter Description

src Data (RAW, BLOB or BFILE) to be compressed.

dst Destination for compressed data

quality An integer in the range 1 to 9, 1=fast compression, 9=best
compression, default=6

LZ_COMPRESS_ADD Procedure

152-8 PL/SQL Packages and Types Reference

LZ_COMPRESS_ADD Procedure

This procedure adds a piece of compressed data.

Syntax
UTL_COMPRESS.LZ_COMPRESS_ADD (
 handle IN BINARY_INTEGER,
 dst IN OUT NOCOPY BLOB,
 src IN RAW);

Parameters

Exceptions
■ invalid_handle - out of range invalid or unopened handle.

■ invalid_argument - NULL handle, src, dst, or invalid dst.

Table 152–5 LZ_COMPRESS_ADD Procedure Parameters

Parameter Description

handle The handle to a piecewise compress context.

dst The opened LOB from LZ_COMPRESS_OPEN to store
compressed data.

src The input data to be compressed.

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-9

LZ_COMPRESS_CLOSE

This procedure closes and finishes piecewise compress operation.

Syntax
UTL_COMPRESS.LZ_COMPRESS_CLOSE (
 handle IN BINARY_INTEGER,
 dst IN OUT NOCOPY BLOB);

Parameters

Exceptions
■ invalid_handle - out of range invalid or uninitialized handle.

■ invalid_argument - NULL handle, dst, or invalid dst.

Table 152–6 LZ_COMPRESS_CLOSE Procedure Parameters

Parameter Description

handle The handle to a piecewise compress context.

dst The opened LOB from LZ_COMPRESS_OPEN to store
compressed data.

LZ_COMPRESS_OPEN

152-10 PL/SQL Packages and Types Reference

LZ_COMPRESS_OPEN

This function initializes a piecewise context that maintains the compress state and
data.

Syntax
UTL_COMPRESS.LZ_COMPRESS_OPEN (
 dst IN OUT NOCOPY BLOB,
 quality IN BINARY_INTEGER DEFAULT 6)
 RETURN BINARY_INTEGER;

Parameters

Return Values
A handle to an initialized piecewise compress context.

Exceptions
■ invalid_handle - invalid handle, too many open handles.

■ invalid_argument - NULL dst or invalid quality specified.

Usage Notes
Close the opened handle with LZ_COMPRESS_CLOSE

■ once the piecewise compress is completed

■ in the event of an exception in the middle of process

because lack of doing so will cause these handles to leak.

Table 152–7 LZ_COMPRESS_OPEN Function Parameters

Parameter Description

dst User supplied LOB to store compressed data.

quality Speed versus efficiency of resulting compressed output.

■ Valid values are the range 1..9, with a default value of 6.

■ 1=fastest compression, 9=slowest compression and best
compressed file size.

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-11

LZ_UNCOMPRESS Functions and Procedures

This procedure accepts as input a RAW, BLOB or BFILE compressed string, verifies it
to be a valid compressed value, uncompresses it using Lempel-Ziv compression
algorithm, and returns the uncompressed RAW or BLOB result.

Syntax
This function returns uncompressed data as RAW:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN RAW)
 RETURN RAW;

This function returns uncompressed data as a temporary BLOB:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BLOB)
 RETURN BLOB;

This procedure returns the uncompressed data into the existing BLOB(dst), which
will be trimmed to the uncompressed data size:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BLOB,
 dst IN OUT NOCOPY BLOB);

This function returns a temporary BLOB for the uncompressed data:

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BFILE)
 RETURN BLOB;

This procedure returns the uncompressed data into the existing BLOB(dst). The
original dst data will be overwritten.

UTL_COMPRESS.LZ_UNCOMPRESS(
 src IN BFILE,
 dst IN OUT NOCOPY BLOB);

LZ_UNCOMPRESS Functions and Procedures

152-12 PL/SQL Packages and Types Reference

Parameters

Table 152–8 LZ_UNCOMPRESS Function and Procedures Parameters

Parameter Description

src Compressed data.

dst Destination for uncompressed data.

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-13

LZ_UNCOMPRESS_EXTRACT Procedure

This procedure extracts a piece of uncompressed data.

Syntax
UTL_COMPRESS.LZ_UNCOMPRESS_EXTRACT(
 handle IN BINARY_INTEGER,
 dst OUT NOCOPY RAW);

Parameters

Exceptions
■ no_data_found - finished uncompress.

■ invalid_handle - out of range invalid or uninitialized handle.

■ invalid_argument - NULL handle.

Table 152–9 LZ_UNCOMPRESS_EXTRACT Function Parameters

Parameter Description

handle The handle to a piecewise uncompress context.

dst The uncompressed data.

LZ_UNCOMPRESS_OPEN Function

152-14 PL/SQL Packages and Types Reference

LZ_UNCOMPRESS_OPEN Function

This function initializes a piecewise context that maintains the uncompress state
and data.

Syntax
UTL_COMPRESS.LZ_UNCOMPRESS_OPEN(
 src IN BLOB)
 RETURN BINARY_INTEGER;

Parameters

Return Values
A handle to an initialized piecewise compress context.

Exceptions
■ invalid_handle - invalid handle, too many open handles.

■ invalid_argument - NULL src.

Usage Notes
Close the opened handle with LZ_UNCOMPRESS_CLOSE

■ once the piecewise uncompress is completed

■ in the event of an exception in the middle of process

because lack of doing so will cause these handles to leak.

Table 152–10 LZ_UNCOMPRESS_OPEN Function Parameters

Parameter Description

src The input data to be uncompressed.

Summary of UTL_COMPRESS Subprograms

UTL_COMPRESS 152-15

LZ_UNCOMPRESS_CLOSE Procedure

This procedure closes and finishes the piecewise uncompress.

Syntax
UTL_COMPRESS.LZ_UNCOMPRESS_CLOSE(
 handle IN BINARY_INTEGER);

Parameters

Exceptions
■ invalid_handle - out of range invalid or uninitialized handle.

■ invalid_argument - NULL handle.

Table 152–11 LZ_UNCOMPRESS_CLOSE Procedure Parameters

Parameter Description

handle The handle to a piecewise uncompress context.

LZ_UNCOMPRESS_CLOSE Procedure

152-16 PL/SQL Packages and Types Reference

UTL_DBWS 153-1

153
UTL_DBWS

The UTL_DBWS package provides database web services.

This chapter contains the following topics:

■ Using UTL_DBWS

■ Supported Keys and Default Settings for Standard Call Properties

■ Summary of UTL_DBWS Subprograms

Using UTL_DBWS

153-2 PL/SQL Packages and Types Reference

Using UTL_DBWS

■ Supported Keys and Default Settings for Standard Call Properties

Supported Keys and Default Settings for Standard Call Properties

Table 153–1 Supported Keys and Default Settings for Standard Call Properties

Key Explanation of Value, Default value

'USERNAME' User name for authentication.

'PASSWORD' Password for authentication.

'ENCODINGSTYLE_URI' Encoding style specified as a namespace URI. The default
value is the SOAP 1.1 encoding
http://schemas.xmlsoap.org/soap/encoding/.

'OPERATION_STYLE' Standard property for operation style. Set to 'RPC' if the
operation style is RPC, 'DOCUMENT' if the operation style is
document.

'SESSION_MAINTAIN' This boolean property is used by a service client to indicate
whether or not it wants to participate in a session with a
service endpoint.If this property is set to 'TRUE', the service
client indicates that it wants the session to be maintained. If set
to 'FALSE', the session is not maintained. The default value for
this property is 'FALSE'

'SOAPACTION_USE' This boolean property indicates whether or not SOAPAction is
to be used. The default value of this property is 'FALSE'.

'SOAPACTION_URI' Indicates the SOAPAction URI if the SOAPACTION_USE
property is set to 'TRUE'

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-3

Summary of UTL_DBWS Subprograms

Table 153–2 UTL_DBWS Subprograms

Subprogram Description

CREATE_CALL Function on
page 153-4

Creates a Call instance

CREATE_SERVICE Function
on page 153-5

Creates a Service instance

GET_IN_PARAMETER_
TYPES Function on page 153-6

Lists the XML type of the input parameters of the Call that
is returned

GET_OUT_PARAMETER_
TYPES Function on page 153-7

Lists the XML type of the output parameters of the Call
that is returned

GET_OUTPUT_VALUES
Function on page 153-8

Obtains the output arguments after a Call invocation

GET_PORTS Function on
page 153-9

Lists the qualified names of all of the ports in a service

GET_PROPERTY Function on
page 153-10

Returns the value of a particular property on a Call

GET_RETURN_TYPE
Function on page 153-11

Lists the XML type that is returned by the given Call

GET_SERVICES Function on
page 153-12

Lists the qualified names of the services defined in a
WDSL document

INVOKE Function on
page 153-13

Invokes a specific operation using a synchronous
request-response interaction mode

RELEASE_ALL_SERVICES
Procedure on page 153-14

Releases all Service instances

RELEASE_CALL Procedure
on page 153-15

Releases a particular Call instance

RELEASE_SERVICE
Procedure on page 153-16

Releases a particular Service instance

REMOVE_PROPERTY
Procedure on page 153-17

Clears the value of a particular property on a Call

SET_PROPERTY Procedure on
page 153-18

Sets the value of a particular property on a Call

CREATE_CALL Function

153-4 PL/SQL Packages and Types Reference

CREATE_CALL Function

This procedure creates a Call instance.

Syntax
UTL_DBWS.CREATE_CALL (
 service_handle SERVICE,
 port_name QNAME,
 operation_name QNAME)
 RETURN CALL;

Parameters

Return Values

Table 153–3 CREATE_CALL Function Parameters

Parameter Description

service_handle The Service instance to be called.

port_name The qualified name for the port. Use the first port if this is
NULL.

operation_name The qualified name for the operation.

Table 153–4 CREATE_CALL Return Values

Parameter Description

CALL Returns a handle to the Call instance.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-5

CREATE_SERVICE Function

This procedure creates a Service instance.

Syntax
UTL_DBWS.CREATE_SERVICE(
 wsdl_document_location URITYPE,
 service_name QNAME)
 RETURN SERVICE;

Parameters

Return Values

Table 153–5 CREATE_SERVICE Function Parameters

Parameter Description

wsdl_document_location The URL for the WSDL document location for the service

service_name The qualified name for the service. Use the first service if
this is NULL.

Table 153–6 CREATE_SERVICE Return Values

Parameter Description

SERVICE Returns a handle to the Service instance.

GET_IN_PARAMETER_TYPES Function

153-6 PL/SQL Packages and Types Reference

GET_IN_PARAMETER_TYPES Function

This procedure lists the XML type of the input parameters of the Call that is returned.

Syntax
UTL_DBWS.GET_IN_PARAMETER_TYPES(
 call_handle CALL)
 RETURN QNAME_LIST;

Parameters

Return Values

Table 153–7 GET_IN_PARAMETER_TYPES Function Parameters

Parameter Description

call_handle The Service instance whose input types are returned.

Table 153–8 GET_IN_PARAMETER_TYPES Function Return Values

Parameter Description

QNAME_LIST The list of the XML type of the input parameters of the
Call that is returned.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-7

GET_OUT_PARAMETER_TYPES Function

This procedure lists the XML type of the output parameters of the Call that is returned.

Syntax
UTL_DBWS.GET_OUT_PARAMETER_TYPES(
 call_handle CALL)
 RETURN QNAME_LIST;

Parameters

Return Values

Table 153–9 GET_OUT_PARAMETER_TYPES Function Parameters

Parameter Description

call_handle The Service instance whose output types are returned.

Table 153–10 GET_OUT_PARAMETER_TYPES Function Return Values

Parameter Description

QNAME_LIST The list of the XML type of the input parameters of the
Call that is returned.

GET_OUTPUT_VALUES Function

153-8 PL/SQL Packages and Types Reference

GET_OUTPUT_VALUES Function

This procedure obtains the output arguments after a Call invocation.

Syntax
UTL_DBWS.GET_OUTPUT_VALUES(
 call_handle CALL)
 RETURN ANYDATA_LIST;

Parameters

Return Values

Table 153–11 GET_OUTPUT_VALUES Function Parameters

Parameter Description

call_handle The instance of the Call.

Table 153–12 GET_OUTPUT_VALUES Function Return Values

Parameter Description

ANYDATA_LIST Returns the output arguments in order.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-9

GET_PORTS Function

This procedure lists the qualified names of all of the ports in a service.

Syntax
UTL_DBWS.GET_PORTS(
 service_handle SERVICE)
 RETURN QNAME_LIST;

Parameters

Return Values

Table 153–13 GET_PORTS Function Parameters

Parameter Description

service_handle The service instance whose ports are returned

Table 153–14 GET_PORTS Function Return Values

Parameter Description

QNAME_LIST Returns a list of the qualified names of all ports in a service

GET_PROPERTY Function

153-10 PL/SQL Packages and Types Reference

GET_PROPERTY Function

This procedure returns the value of a particular property on a Call.

Syntax
UTL_DBWS.GET_PROPERTY(
 call_handle CALL,
 key VARCHAR2)
 RETURN value VARCHAR2;

Parameters

Return Values

Table 153–15 GET_PROPERTY Function Parameters

Parameter Description

call_handle The the instance of the Call

key The key for the property (see Using UTL_DBWS on page 153-2)

Table 153–16 GET_PROPERTY Function Return Values

Parameter Description

value Returns the value of a particular property on a Call.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-11

GET_RETURN_TYPE Function

This procedure lists the XML type that is returned by the given Call.

Syntax
UTL_DBWS.GET_RETURN_TYPE (
 call_handle CALL)
 RETURN QNAME;

Parameters

Return Values

Table 153–17 GET_RETURN_TYPE Function Parameters

Parameter Description

call_handle The Service instance whose return type is returned.

Table 153–18 GET_RETURN_TYPE Function Return Values

Parameter Description

QNAME The type that is returned.

GET_SERVICES Function

153-12 PL/SQL Packages and Types Reference

GET_SERVICES Function

This function lists the qualified names of the services defined in a WDSL document.

Syntax
UTL_DBWS.GET_SERVICES(
 wsdl_document_location URITYPE)
 RETURN QNAME_LIST;

Parameters

Return Values

Table 153–19 GET_RETURN_TYPE Function Parameters

Parameter Description

wsdl_document_
location

The Service instance whose return type is returned.

Table 153–20 GET_RETURN_TYPE Function Return Values

Parameter Description

QNAME_LIST A list of the qualified names of the services defined in the
WSDL document.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-13

INVOKE Function

This procedure invokes a specific operation using a synchronous request-response
interaction mode.

Syntax
UTL_DBWS.INVOKE(
 call_handle CALL,
 input_params ANYDATA_LIST)
 RETURN ANYDATA;

Parameters

Return Values

Table 153–21 INVOKE Function Parameters

Parameter Description

call_handle The Service instance whose return type is returned.

input_params The input parameters for this invocation.

Table 153–22 INVOKE Function Return Values

Parameter Description

ANYDATA Returns the return value or NULL.

RELEASE_ALL_SERVICES Procedure

153-14 PL/SQL Packages and Types Reference

RELEASE_ALL_SERVICES Procedure

This procedure releases all Service instances.

Syntax
UTL_DBWS.RELEASE_ALL_SERVICES;

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-15

RELEASE_CALL Procedure

This procedure releases a particular Call instance.

Syntax
UTL_DBWS.RELEASE_CALL(
 call_handle CALL);

Parameters

Table 153–23 RELEASE_CALL Procedure Parameters

Parameter Description

call_handle The Call instance that is to be released.

RELEASE_SERVICE Procedure

153-16 PL/SQL Packages and Types Reference

RELEASE_SERVICE Procedure

This procedure releases a particular Service instance.

Syntax
UTL_DBWS.RELEASE_SERVICE (
 service_handle SERVICE);

Parameters

Usage Notes
This will implicitly release all Call instances that have been created for this Service
instance.

Table 153–24 RELEASE_SERVICE Procedure Parameters

Parameter Description

service_handle The Service instance that is to be released.

Summary of UTL_DBWS Subprograms

UTL_DBWS 153-17

REMOVE_PROPERTY Procedure

This procedure clears the value of a particular property on a Call.

Syntax
UTL_DBWS.REMOVE_PROPERTY(
 call_handle CALL,
 key VARCHAR2);

Parameters

Table 153–25 REMOVE_PROPERTY Procedure Parameters

Parameter Description

call_handle The Call instance.

key The key for the property (see Using UTL_DBWS on
page 153-2).

SET_PROPERTY Procedure

153-18 PL/SQL Packages and Types Reference

SET_PROPERTY Procedure

This procedure sets the value of a particular property on a Call.

Syntax
UTL_DBWS.SET_PROPERTY(
 call_handle CALL,
 key VARCHAR2,
 value VARCHAR2);

Parameters

Table 153–26 SET_PROPERTY Function Parameters

Parameter Description

call_handle The instance of the Call.

key The key for the property (see Using UTL_DBWS on
page 153-2).

value The value for the property.

UTL_ENCODE 154-1

154
UTL_ENCODE

The UTL_ENCODE package provides functions that encode RAW data into a standard
encoded format so that the data can be transported between hosts. You can use
UTL_ENCODE functions to encode the body of email text. The package also contains
the decode counterpart functions of the encode functions. The functions follow
published standards for encoding to accommodate non-Oracle utilities on the
sending or receiving ends.

This chapter contains the following topic:

■ Summary of UTL_ENCODE Subprograms

Summary of UTL_ENCODE Subprograms

154-2 PL/SQL Packages and Types Reference

Summary of UTL_ENCODE Subprograms

Table 154–1 UTL_ENCODE Package Subprograms

Subprogram Description

BASE64_DECODE Function on
page 154-3

Reads the base 64-encoded RAW input string and decodes
it to its original RAW value

BASE64_ENCODE Function on
page 154-4

Encodes the binary representation of the RAW value into
base 64 elements and returns it in the form of a RAW string

MIMEHEADER_DECODE
Function on page 154-5

Decodes a string from mime header format

MIMEHEADER_ENCODE
Function on page 154-7

Encodes a string into mime header format

QUOTED_PRINTABLE_
DECODE Function on
page 154-9

Reads the varchar2 quoted printable format input string
and decodes it to the corresponding RAW string

QUOTED_PRINTABLE_
ENCODE Function on
page 154-10

Reads the RAW input string and encodes it to the
corresponding quoted printable format string

TEXT_DECODE Function on
page 154-11

Decodes a character set sensitive text string

TEXT_ENCODE Function on
page 154-13

Encodes a character set sensitive text string

UUDECODE Function on
page 154-15

Reads the RAW uuencode format input string and decodes
it to the corresponding RAW string

UUENCODE Function on
page 154-16

Reads the RAW input string and encodes it to the
corresponding uuencode format string

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-3

BASE64_DECODE Function

This function reads the base 64-encoded RAW input string and decodes it to its
original RAW value.

Syntax
UTL_ENCODE.BASE64_DECODE (
 r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(base64_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 154–2 BASE64_DECODE Function Parameters

Parameter Description

r The RAW string containing base 64-encoded data. There are
no defaults or optional parameters.

Table 154–3 BASE64_DECODE Function Return Values

Return Description

RAW Contains the decoded string

BASE64_ENCODE Function

154-4 PL/SQL Packages and Types Reference

BASE64_ENCODE Function

This function encodes the binary representation of the RAW value into base 64
elements and returns it in the form of a RAW string.

Syntax
UTL_ENCODE.BASE64_ENCODE (
 r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(base64_encode, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 154–4 BASE64_ENCODE Function Parameters

Parameter Description

r The RAW value to be encoded. There are no defaults or
optional parameters.

Table 154–5 BASE64_ENCODE Function Return Values

Return Description

RAW Contains the encoded base 64 elements

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-5

MIMEHEADER_DECODE Function

This function accepts as input an "encoded word" of the form:

=?<charset>?<encoding>?<encoded text>?=
=?ISO-8859-1?Q?Here is some encoded text?=

The <encoded text> is encapsulated in mime header tags which give the
MIMEHEADER_DECODE function information about how to decode the string. The
mime header metadata tags are stripped from the input string and the <encoded
text> is converted to the base database character set as follows:

■ If this is a UTF16 platform, convert the encoded text from UTF16 to ASCII

■ If this is an EBCDIC platform, convert the encoded text from EBCDIC to ASCII

■ If this is an ASCII or UTF8 platform, no conversion needed

The string is decoded using either quoted-printable or base64 decoding, as specified
by the <encoding> metadata tag in the encoded word. The resulting converted
and decoded text is returned to the caller as a VARCHAR2 string.

Syntax
UTL_ENCODE.MIMEHEADER_DECODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS)
 RETURN data VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Return Values

Table 154–6 MIMEHEADER_DECODE Function Parameters

Parameter Description

buf The encoded text data with mime header format tags.

Table 154–7 MIMEHEADER_DECODE Function Return Values

Return Description

data The encoded text data with mime header format tags

MIMEHEADER_DECODE Function

154-6 PL/SQL Packages and Types Reference

Examples
v2:=utl_encode.mimeheader_decode('=?ISO-8859-1?Q?Here is some encoded text?=');

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-7

MIMEHEADER_ENCODE Function

This function accepts as input an "encoded word" of the form:

=?<charset>?<encoding>?<encoded text>?=
=?ISO-8859-1?Q?Here is some text?=

The buf input parameter is the text to be encoded and becomes the <encoded
text>.

The <encoding> value is either "Q" or "B" for quoted-printable encode or base64
encoding respectively. The ENCODING input parameter accepts as valid values
UTL_ENCODE.QUOTED_PRINTABLE or UTL_ENCODE.BASE64 or NULL. If NULL,
quoted-printable encoding is selected as a default value.

The <charset> value is specified as the input parameter encode_charset. If
NULL, the database character set is selected as a default value.

The mimeheader encoding process includes conversion of the buf input string to
the character set specified by the encode_charset parameter. The converted
string is encoded to either quoted-printable or base64 encoded format. The mime
header tags are appended and prepended.

Finally, the string is converted to the base character set of the database:

■ If this is a UTF16 platform, convert the encoded text to UTF16

■ If this is an EBCDIC platform, convert the encoded text to EBCDIC

■ If this is an ASCII or UTF8 platform, no conversion needed.

Syntax
UTL_ENCODE.MIMEHEADER_ENCODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Table 154–8 MIMEHEADER_ENCODE Function Parameters

Parameter Description

buf The text data.

MIMEHEADER_ENCODE Function

154-8 PL/SQL Packages and Types Reference

Return Values

encode_charset The target character set.

encoding The encoding format. Valid values are UTL_ENCODE.BASE64,
UTL_ENCODE.QUOTED_PRINTABLE and NULL

Table 154–9 BASE64_ENCODE Function Return Values

Return Description

string A VARCHAR2 encoded string with mime header format tags.

Table 154–8 (Cont.) MIMEHEADER_ENCODE Function Parameters

Parameter Description

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-9

QUOTED_PRINTABLE_DECODE Function

This function reads the varchar2 quoted printable format input string and
decodes it to the corresponding RAW string.

Syntax
UTL_ENCODE.QUOTED_PRINTABLE_DECODE (
 r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(quoted_printable_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 154–10 QUOTED_PRINTABLE_DECODE Function Parameters

Parameters Description

r The RAW string containing a quoted printable data string.
There are no defaults or optional parameters.

Table 154–11 QUOTED_PRINTABLE_DECODE Function Return Values

Return Description

RAW The decoded string

QUOTED_PRINTABLE_ENCODE Function

154-10 PL/SQL Packages and Types Reference

QUOTED_PRINTABLE_ENCODE Function

This function reads the RAW input string and encodes it to the corresponding quoted
printable format string.

Syntax
UTL_ENCODE.QUOTED_PRINTABLE_ENCODE (
 r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(quoted_printable_encode, WNDS, RNDS,WNPS, RNPS);

Parameters

Return Values

Table 154–12 QUOTED_PRINTABLE_ENCODE Function Parameters

Parameter Description

r The RAW string. There are no defaults or optional parameters.

Table 154–13 QUOTED_PRINTABLE_ENCODE Function Return Values

Return Description

RAW Contains the quoted printable string

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-11

TEXT_DECODE Function

This function converts the input text to the target character set as specified by the
encode_charset parameter, if not NULL. The encoded text is converted to the
base character set of database, as follows:

■ If this is a UTF16 platform, convert the encoded text from UTF16 to ASCII

■ If this is an EBCDIC platform, convert the encoded text from EBCDIC to ASCII

■ If this is an ASCII or UTF8 platform, no conversion needed

You can decode from either quoted-printable or base64 format, with regard to each
encoding parameter. If NULL, quoted-printable is selected as a default decoding
format. If encode_charset is not NULL, you convert the string from the specified
character set to the database character set. The resulting decoded and converted text
string is returned to the caller.

Syntax
UTL_ENCODE.TEXT_DECODE(
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Return Values

Table 154–14 TEXT_DECODE Function Parameters

Parameter Description

buf The encoded text data.

encode_charset The source character set.

encoding The encoding format. Valid values are UTL_ENCODE.BASE64,
UTL_ENCODE.QUOTED_PRINTABLE and NULL.

Table 154–15 QUOTED_PRINTABLE_ENCODE Function Return Values

Return Description

string A VARCHAR2 decoded text string.

TEXT_DECODE Function

154-12 PL/SQL Packages and Types Reference

Examples
 v2:=UTL_ENCODE.TEXT_DECODE(
 'Here is some text',
 WE8ISO8859P1,
 UTL_ENCODE.BASE64);

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-13

TEXT_ENCODE Function

This function converts the input text to the target character set as specified by the
encode_charset parameter, if not NULL. The text is encoded to either base64 or
quoted-printable format, as specified by the encoding parameter.
Quoted-printable is selected as a default if ENCODING is NULL.

The encoded text is converted to the base character set of the database:

■ If this is a UTF16 platform, convert the encoded text to UTF16

■ If this is an EBCDIC platform, convert the encoded text to EBCDIC

■ If this is an ASCII or UTF8 platform, no conversion needed

The resulting encoded and converted text string is returned to the caller.

Syntax
UTL_ENCODE.TEXT_ENCODE (
 buf IN VARCHAR2 CHARACTER SET ANY_CS,
 encode_charset IN VARCHAR2 DEFAULT NULL,
 encoding IN PLS_INTEGER DEFAULT NULL)
 RETURN string VARCHAR2 CHARACTER SET buf%CHARSET;

Parameters

Return Values

Table 154–16 TEXT_ENCODE Function Parameters

Parameter Description

buf The text data.

encode_charset The target character set.

encoding The encoding format. Valid values are UTL_ENCODE.BASE64,
UTL_ENCODE.QUOTED_PRINTABLE and NULL

Table 154–17 TEXT_ENCODE Function Return Values

Return Description

string A VARCHAR2 encoded string with mime header format tags.

TEXT_ENCODE Function

154-14 PL/SQL Packages and Types Reference

Examples
v2:=utl_encode.text_encode(
 'Here is some text',
 'WE8ISO8859P1',
 UTL_ENCODE.BASE64);

Summary of UTL_ENCODE Subprograms

UTL_ENCODE 154-15

UUDECODE Function

This function reads the RAW uuencode format input string and decodes it to the
corresponding RAW string. See "UUENCODE Function" on page 154-16 for
discussion of the cumulative nature of UUENCODE and UUDECODE for data streams.

Syntax
UTL_ENCODE.UUDECODE (
 r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(uudecode, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 154–18 UUDECODE Function Parameters

Parameter Description

r The RAW string containing the uuencoded data string. There
are no defaults or optional parameters.

Table 154–19 UUDECODE Function Return Values

Return Description

RAW The decoded RAW string

UUENCODE Function

154-16 PL/SQL Packages and Types Reference

UUENCODE Function

This function reads the RAW input string and encodes it to the corresponding
uuencode format string. The output of this function is cumulative, in that it can be
used to encode large data streams, by splitting the data stream into acceptably sized
RAW values, encoded, and concatenated into a single encoded string.

Syntax
UTL_ENCODE.UUENCODE (
 r IN RAW,
 type IN PLS_INTEGER DEFAULT 1,
 filename IN VARCHAR2 DEFAULT NULL,
 permission IN VARCHAR2 DEFAULT NULL) RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(uuencode, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 154–20 UUENCODE Function Parameters

Parameter Description

r RAW string

type Optional number parameter containing the type of uuencoded
output. Options:

complete—a defined PL/SQL constant with a value of 1. (default)
header_piece ...middle_piece ...end_piece

filename Optional varchar2 parameter containing the uuencode filename;
the default is uuencode.txt

permission Optional varchar2 parameter containing the permission mode;
the default is 0 (a text string zero).

Table 154–21 UUENCODE Function Return Values

Return Description

RAW Contains the uuencode format string

UTL_FILE 155-1

155
UTL_FILE

With the UTL_FILE package, PL/SQL programs can read and write operating
system text files. UTL_FILE provides a restricted version of operating system
stream file I/O.

This chapter contains the following topics:

■ Using UTL_FILE

■ Security Model

■ Types

■ Operational Notes

■ Rules and Limits

■ Exceptions

■ Examples

■ Summary of UTL_FILE Subprograms

Using UTL_FILE

155-2 PL/SQL Packages and Types Reference

Using UTL_FILE

■ Security Model

■ Types

■ Operational Notes

■ Rules and Limits

■ Exceptions

■ Examples

Security Model

UTL_FILE is available for both client-side and server-side PL/SQL. Both the client
(text I/O) and server implementations are subject to server-side file system
permission checking.

In the past, accessible directories for the UTL_FILE functions were specified in the
initialization file using the UTL_FILE_DIR parameter. However, UTL_FILE_DIR
access is not recommended. It is recommended that you use the CREATE
DIRECTORY feature, which replaces UTL_FILE_DIR. Directory objects offer more
flexibility and granular control to the UTL_FILE application administrator, can be
maintained dynamically (that is, without shutting down the database), and are
consistent with other Oracle tools. CREATE DIRECTORY privilege is granted only to
SYS and SYSTEM by default.

On UNIX systems, the owner of a file created by the FOPEN function is the owner of
the shadow process running the instance. Normally, this owner is ORACLE. Files
created using FOPEN are always writable and readable using the UTL_FILE
subprograms, but non privileged users who need to read these files outside of
PL/SQL may need access from a system administrator.

Note: Use the CREATE DIRECTORY feature instead of UTL_FILE_
DIR for directory access verification.

Using UTL_FILE

UTL_FILE 155-3

Types

The contents of FILE_TYPE are private to the UTL_FILE package. You should not
reference or change components of this record.

TYPE file_type IS RECORD (
 id BINARY_INTEGER,
 datatype BINARY_INTEGER);

Operational Notes

The file location and file name parameters are supplied to the FOPEN function as
separate strings, so that the file location can be checked against the list of accessible
directories as specified by the ALL_DIRECTORIES view of accessible directory
objects. Together, the file location and name must represent a legal filename on the
system, and the directory must be accessible. A subdirectory of an accessible
directory is not necessarily also accessible; it too must be specified using a complete
path name matching an ALL_DIRECTORIES object.

UTL_FILE implicitly interprets line terminators on read requests, thereby affecting
the number of bytes returned on a GET_LINE call. For example, the len parameter
of UTL_FILE.GET_LINE specifies the requested number of bytes of character data.
The number of bytes actually returned to the user will be the lesser of:

■ The GET_LINE len parameter, or

■ The number of bytes until the next line terminator character, or

■ The max_linesize parameter specified by UTL_FILE.FOPEN

The FOPEN max_linesize parameter must be a number in the range 1 and 32767.
If unspecified, Oracle supplies a default value of 1024. The GET_LINE len
parameter must be a number in the range 1 and 32767. If unspecified, Oracle

Caution: ■

■ The privileges needed to access files in a directory object are
operating system specific. UTL_FILE directory object privileges
give you read and write access to all files within the specified
directory.

■ Attempting to apply invalid options will give rise to
unpredictable results.

Rules and Limits

155-4 PL/SQL Packages and Types Reference

supplies the default value of max_linesize. If max_linesize and len are
defined to be different values, then the lesser value takes precedence.

UTL_FILE.GET_RAW ignores line terminators and returns the actual number of
bytes requested by the GET_RAW len parameter.

When data encoded in one character set is read and Globalization Support is told
(such as by means of NLS_LANG) that it is encoded in another character set, the
result is indeterminate. If NLS_LANG is set, it should be the same as the database
character set.

Rules and Limits

Operating system-specific parameters, such as C-shell environment variables under
UNIX, cannot be used in the file location or file name parameters.

UTL_FILE I/O capabilities are similar to standard operating system stream file I/O
(OPEN, GET, PUT, CLOSE) capabilities, but with some limitations. For example, you
call the FOPEN function to return a file handle, which you use in subsequent calls to
GET_LINE or PUT to perform stream I/O to a file. When file I/O is done, you call
FCLOSE to complete any output and free resources associated with the file.

Exceptions

Note: The UTL_FILE package is similar to the client-side TEXT_
IO package currently provided by Oracle Procedure Builder.
Restrictions for a server implementation require some API
differences between UTL_FILE and TEXT_IO. In PL/SQL file I/O,
errors are returned using PL/SQL exceptions.

Table 155–1 UTL_FILE Package Exceptions

Exception Name Description

INVALID_PATH File location is invalid.

INVALID_MODE The open_mode parameter in FOPEN is invalid.

INVALID_FILEHANDLE File handle is invalid.

INVALID_OPERATION File could not be opened or operated on as requested.

READ_ERROR Operating system error occurred during the read operation.

Using UTL_FILE

UTL_FILE 155-5

Procedures in UTL_FILE can also raise predefined PL/SQL exceptions such as NO_
DATA_FOUND or VALUE_ERROR.

Examples

Example 1

 Given the following:

SQL> CREATE DIRECTORY log_dir AS '/appl/gl/log';
SQL> GRANT READ ON DIRECTORY log_dir TO DBA;

SQL> CREATE DIRECTORY out_dir AS '/appl/gl/user'';

WRITE_ERROR Operating system error occurred during the write operation.

INTERNAL_ERROR Unspecified PL/SQL error

CHARSETMISMATCH A file is opened using FOPEN_NCHAR, but later I/O operations
use nonchar functions such as PUTF or GET_LINE.

FILE_OPEN The requested operation failed because the file is open.

INVALID_
MAXLINESIZE

The MAX_LINESIZE value for FOPEN() is invalid; it should be
within the range 1 to 32767.

INVALID_FILENAME The filename parameter is invalid.

ACCESS_DENIED Permission to access to the file location is denied.

INVALID_OFFSET Causes of the INVALID_OFFSET exception:

■ ABSOLUTE_OFFSET = NULL and RELATIVE_OFFSET =
NULL, or

■ ABSOLUTE_OFFSET < 0, or

■ Either offset caused a seek past the end of the file

DELETE_FAILED The requested file delete operation failed.

RENAME_FAILED The requested file rename operation failed.

Note: The examples are UNIX-specific.

Table 155–1 (Cont.) UTL_FILE Package Exceptions

Exception Name Description

Examples

155-6 PL/SQL Packages and Types Reference

SQL> GRANT READ ON DIRECTORY user_dir TO PUBLIC;

The following file locations and filenames are valid and accessible as follows:

The following file locations and filenames are invalid:

Example 2
DECLARE
 V1 VARCHAR2(32767);
 F1 UTL_FILE.FILE_TYPE;
BEGIN
 -- In this example MAX_LINESIZE is less than GET_LINE's length request
-- so the number of bytes returned will be 256 or less if a line terminator is

seen.
 F1 := UTL_FILE.FOPEN('MYDIR','MYFILE','R',256);
 UTL_FILE.GET_LINE(F1,V1,32767);
 UTL_FILE.FCLOSE(F1);

 -- In this example, FOPEN's MAX_LINESIZE is NULL and defaults to 1024,
 -- so the number of bytes returned will be 1024 or less if a line terminator
is seen.
 F1 := UTL_FILE.FOPEN('MYDIR','MYFILE','R');
 UTL_FILE.GET_LINE(F1,V1,32767);
 UTL_FILE.FCLOSE(F1);

File Location Filename Accessible By

/appl/gl/log L12345.log Users with DBA privilege

/appl/gl/user u12345.tmp All users

File Location Filename Invalid Because

/appl/gl/log/backup L12345.log # subdirectories are not
accessible

/APPL/gl/log L12345.log # directory strings must
follow case sensitivity rules
as required by the O/S

/appl/gl/log backup/L1234.log # filenames may not include
portions of directory paths

/user/tmp L12345.log # no corresponding CREATE
DIRECTORY command has
been issued

Using UTL_FILE

UTL_FILE 155-7

-- In this example, GET_LINE doesn't specify a number of bytes, so it defaults
to
 -- the same value as FOPEN's MAX_LINESIZE which is NULL in this case and
defaults to 1024.
 -- So the number of bytes returned will be 1024 or less if a line terminator
is seen.
 F1 := UTL_FILE.FOPEN('MYDIR','MYFILE','R');
 UTL_FILE.GET_LINE(F1,V1);
 UTL_FILE.FCLOSE(F1);
END;

Summary of UTL_FILE Subprograms

155-8 PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms

Table 155–2 UTL_FILE Subprograms

Subprogram Description

FCLOSE Procedure on
page 155-10

Closes a file

FCLOSE_ALL Procedure on
page 155-11

Closes all open file handles

FCOPY Procedure on
page 155-12

Copies a contiguous portion of a file to a newly created file

FFLUSH Procedure on
page 155-13

Physically writes all pending output to a file

FGETATTR Procedure on
page 155-14

Reads and returns the attributes of a disk file

FGETPOS Function on
page 155-15

Returns the current relative offset position within a file, in
bytes

FOPEN Function on
page 155-16

Opens a file for input or output

FOPEN_NCHAR Function
on page 155-18

Opens a file in Unicode for input or output

FREMOVE Procedure on
page 155-19

Deletes a disk file, assuming that you have sufficient
privileges

FRENAME Procedure on
page 155-20

Renames an existing file to a new name, similar to the UNIX
mv function

FSEEK Procedure on
page 155-21

Adjusts the file pointer forward or backward within the file
by the number of bytes specified

GET_LINE Procedure on
page 155-22

Reads text from an open file

GET_LINE_NCHAR
Procedure on page 155-24

Reads text in Unicode from an open file

GET_RAW Function on
page 155-25

Reads a RAW string value from a file and adjusts the file
pointer ahead by the number of bytes read

IS_OPEN Function on
page 155-26

Determines if a file handle refers to an open file

Summary of UTL_FILE Subprograms

UTL_FILE 155-9

NEW_LINE Procedure on
page 155-27

Writes one or more operating system-specific line terminators
to a file

PUT Procedure on
page 155-28

Writes a string to a file

PUTF Procedure on
page 155-29

A PUT procedure with formatting

PUT_NCHAR Procedure on
page 155-31

Writes a Unicode string to a file

PUT_RAW Function on
page 155-32

Accepts as input a RAW data value and writes the value to the
output buffer

PUT_LINE Procedure on
page 155-33

Writes a line to a file, and so appends an operating
system-specific line terminator

PUT_LINE_NCHAR
Procedure on page 155-34

Writes a Unicode line to a file

PUTF_NCHAR Procedure
on page 155-35

A PUT_NCHAR procedure with formatting, and writes a
Unicode string to a file, with formatting

Table 155–2 (Cont.) UTL_FILE Subprograms

Subprogram Description

FCLOSE Procedure

155-10 PL/SQL Packages and Types Reference

FCLOSE Procedure

This procedure closes an open file identified by a file handle.

Syntax
UTL_FILE.FCLOSE (
 file IN OUT FILE_TYPE);

Parameters

Usage Notes
If there is buffered data yet to be written when FCLOSE runs, then you may receive
a WRITE_ERROR exception when closing a file.

Exceptions
WRITE_ERROR
INVALID_FILEHANDLE

Table 155–3 FCLOSE Procedure Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call.

Summary of UTL_FILE Subprograms

UTL_FILE 155-11

FCLOSE_ALL Procedure

This procedure closes all open file handles for the session. This should be used as an
emergency cleanup procedure, for example, when a PL/SQL program exits on an
exception.

Syntax
UTL_FILE.FCLOSE_ALL;

Usage Notes

Exceptions
WRITE_ERROR

Note: FCLOSE_ALL does not alter the state of the open file
handles held by the user. This means that an IS_OPEN test on a file
handle after an FCLOSE_ALL call still returns TRUE, even though
the file has been closed. No further read or write operations can be
performed on a file that was open before an FCLOSE_ALL.

FCOPY Procedure

155-12 PL/SQL Packages and Types Reference

FCOPY Procedure

This procedure copies a contiguous portion of a file to a newly created file. By
default, the whole file is copied if the start_line and end_line parameters are
omitted. The source file is opened in read mode. The destination file is opened in
write mode. A starting and ending line number can optionally be specified to select
a portion from the center of the source file for copying.

Syntax
UTL_FILE.FCOPY (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 dest_dir IN VARCHAR2,
 dest_file IN VARCHAR2,
 start_line IN PLS_INTEGER DEFAULT 1,
 end_line IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 155–4 FCOPY Procedure Parameters

Parameters Description

location The directory location of the source file, a DIRECTORY_NAME
from the ALL_DIRECTORIES view (case sensitive)

filename The source file to be copied

dest_dir The destination directory where the destination file is created.

dest_file The destination file created from the source file.

start_line The line number at which to begin copying. The default is 1 for
the first line.

end_line The line number at which to stop copying. The default is
NULL, signifying end of file.

Summary of UTL_FILE Subprograms

UTL_FILE 155-13

FFLUSH Procedure

FFLUSH physically writes pending data to the file identified by the file handle.
Normally, data being written to a file is buffered. The FFLUSH procedure forces the
buffered data to be written to the file. The data must be terminated with a newline
character.

Flushing is useful when the file must be read while still open. For example,
debugging messages can be flushed to the file so that they can be read immediately.

Syntax
UTL_FILE.FFLUSH (
 file IN FILE_TYPE);
invalid_maxlinesize EXCEPTION;

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Table 155–5 FFLUSH Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR
call.

FGETATTR Procedure

155-14 PL/SQL Packages and Types Reference

FGETATTR Procedure

This procedure reads and returns the attributes of a disk file.

Syntax
UTL_FILE.FGETATTR(
 location IN VARCHAR2,
 filename IN VARCHAR2,
 exists OUT BOOLEAN,
 file_length OUT NUMBER,
 blocksize OUT NUMBER);

Parameters

Table 155–6 FGETATTR Procedure Parameters

Parameters Description

location Directory location of the source file, a DIRECTORY_NAME from
the ALL_DIRECTORIES view (case sensitive).

filename The name of the file to be examined.

exists A BOOLEAN for whether or not the file exists.

file_length The length of the file in bytes. NULL if file does not exist.

blocksize The file system block size in bytes. NULL if the file does not
exist.

Summary of UTL_FILE Subprograms

UTL_FILE 155-15

FGETPOS Function

This function returns the current relative offset position within a file, in bytes.

Syntax
UTL_FILE.FGETPOS (
 fileid IN file_type)
 RETURN PLS_INTEGER;

Parameters

Return Values
FGETPOS returns the relative offset position for an open file, in bytes. It raises an
exception if the file is not open. It returns 0 for the beginning of the file.

Table 155–7 FGETPOS Parameters

Parameters Description

fileid The directory location of the source file

FOPEN Function

155-16 PL/SQL Packages and Types Reference

FOPEN Function

This function opens a file. You can specify the maximum line size and have a
maximum of 50 files open simultaneously. See also "FOPEN_NCHAR Function" on
page 155-18.

Syntax
UTL_FILE.FOPEN (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER)
 RETURN file_type;

Parameters

Table 155–8 FOPEN Function Parameters

Parameter Description

location Directory location of file. This string is a directory object name
and is case sensitive. The default is uppercase. Read privileges
must be granted on this directory object for the UTL_FILE user
to run FOPEN.

filename File name, including extension (file type), without directory
path. If a directory path is given as a part of the filename, it is
ignored by FOPEN. On Unix, the filename cannot end with /.

open_mode Specifies how the file is opened. Modes include:

r -- read text

w -- write text

a -- append text

rb -- read byte mode

wb -- write byte mode

ab -- append byte mode

If you try to open a file specifying 'a' or 'ab' for open_mode
but the file does not exist, the file is created in write mode.

Summary of UTL_FILE Subprograms

UTL_FILE 155-17

Return Values
FOPEN returns a file handle, which must be passed to all subsequent procedures
that operate on that file. The specific contents of the file handle are private to the
UTL_FILE package, and individual components should not be referenced or
changed by the UTL_FILE user.

Usage Notes
The file location and file name parameters must be supplied to the FOPEN function
as quoted strings so that the file location can be checked against the list of accessible
directories as specified by the ALL_DIRECTORIES view of accessible directory
objects.

Exceptions
INVALID_PATH: File location or name was invalid.
INVALID_MODE: The open_mode string was invalid.
INVALID_OPERATION: File could not be opened as requested.
INVALID_MAXLINESIZE: Specified max_linesize is too large or too small.

max_linesize Maximum number of characters for each line, including the
newline character, for this file. (minimum value 1, maximum
value 32767). If unspecified, Oracle supplies a default value of
1024.

Table 155–9 FOPEN Function Return Values

Return Description

file_type Handle to open file.

Table 155–8 FOPEN Function Parameters

Parameter Description

FOPEN_NCHAR Function

155-18 PL/SQL Packages and Types Reference

FOPEN_NCHAR Function

This function opens a file in Unicode for input or output, with the maximum line
size specified. You can have a maximum of 50 files open simultaneously. With this
function, you can read or write a text file in Unicode instead of in the database
charset. See also FOPEN Function on page 155-16.

Syntax
UTL_FILE.FOPEN_NCHAR (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER)
RETURN file_type;

Parameters

Table 155–10 FOPEN_NCHAR Function Parameters

Parameter Description

location Directory location of file.

filename File name (including extension).

open_mode Open mode (r,w,a,rb,wb,ab).

max_linesize Maximum number of characters for each line, including the
newline character, for this file. (minimum value 1, maximum
value 32767).

Summary of UTL_FILE Subprograms

UTL_FILE 155-19

FREMOVE Procedure

This procedure deletes a disk file, assuming that you have sufficient privileges.

Syntax
UTL_FILE.FREMOVE (
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Usage Notes
The FREMOVE procedure does not verify privileges before deleting a file. The O/S
verifies file and directory permissions. An exception is returned on failure.

Table 155–11 FREMOVE Procedure Parameters

Parameters Description

location The directory location of the file, a DIRECTORY_NAME from
ALL_DIRECTORIES (case sensitive)

filename The name of the file to be deleted

FRENAME Procedure

155-20 PL/SQL Packages and Types Reference

FRENAME Procedure

This procedure renames an existing file to a new name, similar to the UNIX mv
function.

Syntax
UTL_FILE.FRENAME (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 dest_dir IN VARCHAR2,
 dest_file IN VARCHAR2,
 overwrite IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Permission on both the source and destination directories must be granted. You can
use the overwrite parameter to specify whether or not to overwrite a file if one
exists in the destination directory. The default is FALSE for no overwrite.

Table 155–12 FRENAME Procedure Parameters

Parameters Description

location The directory location of the source file, a DIRECTORY_NAME
from the ALL_DIRECTORIES view (case sensitive).

filename The source file to be renamed.

dest_dir The destination directory of the destination file, a
DIRECTORY_NAME from the ALL_DIRECTORIES view (case
sensitive).

dest_file The new name of the file.

overwrite The default is FALSE.

Summary of UTL_FILE Subprograms

UTL_FILE 155-21

FSEEK Procedure

This procedure adjusts the file pointer forward or backward within the file by the
number of bytes specified.

Syntax
UTL_FILE.FSEEK (
 fid IN utl_file.file_type,
 absolute_offset IN PL_INTEGER DEFAULT NULL,
 relative_offset IN PLS_INTEGER DEFAULT NULL);

Parameters

Usage Notes
Using FSEEK, you can read previous lines in the file without first closing and
reopening the file. You must know the number of bytes by which you want to
navigate.

If relative_offset, the procedure seeks forward. If relative_offset > 0, or
backward, if relative_offset < 0, the procedure seeks through the file by the
number of relative_offset bytes specified.

If the beginning of the file is reached before the number of bytes specified, then the
file pointer is placed at the beginning of the file. If the end of the file is reached
before the number of bytes specified, then an INVALID_OFFSET error is raised.

If absolute_offset, the procedure seeks to an absolute location specified in
bytes.

Table 155–13 FSEEK Procedure Parameters

Parameters Description

fid The file ID.

absolute_offset The absolute location to which to seek; default = NULL

relative_offset The number of bytes to seek forward or backward; positive =
forward, negative integer = backward, zero = current position,
default = NULL

GET_LINE Procedure

155-22 PL/SQL Packages and Types Reference

GET_LINE Procedure

This procedure reads text from the open file identified by the file handle and places
the text in the output buffer parameter. Text is read up to, but not including, the line
terminator, or up to the end of the file, or up to the end of the len parameter. It
cannot exceed the max_linesize specified in FOPEN.

Syntax
UTL_FILE.GET_LINE (
 file IN FILE_TYPE,
 buffer OUT VARCHAR2,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Usage Notes
If the line does not fit in the buffer, a VALUE_ERROR exception is raised. If no text
was read due to end of file, the NO_DATA_FOUND exception is raised. If the file is
opened for byte mode operations, the INVALID_OPERATION exception is raised.

Because the line terminator character is not read into the buffer, reading blank lines
returns empty strings.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. See
also "GET_LINE_NCHAR Procedure" on page 155-24.

Exceptions
INVALID_FILEHANDLE

Table 155–14 GET_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

The file must be open for reading (mode r); otherwise an
INVALID_OPERATION exception is raised.

buffer Data buffer to receive the line read from the file.

len The number of bytes read from the file. Default is NULL. If
NULL, Oracle supplies the value of max_linesize.

Summary of UTL_FILE Subprograms

UTL_FILE 155-23

INVALID_OPERATION
READ_ERROR
NO_DATA_FOUND
VALUE_ERROR

GET_LINE_NCHAR Procedure

155-24 PL/SQL Packages and Types Reference

GET_LINE_NCHAR Procedure

This procedure reads text from the open file identified by the file handle and places
the text in the output buffer parameter. With this function, you can read a text file in
Unicode instead of in the database charset. See also "GET_LINE_NCHAR
Procedure" on page 155-24.

Syntax
UTL_FILE.GET_LINE_NCHAR (
 file IN FILE_TYPE,
 buffer OUT NVARCHAR2,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 155–15 GET_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

buffer Data buffer to receive the line read from the file.

len The number of bytes read from the file. Default is NULL. If
NULL, Oracle supplies the value of max_linesize.

Summary of UTL_FILE Subprograms

UTL_FILE 155-25

GET_RAW Function

This function reads a RAW string value from a file and adjusts the file pointer ahead
by the number of bytes read. UTL_FILE.GET_RAW ignores line terminators and
returns the actual number of bytes requested by the GET_RAW len parameter.

Syntax
UTL_FILE.GET_RAW (
 fid IN utl_file.file_type,
 r OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 155–16 GET_RAW Procedure Parameters

Parameters Description

fid The file ID.

r The RAW data.

len The number of bytes read from the file. Default is NULL. If
NULL, len is assumed to be the maximum length of RAW.

IS_OPEN Function

155-26 PL/SQL Packages and Types Reference

IS_OPEN Function

This function tests a file handle to see if it identifies an open file. IS_OPEN reports
only whether a file handle represents a file that has been opened, but not yet closed.
It does not guarantee that there will be no operating system errors when you
attempt to use the file handle.

Syntax
UTL_FILE.IS_OPEN (
 file IN FILE_TYPE)
 RETURN BOOLEAN;

Parameters

Return Values
TRUE or FALSE

Table 155–17 IS_OPEN Function Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call.

Summary of UTL_FILE Subprograms

UTL_FILE 155-27

NEW_LINE Procedure

This procedure writes one or more line terminators to the file identified by the input
file handle. This procedure is separate from PUT because the line terminator is a
platform-specific character or sequence of characters.

Syntax
UTL_FILE.NEW_LINE (
 file IN FILE_TYPE,
 lines IN NATURAL := 1);

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Table 155–18 NEW_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR
call.

lines Number of line terminators to be written to the file.

PUT Procedure

155-28 PL/SQL Packages and Types Reference

PUT Procedure

PUT writes the text string stored in the buffer parameter to the open file identified
by the file handle. The file must be open for write operations. No line terminator is
appended by PUT; use NEW_LINE to terminate the line or use PUT_LINE to write a
complete line with a line terminator. See also "PUT_NCHAR Procedure" on
page 155-31.

Syntax
UTL_FILE.PUT (
 file IN FILE_TYPE,
 buffer IN VARCHAR2);

Parameters

Usage Notes
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Table 155–19 PUT Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for writing.

buffer Buffer that contains the text to be written to the file.

You must have opened the file using mode w or mode a;
otherwise, an INVALID_OPERATION exception is raised.

Summary of UTL_FILE Subprograms

UTL_FILE 155-29

PUTF Procedure

This procedure is a formatted PUT procedure. It works like a limited printf(). See
also "PUTF_NCHAR Procedure" on page 155-35.

Syntax
UTL_FILE.PUTF (
 file IN FILE_TYPE,
 format IN VARCHAR2,
 [arg1 IN VARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN VARCHAR2 DEFAULT NULL]);

Parameters

Usage Notes
The format string can contain any text, but the character sequences %s and \n have
special meaning.

Table 155–20 PUTF Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

format Format string that can contain text as well as the formatting
characters \n and %s.

arg1..arg5 From one to five operational argument strings.

Argument strings are substituted, in order, for the %s
formatters in the format string.

If there are more formatters in the format parameter string
than there are arguments, then an empty string is substituted
for each %s for which there is no argument.

Character Sequence Meaning

%s Substitute this sequence with the string value of the next
argument in the argument list.

\n Substitute with the appropriate platform-specific line
terminator.

PUTF Procedure

155-30 PL/SQL Packages and Types Reference

Examples
The following example writes the lines:

Hello, world!
I come from Zork with greetings for all earthlings.

my_world varchar2(4) := 'Zork';
...
PUTF(my_handle, 'Hello, world!\nI come from %s with %s.\n',
 my_world,
 'greetings for all earthlings');

If there are more %s formatters in the format parameter than there are arguments,
then an empty string is substituted for each %s for which there is no matching
argument.

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Summary of UTL_FILE Subprograms

UTL_FILE 155-31

PUT_NCHAR Procedure

This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. With this function, you can write a text file in Unicode
instead of in the database charset. See also "PUT Procedure" on page 155-28.

Syntax
UTL_FILE.PUT_NCHAR (
 file IN FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Usage Notes
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Table 155–21 PUT_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. If the file
is opened by FOPEN instead of FOPEN_NCHAR, a
CHARSETMISMATCH exception is raised.

buffer Buffer that contains the text to be written to the file.

You must have opened the file using mode w or mode a;
otherwise, an INVALID_OPERATION exception is raised.

PUT_RAW Function

155-32 PL/SQL Packages and Types Reference

PUT_RAW Function

This function accepts as input a RAW data value and writes the value to the output
buffer.

Syntax
UTL_FILE.PUT_RAW (
 fid IN utl_file.file_type,
 r IN RAW,
 autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
You can request an automatic flush of the buffer by setting the third argument to
TRUE.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Table 155–22 PUT_RAW Procedure Parameters

Parameters Description

fid The file ID.

r The RAW data written to the buffer.

autoflush If TRUE, performs a flush after writing the value to the output
buffer; default is FALSE.

Summary of UTL_FILE Subprograms

UTL_FILE 155-33

PUT_LINE Procedure

This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. The file must be open for write operations. PUT_LINE
terminates the line with the platform-specific line terminator character or
characters.

See also "PUT_LINE_NCHAR Procedure" on page 155-34.

Syntax
UTL_FILE.PUT_LINE (
 file IN FILE_TYPE,
 buffer IN VARCHAR2,
 autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Table 155–23 PUT_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

buffer Text buffer that contains the lines to be written to the file.

autoflush Flushes the buffer to disk after the WRITE.

PUT_LINE_NCHAR Procedure

155-34 PL/SQL Packages and Types Reference

PUT_LINE_NCHAR Procedure

This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. With this function, you can write a text file in Unicode
instead of in the database charset. See also "PUT_LINE Procedure" on page 155-33.

Syntax
UTL_FILE.PUT_LINE_NCHAR (
 file IN FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Usage Notes
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Table 155–24 PUT_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for writing.

buffer Text buffer that contains the lines to be written to the file.

Summary of UTL_FILE Subprograms

UTL_FILE 155-35

PUTF_NCHAR Procedure

This procedure is a formatted PUT_NCHAR procedure. Using PUTF_NCHAR, you can
write a text file in Unicode instead of in the database charset. See also "PUTF_
NCHAR Procedure" on page 155-35 and "PUT_LINE Procedure" on page 155-33.

Syntax
UTL_FILE.PUTF_NCHAR (
 file IN FILE_TYPE,
 format IN NVARCHAR2,
 [arg1 IN NVARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN NVARCHAR2 DEFAULT NULL]);

Parameters

Usage Notes
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, Oracle supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Table 155–25 PUTF_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

format Format string that can contain text as well as the formatting
characters \n and %s.

arg1..arg5 From one to five operational argument strings.

Argument strings are substituted, in order, for the %s
formatters in the format string.

If there are more formatters in the format parameter string
than there are arguments, then an empty string is substituted
for each %s for which there is no argument.

PUTF_NCHAR Procedure

155-36 PL/SQL Packages and Types Reference

UTL_HTTP 156-1

156
UTL_HTTP

The UTL_HTTP package makes Hypertext Transfer Protocol (HTTP) callouts from
SQL and PL/SQL. You can use it to access data on the Internet over HTTP.

When the package fetches data from a Web site using HTTPS, it requires Oracle
Wallet Manager to set up an Oracle wallet. Non-HTTPS fetches do not require an
Oracle wallet.

This chapter contains the following topics:

■ Using UTL_HTTP

■ Overview

■ Constants

■ Types

■ Exceptions

■ Examples

■ Subprogram Groups

■ Summary of UTL_HTTP Subprograms

See Also:

■ Chapter 166, "UTL_URL"

■ Chapter 164, "UTL_SMTP"

■ Oracle Advanced Security Administrator's Guide for more
information on Wallet Manager

Using UTL_HTTP

156-2 PL/SQL Packages and Types Reference

Using UTL_HTTP

■ Overview

■ Constants

■ Types

■ Exceptions

■ Examples

Overview

With UTL_HTTP, you can write PL/SQL programs that communicate with Web
(HTTP) servers. UTL_HTTP also contains a function that can be used in SQL queries.
The package also supports HTTP over the Secured Socket Layer protocol (SSL), also
known as HTTPS, directly or through an HTTP proxy. Other Internet-related
data-access protocols (such as the File Transfer Protocol (FTP) or the Gopher
protocol) are also supported using an HTTP proxy server that supports those
protocols.

Constants

Table 156–1 Constants

Constant and Syntax Purpose

HTTP_VERSION_1_0 CONSTANT VARCHAR2(10) :=
'HTTP/1.0';

Denotes HTTP version 1.0 that
can be used in the function
begin_request.

HTTP_VERSION_1 CONSTANT VARCHAR2(10) :=
'HTTP/1.1';

Denotes HTTP version 1.1 that
can be used in the function
begin_request.

DEFAULT_HTTP_PORT CONSTANT PLS_INTEGER :=
80;

The default TCP/IP port (80) at
which a Web server or proxy
server listens

DEFAULT_HTTPS_PORT CONSTANT PLS_INTEGER
:= 443;

The default TCP/IP port (443) at
which an HTTPS Web server
listens

Using UTL_HTTP

UTL_HTTP 156-3

Table 156–2 HTTP 1.1 Status Codes:

Constant and Syntax

HTTP_VERSION_1_0 CONSTANT VARCHAR2(10) := 'HTTP/1.0';

HTTP_VERSION_1 CONSTANT VARCHAR2(10) := 'HTTP/1.1';

DEFAULT_HTTP_PORT CONSTANT PLS_INTEGER := 80;

DEFAULT_HTTPS_PORT CONSTANT PLS_INTEGER := 443;

The following denote all the HTTP 1.1 status codes:

HTTP_CONTINUE CONSTANT PLS_INTEGER := 100;

HTTP_SWITCHING_PROTOCOLS CONSTANT PLS_INTEGER := 101;

HTTP_OK CONSTANT PLS_INTEGER := 200;

HTTP_CREATED CONSTANT PLS_INTEGER := 201;

HTTP_ACCEPTED CONSTANT PLS_INTEGER := 202;

HTTP_NON_AUTHORITATIVE_INFO CONSTANT PLS_INTEGER := 203;

HTTP_NO_CONTENT CONSTANT PLS_INTEGER := 204;

HTTP_RESET_CONTENT CONSTANT PLS_INTEGER := 205;

HTTP_PARTIAL_CONTENT CONSTANT PLS_INTEGER := 206;

HTTP_MULTIPLE_CHOICES CONSTANT PLS_INTEGER := 300;

HTTP_MOVED_PERMANENTLY CONSTANT PLS_INTEGER := 301;

HTTP_FOUND CONSTANT PLS_INTEGER := 302;

HTTP_SEE_OTHER CONSTANT PLS_INTEGER := 303;

HTTP_NOT_MODIFIED CONSTANT PLS_INTEGER := 304;

HTTP_USE_PROXY CONSTANT PLS_INTEGER := 305;

HTTP_TEMPORARY_REDIRECT CONSTANT PLS_INTEGER := 307;

HTTP_BAD_REQUEST CONSTANT PLS_INTEGER := 400;

HTTP_UNAUTHORIZED CONSTANT PLS_INTEGER := 401;

HTTP_PAYMENT_REQUIRED CONSTANT PLS_INTEGER := 402;

HTTP_FORBIDDEN CONSTANT PLS_INTEGER := 403;

HTTP_NOT_FOUND CONSTANT PLS_INTEGER := 404;

HTTP_NOT_ACCEPTABLE CONSTANT PLS_INTEGER := 406;

Types

156-4 PL/SQL Packages and Types Reference

Types

■ REQ Type

■ RESP Type

■ COOKIE and COOKIE_TABLE Types

■ CONNECTION Type

REQ Type
Use this PL/SQL record type to represent an HTTP request.

HTTP_PROXY_AUTH_REQUIRED CONSTANT PLS_INTEGER := 407;

HTTP_REQUEST_TIME_OUT CONSTANT PLS_INTEGER := 408;

HTTP_CONFLICT CONSTANT PLS_INTEGER := 409;

HTTP_GONE CONSTANT PLS_INTEGER := 410;

HTTP_LENGTH_REQUIRED CONSTANT PLS_INTEGER := 411;

HTTP_PRECONDITION_FAILED CONSTANT PLS_INTEGER := 412;

HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT PLS_INTEGER := 413;

HTTP_REQUEST_URI_TOO_LARGE CONSTANT PLS_INTEGER := 414;

HTTP_UNSUPPORTED_MEDIA_TYPE CONSTANT PLS_INTEGER := 415;

HTTP_REQ_RANGE_NOT_SATISFIABLE CONSTANT PLS_INTEGER := 416;

HTTP_EXPECTATION_FAILED CONSTANT PLS_INTEGER := 417;

HTTP_NOT_IMPLEMENTED CONSTANT PLS_INTEGER := 501;

HTTP_BAD_GATEWAY CONSTANT PLS_INTEGER := 502;

HTTP_SERVICE_UNAVAILABLE CONSTANT PLS_INTEGER := 503;

HTTP_GATEWAY_TIME_OUT CONSTANT PLS_INTEGER := 504;

HTTP_VERSION_NOT_SUPPORTED CONSTANT PLS_INTEGER := 505;

Table 156–2 (Cont.) HTTP 1.1 Status Codes:

Constant and Syntax

Using UTL_HTTP

UTL_HTTP 156-5

Syntax
TYPE req IS RECORD (
 url VARCHAR2(32767),
 method VARCHAR2(64),
 http_version VARCHAR2(64));

Parameters

Usage Notes
The information returned in REQ from the interface begin_request is for read
only. Changing the field values in the record has no effect on the request.

There are other fields in REQ record type whose names begin with the prefix
private_. The fields are private and are intended for use by implementation of
the UTL_HTTP package. You should not modify the fields.

RESP Type
This PL/SQL record type is used to represent an HTTP response.

Syntax
TYPE resp IS RECORD (
 status_code PLS_INTEGER,
 reason_phrase VARCHAR2(256),
 http_version VARCHAR2(64));

Table 156–3 REQ Type Parameters

Parameter Description

url The URL of the HTTP request. It is set after the request is
created by begin_request.

method The method to be performed on the resource identified by the
URL. It is set after the request is created by begin_request.

http_version The HTTP protocol version used to send the request. It is set
after the request is created by begin_request.

Types

156-6 PL/SQL Packages and Types Reference

Parameters

Usage Notes
The information returned in RESP from the interface get_response is read-only.
There are other fields in the RESP record type whose names begin with the prefix
private_. The fields are private and are intended for use by implementation of
the UTL_HTTP package. You should not modify the fields.

COOKIE and COOKIE_TABLE Types
The COOKIE type is the PL/SQL record type that represents an HTTP cookie. The
COOKIE_TABLE type is a PL/SQL index-by-table type that represents a collection of
HTTP cookies.

Syntax
TYPE cookie IS RECORD (
 name VARCHAR2(256),
 value VARCHAR2(1024),
 domain VARCHAR2(256),
 expire TIMESTAMP WITH TIME ZONE,
 path VARCHAR2(1024),
 secure BOOLEAN,
 version PLS_INTEGER,
 comment VARCHAR2(1024));

TYPE cookie_table IS TABLE OF cookie INDEX BY binary_integer;

Table 156–4 RESP Type Parameters

Parameter Description

status_code The status code returned by the Web server. It is a 3-digit
integer that indicates the results of the HTTP request as
handled by the Web server. It is set after the response is
processed by get_response.

reason_phrase The short textual message returned by the Web server that
describe the status code. It gives a brief description of the
results of the HTTP request as handled by the Web server. It is
set after the response is processed by get_response.

http_version The HTTP protocol version used in the HTTP response. It is set
after the response is processed by get_response.

Using UTL_HTTP

UTL_HTTP 156-7

Fields of COOKIE Record Type
Table 156–5 shows the fields for the COOKIE and COOKIE_TABLE record types.

Usage Notes
PL/SQL programs do not usually examine or change the cookie information stored
in the UTL_HTTP package. The cookies are maintained by the package
transparently. They are maintained inside the UTL_HTTP package, and they last for
the duration of the database session only. PL/SQL applications that require cookies
to be maintained beyond the lifetime of a database session can read the cookies
using get_cookies, store them persistently in a database table, and re-store the
cookies back in the package using add_cookies in the next database session. All
the fields in the cookie record, except for the comment field, must be stored. Do
not alter the cookie information, which can result in an application error in the Web
server or compromise the security of the PL/SQL and the Web server applications.
See "Retrieving and Restoring Cookies" on page 156-18.

CONNECTION Type
Use the PL/SQL record type to represent the remote hosts and TCP/IP ports of a
network connection that is kept persistent after an HTTP request is completed,
according to the HTTP 1.1 protocol specification. The persistent network connection
may be reused by a subsequent HTTP request to the same host and port. The
subsequent HTTP request may be completed faster because the network connection
latency is avoided. connection_table is a PL/SQL table of connection.

Table 156–5 Fields of COOKIE and COOKIE_TABLE Type

Field Description

name The name of the HTTP cookie

value The value of the cookie

domain The domain for which the cookie is valid

expire The time by which the cookie will expire

path The subset of URLs to which the cookie applies

secure Should the cookie be returned to the Web server using secured
means only.

version The version of the HTTP cookie specification the cookie
conforms. This field is NULL for Netscape cookies.

comment The comment that describes the intended use of the cookie.
This field is NULL for Netscape cookies.

Operational Notes

156-8 PL/SQL Packages and Types Reference

For a direct HTTP persistent connection to a Web server, the host and port fields
contain the host name and TCP/IP port number of the Web server. The proxy_
host and proxy_port fields are not set. For an HTTP persistent connection that
was previously used to connect to a Web server using a proxy, the proxy_host
and proxy_port fields contain the host name and TCP/IP port number of the
proxy server. The host and port fields are not set, which indicates that the persistent
connection, while connected to a proxy server, is not bound to any particular target
Web server. An HTTP persistent connection to a proxy server can be used to access
any target Web server that is using a proxy.

The ssl field indicates if Secured Socket Layer (SSL) is being used in an HTTP
persistent connection. An HTTPS request is an HTTP request made over SSL. For an
HTTPS (SSL) persistent connection connected using a proxy, the host and port fields
contain the host name and TCP/IP port number of the target HTTPS Web server
and the fields will always be set. An HTTPS persistent connection to an HTTPS Web
server using a proxy server can only be reused to make another request to the same
target Web server.

Syntax
TYPE connection IS RECORD (
 host VARCHAR2(256),
 port PLS_INTEGER,
 proxy_host VARCHAR2(256),
 proxy_port PLS_INTEGER,
 ssl BOOLEAN);

TYPE connection_table IS TABLE OF connection INDEX BY BINARY_INTEGER;

Operational Notes

■ Operational Flow

■ Simple HTTP Fetches

■ HTTP Requests

■ HTTP Responses

■ Session Settings

■ Session Settings

Using UTL_HTTP

UTL_HTTP 156-9

Operational Flow
The UTL_HTTP package provides access to the HTTP protocol. The interfaces must
be called in the order shown in Figure 156–1, or an exception will be raised.

Operational Notes

156-10 PL/SQL Packages and Types Reference

Figure 156–1 Flow of the Core UTL_HTTP Package

end_request

begin_request

get_authentication

get_header_count

get_header_by_name

get_header

set_body_charset

set_persistent_conn_support

set_body_charset

set_follow_redirect

set_authentication

set_header

set_cookie_support

write_line

write_text

write_raw

read_line

read_text

read_raw

get_response

end_request

Using UTL_HTTP

UTL_HTTP 156-11

The following can be called at any time:

■ Non-protocol interfaces that manipulate cookies

■ GET_COOKIE_COUNT

■ GET_COOKIES

■ ADD_COOKIES

■ CLEAR_COOKIES

■ Persistent connections

■ GET_PERSISTENT_CONN_COUNT

■ GET_PERSISTENT_CONNS

■ CLOSE_PERSISTENT_CONN

■ CLOSE_PERSISTENT_CONNS

■ Interfaces that manipulate attributes and configurations of the UTL_HTTP
package in the current session

■ SET_PROXY

■ GET_PROXY

■ SET_COOKIE_SUPPORT

■ GET_COOKIE_SUPPORT

■ SET_FOLLOW_REDIRECT

■ GET_FOLLOW_REDIRECT

■ SET_BODY_CHARSET

■ GET_BODY_CHARSET

■ SET_PERSISTENT_CONN_SUPPORT

■ GET_PERSISTENT_CONN_SUPPORT

■ SET_DETAILED_EXCP_SUPPORT

■ GET_DETAILED_EXCP_SUPPORT

■ SET_WALLET

■ SET_TRANSFER_TIMEOUT

■ GET_TRANSFER_TIMEOUT

Operational Notes

156-12 PL/SQL Packages and Types Reference

■ Interfaces that retrieve the last detailed exception code and message UTL_HTTP
package in the current session

■ GET_DETAILED_SQLCODE

■ GET_DETAILED_SQLERRM

Simple HTTP Fetches
REQUEST and REQUEST_PIECES take a string uniform resource locator (URL),
contact that site, and return the data (typically HTML) obtained from that site.

You should not expect REQUEST or REQUEST_PIECES to succeed in contacting a
URL unless you can contact that URL by using a browser on the same machine (and
with the same privileges, environment variables, and so on.)

If REQUEST or REQUEST_PIECES fails (for example, if it raises an exception, or if it
returns an HTML-formatted error message, but you believe that the URL argument
is correct), then try contacting that same URL with a browser to verify network
availability from your machine. You may have a proxy server set in your browser
that needs to be set with each REQUEST or REQUEST_PIECES call using the
optional proxy parameter.

NOTE: Some of the request and response interfaces bear the same
name as the interface that manipulates the attributes and
configurations of the package in the current session. They are
overloaded versions of the interface that manipulate a request or a
response.

Note: UTL_HTTP can also use environment variables to specify its
proxy behavior. For example, on UNIX, setting the environment
variable http_proxy to a URL uses that service as the proxy
server for HTTP requests. Setting the environment variable no_
proxy to a domain name does not use the HTTP proxy server for
URLs in that domain. When the UTL_HTTP package is executed in
the Oracle database server, the environment variables are the ones
that are set when the database instance is started.

See Also: Simple HTTP Fetches in a Single Call Subprograms on
page 156-22

Using UTL_HTTP

UTL_HTTP 156-13

Session Settings
Session settings manipulate the configuration and default behavior of UTL_HTTP
when HTTP requests are executed within a database user session. When a request is
created, it inherits the default settings of the HTTP cookie support, follow-redirect,
body character set, persistent-connection support, and transfer timeout of the
current session. Those settings can be changed later by calling the request interface.
When a response is created for a request, it inherits those settings from the request.
Only the body character set can be changed later by calling the response interface.

HTTP Requests
The HTTP Requests group of subprograms begin an HTTP request, manipulate
attributes, and send the request information to the Web server. When a request is
created, it inherits the default settings of the HTTP cookie support, follow-redirect,
body character set, persistent-connection support, and transfer timeout of the
current session. The settings can be changed by calling the request interface.

HTTP Responses
The HTTP Responses group of subprograms manipulate an HTTP response
obtained from GET_RESPONSE and receive response information from the Web
server. When a response is created for a request, it inherits settings of the HTTP
cookie support, follow-redirect, body character set, persistent-connection support,
and transfer timeout from the request. Only the body character set can be changed
by calling the response interface.

HTTP Cookies
The UTL_HTTP package provides subprograms to manipulate HTTP cookies.

HTTP Persistent Connections

The UTL_HTTP package provides subprograms to manipulate persistent
connections.

See Also: Session Settings Subprograms on page 156-23

See Also: HTTP Requests Subprograms on page 156-25

See Also: HTTP Responses Subprograms on page 156-26

See Also: HTTP Cookies Subprograms on page 156-27

Exceptions

156-14 PL/SQL Packages and Types Reference

Error Conditions
The UTL_HTTP package provides subprograms to retrieve error information.

Exceptions

Table 156–6 lists the exceptions that the UTL_HTTP package interface can raise. By
default, UTL_HTTP raises the exception request_failed when a request fails to
execute. If the package is set to raise a detailed exception by set_detailed_
excp_support, the rest of the exceptions will be raised directly (except for the
exception end_of_body, which will be raised by read_text, read_line, and
read_raw regardless of the setting).

See Also: HTTP Persistent Connections Subprograms on
page 156-28

See Also: Error Conditions Subprograms on page 156-29

Table 156–6 UTL_HTTP Exceptions

Exception Error Code Reason Where Raised

request_failed 29273 The request fails to executes Any HTTP request or response
interface when detailed_
exception is disabled

bad_argument 29261 The argument passed to the
interface is bad

Any HTTP request or response
interface when detailed_
exception is enabled

bad_url 29262 The requested URL is badly
formed

begin_request, when
detailed_exception is enabled

protocol_error 29263 An HTTP protocol error occurs
when communicating with the
Web server

set_header, get_response,
read_raw, read_text, and
read_line, when detailed_
exception is enabled

unknown_scheme 29264 The scheme of the requested URL
is unknown

begin_request and get_
response, when detailed_
exception is enabled

header_not_found 29265 The header is not found get_header, get_header_by_
name, when detailed_
exception is enabled

Using UTL_HTTP

UTL_HTTP 156-15

end_of_body 29266 The end of HTTP response body is
reached

read_raw, read_text, and
read_line, when detailed_
exception is enabled

illegal_call 29267 The call to UTL_HTTP is illegal at
the current state of the HTTP
request

set_header, set_
authentication, and set_
persistent_conn_support,
when detailed_exception is
enabled

http_client_error 29268 From get_response, the
response status code indicates that
a client error has occurred (status
code in 4xx range). Or from
begin_request, the HTTP proxy
returns a status code in the 4xx
range when making an HTTPS
request through the proxy.

get_response,begin_request
when detailed_exception is
enabled

http_server_error 29269 From get_response, the
response status code indicates that
a client error has occurred (status
code in 5xx range). Or from
begin_request, the HTTP proxy
returns a status code in the 5xx
range when making an HTTPS
request through the proxy.

get_response, begin_
request when detailed_
exception is enabled

too_many_requests 29270 Too many requests or responses
are open

begin_request, when detailed_
exception is enabled

partial_
multibyte_
exception

29275 No complete character is read and
a partial multibyte character is
found at the end of the response
body

read_text and read_line,
when detailed_exception is
enabled

transfer_timeout 29276 No data is read and a read timeout
occurred

read_text and read_line,
when detailed_exception is
enabled

Table 156–6 (Cont.) UTL_HTTP Exceptions

Exception Error Code Reason Where Raised

Examples

156-16 PL/SQL Packages and Types Reference

For REQUEST and REQUEST_PIECES, the request_failed exception is raised
when any exception occurs and detailed_exception is disabled.

Examples

The following examples demonstrate how to use UTL_HTTP.

■ General Usage

■ Handling HTTP Authentication

■ Retrieving and Restoring Cookies

General Usage
SET serveroutput ON SIZE 40000

DECLARE
 req utl_http.req;
 resp utl_http.resp;
 value VARCHAR2(1024);
BEGIN

 utl_http.set_proxy('proxy.my-company.com', 'corp.my-company.com');

 req := utl_http.begin_request('http://www-hr.corp.my-company.com');
 utl_http.set_header(req, 'User-Agent', 'Mozilla/4.0');
 resp := utl_http.get_response(req);
 LOOP
 utl_http.read_line(resp, value, TRUE);
 dbms_output.put_line(value);
 END LOOP;
 utl_http.end_response(resp);

NOTE: The partial_multibyte_char and transfer_
timeout exceptions are duplicates of the same exceptions defined
in UTL_TCP. They are defined in this package so that the use of
this package does not require the knowledge of the UTL_TCP. As
those exceptions are duplicates, an exception handle that catches
the partial_multibyte_char and transfer_timeout
exceptions in this package also catch the exceptions in the UTL_
TCP.

Using UTL_HTTP

UTL_HTTP 156-17

EXCEPTION
 WHEN utl_http.end_of_body THEN
 utl_http.end_response(resp);
END;

Retrieving HTTP Response Headers
SET serveroutput ON SIZE 40000

DECLARE
 req utl_http.req;
 resp utl_http.resp;
 name VARCHAR2(256);
 value VARCHAR2(1024);
BEGIN

 utl_http.set_proxy('proxy.my-company.com', 'corp.my-company.com');

 req := utl_http.begin_request('http://www-hr.corp.my-company.com');
 utl_http.set_header(req, 'User-Agent', 'Mozilla/4.0');
 resp := utl_http.get_response(req);

 dbms_output.put_line('HTTP response status code: ' || resp.status_code);
 dbms_output.put_line('HTTP response reason phrase: ' || resp.reason_phrase);

 FOR i IN 1..utl_http.get_header_count(resp) LOOP
 utl_http.get_header(resp, i, name, value);
 dbms_output.put_line(name || ': ' || value);
 END LOOP;
 utl_http.end_response(resp);
END;

Handling HTTP Authentication
SET serveroutput ON SIZE 40000

CREATE OR REPLACE PROCEDURE get_page (url IN VARCHAR2,
 username IN VARCHAR2 DEFAULT NULL,
 password IN VARCHAR2 DEFAULT NULL,
 realm IN VARCHAR2 DEFAULT NULL) AS
 req utl_http.req;
 resp utl_http.resp;
 my_scheme VARCHAR2(256);
 my_realm VARCHAR2(256);
 my_proxy BOOLEAN;

Examples

156-18 PL/SQL Packages and Types Reference

BEGIN

 -- Turn off checking of status code. We will check it by ourselves.
 utl_http.http_response_error_check(FALSE);

 req := utl_http.begin_request(url);
 IF (username IS NOT NULL) THEN
 utl_http.set_authentication(req, username, password); -- Use HTTP Basic
Authen. Scheme
 END IF;

 resp := utl_http.get_response(req);
 IF (resp.status_code = utl_http.HTTP_UNAUTHORIZED) THEN
 utl_http.get_authentication(resp, my_scheme, my_realm, my_proxy);
 IF (my_proxy) THEN
 dbms_output.put_line('Web proxy server is protected.');
 dbms_output.put('Please supplied the required ' || my_scheme || '
authentication username/password for realm ' || my_realm || ' for the proxy
server.');
 ELSE
 dbms_output.put_line('Web page ' || url || ' is protected.');
 dbms_output.put('Please supplied the required ' || my_scheme || '
authentication username/password for realm ' || my_realm || ' for the Web
page.');
 END IF;
 utl_http.end_response(resp);
 RETURN;
 END IF;

 FOR i IN 1..utl_http.get_header_count(resp) LOOP
 utl_http.get_header(resp, i, name, value);
 dbms_output.put_line(name || ': ' || value);
 END LOOP;
 utl_http.end_response(resp);

END;

Retrieving and Restoring Cookies
CREATE TABLE my_cookies (
 session_id INTEGER,
 name VARCHAR2(256),
 value VARCHAR2(1024),
 domain VARCHAR2(256),
 expire DATE,

Using UTL_HTTP

UTL_HTTP 156-19

 path VARCHAR2(1024),
 secure VARCHAR2(1),
 version INTEGER
);

CREATE SEQUENCE session_id;

SET serveroutput ON SIZE 40000

REM Retrieve cookies from UTL_HTTP

CREATE OR REPLACE FUNCTION save_cookies RETURN PLS_INTEGER AS
 cookies utl_http.cookie_table;
 my_session_id PLS_INTEGER;
 secure VARCHAR2(1);
BEGIN

 /* assume that some cookies have been set in previous HTTP requests. */

 utl_http.get_cookies(cookies);
 select session_id.nextval into my_session_id from dual;

 FOR i in 1..cookies.count LOOP
 IF (cookies(i).secure) THEN
 secure := 'Y';
 ELSE
 secure := 'N';
 END IF;
 insert into my_cookies
 values (my_session_id, cookies(i).name, cookies(i).value,
cookies(i).domain,
 cookies(i).expire, cookies(i).path, secure, cookies(i).version);
 END LOOP;

 RETURN my_session_id;

END;
/

REM Retrieve cookies from UTL_HTTP

CREATE OR REPLACE PROCEDURE restore_cookies (this_session_id IN PLS_INTEGER)
AS
 cookies utl_http.cookie_table;
 cookie utl_http.cookie;

Examples

156-20 PL/SQL Packages and Types Reference

 i PLS_INTEGER := 0;
 CURSOR c (c_session_id PLS_INTEGER) IS
 SELECT * FROM my_cookies WHERE session_id = c_session_id;
BEGIN

 FOR r IN c(this_session_id) LOOP
 i := i + 1;
 cookie.name := r.name;
 cookie.value := r.value;
 cookie.domain := r.domain;
 cookie.expire := r.expire;
 cookie.path := r.path;
 IF (r.secure = 'Y') THEN
 cookie.secure := TRUE;
 ELSE
 cookie.secure := FALSE;
 END IF;
 cookie.version := r.version;
 cookies(i) := cookie;
 END LOOP;

 utl_http.clear_cookies;
 utl_http.add_cookies(cookies);

END;
/

Subprogram Groups

UTL_HTTP 156-21

Subprogram Groups

■ Simple HTTP Fetches in a Single Call Subprograms

■ Session Settings Subprograms

■ HTTP Requests Subprograms

■ HTTP Responses Subprograms

■ HTTP Cookies Subprograms

■ HTTP Persistent Connections Subprograms

■ Error Conditions Subprograms

Simple HTTP Fetches in a Single Call Subprograms

156-22 PL/SQL Packages and Types Reference

Simple HTTP Fetches in a Single Call Subprograms

Table 156–7 UTL_HTTP Subprograms—Simple HTTP Fetches in a Single Call

Subprogram Description

REQUEST Function on page 156-70 Returns up to the first 2000 bytes of the data retrieved from the given
URL. This function can be used directly in SQL queries

REQUEST_PIECES Function on
page 156-73

Returns a PL/SQL table of 2000-byte pieces of the data retrieved
from the given URL

Subprogram Groups

UTL_HTTP 156-23

Session Settings Subprograms

Table 156–8 UTL_HTTP Subprograms—Session Settings

Subprogram Description

GET_BODY_CHARSET Procedure on
page 156-47

Retrieves the default character set of the body of all future HTTP
requests

GET_COOKIE_SUPPORT Procedure on
page 156-49

Retrieves the current cookie support settings

GET_DETAILED_EXCP_SUPPORT
Procedure on page 156-51

Checks if the UTL_HTTP package will raise a detailed exception or
not

GET_FOLLOW_REDIRECT Procedure
on page 156-54

Retrieves the follow-redirect setting in the current session

GET_PERSISTENT_CONN_SUPPORT
Procedure on page 156-59

Checks if the persistent connection support is enabled and gets the
maximum number of persistent connections in the current session

GET_PROXY Procedure on page 156-61 Retrieves the current proxy settings

GET_RESPONSE_ERROR_CHECK
Procedure on page 156-63

Checks if the response error check is set or not

GET_TRANSFER_TIMEOUT Procedure
on page 156-64

Retrieves the current network transfer timeout value

SET_BODY_CHARSET Procedures on
page 156-78

Sets the default character set of the body of all future HTTP requests
when the media type is text and the character set is not specified in
the Content-Type header

SET_COOKIE_SUPPORT Procedures on
page 156-80

Sets whether or not future HTTP requests will support HTTP
cookies; sets the maximum number of cookies maintained in the
current database user session

SET_DETAILED_EXCP_SUPPORT
Procedure on page 156-82

Sets the UTL_HTTP package to raise a detailed exception

SET_FOLLOW_REDIRECT Procedures
on page 156-83

Sets the maximum number of times UTL_HTTP follows the HTTP
redirect instruction in the HTTP responses to future requests in the
get_response function

SET_PERSISTENT_CONN_SUPPORT
Procedure on page 156-87

Sets whether or not future HTTP requests will support the HTTP 1.1
persistent connection; sets the maximum number of persistent
connections maintained in the current database user session

SET_PROXY Procedure on page 156-90 Sets the proxy to be used for requests of HTTP or other protocols

Session Settings Subprograms

156-24 PL/SQL Packages and Types Reference

SET_RESPONSE_ERROR_CHECK
Procedure on page 156-92

Sets whether or not get_response raises an exception when the
Web server returns a status code that indicates an error—a status
code in the 4xx or 5xx ranges

SET_TRANSFER_TIMEOUT Procedure
on page 156-93

Sets the timeout value for UTL_HTTP to read the HTTP response
from the Web server or proxy server

SET_WALLET Procedure on page 156-94 Sets the Oracle Wallet used for all HTTP requests over Secured
Socket Layer (SSL), that is, HTTPS

Table 156–8 (Cont.) UTL_HTTP Subprograms—Session Settings

Subprogram Description

Subprogram Groups

UTL_HTTP 156-25

HTTP Requests Subprograms

Table 156–9 UTL_HTTP Subprograms—HTTP Requests

Subprogram Description

BEGIN_REQUEST Function on
page 156-37

Begins a new HTTP request. UTL_HTTP establishes the
network connection to the target Web server or the proxy
server and sends the HTTP request line.

END_REQUEST Procedure on
page 156-43

Ends the HTTP request.

SET_HEADER Procedure on
page 156-85

Sets an HTTP request header. The request header is sent to the Web
server as soon as it is set.

SET_AUTHENTICATION Procedure on
page 156-77

Sets HTTP authentication information in the HTTP request header.
The Web server needs this information to authorize the request.

SET_BODY_CHARSET Procedures on
page 156-78

Sets the character set of the request body when the media type is
text but the character set is not specified in the Content-Type
header.

SET_COOKIE_SUPPORT Procedures on
page 156-80

Enables or disables support for the HTTP cookies in the request.

SET_FOLLOW_REDIRECT Procedures
on page 156-83

Sets the maximum number of times UTL_HTTP follows the
HTTP redirect instruction in the HTTP response to this
request in the GET_RESPONSE Function on page 156-62.

SET_PERSISTENT_CONN_SUPPORT
Procedure on page 156-87

Enables or disables support for the HTTP 1.1 persistent-connection in
the request.

WRITE_LINE Procedure on page 156-96 Writes a text line in the HTTP request body and ends the line with
new-line characters (CRLF as defined in UTL_TCP).

WRITE_RAW Procedure on page 156-98 Writes some binary data in the HTTP request body.

WRITE_TEXT Procedure on page 156-99 Writes some text data in the HTTP request body.

HTTP Responses Subprograms

156-26 PL/SQL Packages and Types Reference

HTTP Responses Subprograms

Table 156–10 UTL_HTTP Subprograms—HTTP Responses

Subprogram Description

END_RESPONSE Procedure on
page 156-44

Ends the HTTP response. It completes the HTTP request and
response.

GET_AUTHENTICATION Procedure
on page 156-45

Retrieves the HTTP authentication information needed for the
request to be accepted by the Web server as indicated in the HTTP
response header.

GET_HEADER Procedure on
page 156-55

Returns the nth HTTP response header name and value returned in
the response.

GET_HEADER_BY_NAME Procedure
on page 156-56

Returns the HTTP response header value returned in the response
given the name of the header.

GET_HEADER_COUNT Function on
page 156-57

Returns the number of HTTP response headers returned in the
response.

GET_RESPONSE Function on
page 156-62

Reads the HTTP response. When the function returns, the status line
and the HTTP response headers have been read and processed.

READ_LINE Procedure on page 156-65 Reads the HTTP response body in text form until the end of line is
reached and returns the output in the caller-supplied buffer.

READ_RAW Procedure on page 156-67 Reads the HTTP response body in binary form and returns the
output in the caller-supplied buffer.

READ_TEXT Procedure on page 156-68 Reads the HTTP response body in text form and returns the output
in the caller-supplied buffer.

SET_BODY_CHARSET Procedures on
page 156-78

Sets the character set of the response body when the media type is
"text" but the character set is not specified in the "Content-Type"
header.

Subprogram Groups

UTL_HTTP 156-27

HTTP Cookies Subprograms

Table 156–11 UTL_HTTP Subprograms—HTTP Cookies

Subprogram Description

ADD_COOKIES Procedure on
page 156-36

Adds the cookies maintained by UTL_HTTP.

CLEAR_COOKIES Procedure on
page 156-39

Clears all cookies maintained by the UTL_HTTP package.

GET_COOKIE_COUNT Function on
page 156-48

Returns the number of cookies currently maintained by the UTL_
HTTP package set by all Web servers.

GET_COOKIES Function on page 156-50 Returns all the cookies currently maintained by the UTL_HTTP
package set by all Web servers.

HTTP Persistent Connections Subprograms

156-28 PL/SQL Packages and Types Reference

HTTP Persistent Connections Subprograms

Table 156–12 UTL_HTTP Subprograms—HTTP Persistent Connections

Subprogram Description

CLOSE_PERSISTENT_CONN
Procedure on page 156-40

Closes an HTTP persistent connection maintained by the UTL_HTTP
package in the current database session.

CLOSE_PERSISTENT_CONNS
Procedure on page 156-41

Closes a group of HTTP persistent connections maintained by the
UTL_HTTP package in the current database session.

GET_PERSISTENT_CONN_COUNT
Function on page 156-58

Returns the number of network connections currently kept persistent
by the UTL_HTTP package to the Web servers.

GET_PERSISTENT_CONNS Procedure
on page 156-60

Returns all the network connections currently kept persistent by the
UTL_HTTP package to the Web servers.

Subprogram Groups

UTL_HTTP 156-29

Error Conditions Subprograms

Table 156–13 UTL_HTTP Subprograms—Error Conditions

Subprogram Description

GET_DETAILED_SQLCODE Function
on page 156-52

Retrieves the detailed SQLCODE of the last exception raised.

GET_DETAILED_SQLERRM Function
on page 156-53

Retrieves the detailed SQLERRM of the last exception raised.

Summary of UTL_HTTP Subprograms

156-30 PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms

Table 156–14 UTL_HTTP Package Subprograms

Subprogram Description

ADD_COOKIES Procedure on
page 156-36

Adds the cookies maintained by UTL_HTTP (see HTTP
Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27)

BEGIN_REQUEST Function on
page 156-37

Begins a new HTTP request. UTL_HTTP establishes
the network connection to the target Web server or
the proxy server and sends the HTTP request line
(see HTTP Requests on page 156-13 and HTTP
Requests Subprograms on page 156-25)

CLEAR_COOKIES Procedure
on page 156-39

Clears all cookies maintained by the UTL_HTTP package
(see HTTP Cookies on page 156-13 and HTTP
Cookies Subprograms on page 156-27)

CLOSE_PERSISTENT_CONN
Procedure on page 156-40

Closes an HTTP persistent connection maintained by the
UTL_HTTP package in the current database session (see
HTTP Persistent Connections on page 156-13 and
HTTP Persistent Connections Subprograms on
page 156-28)

CLOSE_PERSISTENT_CONNS
Procedure on page 156-41

Closes a group of HTTP persistent connections maintained
by the UTL_HTTP package in the current database session
(see HTTP Persistent Connections on page 156-13
and HTTP Persistent Connections Subprograms on
page 156-28)

END_REQUEST Procedure on
page 156-43

Ends the HTTP request (see HTTP Requests on
page 156-13 and HTTP Requests Subprograms on
page 156-25)

END_RESPONSE Procedure
on page 156-44

Ends the HTTP response. It completes the HTTP request
and response (see HTTP Responses on page 156-13
and HTTP Responses Subprograms on page 156-26)

GET_AUTHENTICATION
Procedure on page 156-45

Retrieves the HTTP authentication information needed for
the request to be accepted by the Web server as indicated
in the HTTP response header (see HTTP Responses on
page 156-13 and HTTP Responses Subprograms on
page 156-26)

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-31

GET_BODY_CHARSET
Procedure on page 156-47

Retrieves the default character set of the body of all future
HTTP requests (see Session Settings on page 156-13
and Session Settings Subprograms on page 156-23)

GET_COOKIE_COUNT
Function on page 156-48

Returns the number of cookies currently maintained by
the UTL_HTTP package set by all Web servers (see HTTP
Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27)

GET_COOKIE_SUPPORT
Procedure on page 156-49

Retrieves the current cookie support settings (see Session
Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

GET_COOKIES Function on
page 156-50

Returns all the cookies currently maintained by the UTL_
HTTP package set by all Web servers (see HTTP Cookies
on page 156-13 and HTTP Cookies Subprograms on
page 156-27)

GET_DETAILED_EXCP_
SUPPORT Procedure on
page 156-51

Checks if the UTL_HTTP package will raise a detailed
exception or not (see Session Settings on page 156-13
and Session Settings Subprograms on page 156-23)

GET_DETAILED_SQLCODE
Function on page 156-52

Retrieves the detailed SQLCODE of the last exception
raised (see Error Conditions on page 156-14 and Error
Conditions Subprograms on page 156-29)

GET_DETAILED_SQLERRM
Function on page 156-53

Retrieves the detailed SQLERRM of the last exception
raised (see Error Conditions on page 156-14 and Error
Conditions Subprograms on page 156-29)

GET_FOLLOW_REDIRECT
Procedure on page 156-54

Retrieves the follow-redirect setting in the current session
(see Session Settings on page 156-13 and Session
Settings Subprograms on page 156-23)

GET_HEADER Procedure on
page 156-55

Returns the nth HTTP response header name and value
returned in the response (see HTTP Responses on
page 156-13 and HTTP Responses Subprograms on
page 156-26)

GET_HEADER_BY_NAME
Procedure on page 156-56

Returns the HTTP response header value returned in the
response given the name of the header (see HTTP
Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26)

Table 156–14 (Cont.) UTL_HTTP Package Subprograms

Subprogram Description

Summary of UTL_HTTP Subprograms

156-32 PL/SQL Packages and Types Reference

GET_HEADER_COUNT
Function on page 156-57

Returns the number of HTTP response headers returned
in the response (see HTTP Responses on page 156-13
and HTTP Responses Subprograms on page 156-26)

GET_PERSISTENT_CONN_
COUNT Function on
page 156-58

Returns the number of network connections currently kept
persistent by the UTL_HTTP package to the Web servers
(see HTTP Persistent Connections on page 156-13
and HTTP Persistent Connections Subprograms on
page 156-28)

GET_PERSISTENT_CONN_
SUPPORT Procedure on
page 156-59

Sees whether or not future HTTP requests will support the
HTTP 1.1 persistent connection; sets the maximum
number of persistent connections maintained in the
current database user session (see Session Settings on
page 156-13 and Session Settings Subprograms on
page 156-23)

GET_PERSISTENT_CONN_
SUPPORT Procedure on
page 156-59

Checks if the persistent connection support is enabled and
gets the maximum number of persistent connections in the
current session (see Session Settings on page 156-13
and Session Settings Subprograms on page 156-23)

GET_PERSISTENT_CONNS
Procedure on page 156-60

Returns all the network connections currently kept
persistent by the UTL_HTTP package to the Web servers
(see HTTP Persistent Connections on page 156-13
and HTTP Persistent Connections Subprograms on
page 156-28)

GET_PROXY Procedure on
page 156-61

Retrieves the current proxy settings (see Session Settings
on page 156-13 and Session Settings Subprograms
on page 156-23)

GET_RESPONSE Function on
page 156-62

Reads the HTTP response. When the function returns, the
status line and the HTTP response headers have been read
and processed (see HTTP Responses on page 156-13
and HTTP Responses Subprograms on page 156-26)

GET_RESPONSE_ERROR_
CHECK Procedure on
page 156-63

Checks if the response error check is set or no (see Session
Settings on page 156-13 and Session Settings
Subprograms on page 156-23)t

GET_TRANSFER_TIMEOUT
Procedure on page 156-64

Retrieves the current network transfer timeout value (see
Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

Table 156–14 (Cont.) UTL_HTTP Package Subprograms

Subprogram Description

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-33

READ_LINE Procedure on
page 156-65

Reads the HTTP response body in text form until the end
of line is reached and returns the output in the
caller-supplied buffer (see HTTP Responses on
page 156-13 and HTTP Responses Subprograms on
page 156-26)

READ_RAW Procedure on
page 156-67

Reads the HTTP response body in binary form and returns
the output in the caller-supplied buffer (see HTTP
Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26)

READ_TEXT Procedure on
page 156-68

Reads the HTTP response body in text form and returns
the output in the caller-supplied buffer (see HTTP
Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26)

REQUEST Function on
page 156-70

Returns up to the first 2000 bytes of the data retrieved
from the given URL. This function can be used directly in
SQL queries (see Simple HTTP Fetches on page 156-12
and Simple HTTP Fetches in a Single Call
Subprograms on page 156-22)

REQUEST_PIECES Function
on page 156-73

Returns a PL/SQL table of 2000-byte pieces of the data
retrieved from the given URL (see Simple HTTP Fetches
on page 156-12 and Simple HTTP Fetches in a Single
Call Subprograms on page 156-22)

SET_AUTHENTICATION
Procedure on page 156-77

Sets HTTP authentication information in the HTTP request
header. The Web server needs this information to
authorize the request (see HTTP Requests on
page 156-13 and HTTP Requests Subprograms on
page 156-25)

SET_BODY_CHARSET
Procedures on page 156-78

Sets the default character set of the body of all future
HTTP requests when the media type is text and the
character set is not specified in the Content-Type header
(see Session Settings on page 156-13 and Session
Settings Subprograms on page 156-23)

SET_BODY_CHARSET
Procedures on page 156-78

Sets the character set of the request body when the media
type is text but the character set is not specified in the
Content-Type header (see HTTP Requests on
page 156-13 and HTTP Requests Subprograms on
page 156-25)

Table 156–14 (Cont.) UTL_HTTP Package Subprograms

Subprogram Description

Summary of UTL_HTTP Subprograms

156-34 PL/SQL Packages and Types Reference

SET_BODY_CHARSET
Procedures on page 156-78

Sets the character set of the response body when the media
type is "text" but the character set is not specified in the
"Content-Type" header (see HTTP Responses on
page 156-13, HTTP Responses Subprograms on
page 156-26, Session Settings on page 156-13 and
Session Settings Subprograms on page 156-23)

SET_COOKIE_SUPPORT
Procedures on page 156-80

Enables or disables support for the HTTP cookies in the
request (see HTTP Requests on page 156-13 and
HTTP Requests Subprograms on page 156-25)

SET_DETAILED_EXCP_
SUPPORT Procedure on
page 156-82

Sets whether or not future HTTP requests will support
HTTP cookies; sets the maximum number of cookies
maintained in the current database user session (see
Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

SET_DETAILED_EXCP_
SUPPORT Procedure on
page 156-82

Sets the UTL_HTTP package to raise a detailed exception
(see Session Settings on page 156-13 and Session
Settings Subprograms on page 156-23)

SET_FOLLOW_REDIRECT
Procedures on page 156-83

Sets the maximum number of times UTL_HTTP
follows the HTTP redirect instruction in the HTTP
response to this request in the GET_RESPONSE
function (see HTTP Requests on page 156-13 and
HTTP Requests Subprograms on page 156-25)

SET_HEADER Procedure on
page 156-85

Sets the maximum number of times UTL_HTTP follows the
HTTP redirect instruction in the HTTP responses to future
requests in the get_response function (see Session
Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

SET_HEADER Procedure on
page 156-85

Sets an HTTP request header. The request header is sent to
the Web server as soon as it is set (see HTTP Requests on
page 156-13 and HTTP Requests Subprograms on
page 156-25)

SET_PERSISTENT_CONN_
SUPPORT Procedure on
page 156-87

Enables or disables support for the HTTP 1.1
persistent-connection in the request (see HTTP Requests
on page 156-13 and HTTP Requests Subprograms on
page 156-25)

SET_PROXY Procedure on
page 156-90

Sets the proxy to be used for requests of HTTP or other
protocols (see Session Settings on page 156-13 and
Session Settings Subprograms on page 156-23)

Table 156–14 (Cont.) UTL_HTTP Package Subprograms

Subprogram Description

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-35

SET_RESPONSE_ERROR_
CHECK Procedure on
page 156-92

Sets whether or not get_response raises an exception
when the Web server returns a status code that indicates
an error—a status code in the 4xx or 5xx ranges (see
Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

SET_TRANSFER_TIMEOUT
Procedure on page 156-93

Sets the timeout value for UTL_HTTP to read the HTTP
response from the Web server or proxy server (see Session
Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

SET_WALLET Procedure on
page 156-94

Sets the Oracle Wallet used for all HTTP requests over
Secured Socket Layer (SSL), that is, HTTPS (see Session
Settings on page 156-13 and Session Settings
Subprograms on page 156-23)

WRITE_LINE Procedure on
page 156-96

Writes a text line in the HTTP request body and ends the
line with new-line characters (CRLF as defined in UTL_
TCP) (see HTTP Requests on page 156-13 and HTTP
Requests Subprograms on page 156-25)

WRITE_RAW Procedure on
page 156-98

Writes some binary data in the HTTP request body (see
HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25)

WRITE_TEXT Procedure on
page 156-99

Writes some text data in the HTTP request body (see
HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25)

Table 156–14 (Cont.) UTL_HTTP Package Subprograms

Subprogram Description

ADD_COOKIES Procedure

156-36 PL/SQL Packages and Types Reference

ADD_COOKIES Procedure

This procedure adds the cookies maintained by UTL_HTTP.

Syntax
UTL_HTTP.ADD_COOKIES (
 cookies IN cookie_table);

Parameters

Usage Notes
The cookies that the package currently maintains are not cleared before new cookies
are added.

See Also: HTTP Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27

Table 156–15 ADD_COOKIES Procedure Parameters

Parameter Description

cookies The cookies to be added.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-37

BEGIN_REQUEST Function

This functions begins a new HTTP request. UTL_HTTP establishes the network
connection to the target Web server or the proxy server and sends the HTTP request
line. The PL/SQL program continues the request by calling some other interface to
complete the request. The URL may contain the username and password needed to
authenticate the request to the server. The format is

scheme://[user[:password]@]host[:port]/[...]

Syntax
UTL_HTTP.BEGIN_REQUEST (
 url IN VARCHAR2,
 method IN VARCHAR2 DEFAULT 'GET',
 http_version IN VARCHAR2 DEFAULT NULL)
RETURN req;

Parameters

Usage Notes
The URL passed as an argument to this function is not examined for illegal
characters, such as spaces, according to URL specification RFC 2396. You should

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–16 BEGIN_REQUEST Function Parameters

Parameter Description

url The URL of the HTTP request.

method The method performed on the resource identified by the URL.

http_version The HTTP protocol version that sends the request. The format
of the protocol version is
HTTP/major-version.minor-version, where
major-version and minor-version are positive numbers.
If this parameter is set to NULL, UTL_HTTP uses the latest
HTTP protocol version that it supports to send the request. The
latest version that the package supports is 1.1 and it can be
upgraded to a later version. The default is NULL.

BEGIN_REQUEST Function

156-38 PL/SQL Packages and Types Reference

escape those characters with the UTL_URL package to return illegal and reserved
characters. URLs should consist of US-ASCII characters only. See Chapter 166,
"UTL_URL" for a list of legal characters in URLs. Note that URLs should consist of
US-ASCII characters only. The use of non-US-ASCII characters in a URL is generally
unsafe.

An Oracle wallet must be set before accessing Web servers over HTTPS. See the
set_wallet procedure on how to set up an Oracle wallet.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-39

CLEAR_COOKIES Procedure

This procedure clears all cookies maintained by the UTL_HTTP package.

Syntax
UTL_HTTP.CLEAR_COOKIES;

See Also: HTTP Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27

CLOSE_PERSISTENT_CONN Procedure

156-40 PL/SQL Packages and Types Reference

CLOSE_PERSISTENT_CONN Procedure

This procedure closes an HTTP persistent connection maintained by the UTL_HTTP
package in the current database session.

Syntax
UTL_HTTP.CLOSE_PERSISTENT_CONN (
 conn IN connection);

Parameters

See Also: HTTP Persistent Connections on page 156-13 and HTTP
Persistent Connections Subprograms on page 156-28

Table 156–17 CLOSE_PERSISTENT_CONN Procedure Parameters

Parameter Description

conn The HTTP persistent connection to close

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-41

CLOSE_PERSISTENT_CONNS Procedure

This procedure closes a group of HTTP persistent connections maintained by the
UTL_HTTP package in the current database session. This procedure uses a
pattern-match approach to decide which persistent connections to close.

To close a group of HTTP persistent connection that share a common property (for
example, all connections to a particular host, or all SSL connections), set the
particular parameters and leave the rest of the parameters NULL. If a particular
parameter is set to NULL when this procedure is called, that parameter will not be
used to decide which connections to close.

For example, the following call to the procedure closes all persistent connections to
foobar:

UTL_HTTP.CLOSE_PERSISTENT_CONNS(host => 'foobar');

And the following call to the procedure closes all persistent connections through the
proxy www-proxy at TCP/IP port 80:

UTL_HTTP.CLOSE_PERSISTENT_CONNS(proxy_host => 'foobar',
 proxy_port => 80);

And the following call to the procedure closes all persistent connections:

UTL_HTTP.CLOSE_PERSISTENT_CONNS;

Syntax
UTL_HTTP.CLOSE_PERSISTENT_CONNS (
 host IN VARCHAR2 DEFAULT NULL,
 port IN PLS_INTEGER DEFAULT NULL,
 proxy_host IN VARCHAR2 DEFAULT NULL,
 proxy_port IN PLS_INTEGER DEFAULT NULL,
 ssl IN BOOLEAN DEFAULT NULL);

See Also: HTTP Persistent Connections on page 156-13 and HTTP
Persistent Connections Subprograms on page 156-28

CLOSE_PERSISTENT_CONNS Procedure

156-42 PL/SQL Packages and Types Reference

Parameters

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with
domain names will be counted differently from the host names without domain
names.

Note that the use of a NULL value in a parameter when this procedure is called
means that the caller does not care about its value when the package decides which
persistent connection to close. If you want a NULL value in a parameter to match
only a NULL value of the parameter of a persistent connection (which is when you
want to close a specific persistent connection), you should use the close_
persistent_conn procedure that closes a specific persistent connection.

Table 156–18 CLOSE_PERSISTENT_CONNS Procedure Parameters

Parameter Description

host The host for which persistent connections are to be closed

port The port number for which persistent connections are to be
closed

proxy_host The proxy host for which persistent connections are to be
closed

proxy_port The proxy port for which persistent connections are to be
closed

ssl Close persistent SSL connection

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-43

END_REQUEST Procedure

This procedure ends the HTTP request. To terminate the HTTP request without
completing the request and waiting for the response, the program can call this
procedure. Otherwise, the program should go through the normal sequence of
beginning a request, getting the response, and closing the response. The network
connection will always be closed and will not be reused.

Syntax
UTL_HTTP.END_REQUEST (
 r IN OUT NOCOPY req);

Parameters

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–19 END_REQUEST Procedure Parameters

Parameter Description

r The HTTP request

END_RESPONSE Procedure

156-44 PL/SQL Packages and Types Reference

END_RESPONSE Procedure

This procedure ends the HTTP response. It completes the HTTP request and
response. Unless HTTP 1.1 persistent connection is used in this request, the network
connection is also closed.

Syntax
UTL_HTTP.END_RESPONSE (
 r IN OUT NOCOPY resp);

Parameters

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–20 END_RESPONSE Procedure Parameters

Parameter Description

r The HTTP response.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-45

GET_AUTHENTICATION Procedure

This procedure retrieves the HTTP authentication information needed for the
request to be accepted by the Web server as indicated in the HTTP response header.

Syntax
UTL_HTTP.GET_AUTHENTICATION(
 r IN OUT NOCOPY resp,
 scheme OUT VARCHAR2,
 realm OUT VARCHAR2,
 for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
When a Web client is unaware that a document is protected, at least two HTTP
requests are required for the document to be retrieved. In the first HTTP request, the
Web client makes the request without supplying required authentication
information; so the request is denied. The Web client can determine the
authentication information required for the request to be authorized by calling
get_authentication. The Web client makes the second request and supplies the
required authentication information with set_authorization. If the
authentication information can be verified by the Web server, the request will
succeed and the requested document is returned. Before making the request, if the
Web client knows that authentication information is required, it can supply the

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–21 GET_AUTHENTICATION Procedure Parameters

Parameter Description

r The HTTP response.

scheme The scheme for the required HTTP authentication

realm The realm for the required HTTP authentication

for_proxy Returns the HTTP authentication information required for the
access to the HTTP proxy server instead of the Web server?
Default is FALSE.

GET_AUTHENTICATION Procedure

156-46 PL/SQL Packages and Types Reference

required authentication information in the first request, thus saving an extra
request.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-47

GET_BODY_CHARSET Procedure

This procedure retrieves the default character set of the body of all future HTTP
requests.

Syntax
UTL_HTTP.GET_BODY_CHARSET (
 charset OUT NOCOPY VARCHAR2);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–22 GET_BODY_CHARSET Procedure Parameters

Parameter Description

charset The default character set of the body of all future HTTP
requests

GET_COOKIE_COUNT Function

156-48 PL/SQL Packages and Types Reference

GET_COOKIE_COUNT Function

This function returns the number of cookies currently maintained by the UTL_HTTP
package set by all Web servers.

Syntax
UTL_HTTP.GET_COOKIE_COUNT
RETURN PLS_INTEGER;

See Also: HTTP Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-49

GET_COOKIE_SUPPORT Procedure

This procedure retrieves the current cookie support settings.

Syntax
UTL_HTTP.GET_COOKIE_SUPPORT (
 enable OUT BOOLEAN,
 max_cookies OUT PLS_INTEGER,
 max_cookies_per_site OUT PLS_INTEGER);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–23 GET_COOKIE SUPPORT Procedure Parameters

Parameter Description

enable Indicates whether future HTTP requests should support HTTP
cookies (TRUE) or not (FALSE)

max_cookies Indicates the maximum total number of cookies maintained in
the current session

max_cookies_per_site Indicates the maximum number of cookies maintained in the
current session for each Web site

GET_COOKIES Function

156-50 PL/SQL Packages and Types Reference

GET_COOKIES Function

This function returns all the cookies currently maintained by the UTL_HTTP
package set by all Web servers.

Syntax
UTL_HTTP.GET_COOKIES (
 cookies IN OUT NOCOPY cookie_table);

Parameters

See Also: HTTP Cookies on page 156-13 and HTTP Cookies
Subprograms on page 156-27

Table 156–24 GET_COOKIES Procedure Parameters

Parameter Description

cookies The cookies returned

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-51

GET_DETAILED_EXCP_SUPPORT Procedure

This procedure checks if the UTL_HTTP package will raise a detailed exception or
not.

Syntax
UTL_HTTP.GET_DETAILED_EXCP_SUPPORT (
 enable OUT BOOLEAN);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–25 GET_DETAILED_EXCP_SUPPORT Procedure Parameters

Parameter Description

enable TRUE if UTL_HTTP raises a detailed exception; otherwise
FALSE

GET_DETAILED_SQLCODE Function

156-52 PL/SQL Packages and Types Reference

GET_DETAILED_SQLCODE Function

This function retrieves the detailed SQLCODE of the last exception raised.

Syntax
UTL_HTTP.GET_DETAILED_SQLCODE
RETURN PLS_INTEGER;

See Also: Error Conditions on page 156-14 and Error Conditions
Subprograms on page 156-29

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-53

GET_DETAILED_SQLERRM Function

This function retrieves the detailed SQLERRM of the last exception raised.

Syntax
UTL_HTTP.GET_DETAILED_SQLERRM
RETURN VARCHAR2;

See Also: Error Conditions on page 156-14 and Error Conditions
Subprograms on page 156-29

GET_FOLLOW_REDIRECT Procedure

156-54 PL/SQL Packages and Types Reference

GET_FOLLOW_REDIRECT Procedure

This procedure retrieves the follow-redirect setting in the current session
.

Syntax
UTL_HTTP.GET_FOLLOW_REDIRECT (
 max_redirects OUT PLS_INTEGER);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–26 GET_FOLLOW_REDIRECT Procedure Parameters

Parameter Description

max_redirects The maximum number of redirections for all future HTTP
requests.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-55

GET_HEADER Procedure

This procedure returns the nth HTTP response header name and value returned in
the response.

Syntax
UTL_HTTP.GET_HEADER (
 r IN OUT NOCOPY resp,
 n IN PLS_INTEGER,
 name OUT NOCOPY VARCHAR2,
 value OUT NOCOPY VARCHAR2);

Parameters

Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–27 GET_HEADER Procedure Parameters

Parameter Description

r The HTTP response.

n The nth header to return.

name The name of the HTTP response header.

value The value of the HTTP response header.

GET_HEADER_BY_NAME Procedure

156-56 PL/SQL Packages and Types Reference

GET_HEADER_BY_NAME Procedure

This procedure returns the HTTP response header value returned in the response
given the name of the header.

Syntax
UTL_HTTP.GET_HEADER_BY_NAME(
 r IN OUT NOCOPY resp,
 name IN VARCHAR2,
 value OUT NOCOPY VARCHAR2,
 n IN PLS_INTEGER DEFAULT 1);

Parameters

Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–28 GET_HEADER_BY_NAME Procedure Parameters

Parameter Description

r The HTTP response

name The name of the HTTP response header for which the value is
to return

value The value of the HTTP response header.

n The nth occurrence of an HTTP response header by the
specified name to return. The default is 1.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-57

GET_HEADER_COUNT Function

This function returns the number of HTTP response headers returned in the
response.

Syntax
UTL_HTTP.GET_HEADER_COUNT (
 r IN OUT NOCOPY resp)
RETURN PLS_INTEGER;

Parameters

Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–29 GET_HEADER_COUNT Function Parameters

Parameter Description

r The HTTP response

GET_PERSISTENT_CONN_COUNT Function

156-58 PL/SQL Packages and Types Reference

GET_PERSISTENT_CONN_COUNT Function

This function returns the number of network connections currently kept persistent
by the UTL_HTTP package to the Web servers.

Syntax
UTL_HTTP.GET_PERSISTENT_CONN_COUNT
RETURN PLS_INTEGER;

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with
domain names will be counted differently from the host names without domain
names.

See Also: HTTP Persistent Connections on page 156-13 and HTTP
Persistent Connections Subprograms on page 156-28

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-59

GET_PERSISTENT_CONN_SUPPORT Procedure

This procedure checks:

■ If the persistent connection support is enabled

■ Gets the maximum number of persistent connections in the current session

Syntax
UTL_HTTP.GET_PERSISTENT_CONN_SUPPORT (
 enable OUT BOOLEAN,
 max_conns OUT PLS_INTEGER);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–30 GET_PERSISTENT_CONN_SUPPORT Procedure Parameters

Parameter Description

enable TRUE if persistent connection support is enabled; otherwise
FALSE

max_conns the maximum number of persistent connections maintained in
the current session.

GET_PERSISTENT_CONNS Procedure

156-60 PL/SQL Packages and Types Reference

GET_PERSISTENT_CONNS Procedure

This procedure returns all the network connections currently kept persistent by the
UTL_HTTP package to the Web servers.

Syntax
UTL_HTTP.get_persistent_conns (
 connections IN OUT NOCOPY connection_table);

Parameters

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with
domain names will be counted differently from the host names without domain
names.

See Also: HTTP Persistent Connections on page 156-13 and HTTP
Persistent Connections Subprograms on page 156-28

Table 156–31 GET_PERSISTENT_CONNS Procedure Parameters

Parameter Description

connections The network connections kept persistent

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-61

GET_PROXY Procedure

This procedure retrieves the current proxy settings.

Syntax
UTL_HTTP.GET_PROXY (
 proxy OUT NOCOPY VARCHAR2,
 no_proxy_domains OUT NOCOPY VARCHAR2);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–32 GET_PROXY Procedure Parameters

Parameter Description

proxy The proxy (host and an optional port number) currently used
by the UTL_HTTP package

no_proxy_domains The list of hosts and domains for which no proxy is used for all
requests.

GET_RESPONSE Function

156-62 PL/SQL Packages and Types Reference

GET_RESPONSE Function

This function reads the HTTP response. When the function returns, the status line
and the HTTP response headers have been read and processed. The status code,
reason phrase, and the HTTP protocol version are stored in the response record.
This function completes the HTTP headers section.

Syntax
UTL_HTTP.GET_RESPONSE (
 r IN OUT NOCOPY req)
RETURN resp;

Parameters

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–33 GET_RESPONSE Procedure Parameters

Parameter Description

r The HTTP response

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-63

GET_RESPONSE_ERROR_CHECK Procedure

This procedure checks if the response error check is set or not.

Syntax
UTL_HTTP.GET_RESPONSE_ERROR_CHECK (
 enable OUT BOOLEAN);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–34 GET_RESPONSE_ERROR_CHECK Procedure Parameters

Parameter Description

enable TRUE if the response error check is set; otherwise FALSE

GET_TRANSFER_TIMEOUT Procedure

156-64 PL/SQL Packages and Types Reference

GET_TRANSFER_TIMEOUT Procedure

This procedure retrieves the default timeout value for all future HTTP requests.

Syntax
UTL_HTTP.GET_TRANSFER_TIMEOUT (
 timeout OUT PLS_INTEGER);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–35 GET_TRANSFER_TIMEOUT Procedure Parameters

Parameter Description

timeout The network transfer timeout value in seconds.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-65

READ_LINE Procedure

This procedure reads the HTTP response body in text form until the end of line is
reached and returns the output in the caller-supplied buffer. The end of line is as
defined in the function read_line of UTL_TCP. The end_of_body exception will
be raised if the end of the HTTP response body is reached. Text data is
automatically converted from the response body character set to the database
character set.

Syntax
UTL_HTTP.READ_LINE(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 remove_crlf IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_line waits for each
data packet to be ready to read until timeout occurs. If it occurs, this procedure
stops reading and returns all the data read successfully. If no data is read
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–36 READ_LINE Procedure Parameters

Parameter Description

r The HTTP response.

data The HTTP response body in text form

remove_crlf Removes the newline characters if set to TRUE

READ_LINE Procedure

156-66 PL/SQL Packages and Types Reference

If a partial multibyte character is found at the end of the response body, read_
line stops reading and returns all the complete multibyte characters read
successfully. If no complete character is read successfully, the partial_
multibyte_char exception is raised. The exception can be handled and the bytes
of that partial multibyte character can be read as binary by the read_raw
procedure. If a partial multibyte character is seen in the middle of the response
body because the remaining bytes of the character have not arrived and read
timeout occurs, the transfer_timeout exception is raised instead. The exception
can be handled and the read operation can be retried later.

 When the "Content-Type" response header specifies the character set of the
response body and the character set is unknown or unsupported by Oracle, the
"ORA-01482: unsupported character set" exception is raised if you try to read the
response body as text. You can either read the response body as binary using the
READ_RAW procedure, or set the character set of the response body explicitly using
the SET_BODY_CHARSET procedure and read the response body as text again.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-67

READ_RAW Procedure

This procedure reads the HTTP response body in binary form and returns the
output in the caller-supplied buffer. The end_of_body exception will be raised if
the end of the HTTP response body is reached.
.

Syntax
UTL_HTTP.READ_RAW(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_raw waits for each
data packet to be ready to read until timeout occurs. If it occurs, read_raw stops
reading and returns all the data read successfully. If no data is read successfully, the
transfer_timeout exception is raised. The exception can be handled and the
read operation can be retried later.

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–37 READ_RAW Procedure Parameters

Parameter Description

r The HTTP response.

data The HTTP response body in binary form

len The number of bytes of data to read. If len is NULL, this
procedure will read as much input as possible to fill the buffer
allocated in data. The actual amount of data returned may be
less than that specified if not much data is available before the
end of the HTTP response body is reached or the transfer_
timeout amount of time has elapsed. The default is NULL

READ_TEXT Procedure

156-68 PL/SQL Packages and Types Reference

READ_TEXT Procedure

This procedure reads the HTTP response body in text form and returns the output
in the caller-supplied buffer. The end_of_body exception will be raised if the end
of the HTTP response body is reached. Text data is automatically converted from
the response body character set to the database character set.

Syntax
UTL_HTTP.READ_TEXT(
 r IN OUT NOCOPY resp,
 data OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT NULL);

Parameters

Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_text waits for each
data packet to be ready to read until timeout occurs. If it occurs, this procedure
stops reading and returns all the data read successfully. If no data is read

See Also: HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

Table 156–38 READ_TEXT Procedure Parameters

Parameter Description

r The HTTP response.

data The HTTP response body in text form

len The maximum number of characters of data to read. If len is
NULL, this procedure will read as much input as possible to
fill the buffer allocated in data. The actual amount of data
returned may be less than that specified if little data is
available before the end of the HTTP response body is reached
or the transfer_timeout amount of time has elapsed. The
default is NULL.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-69

successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

If a partial multibyte character is found at the end of the response body, read_
text stops reading and returns all the complete multibyte characters read
successfully. If no complete character is read successfully, the partial_
multibyte_char exception is raised. The exception can be handled and the bytes
of that partial multibyte character can be read as binary by the read_raw
procedure. If a partial multibyte character is seen in the middle of the response
body because the remaining bytes of the character have not arrived and read
timeout occurs, the transfer_timeout exception is raised instead. The exception
can be handled and the read operation can be retried later.

 When the "Content-Type" response header specifies the character set of the
response body and the character set is unknown or unsupported by Oracle, the
"ORA-01482: unsupported character set" exception is raised if you try to
read the response body as text. You can either read the response body as binary
using the READ_RAW procedure, or set the character set of the response body
explicitly using the SET_BODY_CHARSET procedure and read the response body as
text again.

REQUEST Function

156-70 PL/SQL Packages and Types Reference

REQUEST Function

This function returns up to the first 2000 bytes of data retrieved from the given
URL. This function can be used directly in SQL queries. The URL may contain the
username and password needed to authenticate the request to the server. The
format is

scheme://[user[:password]@]host[:port]/[...]

You can define a username/password for the proxy to be specified in the proxy
string. The format is

[http://][user[:password]@]host[:port][/]

Syntax
UTL_HTTP.REQUEST (
 url IN VARCHAR2,
 proxy IN VARCHAR2 DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Pragmas
pragma restrict_references (request, wnds, rnds, wnps, rnps);

Parameters

See Also: Simple HTTP Fetches on page 156-12 and Simple HTTP
Fetches in a Single Call Subprograms on page 156-22

Table 156–39 REQUEST Function Parameters

Parameter Description

url Uniform resource locator.

proxy (Optional) Specifies a proxy server to use when making the
HTTP request. See SET_PROXY for the full format of the proxy
setting.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-71

Return Values
The return type is a string of length 2000 or less, which contains up to the first 2000
bytes of the HTML result returned from the HTTP request to the argument URL.

Exceptions
INIT_FAILED
REQUEST_FAILED

Usage Notes
The URL passed as an argument to this function is not examined for illegal
characters, for example, spaces, according to URL specification RFC 2396. The caller
should escape those characters with the UTL_URL package. See the comments of
the package for the list of legal characters in URLs. Note that URLs should consist
of US-ASCII characters only. The use of non-US-ASCII characters in a URL is
generally unsafe.

Please see the documentation of the function set_wallet on the use of an Oracle
wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception
when a 4xx or 5xx response is received from the Web server. Instead, it returns the
formatted error message from the Web server:

<HTML>
<HEAD>

wallet_path (Optional) Specifies a client-side wallet. The client-side wallet
contains the list of trusted certificate authorities required for
HTTPS request. The format of wallet_path on a PC is, for
example,
file:c:\WINNT\Profiles\<username>\WALLETS, and in
Unix is, for example, file:/home/<username>/wallets

When the UTL_HTTP package is executed in the Oracle
database server, the wallet is accessed from the database
server. Therefore, the wallet path must be accessible from the
database server. See set_wallet for a description on how to
set up an Oracle wallet. Non-HTTPS requests do not require an
Oracle wallet.

wallet_password (Optional) Specifies the password required to open the wallet.

Table 156–39 REQUEST Function Parameters

Parameter Description

REQUEST Function

156-72 PL/SQL Packages and Types Reference

<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can't Access Document: http://home.nothing.comm.
<P>
Reason: Can't locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Examples
SQLPLUS> SELECT utl_http.request('http://www.my-company.com/') FROM dual;
UTL_HTTP.REQUEST('HTTP://WWW.MY-COMPANY.COM/')
<html>
<head><title>My Company Home Page</title>
<!--changed Jan. 16, 19
1 row selected.

If you are behind a firewall, include the proxy parameter. For example, from within
the Oracle firewall, where there might be a proxy server named
www-proxy.my-company.com:

SQLPLUS> SELECT
utl_http.request('http://www.my-company.com', 'www-proxy.us.my-company.com')
FROM dual;

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-73

REQUEST_PIECES Function

This function returns a PL/SQL table of 2000-byte pieces of the data retrieved from
the given URL. You can define a username/password for the proxy to be specified
in the proxy string. The format is

[http://][user[:password]@]host[:port][/]

Syntax
type html_pieces is table of varchar2(2000) index by binary_integer;

UTL_HTTP.REQUEST_PIECES (
 url IN VARCHAR2,
 max_pieces IN NATURAL DEFAULT 32767,
 proxy IN VARCHAR2 DEFAULT NULL,
 wallet_path IN VARCHAR2 DEFAULT NULL,
 wallet_password IN VARCHAR2 DEFAULT NULL)
RETURN html_pieces;

Pragmas
pragma restrict_references (request_pieces, wnds, rnds, wnps, rnps);

Parameters

See Also: Simple HTTP Fetches on page 156-12 and Simple HTTP
Fetches in a Single Call Subprograms on page 156-22

Table 156–40 REQUEST_PIECES Function Parameters

Parameter Description

url Uniform resource locator.

max_pieces (Optional) The maximum number of pieces (each 2000
characters in length, except for the last, which may be shorter),
that REQUEST_PIECES should return. If provided, then that
argument should be a positive integer.

proxy (Optional) Specifies a proxy server to use when making the
HTTP request. See SET_PROXY for the full format of the proxy
setting.

REQUEST_PIECES Function

156-74 PL/SQL Packages and Types Reference

Return Values
REQUEST_PIECES returns a PL/SQL table of type UTL_HTTP.HTML_PIECES. Each
element of that PL/SQL table is a string of maximum length 2000. The elements of
the PL/SQL table returned by REQUEST_PIECES are successive pieces of the data
obtained from the HTTP request to that URL.

Exceptions
INIT_FAILED
REQUEST_FAILED

Usage Notes
 The URL passed as an argument to this function will not be examined for illegal
characters, for example, spaces, according to URL specification RFC 2396. The caller
should escape those characters with the UTL_URL package. See the comments of the
package for the list of legal characters in URLs. Note that URLs should consist of
US-ASCII characters only. The use of non-US-ASCII characters in a URL is
generally unsafe.

Each entry of the PL/SQL table (the "pieces") returned by this function may not be
filled to their fullest capacity. The function may start filling the data in the next
piece before the previous "piece" is totally full.

wallet_path (Optional) Specifies a client-side wallet. The client-side wallet
contains the list of trusted certificate authorities required for
HTTPS request.

The format of wallet_path on a PC is, for example,
file:c:\WINNT\Profiles\<username>\WALLETS, and in
Unix is, for example, file:/home/<username>/wallets. When
the UTL_HTTP package is executed in the Oracle database
server, the wallet is accessed from the database server.
Therefore, the wallet path must be accessible from the database
server.

See set_wallet for the description on how to set up an
Oracle wallet. Non-HTTPS requests do not require an Oracle
wallet.

wallet_password (Optional) Specifies the password required to open the wallet.

Table 156–40 REQUEST_PIECES Function Parameters

Parameter Description

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-75

Please see the documentation of the function set_wallet on the use of an Oracle
wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception
when a 4xx or 5xx response is received from the Web server. Instead, it returns the
formatted error message from the Web server:

<HTML>
<HEAD>
<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can't Access Document: http://home.nothing.comm.
<P>
Reason: Can't locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Examples
SET SERVEROUTPUT ON

DECLARE
 x utl_http.html_pieces;
 len PLS_INTEGER;
BEGIN
 x := utl_http.request_pieces('http://www.oracle.com/', 100);
 dbms_output.put_line(x.count || ' pieces were retrieved.');
 dbms_output.put_line('with total length ');
 IF x.count < 1 THEN
 dbms_output.put_line('0');
 ELSE
 len := 0;
 FOR i in 1..x.count LOOP
 len := len + length(x(i));
 END LOOP;
 dbms_output.put_line(i);
 END IF;
END;

REQUEST_PIECES Function

156-76 PL/SQL Packages and Types Reference

/
-- Output
Statement processed.
4 pieces were retrieved.
with total length
7687

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-77

SET_AUTHENTICATION Procedure

This procedure sets HTTP authentication information in the HTTP request header.
The Web server needs this information to authorize the request.

Syntax
UTL_HTTP.SET_AUTHENTICATION(
 r IN OUT NOCOPY req,
 username IN VARCHAR2,
 password IN VARCHAR2,
 scheme IN VARCHAR2 DEFAULT 'Basic',
 for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Only the HTTP Basic Authentication scheme is supported.

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–41 SET_AUTHENTICATION Procedure Parameters

Parameter Description

r The HTTP request

username The username for the HTTP authentication

password The password for the HTTP authentication

scheme The HTTP authentication scheme. The default, BASIC, denotes
the HTTP Basic Authentication scheme.

for_proxy Identifies if the HTTP authentication information is for access
to the HTTP proxy server instead of the Web server. Default is
FALSE.

SET_BODY_CHARSET Procedures

156-78 PL/SQL Packages and Types Reference

SET_BODY_CHARSET Procedures

This procedure is overloaded. The description of different functionalities is located
alongside the syntax declarations.

Syntax
Sets the default character set of the body of all future HTTP requests when the
media type is text and the character set is not specified in the Content-Type
header. Following the HTTP protocol standard specification, if the media type of a
request or a response is text, but the character set information is missing in the
Content-Type header, the character set of the request or response body should
default to ISO-8859-1. A response created for a request inherits the default body
character set of the request instead of the body character set of the current session.
The default body character set is ISO-8859-1 in a database user session. The default
body character set setting affects only future requests and has no effect on existing
requests. After a request is created, the body character set can be changed by using
the other SET_BODY_CHARSET procedure that operates on a request:

UTL_HTTP.SET_BODY_CHARSET (
 charset IN VARCHAR2 DEFAULT NULL);

Sets the character set of the request body when the media type is text but the
character set is not specified in the Content-Type header. According to the HTTP
protocol standard specification, if the media type of a request or a response is "text"
but the character set information is missing in the Content-Type header, the
character set of the request or response body should default to "ISO-8859-1". Use
this procedure to change the default body character set a request inherits from the
session default setting:

UTL_HTTP.SET_BODY_CHARSET(
 r IN OUT NOCOPY req,
 charset IN VARCHAR2 DEFAULT NULL);

See Also:

■ HTTP Responses on page 156-13 and HTTP Responses
Subprograms on page 156-26

■ Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-79

Sets the character set of the response body when the media type is "text" but the
character set is not specified in the "Content-Type" header. For each the HTTP
protocol standard specification, if the media type of a request or a response is "text"
but the character set information is missing in the "Content-Type" header, the
character set of the request or response body should default to "ISO-8859-1". Use
this procedure to change the default body character set a response inherits from the
request:

UTL_HTTP.SET_BODY_CHARSET(
 r IN OUT NOCOPY resp,
 charset IN VARCHAR2 DEFAULT NULL);

Parameters

Table 156–42 SET_BODY_CHARSET Procedure Parameters

Parameter Description

r The HTTP response.

charset The default character set of the response body. The character
set can be in Oracle or Internet Assigned Numbers Authority
(IANA) naming convention. If charset is NULL, the database
character set is assumed.

SET_COOKIE_SUPPORT Procedures

156-80 PL/SQL Packages and Types Reference

SET_COOKIE_SUPPORT Procedures

This procedure is overloaded. The description of different functionalities is located
alongside the syntax declarations.

This procedure

Syntax
Enables or disables support for the HTTP cookies in the request. Use this procedure
to change the cookie support setting a request inherits from the session default
setting:

UTL_HTTP.SET_COOKIE_SUPPORT(
 r IN OUT NOCOPY REQ,
 enable IN BOOLEAN DEFAULT TRUE);

Sets whether or not future HTTP requests will support HTTP cookies, and the
maximum number of cookies maintained in the current database user session:

UTL_HTTP.SET_COOKIE_SUPPORT (
 enable IN BOOLEAN,
 max_cookies IN PLS_INTEGER DEFAULT 300,
 max_cookies_per_site IN PLS_INTEGER DEFAULT 20);

Parameters

See Also:

■ HTTP Requests on page 156-13 andHTTP Requests
Subprograms on page 156-25

■ Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–43 SET_COOKIE_SUPPORT Procedure Parameters

Parameter Description

r The HTTP request.

enable Set enable to TRUE to enable HTTP cookie support; FALSE to
disable.

max_cookies Sets the maximum total number of cookies maintained in the
current session.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-81

Usage Notes
If cookie support is enabled for an HTTP request, all cookies saved in the current
session and applicable to the request are returned to the Web server in the request
in accordance with HTTP cookie specification standards. Cookies set in the
response to the request are saved in the current session for return to the Web server
in the subsequent requests if cookie support is enabled for those requests. If the
cookie support is disabled for an HTTP request, no cookies are returned to the Web
server in the request and the cookies set in the response to the request are not saved
in the current session, although the Set-Cookie HTTP headers can still be
retrieved from the response.

Cookie support is enabled by default for all HTTP requests in a database user
session. The default setting of the cookie support (enabled versus disabled) affects
only the future requests and has no effect on the existing ones. After your request is
created, the cookie support setting may be changed by using the other set_
cookie_support procedure that operates on a request.

The default maximum number of cookies saved in the current session is 20 for each
site and 300 total.

If you lower the maximum total number of cookies or the maximum number of
cookies for each Web site, the oldest cookies will be purged first to reduce the
number of cookies to the lowered maximum. HTTP cookies saved in the current
session last for the duration of the database session only; there is no persistent
storage for the cookies. Cookies saved in the current session are not cleared if you
disable cookie support.

See "Examples" on page 156-16 for how to use get_cookies and add_cookies to
retrieve, save, and restore cookies.

max_cookies_per_site Sets the maximum number of cookies maintained in the
current session for each Web site.

Table 156–43 SET_COOKIE_SUPPORT Procedure Parameters

Parameter Description

SET_DETAILED_EXCP_SUPPORT Procedure

156-82 PL/SQL Packages and Types Reference

SET_DETAILED_EXCP_SUPPORT Procedure

This procedure sets the UTL_HTTP package to raise a detailed exception. By default,
UTL_HTTP raises the request_failed exception when an HTTP request fails. Use
GET_DETAILED_SQLCODE and GET_DETAILED_SQLEERM for more detailed
information about the error.

Syntax
UTL_HTTP.SET_DETAILED_EXCP_SUPPORT (
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–44 SET_DETAILED_EXCP_SUPPORT Procedure Parameters

Parameter Description

enable Asks UTL_HTTP to raise a detailed exception directly if set to
TRUE; otherwise FALSE

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-83

SET_FOLLOW_REDIRECT Procedures

This procedure sets the maximum number of times UTL_HTTP follows the HTTP
redirect instruction in the HTTP response to this request, or future requests, in the
GET_RESPONSE function.

Syntax
Use this procedure to set the maximum number of redirections:

UTL_HTTP.SET_FOLLOW_REDIRECT (
 max_redirects IN PLS_INTEGER DEFAULT 3);

Use this procedure to change the maximum number of redirections a request
inherits from the session default setting:

UTL_HTTP.SET_FOLLOW_REDIRECT(
 r IN OUT NOCOPY req,
 max_redirects IN PLS_INTEGER DEFAULT 3);

Parameters

Usage Notes
If max_redirects is set to a positive number, the GET_RESPONSE Function will
automatically follow the redirected URL for the HTTP response status code 301,
302, and 307 for the HTTP HEAD and GET methods, and 303 for all HTTP methods,
and retry the HTTP request (the request method will be changed to HTTP GET for

See Also:

■ HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

■ Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–45 SET_FOLLOW_REDIRECT Procedure Parameters

Parameter Description

r The HTTP request

max_redirects The maximum number of redirects. Set to zero to disable
redirects.

SET_FOLLOW_REDIRECT Procedures

156-84 PL/SQL Packages and Types Reference

the status code 303) at the new location. It follows the redirection until the final,
non-redirect location is reached, or an error occurs, or the maximum number of
redirections has been reached (to prevent an infinite loop). The URL and method
fields in the REQ record will be updated to the last redirected URL and the method
used to access the URL. Set the maximum number of redirects to zero to disable
automatic redirection.

While it is set not to follow redirect automatically in the current session, it is
possible to specify individual HTTP requests to follow redirect instructions the
function follow_redirect and vice versa.

The default maximum number of redirections in a database user session is 3. The
default value affects only future requests and has no effect on existing requests.

The SET_FOLLOW_REDIRECT procedure must be called before GET_RESPONSE
for any redirection to take effect.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-85

SET_HEADER Procedure

This procedure sets an HTTP request header. The request header is sent to the Web
server as soon as it is set.

Syntax
UTL_HTTP.SET_HEADER (
 r IN OUT NOCOPY req,
 name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Usage Notes
Multiple HTTP headers with the same name are allowed in the HTTP protocol
standard. Therefore, setting a header does not replace a prior header with the same
name.

If the request is made using HTTP 1.1, UTL_HTTP sets the Host header
automatically for you.

When you set the Content-Type header with this procedure, UTL_HTTP looks for
the character set information in the header value. If the character set information is
present, it is set as the character set of the request body. It can be overridden later by
using the set_body_charset procedure.

When you set the Transfer-Encoding header with the value chunked, UTL_HTTP
automatically encodes the request body written by the WRITE_TEXT, WRITE_
LINE and WRITE_RAW procedures. Note that some HTTP-1.1-based Web servers

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–46 SET_HEADER Procedure Parameters

Parameter Description

r The HTTP request

name The name of the HTTP request header

value The value of the HTTP request header

SET_HEADER Procedure

156-86 PL/SQL Packages and Types Reference

or CGI programs do not support or accept the request body encoding in the HTTP
1.1 chunked transfer-encoding format.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-87

SET_PERSISTENT_CONN_SUPPORT Procedure

This procedure enables or disables support for the HTTP 1.1 persistent-connection
in the request.

Syntax
UTL_HTTP.SET_PERSISTENT_CONN_SUPPORT(
 r IN OUT NOCOPY req,
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
If the persistent-connection support is enabled for an HTTP request, the package
will keep the network connections to a Web server or the proxy server open in the
package after the request is completed properly for a subsequent request to the
same server to reuse for each HTTP 1.1 protocol specification. With the persistent
connection support, subsequent HTTP requests may be completed faster because
the network connection latency is avoided. If the persistent-connection support is
disabled for a request, the package will always send the HTTP header "Connection:
close" automatically in the HTTP request and close the network connection when
the request is completed. This setting has no effect on HTTP requests that follows
HTTP 1.0 protocol, for which the network connections will always be closed after
the requests are completed.

When a request is being made, the package attempts to reuse an existing persistent
connection to the target Web server (or proxy server) if one is available. If none is
available, a new network connection will be initiated. The persistent-connection

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–47 SET_PERSISTENT_CONN_SUPPORT Procedure Parameters

Parameter Description

r The HTTP request

enable TRUE to keep the network connection persistent. FALSE
otherwise.

SET_PERSISTENT_CONN_SUPPORT Procedure

156-88 PL/SQL Packages and Types Reference

support setting for a request affects only whether the network connection should be
closed after a request completes.

Use this procedure to change the persistent-connection support setting a request
inherits from the session default setting.

Users should note that while the use of persistent connections in UTL_HTTP may
reduce the time it takes to fetch multiple Web pages from the same server, it
consumes precious system resources (network connections) in the database server.
Also, excessive use of persistent connections may reduce the scalability of the
database server when too many network connections are kept open in the database
server. Network connections should be kept open only if they will be used
immediately by subsequent requests and should be closed immediately when they
are no longer needed. Set the default persistent connection support as disabled in
the session, and enable persistent connection in individual HTTP requests as shown
in "Examples" on page 156-88.

The default value of the maximum number of persistent connections in a database
session is zero. To truly enable persistent connections, you must also set the
maximum number of persistent connections to a positive value or no connections
will be kept persistent.

Examples

Using SET_PERSISTENT_CONN_SUPPORT in HTTP Requests
DECLARE
 TYPE vc2_table IS TABLE OF VARCHAR2(256) INDEX BY binary_integer;
 paths vc2_table;

UTL_HTTP.fetch_pages(paths IN vc2_table) AS
 url_prefix VARCHAR2(256) := 'http://www.my-company.com/';
 req utl_http.req;
 resp utl_http.resp;
 data VARCHAR2(1024);
 BEGIN
 FOR i IN 1..paths.count LOOP
 req := utl_http.begin_request(url_prefix || paths(i));

 -- Use persistent connection except for the last request
 IF (i < paths.count) THEN
 utl_http.set_persistent_conn_support(req, TRUE);
 END IF;

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-89

 resp := utl_http.get_response(req);

 BEGIN
 LOOP
 utl_http.read_text(resp, data);
 -- do something with the data
 END LOOP;
 EXCEPTION
 WHEN utl_http.end_of_body THEN
 NULL;
 END;
 utl_http.end_response(resp);
 END LOOP;
 END;

BEGIN
 utl_http.set_persistent_conn_support(FALSE, 1);
 paths(1) := '...';
 paths(2) := '...';
 ...
 fetch_pages(paths);
END;

SET_PROXY Procedure

156-90 PL/SQL Packages and Types Reference

SET_PROXY Procedure

This procedure sets the proxy to be used for requests of the HTTP or other
protocols, excluding those for hosts that belong to the domain specified in no_
proxy_domains.no_proxy_domains is a comma-, semi-colon-, or
space-separated list of domains or hosts for which HTTP requests should be sent
directly to the destination HTTP server instead of going through a proxy server.
’

Syntax
UTL_HTTP.SET_PROXY (
 proxy IN VARCHAR2,
 no_proxy_domains IN VARCHAR2);

Parameters

Usage Notes
The proxy may include an optional TCP/IP port number at which the proxy server
listens. The syntax is [http://]host[:port][/], for example,
www-proxy.my-company.com:80. If the port is not specified for the proxy, port
80 is assumed.

Optionally, a port number can be specified for each domain or host. If the port
number is specified, the no-proxy restriction is only applied to the request at the
port of the particular domain or host, for example, corp.my-company.com,
eng.my-company.com:80. When no_proxy_domains is NULL and the proxy is
set, all requests go through the proxy. When the proxy is not set, UTL_HTTP sends
requests to the target Web servers directly.

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–48 SET_PROXY Procedure Parameters

Parameter Description

proxy The proxy (host and an optional port number) to be used by
the UTL_HTTP package

no_proxy_domains The list of hosts and domains for which no proxy should be
used for all requests.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-91

You can define a username/password for the proxy to be specified in the proxy
string. The format is

[http://][user[:password]@]host[:port][/]

If proxy settings are set when the database server instance is started, the proxy
settings in the environment variables http_proxy and no_proxy are assumed.
Proxy settings set by this procedure override the initial settings.

SET_RESPONSE_ERROR_CHECK Procedure

156-92 PL/SQL Packages and Types Reference

SET_RESPONSE_ERROR_CHECK Procedure

This procedure sets whether or not get_response raises an exception when the
Web server returns a status code that indicates an error—a status code in the 4xx or
5xx ranges. For example, when the requested URL is not found in the destination
Web server, a 404 (document not found) response status code is returned.

Syntax
UTL_HTTP.SET_RESPONSE_ERROR_CHECK (
 enable IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
If the status code indicates an error—a 4xx or 5xx code—and this procedure is
enabled, get_response will raise the HTTP_CLIENT_ERROR or HTTP_SERVER_
ERROR exception. If SET_RESPONSE_ERROR_CHECK is set to FALSE, get_
response will not raise an exception when the status code indicates an error.

Response error check is turned off by default.

The get_response function can raise other exceptions when SET_RESPONSE_
ERROR_CHECK is set to FALSE.

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–49 SET_RESPONSE_ERROR_CHECK Procedure Parameters

Parameter Description

enable TRUE to check for response errors; otherwise FALSE

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-93

SET_TRANSFER_TIMEOUT Procedure

This procedure sets the default time out value for all future HTTP requests that the
UTL_HTTP package should attempt while reading the HTTP response from the Web
server or proxy server. This time out value may be used to avoid the PL/SQL
programs from being blocked by busy Web servers or heavy network traffic while
retrieving Web pages from the Web servers.

Syntax
UTL_HTTP.SET_TRANSFER_TIMEOUT (
 timeout IN PLS_INTEGER DEFAULT 60);

Parameters

Usage Notes
The default value of the time out is 60 seconds.

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–50 SET_TRANSFER_TIMEOUT Procedure Parameters

Parameter Description

timeout The network transfer timeout value in seconds.

SET_WALLET Procedure

156-94 PL/SQL Packages and Types Reference

SET_WALLET Procedure

This procedure sets the Oracle wallet used for all HTTP requests over Secured
Socket Layer (SSL), namely HTTPS. When the UTL_HTTP package communicates
with an HTTP server over SSL, the HTTP server presents its digital certificate,
which is signed by a certificate authority, to the UTL_HTTP package for
identification purpose. The Oracle wallet contains the list of certificate authorities
that are trusted by the user of the UTL_HTTP package. An Oracle wallet is required
to make an HTTPS request.

Syntax
UTL_HTTP.SET_WALLET (
 path IN VARCHAR2,
 password IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: Session Settings on page 156-13 and Session Settings
Subprograms on page 156-23

Table 156–51 SET_WALLET Procedure Parameters

Parameter Description

path The directory path that contains the Oracle wallet. The format
is file:<directory-path>.

The format of wallet_path on a PC is, for example,
file:c:\WINNT\Profiles\<username>\WALLETS, and in
Unix is, for example, file:/home/<username>/wallets.
When the UTL_HTTP package is executed in the Oracle
database server, the wallet is accessed from the database
server. Therefore, the wallet path must be accessible from the
database server.

password The password needed to open the wallet. A second copy of a
wallet in a wallet directory that may be opened without a
password. That second copy of the wallet is read-only. If the
password is NULL, the UTL_HTTP package will open the
second, read-only copy of the wallet instead.

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-95

Usage Notes
To set up an Oracle wallet, use the Oracle Wallet Manager to create a wallet. In
order for the HTTPS request to succeed, the certificate authority that signs the
certificate of the remote HTTPS Web server must be a trust point set in the wallet.

When a wallet is created, it is populated with a set of well-known certificate
authorities as trust points. If the certificate authority that signs the certificate of the
remote HTTPS Web server is not among the trust points, or the certificate authority
has new root certificates, you should obtain the root certificate of that certificate
authority and install it as a trust point in the wallet using Oracle Wallet Manager

See Also: Oracle Advanced Security Administrator's Guide for more
information on Wallet Manager

WRITE_LINE Procedure

156-96 PL/SQL Packages and Types Reference

WRITE_LINE Procedure

This procedure writes a text line in the HTTP request body and ends the line with
new-line characters (CRLF as defined in UTL_TCP). As soon as some data is sent as
the HTTP request body, the HTTP request headers section is completed. Text data is
automatically converted from the database character set to the request body
character set.

Syntax
UTL_HTTP.WRITE_LINE(
 r IN OUT NOCOPY req,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. The UTL_HTTP package performs
chunked transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based Web
servers or CGI programs do not support or accept the request body encoding in the
HTTP 1.1 chunked transfer-encoding format. See the set_header procedure for
details.

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–52 WRITE_LINE Procedure Parameters

Parameter Description

r The HTTP request

data The text line to send in the HTTP request body

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-97

If you send the Content-Length header, you should note that the length specified in
the header should be the byte-length of the textual request body after it is converted
from the database character set to the request body character set. When either one
of the two character sets is a multibyte character set, the precise byte-length of the
request body in the request body character set cannot be known beforehand. In this
case, you can perform the character set conversion explicitly, determine the
byte-length of the results, send the Content-Length header, and the results using the
write_raw procedure to avoid the automatic character set conversion. Or, if the
remove Web server or CGI programs allow, you can send the request body using
the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the
length of the chunks transparently.

WRITE_RAW Procedure

156-98 PL/SQL Packages and Types Reference

WRITE_RAW Procedure

This procedure writes some binary data in the HTTP request body. As soon as some
data is sent as the HTTP request body, the HTTP request headers section is
completed.

Syntax
UTL_HTTP.WRITE_RAW(
 r IN OUT NOCOPY req,
 data IN RAW);

Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. UTL_HTTP performs chunked
transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based
Web servers or CGI programs do not support or accept the request body encoding
in the HTTP 1.1 chunked transfer-encoding format. See the set_header
procedure for details.

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–53 WRITE_RAW Procedure Parameters

Parameter Description

r The HTTP request

data The binary data to send in the HTTP request body

Summary of UTL_HTTP Subprograms

UTL_HTTP 156-99

WRITE_TEXT Procedure

This procedure writes some text data in the HTTP request body. As soon as some
data is sent as the HTTP request body, the HTTP request headers section is
completed. Text data is automatically converted from the database character set to
the request body character set.

Syntax
UTL_HTTP.WRITE_TEXT(
 r IN OUT NOCOPY req,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. UTL_HTTP performs chunked
transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based
Web servers or CGI programs do not support or accept the request body encoding
in the HTTP 1.1 chunked transfer-encoding format. See the set_header procedure
for details.

If you send the Content-Length header, you should note that the length specified in
the header should be the byte-length of the textual request body after it is converted

See Also: HTTP Requests on page 156-13 and HTTP Requests
Subprograms on page 156-25

Table 156–54 WRITE_TEXT Procedure Parameters

Parameter Description

r The HTTP request

data The text data to send in the HTTP request body

WRITE_TEXT Procedure

156-100 PL/SQL Packages and Types Reference

from the database character set to the request body character set. When either one
of the two character sets is a multibyte character set, the precise byte-length of the
request body in the request body character set cannot be known beforehand. In this
case, you can perform the character set conversion explicitly, determine the
byte-length of the results, send the Content-Length header, and the results using the
write_raw procedure to avoid the automatic character set conversion. Or, if the
remove Web server or CGI programs allow, you can send the request body using
the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the
length of the chunks transparently.

UTL_I18N 157-1

157
UTL_I18N

UTL_I18N is a set of services that help developers build multilingual applications.
The Globalization Development Kit provides a set of tools that are designed to help
developers with minimal experience in internationalization development effectively
write multilingual applications.

The chapter contains the following topics:

■ Using UTL_I18n

■ Overview

■ Constants

■ Flags

■ Summary of UTL_I18N Subprograms

See Also: Oracle Database Globalization Support Guide

Using UTL_I18n

157-2 PL/SQL Packages and Types Reference

Using UTL_I18n

■ Overview

■ Constants

■ Flags

Overview

The UTL_I18N PL/SQL package consists of the following categories of services:

■ String conversion functions for various datatypes

■ Escape and unescape sequences for predefined characters and multibyte
characters used by HTML and XML documents

■ Functions that map between Oracle, Internet Assigned Numbers Authority
(IANA), and ISO languages and territories

■ Functions that map between Oracle, Internet Assigned Numbers Authority
(IANA), and e-mail safe character sets

■ A function that returns the Oracle character set name from an Oracle language
name

Constants

SHIFT_IN CONSTANT PLS_INTEGER :=0;
SHIFT_OUT CONSTANT PLS_INTEGER :=1;

Flags

ORACLE_TO_IANA CONSTANT PLS_INTEGER :=0;
IANA_TO_ORACLE CONSTANT PLS_INTEGER :=1;
MAIL_GENERIC CONSTANT PLS_INTEGER :=0;
MAIL_WINDOWS CONSTANT PLS_INTEGER :=1;
GENERIC_CONTEXT CONSTANT PLS_INTEGER :=0;
MAIL_CONTEXT CONSTANT PLS_INTEGER :=1;

Summary of UTL_I18N Subprograms

UTL_I18N 157-3

Summary of UTL_I18N Subprograms

Table 157–1 UTL_I18N Package Subprograms

Procedure Description

ESCAPE_REFERENCE Function on
page 157-4

Specifies an escape sequence for predefined
characters and multibyte characters that cannot be
converted to the character set used by an HTML or
XML document

GET_DEFAULT_CHARSET Function
on page 157-5

Returns the default Oracle character set name or the
default e-mail safe character set name from an
Oracle language name.

MAP_CHARSET Function on
page 157-7

■ Maps an Oracle character set name to an IANA
character set name

■ Maps an IANA character set name to an Oracle
character set name

■ Maps an Oracle character set name to an e-mail
safe character set name

MAP_LANGUAGE_FROM_ISO
Function on page 157-10

Returns an Oracle language name from an ISO
locale name

MAP_LOCALE_TO_ISO Function on
page 157-11

Returns an ISO locale name from the Oracle
language and territory name

MAP_TERRITORY_FROM_ISO
Function on page 157-12

Returns an Oracle territory name from an ISO locale
name

RAW_TO_CHAR Functions on
page 157-13

Converts RAW data that is not encoded in the
database character set into a VARCHAR2 string

RAW_TO_NCHAR Functions on
page 157-16

Converts RAW data that is not encoded in the
national character set into an NVARCHAR2 string

STRING_TO_RAW Function on
page 157-19

Converts a VARCHAR2 or NVARCHAR2 string to
another character set. The result is returned as a RAW
datatype.

UNESCAPE_REFERENCE Function
on page 157-20

Returns a string from an input string that contains
escape sequences

ESCAPE_REFERENCE Function

157-4 PL/SQL Packages and Types Reference

ESCAPE_REFERENCE Function

This function provides a way to specify an escape sequence for predefined
characters and multibyte characters that cannot be converted to the character set
used by an HTML or XML document.

For example, < (less than symbol) has a special meaning in HTML. To display < as
a character, encode it as the escape sequence < . In the same way, you can
specify how multibyte characters are displayed when they are not part of the
character set encoding of an HTML or XML document. For example, if you encode
a page in the ZHT16BIG5 character set, then this function checks every character. If
it finds a character that is not a Chinese character, then it returns an escape
character.

Syntax
UTL_I18N.ESCAPE_REFERENCE(str IN VARCHAR2 CHARCTER SET ANY_CS,
 page_cs_name IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Usage Notes
If the user specifies an invalid character set or a NULL string, then the function
returns a NULL string.

Examples
UTL_I18N.ESCAPE_REFERENCE('ab'||chr(170),'us7ascii')

This returns 'abª'.

Table 157–2 ESCAPE_REFERENCE Function Parameters

Parameter Description

str Specifies the input string

page_cs_name Specifies the character set encoding of the HTML or XML
document. If page_cs_name is NULL, then the database
character set is used for CHAR data and the national character
set is used for NCHAR data.

Summary of UTL_I18N Subprograms

UTL_I18N 157-5

GET_DEFAULT_CHARSET Function

This function returns the default Oracle character set name or the default e-mail safe
character set name from an Oracle language name.

Syntax
UTL_I18N.GET_DEFAULT_CHARSET(language IN VARCHAR2,
 context IN PLS_INTEGER DEFAULT GENERIC_CONTEXT,
 iswindows IN BOOLEAN DEFAULT FALSE)
RETURN VARCHAR2;

Parameters

Usage Notes
If the user specifies an invalid language name or an invalid flag, then the function
returns a NULL string.

See Also: "MAP_CHARSET Function" on page 157-7 for an
explanation of an e-mail safe character set

Table 157–3 GET_DEFAULT_CHARSET Function Parameters

Parameter Description

language Specifies a valid Oracle language

context GENERIC_CONTEXT | MAIL_CONTEXT

GENERIC_CONTEXT: Return the default character set for
general cases

MAIL_CONTEXT: Return the default e-mail safe character set
name

iswindows If context is set as MAIL_CONTEXT, then iswindows should
be set to TRUE if the platform is Windows and FALSE if the
platform is not Windows. The default is FALSE.

iswindows has no effect if context is set as GENERIC_
CONTEXT.

GET_DEFAULT_CHARSET Function

157-6 PL/SQL Packages and Types Reference

Examples

GENERIC_CONTEXT, iswindows=FALSE
UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.GENERIC_CONTEXT, FALSE)

This returns 'WE8ISO8859P1'.

MAIL_CONTEXT, iswindows=TRUE
UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.MAIL_CONTEXT, TRUE)

This returns 'WE8MSWIN1252'.

MAIL_CONTEXT, iswindows=FALSE
UTL_I18N.GET_DEFAULT_CHARSET('French', UTL_I18N.MAIL_CONTEXT, FALSE)

This returns 'WE8ISO8859P1'.

Summary of UTL_I18N Subprograms

UTL_I18N 157-7

MAP_CHARSET Function

This function:

■ Maps an Oracle character set name to an IANA character set name

■ Maps an IANA character set name to an Oracle character set name

■ Maps an Oracle character set to an e-mail safe character set name

Syntax
UTL_I18N.MAP_CHARSET(charset IN VARCHAR2,
 context IN PLS_INTEGER DEFAULT GENERIC_CONTEXT,
 flag IN PLS_INTEGER DEFAULT ORACLE_TO_IANA)
RETURN VARCHAR2;

Parameters

Table 157–4 MAP_CHARSET Function Parameters

Parameter Description

charset Specifies the character set name to be mapped. The mapping is
case-insensitive.

context GENERIC_CONTEXT | MAIL_CONTEXT

GENERIC_CONTEXT: The mapping is between an Oracle
character set name and an IANA character set name. This is the
default value.

MAIL_CONTEXT: The mapping is between an Oracle character
set name and an e-mail safe character set name.

MAP_CHARSET Function

157-8 PL/SQL Packages and Types Reference

Usage Notes
An e-mail safe character set is an Oracle character set that is commonly used by
applications when they submit e-mail messages. The character set is usually used to
convert contents in the database character set to e-mail safe contents. To specify the
character set name in the mail header, you should use the corresponding IANA
character set name obtained by calling the MAP_CHARSET function with the
ORACLE_TO_IANA option, providing the e-mail safe character set name as input.

For example, no e-mail client recognizes message contents in the WE8DEC character
set, whose corresponding IANA name is DEC-MCS. If WE8DEC is passed to the MAP_
CHARSET function with the MAIL_CONTEXT option, then the function returns
WE8ISO8859P1. Its corresponding IANA name, ISO-8859-1, is recognized by
most e-mail clients.

The steps in this example are as follows:

1. Call the MAP_CHARSET function with the MAIL_CONTEXT | MAIL_GENERIC
option with the database character set name, WE8DEC. The result is
WE8ISO8859P1.

2. Convert the contents stored in the database to WE8ISO8859P1.

3. Call the MAP_CHARSET function with the ORACLE_TO_IANA | GENERIC_
CONTEXT option with the e-mail safe character set, WE8ISO8859P1. The result
is ISO-8859-1.

flag ■ ORACLE_TO_IANA | IANA_TO_ORACLE if GENERIC_
CONTEXT is set

ORACLE_TO_IANA: Map from an Oracle character set
name to an IANA character set name. This is the default.

IANA_TO_ORACLE: Map from an IANA character set
name to an Oracle character set name.

■ MAIL_GENERIC | MAIL_WINDOWS if MAIL_CONTEXT is
set

MAIL_GENERIC: Map from an Oracle character set name
to an e-mail safe character set name on a non-Windows
platform

MAIL_WINDOWS: Map from an Oracle character set name
to an e-mail safe character set name on a Windows
platform

Table 157–4 (Cont.) MAP_CHARSET Function Parameters (Cont.)

Parameter Description

Summary of UTL_I18N Subprograms

UTL_I18N 157-9

4. Specify ISO-8859-1 in the mail header when the e-mail message is submitted.

The function returns a character set name if a match is found. If no match is found
or if the flag is invalid, then it returns NULL.

Examples

Generic Context
UTL_I18N.MAP_CHARSET('iso-8859-1',UTL_I18N.GENERIC_CONTEXT,UTL_I18N.IANA_TO_
ORACLE)

This returns 'WE8ISO8859P1'.

Context
UTL_I18N.MAP_CHARSET('WE8DEC', utl_i18n.mail_context, utl_i18n.mail_generic)

This returns 'WE8ISO8859P1'.

Note: Many Oracle character sets can map to one e-mail safe
character set. There is no function that maps an e-mail safe
character set to an Oracle character set name.

See Also: Oracle Database Globalization Support Guide for a list of
valid Oracle character sets

MAP_LANGUAGE_FROM_ISO Function

157-10 PL/SQL Packages and Types Reference

MAP_LANGUAGE_FROM_ISO Function

This function returns an Oracle language name from an ISO locale name.

Syntax
UTL_I18N.MAP_LANGUAGE_FROM_ISO(isolocale IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Usage Notes
 If the user specifies an invalid locale string, then the function returns a NULL string.

If the user specifies a locale string that includes only the language (for example, en_
instead of en_US), then the function returns the default language name for the
specified language (for example, American).

Examples
UTL_I18N.MAP_LANGUAGE_FROM_ISO('en_US')

This returns 'American'.

Table 157–5 MAP_LANGUAGE_FROM_ISO Function Parameters

Parameter Description

isolocale Specifies the ISO locale. The mapping is case-insensitive.

See Also: Oracle Database Globalization Support Guide for a list of
valid Oracle languages

Summary of UTL_I18N Subprograms

UTL_I18N 157-11

MAP_LOCALE_TO_ISO Function

This function returns an ISO locale name from an Oracle language name and an
Oracle territory name. A valid string must include at least one of the following: a
valid Oracle language name or a valid Oracle territory name.

Syntax
UTL_I18N.MAP_LOCALE_TO_ISO(ora_language IN VARCHAR2,
 ora_territory IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Usage Notes
If the user specifies an invalid string, then the function returns a NULL string.

Examples
UTL_I18N.MAP_LOCALE_TO_ISO('American','America')

This returns 'en_US'.

Table 157–6 MAP_LOCALE_TO_ISO Function Parameters

Parameter Description

ora_language Specifies an Oracle language name. It is case-insensitive.

ora_territory Specifies an Oracle territory name. It is case-insensitive.

See Also: Oracle Database Globalization Support Guide for a list of
valid Oracle languages and territories

MAP_TERRITORY_FROM_ISO Function

157-12 PL/SQL Packages and Types Reference

MAP_TERRITORY_FROM_ISO Function

This function returns an Oracle territory name from an ISO locale.

Syntax
UTL_I18N.MAP_TERRITORY_FROM_ISO(isolocale IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Usage Notes
 If the user specifies an invalid locale string, then the function returns a NULL string.

If the user specifies a locale string that includes only the territory (for example, _fr
instead of fr_fr), then the function returns the default territory name for the
specified territory (for example, French).

Examples
UTL_I18N.MAP_TERRITORY_FROM_ISO('en_US')

This returns 'America'.

Table 157–7 MAP_TERRITORY_FROM_ISO Function Parameters

Parameter Description

isolocale Specifies the ISO locale. The mapping is case-insensitive.

See Also: Oracle Database Globalization Support Guide for a list of
valid Oracle territories

Summary of UTL_I18N Subprograms

UTL_I18N 157-13

RAW_TO_CHAR Functions

This function converts RAW data from a valid Oracle character set to a VARCHAR2
string in the database character set.

The function is overloaded. The different forms of functionality are described along
with the syntax declarations.

Syntax
Buffer Conversion:

UTL_I18N.RAW_TO_CHAR(data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Piecewise conversion converts raw data into character data piece by piece:

UTL_I18N.RAW_TO_CHAR(data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL,
 scanned_length OUT PLS_INTEGER,
 shift_status IN OUT PLS_INTEGER)
RETURN VARCHAR2;

Parameters

Table 157–8 RAW_TO_CHAR Function Parameters

Parameter Description

data Specifies the RAW data to be converted to a VARCHAR2 string

src_charset Specifies the character set that the RAW data was derived from.
If src_charset is NULL, then the database character set is used.

scanned_length Specifies the number of bytes of source data scanned

RAW_TO_CHAR Functions

157-14 PL/SQL Packages and Types Reference

Usage Notes
If the user specifies an invalid character set, NULL data, or data whose length is 0,
then the function returns a NULL string.

Examples

Buffer Conversion
UTL_I18N.RAW_TO_CHAR(hextoraw('616263646566C2AA'), 'utf8')

This returns the following string in the database character set:

'abcde'||chr(170)

Piecewise Conversion
UTL_I18N.RAW_TO_CHAR(hextoraw('616263646566C2AA'),'utf8',shf,slen)

This expression returns the following string in the database character set:

'abcde'||chr(170)

It also sets shf to SHIFT_IN and slen to 8.

The following example converts data from the Internet piece by piece to the
database character set.

rvalue RAW(1050);
 nvalue VARCHAR2(1024);
 conversion_state PLS_INTEGER = 0;

shift_status Specifies the shift status at the end of the scan. The user must
set it to SHIFT_IN the first time it is called in piecewise
conversion.

Note: ISO 2022 character sets use escape sequences instead of
shift characters to indicate the encoding method. shift_
status cannot hold the encoding method information that is
provided by the escape sequences for the next function call. As
a result, this function cannot be used to reconstruct ISO 2022
character from raw data in a piecewise way unless each unit of
input can be guaranteed to be a closed string. A closed string
begins and ends in a 7-bit escape state.

Table 157–8 (Cont.) RAW_TO_CHAR Function Parameters (Cont.)

Parameter Description

Summary of UTL_I18N Subprograms

UTL_I18N 157-15

 converted_len PLS_INTEGER;
 rtemp RAW(10) = '';
 conn utl_tcp.connection;
 tlen PLS_INTEGER;

 ...
 conn := utl_tcp.open_connection (remote_host => 'localhost',
 remote_port => 2000);
 LOOP
 tlen := utl_tcp.read_raw(conn, rvalue, 1024);
 rvalue := utl_raw.concat(rtemp, rvalue);
 nvalue := utl_i18n.raw_to_char(rvalue, 'JA16SJIS', converted_len,
conversion_stat);
 if (converted_len < utl_raw.length(rvalue))
 then
 rtemp := utl_raw.substr(rvalue, converted_len+1);
 else
 rtemp := '';
 end if;
 /* do anything you want with nvalue */
 /* e.g htp.prn(nvalue); */
 END LOOP;
 utl_tcp.close_connection(conn);
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 utl_tcp.close_connection(conn);
 END;

RAW_TO_NCHAR Functions

157-16 PL/SQL Packages and Types Reference

RAW_TO_NCHAR Functions

This function converts RAW data from a valid Oracle character set to an NVARCHAR2
string in the national character set.

The function is overloaded. The different forms of functionality are described along
with the syntax declarations.

Syntax
Buffer Conversion:

UTL_I18N.RAW_TO_NCHAR(data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL)
 RETURN NVARCHAR2;

Piecewise conversion converts raw data into character data piece by piece:

UTL_I18N.RAW_TO_NCHAR(data IN RAW,
 src_charset IN VARCHAR2 DEFAULT NULL,
 scanned_length OUT PLS_INTEGER,
 shift_status IN OUT PLS_INTEGER)
 RETURN NVARCHAR2;

Parameters

Table 157–9 RAW_TO_NCHAR Function Parameters

Parameter Description

data Specifies the RAW data to be converted to an NVARCHAR2 string

src_charset Specifies the character set that the RAW data was derived from.
If src_charset is NULL, then the database character set is
used.

scanned_length Specifies the number of bytes of source data scanned

Summary of UTL_I18N Subprograms

UTL_I18N 157-17

Usage Notes
If the user specifies an invalid character set, NULL data, or data whose length is 0,
then the function returns a NULL string.

Examples

Buffer Conversion
UTL_I18N.RAW_TO_NCHAR(hextoraw('616263646566C2AA'),'utf8')

This returns the following string in the national character set:

'abcde'||chr(170)

Piecewise Conversion
UTL_I18N.RAW_TO_NCHAR(hextoraw('616263646566C2AA'),'utf8', shf, slen)

This expression returns the following string in the national character set:

'abcde'||chr(170)

It also sets shf to SHIFT_IN and slen to 8.

The following example converts data from the Internet piece by piece to the
national character set.

rvalue RAW(1050);
 nvalue NVARCHAR2(1024);

shift_status Specifies the shift status at the end of the scan. The user must
set it to SHIFT_IN the first time it is called in piecewise
conversion.

Note: ISO 2022 character sets use escape sequences instead of
shift characters to indicate the encoding method. shift_
status cannot hold the encoding method information that is
provided by the escape sequences for the next function call. As
a result, this function cannot be used to reconstruct ISO 2022
character from raw data in a piecewise way unless each unit of
input can be guaranteed to be a closed string. A closed string
begins and ends in a 7-bit escape state.

Table 157–9 (Cont.) RAW_TO_NCHAR Function Parameters (Cont.)

Parameter Description

RAW_TO_NCHAR Functions

157-18 PL/SQL Packages and Types Reference

 converstion_state PLS_INTEGER = 0;
 converted_len PLS_INTEGER;
 rtemp RAW(10) = '';
 conn utl_tcp.connection;
 tlen PLS_INTEGER;

 ...
 conn := utl_tcp.open_connection (remote_host => 'localhost',
 remote_port => 2000);
 LOOP
 tlen := utl_tcp.read_raw(conn, rvalue, 1024);
 rvalue := utl_raw.concat(rtemp, rvalue);
 nvalue := utl_i18n.raw_to_nchar(rvalue, 'JA16SJIS', converted_len,
conversion_stat);
 if (converted_len < utl_raw.length(rvalue))
 then
 rtemp := utl_raw.substr(rvalue, converted_len+1);
 else
 rtemp := '';
 end if;
 /* do anything you want with nvalue */
 /* e.g htp.prn(nvalue); */
 END LOOP;
 utl_tcp.close_connection(conn);
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 utl_tcp.close_connection(conn);
 END;

Summary of UTL_I18N Subprograms

UTL_I18N 157-19

STRING_TO_RAW Function

This function converts a VARCHAR2 or NVARCHAR2 string to another valid Oracle
character set and returns the result as RAW data.

Syntax
UTL_I18N.STRING_TO_RAW(data IN VARCHAR2 CHARACTER SET ANY_CS,
 dst_charset IN VARCHAR2 DEFAULT NULL)
RETURN RAW;

Parameters

Usage Notes
If the user specifies an invalid character set, a NULL string, or a string whose length
is 0, then the function returns a NULL string.

Examples
DECLARE
 r raw(50);
 s varchar2(20);
 BEGIN
 s:='abcdef'||chr(170);
 r:=utl_i18n.string_to_raw(s,'utf8');
 dbms_output.put_line(rawtohex(r));
 end;
/

This returns a hex value of '616263646566C2AA'.

Table 157–10 STRING_TO_RAW Function Parameters

Parameter Description

data Specifies the VARCHAR2 or NVARCHAR2 string to convert

dst_charset Specifies the destination character set. If dst_charset is
NULL, then the database character set is used for CHAR data
and the national character set is used for NCHAR data.

UNESCAPE_REFERENCE Function

157-20 PL/SQL Packages and Types Reference

UNESCAPE_REFERENCE Function

This function returns a string from an input string that contains escape sequences. It
decodes each escape sequence to the corresponding character value.

Syntax
UTL_I18N.UNESCAPE_REFERENCE(str IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Usage Notes
If the user specifies a NULL string or a string whose length is 0, then the function
returns a NULL string. If the function fails, then it returns the original string.

Examples
UTL_I18N.UNESCAPE_REFERENCE('abª')

This returns 'ab'||chr(170).

See Also: "ESCAPE_REFERENCE Function" on page 157-4 for
more information about escape sequences

Table 157–11 UNESCAPE_REFERENCE Function Parameters

Parameter Description

str Specifies the input string

UTL_INADDR 158-1

158
UTL_INADDR

The UTL_INADDR package provides a PL/SQL procedures to support internet
addressing. It provides an API to retrieve host names and IP addresses of local and
remote hosts.

This chapter contains the following topics:

■ Using UTL_INADDR

■ Exceptions

■ Examples

■ Summary of UTL_INADDR Subprograms

Using UTL_INADDR

158-2 PL/SQL Packages and Types Reference

Using UTL_INADDR

■ Exceptions

■ Examples

Exceptions

Examples

Retrieve the local host name and IP address.

SET serveroutput on
BEGIN
 DBMS_OUTPUT.PUT_LINE(UTL_INADDR.GET_HOST_NAME); -- get local host name
 DBMS_OUTPUT.PUT_LINE(UTL_INADDR.GET_HOST_ADDRESS); -- get local IP addr
END;
/

Table 158–1 Exception from Internet Address Package

Exception Description

UNKNOWN_HOST The host is unknown.

Summary of UTL_INADDR Subprograms

UTL_INADDR 158-3

Summary of UTL_INADDR Subprograms

Table 158–2 UTL_INADDR Package Subprograms

Subprogram Description

GET_HOST_ADDRESS
Function on page 158-4

Retrieves the IP address of the local or remote host given its
name

GET_HOST_NAME
Function on page 158-5

Retrieves the name of the local or remote host given its IP
address

GET_HOST_ADDRESS Function

158-4 PL/SQL Packages and Types Reference

GET_HOST_ADDRESS Function

This function retrieves the IP address of the specified host.

Syntax
UTL_INADDR.GET_HOST_ADDRESS (
 host IN VARCHAR2 DEFAULT NULL)
RETURN host_address VARCHAR2;

Parameters

Return Values

Exceptions
UNKNOWN_HOST: The specified IP address is unknown.

Table 158–3 GET_HOST_ADDRESS Function Parameters

Parameter Description

host The name of the host to retrieve the IP address.

Table 158–4 GET_HOST_ADDRESS Function Return Values

Parameter Description

host_address The IP address of the specified host, or that of the local host if
host is NULL.

Summary of UTL_INADDR Subprograms

UTL_INADDR 158-5

GET_HOST_NAME Function

This function retrieves the name of the local or remote host given its IP address.

Syntax
UTL_INADDR.GET_HOST_NAME (
 ip IN VARCHAR2 DEFAULT NULL)
RETURN host_name VARCHAR2;

Parameters

Return Values

Exceptions
UNKNOWN_HOST: The specified IP address is unknown.

Table 158–5 GET_HOST_NAME Function Parameters

Parameter Description

ip The IP address of the host used to determine its host name. If
ip is not NULL, the official name of the host with its domain
name is returned. If this is NULL, the name of the local host is
returned and the name does not contain the domain to which
the local host belongs.

Table 158–6 GET_HOST_NAME Function Return Values

Parameter Description

host_name The name of the local or remote host of the specified IP
address.

GET_HOST_NAME Function

158-6 PL/SQL Packages and Types Reference

UTL_LMS 159-1

159
UTL_LMS

UTL_LMS retrieves and formats error messages in different languages.

This chapter contains the following topics:

■ Using UTL_LMS

■ Security Model

■ Summary of UTL_LMS Subprograms

See Also: Oracle Database Globalization Support Guide

Using UTL_LMS

159-2 PL/SQL Packages and Types Reference

Using UTL_LMS

■ Security Model

Security Model

This package must be created as the user SYS.

Summary of UTL_LMS Subprograms

UTL_LMS 159-3

Summary of UTL_LMS Subprograms

Table 159–1 UTL_LMS Package Subprograms

Function Description

FORMAT_MESSAGE
Function on page 159-4

Formats a retrieved error message

GET_MESSAGE Function
on page 159-6

Retrieves an error message based on error number, product,
facility, language, and message specified

FORMAT_MESSAGE Function

159-4 PL/SQL Packages and Types Reference

FORMAT_MESSAGE Function

This function formats a message retrieved by the GET_MESSAGE function and
returns the formatted message. If the function fails, then it returns a NULL result.

The following table shows special characters that can be used in the format string.

Syntax
UTL_LMS.FORMAT_MESSAGE(format IN VARCHAR2 CHARACTER SET ANY_CS,
 args IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL)
RETURN VARCHAR2 CHARACTER SET format%CHARSET;

Parameters

Examples
DECLARE
 s varchar2(200);
 i pls_integer;
BEGIN
 i:= utl_lms.get_messsage(26052, 'rdbms', 'ora', 'french', s);
 dbms_output.put_line('before format, message is: '||s);
 dbms_output.put_line('formatted message is: '||utl_lms.format_message(s, 9,
'my_column_name');
END;
/

The following is an unformatted message:

Special Character Description

'%s' Substitute the next string argument

'%d' Substitute the next integer argument

'%%' Represents the special character %

Table 159–2 FORMAT_MESSAGE Procedure Parameters

Parameter Description

format Specifies the string to format

args Specifies the list of arguments

Summary of UTL_LMS Subprograms

UTL_LMS 159-5

Type %d non pris en charge pour l'expression SQL sur la colonne %s.

The following is the formatted message:

Type 9 non pris en charge pour l'expression SQL sur la colonne my_column_name.

GET_MESSAGE Function

159-6 PL/SQL Packages and Types Reference

GET_MESSAGE Function

This function retrieves an Oracle error message. The user can define user-specific
error messages with the lmsgen utility.

It returns 0 when it is successful. It returns -1 when it fails.

Syntax
UTL_LMS.GET_MESSAGE(errnum IN PLS_INTEGER,
 product IN VARCHAR2,
 facility IN VARCHAR2,
 language IN VARCHAR2,
 message OUT NOCOPY VARCHAR2CHARCTER SET ANY_CS)
RETURN PLS_INTEGER;

Parameters

Usage Notes
If the language parameter is set to NULL, then the value of the NLS_LANGUAGE
session parameter is used as the default.

See Also: Oracle Database Globalization Support Guide for more
information about the lmsgen utility

Table 159–3 GET_MESSAGE Function Parameters

Parameter Description

errnum Specifies the error number.

Example: '972' (for ORA-00972)

product Specifies the product to which the error message applies

Example: 'rdbms'

facility Specifies the error message prefix

Example: 'ora'

language Specifies the language of the message. The parameter is
case-insensitive. The default is NULL, which causes GET_
MESSAGE to use the value of the NLS_LANGUAGE session
parameter.

message Specifies the output buffer for the retrieved message

Summary of UTL_LMS Subprograms

UTL_LMS 159-7

Examples
DECLARE
 s varchar2(200);
 i pls_integer;
BEGIN
 i:=utl_lms.get_message(601, 'rdbms', 'oci', 'french', s);
 dbms_output.put_line('OCI--00601 is: '||s);
END
/

The following output results:

OCI--00601 is: Echec du processus de nettoyage.

GET_MESSAGE Function

159-8 PL/SQL Packages and Types Reference

UTL_MAIL 160-1

160
UTL_MAIL

The UTL_MAIL package is a utility for managing email which includes commonly
used email features, such as attachments, CC, BCC, and return receipt.

This chapter contains the following topics:

■ Using UTL_MAIL

■ Security Model

■ Operational Notes

■ Summary of UTL_MAIL Subprograms

Using UTL_MAIL

160-2 PL/SQL Packages and Types Reference

Using UTL_MAIL

■ Security Model

■ Operational Notes

Security Model

UTL_MAIL is not installed by default because of the SMTP_OUT_SERVER
configuration requirement and the security exposure this involves. In installing
UTL_MAIL, you should take steps to prevent the port defined by SMTP_OUT_
SERVER being swamped by data transmissions.

Operational Notes

You must both install UTL_MAIL and define the SMTP_OUT_SERVER.

■ To install UTL_MAIL:

sqlplus sys/<pwd>
SQL> @$ORACLE_HOME/rdbms/admin/utlmail.sql
SQL> @$ORACLE_HOME/rdbms/admin/prvtmail.sql

■ You define the SMTP_OUT_SERVER parameter in the init.ora rdbms
initialization file. However, if SMTP_OUT_SERVER is not defined, this invokes a
default of DB_DOMAIN which is guaranteed to be defined to perform
appropriately.

Summary of UTL_MAIL Subprograms

UTL_MAIL 160-3

Summary of UTL_MAIL Subprograms

Table 160–1 UTL_MAIL Package Subprograms

Subprogram Description

SEND Procedure on
page 160-4

Packages an email message into the appropriate format,
locates SMTP information, and delivers the message to the
SMTP server for forwarding to the recipients

SEND_ATTACH_RAW
Procedure on page 160-5

Represents the SEND Procedure overloaded for RAW
attachments

SEND_ATTACH_VARCHAR2
Procedure on page 160-7

Represents the SEND Procedure overloaded for VARCHAR2
attachments

SEND Procedure

160-4 PL/SQL Packages and Types Reference

SEND Procedure

This procedure packages an email message into the appropriate format, locates
SMTP information, and delivers the message to the SMTP server for forwarding to
the recipients. It hides the SMTP API and exposes a one-line email facility for ease
of use.

Syntax
UTL_MAIL.SEND (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS,
 mime_type IN VARCHAR2 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 160–2 SEND Procedure Parameters

Parameter Description

sender The email address of the sender.

recipients The email addresses of the recipient(s), separated by commas.

cc The email addresses of the CC recipient(s), separated by
commas, default is NULL

bcc The email addresses of the BCC recipient(s), separated by
commas, default is NULL

subject A string to be included as email subject string, default is NULL

message A text message body.

mime_type The mime type of the message, default is 'text/plain;
charset=us-ascii'

priority The message priority, default is NULL.

Summary of UTL_MAIL Subprograms

UTL_MAIL 160-5

SEND_ATTACH_RAW Procedure

This procedure is the SEND Procedure overloaded for RAW attachments.

Syntax
UTL_MAIL.SEND_ATTACH_RAW (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS,
 mime_type IN VARCHAR2 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT NULL
 attachment IN RAW,
 att_inline IN BOOLEAN DEFAULT TRUE,
 att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT
 'application/octet',
 att_filename IN VARCHAR2 DEFAULT NULL);

Parameters

Table 160–3 SEND_ATTACH_RAW Procedure Parameters

Parameter Description

sender The email address of the sender.

recipients The email addresses of the recipient(s), separated by commas.

cc The email addresses of the CC recipient(s), separated by
commas, default is NULL.

bcc The email addresses of the BCC recipient(s), separated by
commas, default is NULL.

subject A string to be included as email subject string, default is NULL.

message A text message body.

mime_type The mime type of the message, default is 'text/plain;
charset=us-ascii'.

priority The message priority, the default is NULL.

attachment A RAW attachment.

SEND_ATTACH_RAW Procedure

160-6 PL/SQL Packages and Types Reference

att_inline Specifies whether the attachment is viewable inline with the
message body, default is TRUE.

att_mime_type The mime type of the attachment, default is 'application/octet'.

att_filename The string specifying a filename containing the attachment,
default is NULL.

Table 160–3 (Cont.) SEND_ATTACH_RAW Procedure Parameters

Parameter Description

Summary of UTL_MAIL Subprograms

UTL_MAIL 160-7

SEND_ATTACH_VARCHAR2 Procedure

This procedure is the SEND Procedure overloaded for VARCHAR2 attachments.

Syntax
UTL_MAIL.SEND_ATTACH_VARCHAR2 (
 sender IN VARCHAR2 CHARACTER SET ANY_CS,
 recipients IN VARCHAR2 CHARACTER SET ANY_CS,
 cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
 message IN VARCHAR2 CHARACTER SET ANY_CS,
 mime_type IN VARCHAR2 DEFAULT 'text/plain; charset=us-ascii',
 priority IN PLS_INTEGER DEFAULT NULL
 attachment IN RAW,
 att_inline IN BOOLEAN DEFAULT TRUE,
 att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT
 'application/octet',
 att_filename IN VARCHAR2 DEFAULT NULL);

Parameters

Table 160–4 SEND_ATTACH_VARCHAR2 Procedure Parameters

Parameter Description

sender The email address of the sender.

recipients The email addresses of the recipient(s), separated by commas.

cc The email addresses of the CC recipient(s), separated by
commas, default is NULL.

bcc The email addresses of the BCC recipient(s), separated by
commas, default is NULL.

subject A string to be included as email subject string, default is NULL.

message A text message body.

mime_type The mime type of the message, default is 'text/plain;
charset=us-ascii'.

priority The message priority, the default is NULL.

attachment A text attachment.

SEND_ATTACH_VARCHAR2 Procedure

160-8 PL/SQL Packages and Types Reference

att_inline Specifies whether the attachment is inline, default TRUE.

att_mime_type The mime type of the attachment, default is 'text/plain;
charset=us-ascii'.

att_filename The string specifying a filename containing the attachment,
default is NULL.

Table 160–4 (Cont.) SEND_ATTACH_VARCHAR2 Procedure Parameters

Parameter Description

UTL_RAW 161-1

161
UTL_RAW

The UTL_RAW package provides SQL functions for manipulating RAW datatypes.

This chapter contains the following topics:

■ Using UTL_RAW

■ Overview

■ Operational Notes

■ Summary of UTL_RAW Subprograms

Using UTL_RAW

161-2 PL/SQL Packages and Types Reference

Using UTL_RAW

■ Overview

■ Operational Notes

Overview

This package is necessary because normal SQL functions do not operate on RAWs,
and PL/SQL does not allow overloading between a RAW and a CHAR datatype. UTL_
RAW also includes subprograms that convert various COBOL number formats to,
and from, RAWs.

UTL_RAW is not specific to the database environment, and it may actually be used in
other environments. For this reason, the prefix UTL has been given to the package,
instead of DBMS.

Operational Notes

UTL_RAW allows a RAW "record" to be composed of many elements. By using the
RAW datatype, character set conversion will not be performed, keeping the RAW in its
original format when being transferred through remote procedure calls.

With the RAW functions, you can manipulate binary data that was previously
limited to the hextoraw and rawtohex functions.

Summary of UTL_RAW Subprograms

UTL_RAW 161-3

Summary of UTL_RAW Subprograms

Table 161–1 UTL_RAW Package Subprograms

Subprogram Description

BIT_AND Function on
page 161-5

Performs bitwise logical "and" of the values in RAW r1
with RAW r2 and returns the "anded" result RAW

BIT_COMPLEMENT Function
on page 161-6

Performs bitwise logical "complement" of the values in
RAW r and returns the "complement'ed" result RAW

BIT_OR Function on
page 161-7

Performs bitwise logical "or" of the values in RAW r1 with
RAW r2 and returns the "or'd" result RAW

BIT_XOR Function on
page 161-8

Performs bitwise logical "exclusive or" of the values in RAW
r1 with RAW r2 and returns the "xor'd" result RAW

CAST_FROM_BINARY_
DOUBLE Function on
page 161-9

Returns the binary representation of a BINARY_DOUBLE
(in RAW)

CAST_FROM_BINARY_
FLOAT Function on
page 161-11

Returns the binary representation of a BINARY_FLOAT (in
RAW)

CAST_FROM_BINARY_
INTEGER Function on
page 161-13

Returns the binary representation of a BINARY_INTEGER
(in RAW)

CAST_FROM_NUMBER
Function on page 161-14

Returns the binary representation of a NUMBER (in RAW)

CAST_TO_BINARY_DOUBLE
Function on page 161-15

Casts the binary representation of a RAW into a BINARY_
DOUBLE

CAST_TO_BINARY_FLOAT
Function on page 161-17

Casts the binary representation of a RAW into a BINARY_
FLOAT

CAST_TO_BINARY_INTEGER
Function on page 161-19

Casts the binary representation of a BINARY_INTEGER (in
RAW) into a BINARY_INTEGER

CAST_TO_NUMBER Function
on page 161-20

Casts the binary representation of a NUMBER (in RAW) into
a NUMBER

CAST_TO_RAW Function on
page 161-21

Converts a VARCHAR2 represented using n data bytes into
a RAW with n data bytes

CAST_TO_VARCHAR2
Function on page 161-22

Converts a RAW represented using n data bytes into
VARCHAR2 with n data bytes

Summary of UTL_RAW Subprograms

161-4 PL/SQL Packages and Types Reference

CAST_TO_NVARCHAR2
Function on page 161-23

Converts a RAW represented using n data bytes into
NVARCHAR2 with n data bytes

COMPARE Function on
page 161-24

Compares RAW r1 against RAW r2

CONCAT Function on
page 161-25

Concatenates up to 12 RAWs into a single RAW

CONVERT Function on
page 161-26

Converts RAW r from character set from_charset to
character set to_charset and returns the resulting RAW

COPIES Function on
page 161-28

Returns n copies of r concatenated together

LENGTH Function on
page 161-29

Returns the length in bytes of a RAW r

OVERLAY Function on
page 161-30

Overlays the specified portion of target RAW with overlay
RAW, starting from byte position pos of target and
proceeding for len bytes

REVERSE Function on
page 161-32

Reverses a byte sequence in RAW r from end to end

SUBSTR Function on
page 161-33

Returns len bytes, starting at pos from RAW r

TRANSLATE Function on
page 161-35

Translates the bytes in the input RAW r according to the
bytes in the translation RAWs from_set and to_set

TRANSLITERATE Function on
page 161-37

Converts the bytes in the input RAW r according to the
bytes in the transliteration RAWs from_set and to_set

XRANGE Function on
page 161-39

Returns a RAW containing all valid 1-byte encodings in
succession, beginning with the value start_byte and
ending with the value end_byte

Table 161–1 (Cont.) UTL_RAW Package Subprograms

Subprogram Description

Summary of UTL_RAW Subprograms

UTL_RAW 161-5

BIT_AND Function

This function performs bitwise logical "and" of the values in RAW r1 with RAW r2
and returns the "anded" result RAW.

Syntax
UTL_RAW.BIT_AND (
 r1 IN RAW,
 r2 IN RAW)
RETURN RAW;

Pragmas
pragma restrict_references(bit_and, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Usage Notes
If r1 and r2 differ in length, the and operation is terminated after the last byte of the
shorter of the two RAWs, and the unprocessed portion of the longer RAW is
appended to the partial result. The result length equals the longer of the two input
RAWs.

Table 161–2 BIT_AND Function Parameters

Parameter Description

r1 RAW to "and" with r2.

r2 RAW to "and" with r1.

Table 161–3 BIT_AND Function Return Values

Return Description

RAW Containing the "and" of r1 and r2.

NULL Either r1 or r2 input parameter was NULL.

BIT_COMPLEMENT Function

161-6 PL/SQL Packages and Types Reference

BIT_COMPLEMENT Function

This function performs bitwise logical "complement" of the values in RAW r and
returns the complement'ed result RAW. The result length equals the input RAW r
length.

Syntax
UTL_RAW.BIT_COMPLEMENT (
 r IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(bit_complement, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–4 BIT_COMPLEMENT Function Parameters

Parameter Description

r RAW to perform "complement" operation.

Table 161–5 BIT_COMPLEMENT Function Return Values

Return Description

RAW The "complement" of r1.

NULL If r input parameter was NULL.

Summary of UTL_RAW Subprograms

UTL_RAW 161-7

BIT_OR Function

This function performs bitwise logical "or" of the values in RAW r1 with RAW r2 and
returns the or'd result RAW.

Syntax
UTL_RAW.BIT_OR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(bit_or, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Usage Notes
If r1 and r2 differ in length, then the "or" operation is terminated after the last byte
of the shorter of the two RAWs, and the unprocessed portion of the longer RAW is
appended to the partial result. The result length equals the longer of the two input
RAWs.

Table 161–6 BIT_OR Function Parameters

Parameters Description

r1 RAW to "or" with r2.

r2 RAW to "or" with r1.

Table 161–7 BIT_OR Function Return Values

Return Description

RAW Containing the "or" of r1 and r2.

NULL Either r1 or r2 input parameter was NULL.

BIT_XOR Function

161-8 PL/SQL Packages and Types Reference

BIT_XOR Function

This function performs bitwise logical "exclusive or" of the values in RAW r1 with
RAW r2 and returns the xor'd result RAW.

Syntax
UTL_RAW.BIT_XOR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(bit_xor, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Usage Notes
If r1 and r2 differ in length, then the "xor" operation is terminated after the last
byte of the shorter of the two RAWs, and the unprocessed portion of the longer RAW
is appended to the partial result. The result length equals the longer of the two
input RAWs.

Table 161–8 BIT_XOR Function Parameters

Parameter Description

r1 RAW to "xor" with r2.

r2 RAW to "xor" with r1.

Table 161–9 BIT_XOR Function Return Values

Return Description

RAW Containing the "xor" of r1 and r2.

NULL If either r1 or r2 input parameter was NULL.

Summary of UTL_RAW Subprograms

UTL_RAW 161-9

CAST_FROM_BINARY_DOUBLE Function

This function returns the binary representation of a BINARY_DOUBLE (in RAW).

Syntax
UTL_RAW.CAST_FROM_BINARY_DOUBLE(
 n IN BINARY_DOUBLE,
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN RAW;

Pragmas
pragma restrict_references(cast_from_binary_double, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The binary representation of the BINARY_DOUBLE value, or NULL if the input is
NULL.

Usage Notes
■ An 8-byte binary_double value maps to the IEEE 754 double-precision format

as follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40
byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

Table 161–10 CAST_FROM_BINARY_DOUBLE Function Parameters

Parameter Description

n The BINARY_DOUBLE value.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_FROM_BINARY_DOUBLE Function

161-10 PL/SQL Packages and Types Reference

■ The parameter endianess describes how the bytes of BINARY_DOUBLE are
mapped to the bytes of RAW. In the following matrix, rb0 ~ rb7 refer to the bytes
in raw and db0 ~ db7 refer to the bytes in BINARY_DOUBLE.

■ In case of machine-endian, the 8 bytes of the BINARY_DOUBLE argument are
copied straight across into the RAW return value. The effect is the same if the
user has passed big_endian on a big-endian machine, or little_endian on
a little-endian machine.

 rb0 rb1 rb2 rb3 rb4 rb5 rb6 rb7

big_endian db0 db1 db2 db3 db4 db5 db6 db7

little_endian db7 db6 db5 db4 db3 db2 db1 db0

Summary of UTL_RAW Subprograms

UTL_RAW 161-11

CAST_FROM_BINARY_FLOAT Function

This function returns the binary representation of a BINARY_FLOAT (in RAW).

Syntax
UTL_RAW.CAST_FROM_BINARY_FLOAT(
 n IN BINARY_FLOAT,
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN RAW;

Pragmas
pragma restrict_references(cast_from_binary_float, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The binary representation (RAW) of the BINARY_FLOAT value, or NULL if the input
is NULL.

Usage Notes
■ A 4-byte binary_float value maps to the IEEE 754 single-precision format as

follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8
byte 3: bit 7 ~ bit 0

■ The parameter endianess describes how the bytes of BINARY_FLOAT are
mapped to the bytes of RAW. In the following matrix, rb0 ~ rb3 refer to the bytes
in RAW and fb0 ~ fb3 refer to the bytes in BINARY_FLOAT.

Table 161–11 CAST_FROM_BINARY_FLOAT Function Parameters

Parameter Description

n The BINARY_FLOAT value.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_FROM_BINARY_FLOAT Function

161-12 PL/SQL Packages and Types Reference

■ In case of machine-endian, the 4 bytes of the BINARY_FLOAT argument are
copied straight across into the RAW return value. The effect is the same if the
user has passed big_endian on a big-endian machine, or little_endian on
a little-endian machine.

 rb0 rb1 rb2 rb3

big_endian fbo fb1 fb2 fb3

little_endian fb3 fb2 fb1 fb0

Summary of UTL_RAW Subprograms

UTL_RAW 161-13

CAST_FROM_BINARY_INTEGER Function

This function returns the binary representation of a BINARY_INTEGER (in RAW).

Syntax
UTL_RAW.CAST_FROM_BINARY_INTEGER (
 n IN BINARY_INTEGER
 endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)
RETURN RAW;

Pragmas
pragma restrict_references(cast_from_binary_integer, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The binary representation of the BINARY_INTEGER value.

Table 161–12 CAST_FROM_BINARY_INTEGER Function Parameters

Parameter Description

n The BINARY_INTEGER value.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_FROM_NUMBER Function

161-14 PL/SQL Packages and Types Reference

CAST_FROM_NUMBER Function

This function returns the binary representation of a NUMBER (in RAW).

Syntax
UTL_RAW.CAST_FROM_NUMBER (
 n IN NUMBER)
 RETURN RAW;

Pragmas
pragma restrict_references(cast_from_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The binary representation of the NUMBER value.

Table 161–13 CAST_FROM_NUMBER Function Parameters

Parameter Description

n The NUMBER value.

Summary of UTL_RAW Subprograms

UTL_RAW 161-15

CAST_TO_BINARY_DOUBLE Function

This function casts the binary representation of a BINARY_DOUBLE (in RAW) into a
BINARY_DOUBLE.

Syntax
UTL_RAW.CAST_TO_BINARY_DOUBLE (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN BINARY_DOUBLE;

Pragmas
pragma restrict_references(cast_to_binary_double, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The BINARY_DOUBLE value.

Usage Notes
■ If the RAW argument is more than 8 bytes, only the first 8 bytes are used and the

rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is
NaN, the value BINARY_DOUBLE_NAN is returned.

■ If the RAW argument is less than 8 bytes, a VALUE_ERROR exception is raised.

■ An 8-byte binary_double value maps to the IEEE 754 double-precision format
as follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40

Table 161–14 CAST_TO_BINARY_DOUBLE Function Parameters

Parameter Description

r The binary representation of a BINARY_INTEGER.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_TO_BINARY_DOUBLE Function

161-16 PL/SQL Packages and Types Reference

byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

■ The parameter endianess describes how the bytes of BINARY_DOUBLE are
mapped to the bytes of RAW. In the following matrix, rb0 ~ rb7 refer to the bytes
in raw and db0 ~ db7 refer to the bytes in BINARY_DOUBLE.

■ In case of machine-endian, the 8 bytes of the RAW argument are copied straight
across into the BINARY_DOUBLE return value. The effect is the same if the user
has passed big_endian on a big-endian machine, or little_endian on a
little-endian machine.

 rb0 rb1 rb2 rb3 rb4 rb5 rb6 rb7

big_endian db0 db1 db2 db3 db4 db5 db6 db7

little_endian db7 db6 db5 db4 db3 db2 db1 db0

Summary of UTL_RAW Subprograms

UTL_RAW 161-17

CAST_TO_BINARY_FLOAT Function

This function casts the binary representation of a BINARY_FLOAT (in RAW) into a
BINARY_FLOAT.

Syntax
UTL_RAW.CAST_TO_BINARY_FLOAT (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT 1)
RETURN BINARY_FLOAT;

Pragmas
pragma restrict_references(cast_to_binary_float, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The BINARY_FLOAT value.

Usage Notes
■ If the RAW argument is more than 4 bytes, only the first 4 bytes are used and the

rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is
NaN, the value BINARY_FLOAT_NAN is returned.

■ If the RAW argument is less than 4 bytes, a VALUE_ERROR exception is raised.

■ A 4-byte binary_float value maps to the IEEE 754 single-precision format as
follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8

Table 161–15 CAST_TO_BINARY_FLOAT Function Parameters

Parameter Description

r The binary representation of a BINARY_FLOAT.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_TO_BINARY_FLOAT Function

161-18 PL/SQL Packages and Types Reference

byte 3: bit 7 ~ bit 0

■ The parameter endianess describes how the bytes of BINARY_FLOAT are
mapped to the bytes of RAW. In the following matrix, rb0 ~ rb3 refer to the bytes
in RAW and fb0 ~ fb3 refer to the bytes in BINARY_FLOAT.

■ In case of machine-endian, the 4 bytes of the RAW argument are copied straight
across into the BINARY_FLOAT return value. The effect is the same if the user
has passed big_endian on a big-endian machine, or little_endian on a
little-endian machine.

 rb0 rb1 rb2 rb3

big_endian fbo fb1 fb2 fb3

little_endian fb3 fb2 fb1 fb0

Summary of UTL_RAW Subprograms

UTL_RAW 161-19

CAST_TO_BINARY_INTEGER Function

This function casts the binary representation of a BINARY_INTEGER (in RAW) into a
BINARY_INTEGER.

Syntax
UTL_RAW.CAST_TO_BINARY_INTEGER (
 r IN RAW
 endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)
RETURN BINARY_INTEGER;

Pragmas
pragma restrict_references(cast_to_binary_integer, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The BINARY_INTEGER value

Table 161–16 CAST_TO_BINARY_INTEGER Function Parameters

Parameter Description

r The binary representation of a BINARY_INTEGER.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

CAST_TO_NUMBER Function

161-20 PL/SQL Packages and Types Reference

CAST_TO_NUMBER Function

This function casts the binary representation of a NUMBER (in RAW) into a NUMBER.

Syntax
UTL_RAW.CAST_TO_NUMBER (
 r IN RAW)
 RETURN NUMBER;

Pragmas
pragma restrict_references(cast_to_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
The NUMBER value.

Table 161–17 CAST_TO_NUMBER function Parameters

Parameter Description

r The binary representation of a NUMBER

Summary of UTL_RAW Subprograms

UTL_RAW 161-21

CAST_TO_RAW Function

This function converts a VARCHAR2 represented using n data bytes into a RAW with
n data bytes. The data is not modified in any way; only its datatype is recast to a
RAW datatype.

Syntax
UTL_RAW.CAST_TO_RAW (
 c IN VARCHAR2)
RETURN RAW;

Pragmas
pragma restrict_references(cast_to_raw, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–18 CAST_TO_RAW Function Parameters

Parameter Description

c VARCHAR2 to be changed to a RAW.

Table 161–19 CAST_TO_RAW Function Return Values

Return Description

RAW Containing the same data as the input VARCHAR2 and equal byte
length as the input VARCHAR2 and without a leading length field.

NULL If c input parameter was NULL.

CAST_TO_VARCHAR2 Function

161-22 PL/SQL Packages and Types Reference

CAST_TO_VARCHAR2 Function

This function converts a RAW represented using n data bytes into VARCHAR2 with n
data bytes.

Syntax
UTL_RAW.CAST_TO_VARCHAR2 (
 r IN RAW)
RETURN VARCHAR2;

Pragmas
pragma restrict_references(cast_to_VARCHAR2, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
z

Note: When casting to a VARCHAR2, the current Globalization
Support character set is used for the characters within that
VARCHAR2.

Table 161–20 CAST_TO_VARCHAR2 Function Parameters

Parameter Description

r RAW (without leading length field) to be changed to a VARCHAR2.

Table 161–21 CAST_TO_VARCHAR2 Function Return Values

Return Description

VARCHAR2 Containing having the same data as the input RAW.

NULL If r input parameter was NULL.

Summary of UTL_RAW Subprograms

UTL_RAW 161-23

CAST_TO_NVARCHAR2 Function

This function converts a RAW represented using n data bytes into NVARCHAR2 with
n data bytes.

Syntax
UTL_RAW.CAST_TO_NVARCHAR2 (
 r IN RAW)
RETURN NVARCHAR2;

Pragmas
pragma restrict_references(cast_to_NVARCHAR2, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
z

Note: When casting to a NVARCHAR2, the current Globalization
Support character set is used for the characters within that
NVARCHAR2.

Table 161–22 CAST_TO_NVARCHAR2 Function Parameters

Parameter Description

r RAW (without leading length field) to be changed to a NVARCHAR2).

Table 161–23 CAST_TO_NVARCHAR2 Function Return Values

Return Description

NVARCHAR2 Containing having the same data as the input RAW.

NULL If r input parameter was NULL.

COMPARE Function

161-24 PL/SQL Packages and Types Reference

COMPARE Function

This function compares RAW r1 against RAW r2. If r1 and r2 differ in length, then
the shorter RAW is extended on the right with pad if necessary.

Syntax
UTL_RAW.COMPARE (
 r1 IN RAW,
 r2 IN RAW,
 pad IN RAW DEFAULT NULL)
 RETURN NUMBER;

Pragmas
pragma restrict_references(compare, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–24 COMPARE Function Parameters

Parameter Description

r1 1st RAW to be compared, may be NULL or 0 length.

r2 2nd RAW to be compared, may be NULL or 0 length.

pad This is an optional parameter. Byte to extend whichever of r1 or r2
is shorter. The default: x'00'

Table 161–25 COMPARE Function Return Values

Return Description

NUMBER Equals 0 if RAW byte strings are both NULL or identical; or,

Equals position (numbered from 1) of the first mismatched byte.

Summary of UTL_RAW Subprograms

UTL_RAW 161-25

CONCAT Function

This function concatenates up to 12 RAWs into a single RAW. If the concatenated size
exceeds 32K, then an error is returned

Syntax
UTL_RAW.CONCAT (
 r1 IN RAW DEFAULT NULL,
 r2 IN RAW DEFAULT NULL,
 r3 IN RAW DEFAULT NULL,
 r4 IN RAW DEFAULT NULL,
 r5 IN RAW DEFAULT NULL,
 r6 IN RAW DEFAULT NULL,
 r7 IN RAW DEFAULT NULL,
 r8 IN RAW DEFAULT NULL,
 r9 IN RAW DEFAULT NULL,
 r10 IN RAW DEFAULT NULL,
 r11 IN RAW DEFAULT NULL,
 r12 IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(concat, WNDS, RNDS, WNPS, RNPS);

Parameters
r1....r12 are the RAW items to concatenate.

Return Values

Exceptions
There is an error if the sum of the lengths of the inputs exceeds the maximum
allowable length for a RAW, which is 32767 bytes.

Table 161–26 CONCAT Function Return Values

Return Description

RAW Containing the items concatenated.

CONVERT Function

161-26 PL/SQL Packages and Types Reference

CONVERT Function

This function converts RAW r from character set from_charset to character set
to_charset and returns the resulting RAW.

Both from_charset and to_charset must be supported character sets defined
to the Oracle server.

Syntax
UTL_RAW.CONVERT (
 r IN RAW,
 to_charset IN VARCHAR2,
 from_charset IN VARCHAR2)
 RETURN RAW;

Pragmas
pragma restrict_references(convert, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–27 CONVERT Function Parameters

Parameter Description

r RAW byte-string to be converted.

to_charset Name of Globalization Support character set to which r is
converted.

from_charset Name of Globalization Support character set in which r is supplied.

Table 161–28 CONVERT Function Return Values

Return Description

RAW Byte string r converted according to the specified character sets.

Summary of UTL_RAW Subprograms

UTL_RAW 161-27

Exceptions

Table 161–29 CONVERT Function Exceptions

Error Description

VALUE_ERROR Either:

- r missing, NULL, or 0 length

- from_charset or to_charset missing, NULL, or 0 length

- from_charset or to_charset names invalid or unsupported

COPIES Function

161-28 PL/SQL Packages and Types Reference

COPIES Function

This function returns n copies of r concatenated together.

Syntax
UTL_RAW.COPIES (
 r IN RAW,
 n IN NUMBER)
 RETURN RAW;

Pragmas
pragma restrict_references(copies, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values
This returns the RAW copied n times.

Exceptions

Table 161–30 COPIES Function Parameters

Parameters Description

r RAW to be copied

n Number of times to copy the RAW (must be positive).

Table 161–31 COPIES Function Exceptions

Error Description

VALUE_ERROR Either:

- r is missing, NULL or 0 length

- n < 1

- Length of result exceeds maximum length of a RAW

Summary of UTL_RAW Subprograms

UTL_RAW 161-29

LENGTH Function

This function returns the length in bytes of a RAW r.

Syntax
UTL_RAW.LENGTH (
 r IN RAW)
RETURN NUMBER;

Pragmas
pragma restrict_references(length, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–32 LENGTH Function Parameters

Parameter Description

r The RAW byte stream to be measured.

Table 161–33 LENGTH Function Return Values

Return Description

NUMBER The current length of the RAW.

OVERLAY Function

161-30 PL/SQL Packages and Types Reference

OVERLAY Function

This function overlays the specified portion of target RAW with overlay_str RAW,
starting from byte position pos of target and proceeding for len bytes.

Syntax
UTL_RAW.OVERLAY (
 overlay_str IN RAW,
 target IN RAW,
 pos IN BINARY_INTEGER DEFAULT 1,
 len IN BINARY_INTEGER DEFAULT NULL,
 pad IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(overlay, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters

Table 161–34 OVERLAY Function Parameters

Parameters Description

overlay_str Byte-string used to overlay target.

target Byte-string which is to be overlaid.

pos Position in target (numbered from 1) to start overlay.

len The number of target bytes to overlay.

pad Pad byte used when overlay len exceeds overlay_str length or
pos exceeds target length.

Table 161–35 OVERLAY Function Optional Parameters

Optional Parameter Description

pos 1

len To the length of overlay_str

pad x'00'

Summary of UTL_RAW Subprograms

UTL_RAW 161-31

Return Values

Usage Notes
If overlay_str has less than len bytes, then it is extended to len bytes using the
pad byte. If overlay_str exceeds len bytes, then the extra bytes in overlay_
str are ignored. If len bytes beginning at position pos of target exceeds the
length of target, then target is extended to contain the entire length of
overlay_str.

If len is specified, it must be greater than or equal to 0. If pos is specified, it must
be greater than or equal to 1. If pos exceeds the length of target, then target is
padded with pad bytes to position pos, and target is further extended with
overlay_str bytes.

Exceptions

Table 161–36 OVERLAY Function Return Values

Return Description

RAW The target byte_string overlaid as specified.

Table 161–37 OVERLAY Function Exceptions

Error Description

VALUE_ERROR Either:

- Overlay_str is NULL or has 0 length

- Target is missing or undefined

- Length of target exceeds maximum length of a RAW

- len < 0

- pos < 1

REVERSE Function

161-32 PL/SQL Packages and Types Reference

REVERSE Function

This function reverses a byte sequence in RAW r from end to end. For example,
x'0102F3' would be reversed to x'F30201', and 'xyz' would be reversed to 'zyx'.The
result length is the same as the input RAW length.

Syntax
UTL_RAW.REVERSE (
 r IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(reverse, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Exceptions

Table 161–38 REVERSE Function Parameters

Parameter Description

r RAW to reverse.

Table 161–39 REVERSE Function Return Values

Return Description

RAW Containing the "reverse" of r.

Table 161–40 REVERSE Function Exceptions

Error Description

VALUE_ERROR R is NULL or has 0 length.

Summary of UTL_RAW Subprograms

UTL_RAW 161-33

SUBSTR Function

This function returns len bytes, starting at pos from RAW r.

Syntax
UTL_RAW.SUBSTR (
 r IN RAW,
 pos IN BINARY_INTEGER,
 len IN BINARY_INTEGER DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(substr, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters

Return Values

Table 161–41 SUBSTR Function Parameters

Parameter Description

r The RAW byte-string from which a portion is extracted.

pos The byte position in r at which to begin extraction.

len The number of bytes from pos to extract from r (optional).

Table 161–42 SUBSTR Function Exceptions

Optional Parameter Description

len Position pos through to the end of r.

Table 161–43 SUBSTR Function Return Values

Return Description

portion of r Beginning at pos for len bytes long.

NULL r input parameter was NULL.

SUBSTR Function

161-34 PL/SQL Packages and Types Reference

Usage Notes
If pos is positive, then SUBSTR counts from the beginning of r to find the first byte.
If pos is negative, then SUBSTR counts backward from the end of the r. The value
pos cannot be 0.

If len is omitted, then SUBSTR returns all bytes to the end of r. The value len
cannot be less than 1.

Exceptions

Table 161–44 SUBSTR Function Exceptions

Error Description

VALUE_ERROR VALUE_ERROR is returned if:

■ pos = 0 or > length of r

■ len < 1 or > length of r - (pos-1)

Summary of UTL_RAW Subprograms

UTL_RAW 161-35

TRANSLATE Function

This function translates the bytes in the input RAW r according to the bytes in the
translation RAWs from_set and to_set. If a byte in r has a matching byte in
from_set, then it is replaced by the byte in the corresponding position in to_set,
or deleted.

Bytes in r, but undefined in from_set, are copied to the result. Only the first
(leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not
scanned and are ignored.

Syntax
UTL_RAW.TRANSLATE (
 r IN RAW,
 from_set IN RAW,
 to_set IN RAW)
 RETURN RAW;

Pragmas
pragma restrict_references(translate, WNDS, RNDS, WNPS, RNPS);

Parameters

Return Values

Table 161–45 TRANSLATE Function Parameters

Parameter Description

r RAW source byte-string to be translated.

from_set RAW byte-codes to be translated, if present in r.

to_set RAW byte-codes to which corresponding from_str bytes are
translated.

Table 161–46 TRANSLATE Function Return Values

Return Description

RAW Translated byte-string.

TRANSLATE Function

161-36 PL/SQL Packages and Types Reference

Usage Notes
If to_set is shorter than from_set, then the extra from_set bytes have no
translation correspondence and any bytes in r matching.

Exceptions

Note: Difference from TRANSLITERATE:

- Translation RAWs have no defaults.

- r bytes undefined in the to_set translation RAW are deleted.

- Result RAW may be shorter than input RAW r.

Table 161–47 TRANSLATE Function Exceptions

Error Description

VALUE_ERROR Either:

- r is NULL or has 0 length

- from_set is NULL or has 0 length

- to_set is NULL or has 0 length

Summary of UTL_RAW Subprograms

UTL_RAW 161-37

TRANSLITERATE Function

This function converts the bytes in the input RAW r according to the bytes in the
transliteration RAWs from_set and to_set. Successive bytes in r are looked up in
the from_set, and, if not found, copied unaltered to the result RAW. If found, then
they are replaced in the result RAW by either corresponding bytes in the to_set, or
the pad byte when no correspondence exists.

Bytes in r, but undefined in from_set, are copied to the result. Only the first
(leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not
scanned and are ignored. The result RAW is always the same length as r.

Syntax
UTL_RAW.TRANSLITERATE (
 r IN RAW,
 to_set IN RAW DEFAULT NULL,
 from_set IN RAW DEFAULT NULL,
 pad IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(transliterate, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 161–48 TRANSLITERATE Function Parameters

Parameter Description

r RAW input byte-string to be converted.

from_set RAW byte-codes to be converted, if present in r (any length).

to_set RAW byte-codes to which corresponding from_set bytes are
converted (any length).

pad 1 byte used when to-set is shorter than the from_set.

TRANSLITERATE Function

161-38 PL/SQL Packages and Types Reference

Defaults and Optional Parameters

Return Values

Usage Notes
If the to_set is shorter than the from_set, then the pad byte is placed in the
result RAW when a selected from_set byte has no corresponding to_set byte (as
if the to_set were extended to the same length as the from_set with pad bytes).

Exceptions

Table 161–49 TRANSLITERATE Function Optional Parameters

Optional Parameter Description

from_set x f00' through x fff'

to_set To the NULL string and effectively extended with pad to the length
of from_set as necessary.

pad x'00'.

Table 161–50 TRANSLITERATE Function Return Values

Return Description

RAW Converted byte-string.

Note: Difference from TRANSLATE:

- r bytes undefined in to_set are padded.

- Result RAW is always same length as input RAW r.

Table 161–51 TRANSLITERATE Function Exceptions

Error Description

VALUE_ERROR R is NULL or has 0 length.

Summary of UTL_RAW Subprograms

UTL_RAW 161-39

XRANGE Function

This function returns a RAW containing all valid 1-byte encodings in succession,
beginning with the value start_byte and ending with the value end_byte. If
start_byte is greater than end_byte, then the succession of resulting bytes
begins with start_byte, wraps through x fFF f to x f00 f, and ends at end_
byte. If specified, start_byte and end_byte must be single-byte RAWs.

Syntax
UTL_RAW.XRANGE (
 start_byte IN RAW DEFAULT NULL,
 end_byte IN RAW DEFAULT NULL)
 RETURN RAW;

Pragmas
pragma restrict_references(xrange, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters
start_byte - x f00 f
end_byte - x fFF f

Return Values

Table 161–52 XRANGE Function Parameters

Parameters Description

start_byte Beginning byte-code value of resulting sequence.

end_byte Ending byte-code value of resulting sequence.

Table 161–53 XRANGE Function Return Values

Return Description

RAW Containing succession of 1-byte hexadecimal encodings.

XRANGE Function

161-40 PL/SQL Packages and Types Reference

UTL_RECOMP 162-1

162
UTL_RECOMP

The UTL_RECOMP package recompiles invalid PL/SQL modules, Java classes,
indextypes and operators in a database, either sequentially or in parallel.

This chapter contains the following topics:

■ Using UTL_RECOMP

■ Overview

■ Operational Notes

■ Examples

■ Summary of UTL_RECOMP Subprograms

Using UTL_RECOMP

162-2 PL/SQL Packages and Types Reference

Using UTL_RECOMP

■ Overview

■ Operational Notes

■ Examples

Overview

This script is particularly useful after a major-version upgrade that typically
invalidates all PL/SQL and Java objects. Although invalid objects are recompiled
automatically on use, it is useful to run this script prior to operation because this
will either eliminate or minimize subsequent latencies due to on-demand automatic
recompilation at runtime.

Parallel recompilation can exploit multiple CPUs to reduce the time taken to
recompile invalid objects. The degree of parallelism is specified by the first
argument to RECOMP_PARALLEL Procedure.

In general, a parallelism setting of one thread for each available CPU provides a
good initial setting. However, please note that the process of recompiling an invalid
object writes a significant amount of data to system tables and is fairly I/O
intensive. A slow disk system may be a significant bottleneck and limit speedups
available from a higher degree of parallelism.

Operational Notes

■ This package uses the job queue for parallel recompilation. It temporarily
disables existing jobs (by marking them broken) so that recompile jobs can be
run instead.

■ This package must be run using SQL*PLUS.

■ You must be connected AS SYSDBA to run this script.

■ This package expects the following packages to have been created with
VALID status:

– STANDARD (standard.sql)

– DBMS_STANDARD (dbmsstdx.sql)

Using UTL_RECOMP

UTL_RECOMP 162-3

– DBMS_JOB (dbmsjob.sql)

– DBMS_RANDOM (dbmsrand.sql)

■ There should be no other DDL on the database while running entries in this
package. Not following this recommendation may lead to deadlocks.

Examples

Recompile all objects sequentially:

EXECUTE UTL_RECOMP.RECOMP_SERIAL();

Recompile objects in schema SCOTT sequentially:

EXECUTE UTL_RECOMP.RECOMP_SERIAL('SCOTT');

Recompile all objects using 4 parallel threads:

EXECUTE UTL_RECOMP.RECOMP_PARALLEL(4);

Recompile objects in schema JOE using the number of threads specified in the
parameter JOB_QUEUE_PROCESSES:

EXECUTE UTL_RECOMP.RECOMP_PARALLEL(NULL, 'JOE');

Summary of UTL_RECOMP Subprograms

162-4 PL/SQL Packages and Types Reference

Summary of UTL_RECOMP Subprograms

Table 162–1 UTL_RECOMP Package Subprograms

Subprogram Description

RECOMP_PARALLEL
Procedure on page 162-5

Recompiles invalid objects in the database, or in a given
schema, in parallel in dependency order

RECOMP_SERIAL
Procedure on page 162-6

Recompiles invalid objects in a given schema or all invalid
objects in the database

Summary of UTL_RECOMP Subprograms

UTL_RECOMP 162-5

RECOMP_PARALLEL Procedure

This procedure is the main driver that recompiles invalid objects in the database, or
in a given schema, in parallel in dependency order. It uses information in
dependency$ to order recompilation of dependents after parents.

Syntax
UTL_RECOMP.RECOMP_PARALLEL(
 threads IN PLS_INTEGER DEFAULT NULL,
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN PLS_INTEGER DEFAULT 0);

Parameters

Usage Notes
The parallel recompile exploits multiple CPUs to reduce the time taken to recompile
invalid objects. However, please note that recompilation writes significant amounts
of data to system tables, so the disk system may be a bottleneck and prevent
significant speedups.

Table 162–2 RECOMP_PARALLEL Procedure Parameters

Parameter Description

threads The number of recompile threads to run in parallel. If NULL,
use the value of 'job_queue_processes'.

schema The schema in which to recompile invalid objects. If NULL, all
invalid objects in the database are recompiled.

flags Flag values are intended for internal testing and diagnosability
only.

RECOMP_SERIAL Procedure

162-6 PL/SQL Packages and Types Reference

RECOMP_SERIAL Procedure

This procedure recompiles invalid objects in a given schema or all invalid objects in
the database.

Syntax
UTL_RECOMP.RECOMP_SERIAL(
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN PLS_INTEGER DEFAULT 0);

Parameters

Table 162–3 RECOMP_SERIAL Procedure Parameters

Parameter Description

schema The schema in which to recompile invalid objects. If NULL, all
invalid objects in the database are recompiled.

flags Flag values are intended for internal testing and diagnosability
only.

UTL_REF 163-1

163
UTL_REF

The UTL_REF package provides PL/SQL procedures to support reference-based
operations. Unlike SQL, UTL_REF procedures enable you to write generic type
methods without knowing the object table name.

This chapter contains the following topics:

■ Using UTL_REF

■ Overview

■ Security Model

■ Types

■ Exceptions

■ Summary of UTL_REF Subprograms

Using UTL_REF

163-2 PL/SQL Packages and Types Reference

Using UTL_REF

■ Overview

■ Security Model

■ Types

■ Exceptions

Overview

Oracle supports user-defined composite type or object type. Any instance of an
object type is called an object. An object type can be used as the type of a column or
as the type of a table.

In an object table, each row of the table stores an object. You can uniquely identify
an object in an object table with an object identifier.

A reference is a persistent pointer to an object, and each reference can contain an
object identifier. The reference can be an attribute of an object type, or it can be
stored in a column of a table. Given a reference, an object can be retrieved.

Security Model

The procedural option is needed to use this package. This package must be created
under SYS (connect/as sysdba). Operations provided by this package are
performed under the current calling user, not under the package owner SYS.

You can use the UTL_REF package from stored PL/SQL procedures/packages on
the server, as well as from client/side PL/SQL code.

When invoked from PL/SQL procedures/packages on the server, UTL_REF verifies
that the invoker has the appropriate privileges to access the object pointed to by the
REF.

Note: This is in contrast to PL/SQL packages/procedures on the
server which operate with definer's privileges, where the package
owner must have the appropriate privileges to perform the desired
operations.

Using UTL_REF

UTL_REF 163-3

Thus, if UTL_REF is defined under user SYS, and user A invokes UTL_REF.SELECT
to select an object from a reference, then user A (the invoker) requires the privileges
to check.

When invoked from client-side PL/SQL code, UTL_REF operates with the
privileges of the client session under which the PL/SQL execution is being done.

Types

An object type is a composite datatype defined by the user or supplied as a library
type. You can create the object type employee_type using the following syntax:

CREATE TYPE employee_type AS OBJECT (
 name VARCHAR2(20),
 id NUMBER,

member function GET_ID
 (name VARCHAR2)
 RETURN MEMBER);

The object type employee_type is a user-defined type that contains two attributes,
name and id, and a member function, GET_ID().

You can create an object table using the following SQL syntax:

CREATE TABLE employee_table OF employee_type;

Exceptions

Exceptions can be returned during execution of UTL_REF functions for various
reasons. For example, the following scenarios would result in exceptions:

■ The object selected does not exist. This could be because either:

1. The object has been deleted, or the given reference is dangling
(invalid).

2. The object table was dropped or does not exist.

■ The object cannot be modified or locked in a serializable transaction. The object
was modified by another transaction after the serializable transaction started.

■ You do not have the privilege to select or modify the object. The caller of the
UTL_REF subprogram must have the proper privilege on the object that is being
selected or modified.

Exceptions

163-4 PL/SQL Packages and Types Reference

The UTL_REF package does not define any named exceptions. You may define
exception handling blocks to catch specific exceptions and to handle them
appropriately.

Table 163–1 UTL_REF Exceptions

Exceptions Description

errnum == 942 Insufficient privileges.

errnum == 1031 Insufficient privileges.

errnum == 8177 Unable to serialize, if in a serializable transaction.

errnum == 60 Deadlock detected.

errnum == 1403 No data found (if the REF is NULL, and so on.).

Summary of UTL_REF Subprograms

UTL_REF 163-5

Summary of UTL_REF Subprograms

Table 163–2 UTL_REF Package Subprograms

Subprogram Description

DELETE_OBJECT Procedure on
page 163-6

Deletes an object given a reference

LOCK_OBJECT Procedure on
page 163-9

Locks an object given a reference

SELECT_OBJECT Procedure on
page 163-10

Selects an object given a reference

UPDATE_OBJECT Procedure on
page 163-11

Updates an object given a reference

DELETE_OBJECT Procedure

163-6 PL/SQL Packages and Types Reference

DELETE_OBJECT Procedure

This procedure deletes an object given a reference. The semantic of this subprogram
is similar to the following SQL statement:

DELETE FROM object_table
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to
specify the object table name where the object resides.

Syntax
UTL_REF.DELETE_OBJECT (
 reference IN REF "<typename>");

Parameters

Exceptions
May be raised.

Examples
The following example illustrates usage of the UTL_REF package to implement this
scenario: if an employee of a company changes their address, their manager should
be notified.

... declarations of Address_t and others...

CREATE OR REPLACE TYPE Person_t (
 name VARCHAR2(64),
 gender CHAR(1),
 address Address_t,
 MEMBER PROCEDURE setAddress(addr IN Address_t)
);

CREATE OR REPLACE TYPE BODY Person_t (
 MEMBER PROCEDURE setAddress(addr IN Address_t) IS

Table 163–3 DELETE_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to delete.

Summary of UTL_REF Subprograms

UTL_REF 163-7

 BEGIN
 address := addr;
 END;
);

CREATE OR REPLACE TYPE Employee_t (

Under Person_t: Simulate implementation of inheritance using a REF to Person_
t and delegation of setAddress to it.

 thePerson REF Person_t,
 empno NUMBER(5),
 deptREF Department_t,
 mgrREF Employee_t,
 reminders StringArray_t,
 MEMBER PROCEDURE setAddress(addr IN Address_t),
 MEMBER procedure addReminder(reminder VARCHAR2);
);

CREATE TYPE BODY Employee_t (
 MEMBER PROCEDURE setAddress(addr IN Address_t) IS
 myMgr Employee_t;
 meAsPerson Person_t;
 BEGIN

Update the address by delegating the responsibility to thePerson. Lock the Person
object from the reference, and also select it:

 UTL_REF.LOCK_OBJECT(thePerson, meAsPerson);
 meAsPerson.setAddress(addr);

Delegate to thePerson:

 UTL_REF.UPDATE_OBJECT(thePerson, meAsPerson);
 if mgr is NOT NULL THEN

Give the manager a reminder:

 UTL_REF.LOCK_OBJECT(mgr);
 UTL_REF.SELECT_OBJECT(mgr, myMgr);
 myMgr.addReminder
 ('Update address in the employee directory for' ||
 thePerson.name || ', new address: ' || addr.asString);
 UTL_REF.UPDATE_OBJECT(mgr, myMgr);
 END IF;
 EXCEPTION

DELETE_OBJECT Procedure

163-8 PL/SQL Packages and Types Reference

 WHEN OTHERS THEN
 errnum := SQLCODE;
 errmsg := SUBSTR(SQLERRM, 1, 200);

Summary of UTL_REF Subprograms

UTL_REF 163-9

LOCK_OBJECT Procedure

This procedure locks an object given a reference. In addition, this procedure lets the
program select the locked object. The semantic of this subprogram is similar to the
following SQL statement:

SELECT VALUE(t)
 INTO object
 FROM object_table t
 WHERE REF(t) = reference
 FOR UPDATE;

Unlike the preceding SQL statement, this subprogram does not require you to
specify the object table name where the object resides. It is not necessary to lock an
object before updating/deleting it.

Syntax
UTL_REF.LOCK_OBJECT (
 reference IN REF "<typename>");

UTL_REF.LOCK_OBJECT (
 reference IN REF "<typename>",
 object IN OUT "<typename>");

Parameters

Exceptions
May be raised.

Table 163–4 LOCK_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to lock.

object The PL/SQL variable that stores the locked object. This variable
should be of the same object type as the locked object.

SELECT_OBJECT Procedure

163-10 PL/SQL Packages and Types Reference

SELECT_OBJECT Procedure

This procedure selects an object given its reference. The selected object is retrieved
from the database and its value is put into the PL/SQL variable 'object'. The
semantic of this subprogram is similar to the following SQL statement:

SELECT VALUE(t)
INTO object
FROM object_table t
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to
specify the object table name where the object resides.

Syntax
UTL_REF.SELECT_OBJECT (
 reference IN REF "<typename>",
 object IN OUT "<typename>");

Parameters

Exceptions
May be raised.

Table 163–5 SELECT_OBJECT Procedure Parameters

Parameter Description

reference Reference to the object to select or retrieve.

object The PL/SQL variable that stores the selected object; this variable
should be of the same object type as the referenced object.

Summary of UTL_REF Subprograms

UTL_REF 163-11

UPDATE_OBJECT Procedure

This procedure updates an object given a reference. The referenced object is
updated with the value contained in the PL/SQL variable 'object'. The semantic of
this subprogram is similar to the following SQL statement:

UPDATE object_table t
SET VALUE(t) = object
WHERE REF(t) = reference;

Unlike the preceding SQL statement, this subprogram does not require you to
specify the object table name where the object resides.

Syntax
UTL_REF.UPDATE_OBJECT (
 reference IN REF "<typename>",
 object IN "<typename>");

Parameters

Exceptions
May be raised.

Table 163–6 UPDATE_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to update.

object The PL/SQL variable that contains the new value of the object. This
variable should be of the same object type as the object to update.

UPDATE_OBJECT Procedure

163-12 PL/SQL Packages and Types Reference

UTL_SMTP 164-1

164
UTL_SMTP

The UTL_SMTP package is designed for sending electronic mails (emails) over
Simple Mail Transfer Protocol (SMTP) as specified by RFC821.

This chapter contains the following topics:

■ Using UTL_SMTP

■ Overview

■ Types

■ Reply Codes

■ Exceptions

■ Rules and Limits

■ Examples

■ Summary of UTL_SMTP Subprograms

See Also: How to use the SMTP package to send email in Oracle
Database Application Developer's Guide - Fundamentals

Using UTL_SMTP

164-2 PL/SQL Packages and Types Reference

Using UTL_SMTP

■ Overview

■ Types

■ Reply Codes

■ Exceptions

■ Rules and Limits

■ Examples

Overview

The protocol consists of a set of commands for an email client to dispatch emails to
a SMTP server. The UTL_SMTP package provides interfaces to the SMTP
commands. For many of the commands, the package provides both a procedural
and a functional interface. The functional form returns the reply from the server for
processing by the client. The procedural form checks the reply and will raise an
exception if the reply indicates a transient (400-range reply code) or permanent
error (500-range reply code). Otherwise, it discards the reply.

Note that the original SMTP protocol communicates using 7-bit ASCII. Using UTL_
SMTP, all text data (in other words, those in VARCHAR2) will be converted to
US7ASCII before it is sent over the wire to the server. Some implementations of
SMTP servers that support SMTP extension 8BITMIME [RFC1652] support full 8-bit
communication between client and server. The body of the DATA command may be
transferred in full 8 bits, but the rest of the SMTP command and response should be
in 7 bits. When the target SMTP server supports 8BITMIME extension, users of
multibyte databases may convert their non-US7ASCII, multibyte VARCHAR2 data
to RAW and use the WRITE_RAW_DATA subprogram to send multibyte data using
8-bit MIME encoding.

UTL_SMTP provides for SMTP communication as specified in RFC821, but does not
provide an API to format the content of the message according to RFC 822 (for
example, setting the subject of an electronic mail).You must format the message
appropriately. In addition, UTL_SMTP does not have the functionality to implement
an SMTP server for an email clients to send emails using SMTP.

Using UTL_SMTP

UTL_SMTP 164-3

Types

■ CONNECTION Record Type

■ REPLY, REPLIES Record Types

CONNECTION Record Type
This is a PL/SQL record type used to represent an SMTP connection.

Syntax
TYPE connection IS RECORD (
 host VARCHAR2(255), -- remote host name
 port PLS_INTEGER, -- remote port number
 tx_timeout PLS_INTEGER, -- Transfer time out (in seconds)
 private_tcp_con utl_tcp.connection, -- private, for implementation use
 private_state PLS_INTEGER -- private, for implementation use
);

Fields

Note : RFC documents are "Request for Comments" documents
that describe proposed standards for public review on the Internet.
For the actual RFC documents, please refer to:

http://www.ietf.org/rfc/

Table 164–1 CONNECTION Record Type Fields

Field Description

host The name of the remote host when connection is established.
NULL when no connection is established.

port The port number of the remote SMTP server connected. NULL
when no connection is established.

tx_timeout The time in seconds that the UTL_SMTP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent
into the network without being blocked. 0 indicates not to wait
at all. NULL indicates to wait forever.

Types

164-4 PL/SQL Packages and Types Reference

Usage Notes
The read-only fields in a connection record are used to return information about the
SMTP connection after the connection is successfully made with open_
connection(). Changing the values of these fields has no effect on the
connection. The fields private_xxx are for implementation use only. You should
not modify these fields.

REPLY, REPLIES Record Types
These are PL/SQL record types used to represent an SMTP reply line. Each SMTP
reply line consists of a reply code followed by a text message. While a single reply
line is expected for most SMTP commands, some SMTP commands expect multiple
reply lines. For those situations, a PL/SQL table of reply records is used to represent
multiple reply lines.

Syntax
TYPE reply IS RECORD (
 code PLS_INTEGER, -- 3-digit reply code
 text VARCHAR2(508) -- text message
);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER; -- multiple reply
lines

Fields

private_tcp_con Private, for implementation use only. You should not modify
this field.

private_state Private, for implementation use only. You should not modify
this field.

Table 164–2 REPLY, REPLIES Record Type Fields

Field Description

code The 3-digit reply code.

text The text message of the reply.

Table 164–1 CONNECTION Record Type Fields

Field Description

Using UTL_SMTP

UTL_SMTP 164-5

Reply Codes

The following is a list of the SMTP reply codes.

Table 164–3 SMTP Reply Codes

Reply Code Meaning

211 System status, or system help reply

214 Help message [Information on how to use the receiver or the meaning
of a particular non-standard command; this reply is useful only to the
human user]

220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>

252 OK, pending messages for node <node> started. Cannot VRFY user
(for example, info is not local), but will take message for this user and
attempt delivery.

253 OK, <messages> pending messages for node <node> started

354 Start mail input; end with <CRLF>.<CRLF>

355 Octet-offset is the transaction offset

421 <domain> Service not available, closing transmission channel (This
may be a reply to any command if the service knows it must shut
down.)

450 Requested mail action not taken: mailbox unavailable [for example,
mailbox busy]

451 Requested action terminated: local error in processing

452 Requested action not taken: insufficient system storage

453 You have no mail.

454 TLS not available due to temporary reason. Encryption required for
requested authentication mechanism.

458 Unable to queue messages for node <node>

459 Node <node> not allowed: reason

500 Syntax error, command unrecognized (This may include errors such as
command line too long.)

Exceptions

164-6 PL/SQL Packages and Types Reference

Exceptions

The table lists the exceptions that can be raised by the interface of the UTL_SMTP
package. The network error is transferred to a reply code of 421- service not
available.

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

504 Command parameter not implemented

521 <Machine> does not accept mail.

530 Must issue a STARTTLS command first. Encryption required for
requested authentication mechanism.

534 Authentication mechanism is too weak.

538 Encryption required for requested authentication mechanism.

550 Requested action not taken: mailbox unavailable [for , mailbox not
found, no access]

551 User not local; please try <forward-path>

552 Requested mail action terminated: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed [for example,
mailbox syntax incorrect]

554 Transaction failed

Table 164–4 UTL_SMTP Exceptions

INVALID_OPERATION Raised when an invalid operation is made. In other words,
calling API other than write_data(), write_raw_data()
or close_data() after open_data() is called, or calling
write_data(), write_raw_data() or close_data()
without first calling open_data().

TRANSIENT_ERROR Raised when receiving a reply code in 400 range.

PERMANENT_ERROR Raised when receiving a reply code in 500 range.

Table 164–3 (Cont.) SMTP Reply Codes

Reply Code Meaning

Using UTL_SMTP

UTL_SMTP 164-7

Rules and Limits

No limitation or range-checking is imposed by the API. However, you should be
aware of the following size limitations on various elements of SMTP. Sending data
that exceed these limits may result in errors returned by the server.

Examples

The following example illustrates how UTL_SMTP is used by an application to send
e-mail. The application connects to an SMTP server at port 25 and sends a simple
text message.

DECLARE
 c UTL_SMTP.CONNECTION;

 PROCEDURE send_header(name IN VARCHAR2, header IN VARCHAR2) AS
 BEGIN
 UTL_SMTP.WRITE_DATA(c, name || ': ' || header || UTL_TCP.CRLF);
 END;

BEGIN
 c := UTL_SMTP.OPEN_CONNECTION('smtp-server.acme.com');

Table 164–5 SMTP Size Limitation

Element Size Limitation

user The maximum total length of a user name is 64 characters.

domain The maximum total length of a domain name or number is 64
characters.

path The maximum total length of a reverse-path or forward-path is
256 characters (including the punctuation and element
separators).

command line The maximum total length of a command line including the
command word and the <CRLF> is 512 characters.

reply line The maximum total length of a reply line including the reply
code and the <CRLF> is 512 characters.

text line The maximum total length of a text line including the <CRLF>
is 1000 characters (but not counting the leading dot duplicated
for transparency).

recipients buffer The maximum total number of recipients that must be buffered
is 100 recipients.

Examples

164-8 PL/SQL Packages and Types Reference

 UTL_SMTP.HELO(c, 'foo.com');
 UTL_SMTP.MAIL(c, 'sender@foo.com');
 UTL_SMTP.RCPT(c, 'recipient@foo.com');
 UTL_SMTP.OPEN_DATA(c);
 send_header('From', '"Sender" <sender@foo.com>');
 send_header('To', '"Recipient" <recipient@foo.com>');
 send_header('Subject', 'Hello');
 UTL_SMTP.WRITE_DATA(c, UTL_TCP.CRLF || 'Hello, world!');
 UTL_SMTP.CLOSE_DATA(c);
 UTL_SMTP.QUIT(c);
EXCEPTION
 WHEN utl_smtp.transient_error OR utl_smtp.permanent_error THEN
 BEGIN
 UTL_SMTP.QUIT(c);
 EXCEPTION
 WHEN UTL_SMTP.TRANSIENT_ERROR OR UTL_SMTP.PERMANENT_ERROR THEN
 NULL; -- When the SMTP server is down or unavailable, we don't have
 -- a connection to the server. The QUIT call will raise an
 -- exception that we can ignore.
 END;
 raise_application_error(-20000,
 'Failed to send mail due to the following error: ' || sqlerrm);
END;

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-9

Summary of UTL_SMTP Subprograms

Table 164–6 UTL_SMTP Package Subprograms

Subprogram Description

CLOSE_DATA Function
and Procedure on
page 164-11

Closes the data session

COMMAND Function and
Procedure on page 164-13

Performs a generic SMTP command

COMMAND_REPLIES
Function on page 164-15

Performs initial handshaking with SMTP server after
connecting

DATA Function and
Procedure on page 164-16

Performs initial handshaking with SMTP server after
connecting, with extended information returned

EHLO Function and
Procedure on page 164-18

Performs initial handshaking with SMTP server after
connecting, with extended information returned

HELO Function and
Procedure on page 164-20

Performs initial handshaking with SMTP server after
connecting

HELP Function on
page 164-22

Sends HELP command

MAIL Function and
Procedure on page 164-23

Initiates a mail transaction with the server, the destination is a
mailbox

NOOP Function and
Procedure on page 164-25

The null command

OPEN_CONNECTION
Functions on page 164-26

Opens a connection to an SMTP server

OPEN_DATA Function
and Procedure on
page 164-28

Sends the DATA command

QUIT Function and
Procedure on page 164-30

Terminates an SMTP session and disconnects from the server

RCPT Function on
page 164-32

Specifies the recipient of an e-mail message

RSET Function and
Procedure on page 164-34

Terminates the current mail transaction

Summary of UTL_SMTP Subprograms

164-10 PL/SQL Packages and Types Reference

VRFY Function on
page 164-36

Verifies the validity of a destination e-mail address

WRITE_DATA Procedure
on page 164-37

Writes a portion of the e-mail message

WRITE_RAW_DATA
Procedure on page 164-39

Writes a portion of the e-mail message with RAW data

Table 164–6 UTL_SMTP Package Subprograms

Subprogram Description

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-11

CLOSE_DATA Function and Procedure

The CLOSE_DATA call ends the e-mail message by sending the sequence
<CR><LF>.<CR><LF> (a single period at the beginning of a line).

Syntax
UTL_SMTP.CLOSE_DATA (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.CLOSE_DATA (
 c IN OUT NOCOPY connection);

Parameters

Return Values

Usage Notes
The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must
be made in the right order. A program calls OPEN_DATA to send the DATA command
to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA
repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA.
After OPEN_DATA is called, the only subprograms that can be called are WRITE_
DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other APIs will result in an
INVALID_OPERATION exception being raised.

Table 164–7 CLOSE_DATA Function and Procedure Parameters

Parameter Description

c The SMTP connection.

Table 164–8 CLOSE_DATA Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

CLOSE_DATA Function and Procedure

164-12 PL/SQL Packages and Types Reference

CLOSE_DATA should be called only after OPEN_CONNECTION, HELO or EHLO, MAIL,
and RCPT have been called. The connection to the SMTP server must be open and a
mail transaction must be active when this routine is called.

Note that there is no function form of WRITE_DATA because the SMTP server does
not respond until the data-terminator is sent during the call to CLOSE_DATA.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-13

COMMAND Function and Procedure

This function/procedure performs a generic SMTP command.

Syntax
UTL_SMTP.COMMAND (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.COMMAND (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL);

Parameters

Return Values

Usage Notes
This function is used to invoke generic SMTP commands. Use COMMAND if only a
single reply line is expected. Use COMMAND_REPLIES if multiple reply lines are
expected.

Table 164–9 COMMAND Function and Procedure Parameters

Parameter Description

c The SMTP connection.

cmd The SMTP command to send to the server.

arg The optional argument to the SMTP argument. A space will be
inserted between cmd and arg.

Table 164–10 COMMAND Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

COMMAND Function and Procedure

164-14 PL/SQL Packages and Types Reference

For COMMAND, if multiple reply lines are returned from the SMTP server, it returns
the last reply line only.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-15

COMMAND_REPLIES Function

This functions performs a generic SMTP command.

Syntax
UTL_SMTP.COMMAND_REPLIES (
 c IN OUT NOCOPY connection,
 cmd IN VARCHAR2,
 arg IN VARCHAR2 DEFAULT NULL)
RETURN replies;

Parameters

Return Values

Usage Notes
This function is used to invoke generic SMTP commands. Use COMMAND if only a
single reply line is expected. Use COMMAND_REPLIES if multiple reply lines are
expected.

For COMMAND, if multiple reply lines are returned from the SMTP server, it returns
the last reply line only.

Table 164–11 COMMAND_REPLIES Function Parameters

Parameter Description

c The SMTP connection.

cmd The SMTP command to send to the server.

arg The optional argument to the SMTP argument. A space will be
inserted between cmd and arg.

Table 164–12 COMMAND_REPLIES Function Return Values

Return Value Description

replies Reply of the command (see REPLY, REPLIES Record Types).

DATA Function and Procedure

164-16 PL/SQL Packages and Types Reference

DATA Function and Procedure

This function/procedure specifies the body of an e-mail message.

Syntax
UTL_SMTP.DATA (
 c IN OUT NOCOPY connection
 body IN VARCHAR2 CHARACTER SET ANY_CS)
RETURN reply;

UTL_SMTP.DATA (
 c IN OUT NOCOPY connection
 body IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Return Values

Usage Notes
The application must ensure that the contents of the body parameter conform to the
MIME(RFC822) specification. The DATA routine will terminate the message with a
<CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as
required by RFC821. It will also translate any sequence of <CR><LF>.<CR><LF>
(single period) in body to <CR><LF>..<CR><LF> (double period). This conversion
provides the transparency as described in Section 4.5.2 of RFC821.

Table 164–13 DATA Function and Procedure Parameters

Parameter Description

c The SMTP Connection.

body The text of the message to be sent, including headers, in
[RFC822] format.

Table 164–14 DATA Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-17

The DATA call should be called only after OPEN_CONNECTION, HELO or EHLO, MAIL
and RCPT have been called. The connection to the SMTP server must be open, and
a mail transaction must be active when this routine is called.

The expected response from the server is a message beginning with status code 250.
The 354 response received from the initial DATA command will not be returned to
the caller.

EHLO Function and Procedure

164-18 PL/SQL Packages and Types Reference

EHLO Function and Procedure

This function/procedure performs initial handshaking with SMTP server after
connecting, with extended information returned.

Syntax
UTL_SMTP.EHLO (
 c IN OUT NOCOPY connection,
 domain IN)
RETURN replies;

UTL_SMTP.EHLO (
 c IN OUT NOCOPY connection,
 domain IN);

Parameters

Return Values

Usage Notes
The EHLO interface is identical to HELO except that it allows the server to return
more descriptive information about its configuration. [RFC1869] specifies the
format of the information returned, which the PL/SQL application can retrieve
using the functional form of this call. For compatibility with HELO, each line of text
returned by the server begins with status code 250.

Table 164–15 EHLO Function and Procedure Parameters

Parameter Description

c The SMTP connection.

domain The domain name of the local (sending) host. Used for
identification purposes.

Table 164–16 EHLO Function and Procedure Return Values

Return Value Description

replies Reply of the command (see REPLY, REPLIES Record Types).

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-19

Related Functions
HELO

HELO Function and Procedure

164-20 PL/SQL Packages and Types Reference

HELO Function and Procedure

This function/procedure performs initial handshaking with SMTP server after
connecting.

Syntax
UTL_SMTP.HELO (
 c IN OUT NOCOPY connection,
 domain IN VARCHAR2)
RETURN reply;

UTL_SMTP.HELO (
 c IN OUT NOCOPY connection,
 domain IN VARCHAR2);

Parameters

Return Values

Usage Notes
RFC 821 specifies that the client must identify itself to the server after connecting.
This routine performs that identification. The connection must have been opened
through a call to OPEN_CONNECTION Functions before calling this routine.

The expected response from the server is a message beginning with status code 250.

Table 164–17 HELO Function and Procedure Parameters

Parameter Description

c The SMTP connection.

domain The domain name of the local (sending) host. Used for
identification purposes.

Table 164–18 HELO Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-21

Related Functions
EHLO

HELP Function

164-22 PL/SQL Packages and Types Reference

HELP Function

This function sends the HELP command.

Syntax
UTL_SMTP.HELP (
 c IN OUT NOCOPY connection,
 command IN VARCHAR2 DEFAULT NULL)
RETURN replies;

Parameters

Return Values

Table 164–19 HELP Function Parameters

Parameter Description

c The SMTP connection.

command The command to get the help message.

Table 164–20 HELP Function Return Values

Return Value Description

replies Reply of the command (see REPLY, REPLIES Record Types).

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-23

MAIL Function and Procedure

This function/procedure initiates a mail transaction with the server. The destination
is a mailbox.

Syntax
UTL_SMTP.MAIL (
 c IN OUT NOCOPY connection,
 sender IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.MAIL (
 c IN OUT NOCOPY connection,
 sender IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL);

Parameters

Return Values

Table 164–21 MAIL Function and Procedure Parameters

Parameter Description

c The SMTP connection.

sender The e-mail address of the user sending the message.

parameters The additional parameters to MAIL command as defined in
Section 6 of [RFC1869]. It should follow the format of
"XXX=XXX (XXX=XXX)".

Table 164–22 MAIL Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

MAIL Function and Procedure

164-24 PL/SQL Packages and Types Reference

Usage Notes
This command does not send the message; it simply begins its preparation. It must
be followed by calls to RCPT and DATA to complete the transaction. The connection
to the SMTP server must be open and a HELO or EHLO command must have already
been sent.

The expected response from the server is a message beginning with status code 250.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-25

NOOP Function and Procedure

The null command.

Syntax
UTL_SMTP.NOOP (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.NOOP (
 c IN OUT NOCOPY connection);

Parameter

Return Values

Usage Notes
This command has no effect except to elicit a successful reply from the server. It can
be issued at any time after the connection to the server has been established with
OPEN_CONNECTION. The NOOP command can be used to verify that the server is
still connected and is listening properly.

This command will always reply with a single line beginning with status code 250.

Table 164–23 NOOP Function and Procedure Parameters

Parameter Description

c The SMTP connection.

Table 164–24 NOOP Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

OPEN_CONNECTION Functions

164-26 PL/SQL Packages and Types Reference

OPEN_CONNECTION Functions

These functions open a connection to an SMTP server.

Syntax
UTL_SMTP.OPEN_CONNECTION (
 host IN VARCHAR2,
 port IN PLS_INTEGER DEFAULT 25,
 c OUT connection,
 tx_timeout IN PLS_INTEGER DEFAULT NULL)
RETURN reply;

UTL_SMTP.OPEN_CONNECTION (
 host IN VARCHAR2,
 port IN PLS_INTEGER DEFAULT 25,
 tx_timeout IN PLS_INTEGER DEFAULT NULL)
RETURN connection;

Parameters

Table 164–25 OPEN_CONNECTION Functions Parameters

Parameter Description

host The name of the SMTP server host

port The port number on which SMTP server is listening (usually
25).

c The SMTP connection.

tx_timeout The time in seconds that the UTL_SMTP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent
into the network without being blocked. 0 indicates not to wait
at all. NULL indicates to wait forever.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-27

Return Values

Usage Notes
■ The expected response from the server is a message beginning with status code

220.

■ The version of OPEN_CONNECTION that returns UTL_SMTP.CONNECTION
record checks the reply code returned by an SMTP server when the connection
is first established. It raises an exception when the reply indicates an error.
Otherwise, it discards the reply. If a user is interested in examining the reply, he
or she can invoke the version of OPEN_CONNECTION that returns REPLY.

■ A timeout on the WRITE operations feature is not supported in the current
release of this package.

Table 164–26 OPEN_CONNECTION Functions Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

OPEN_DATA Function and Procedure

164-28 PL/SQL Packages and Types Reference

OPEN_DATA Function and Procedure

OPEN_DATA sends the DATA command after which you can use WRITE_DATA and
WRITE_RAW_DATA to write a portion of the e-mail message.

Syntax
UTL_SMTP.OPEN_DATA (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.OPEN_DATA (
 c IN OUT NOCOPY connection);

Parameters

Return Values

Usage Notes
The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must
be made in the right order. A program calls OPEN_DATA to send the DATA command
to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA
repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA.
After OPEN_DATA is called, the only subprograms that can be called are WRITE_
DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other APIs will result in an
INVALID_OPERATION exception being raised.

Table 164–27 OPEN_DATA Function and Procedure Parameters

Parameter Description

c The SMTP connection.

data The portion of the text of the message to be sent, including
headers, in [RFC822] format.

Table 164–28 OPEN_DATA Function and Procedure Function Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-29

OPEN_DATA should be called only after OPEN_CONNECTION, HELO or EHLO, MAIL,
and RCPT have been called. The connection to the SMTP server must be open and a
mail transaction must be active when this routine is called.

QUIT Function and Procedure

164-30 PL/SQL Packages and Types Reference

QUIT Function and Procedure

This function terminates an SMTP session and disconnects from the server.

Syntax
UTL_SMTP.QUIT (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.QUIT (
 c IN OUT NOCOPY connection);

Parameter

Return Values

Usage Notes
The QUIT command informs the SMTP server of the client's intent to terminate the
session. It then closes the connection established by OPEN_CONNECTION which
must have been called before executing this command. If a mail transaction is in
progress when QUIT is issued, it is abandoned in the same manner as RSET.

The function form of this command returns a single line beginning with the status
code 221 on successful termination. In all cases, the connection to the SMTP server
is closed. The fields REMOTE_HOST and REMOTE_PORT of c are reset.

Table 164–29 QUIT Function and Procedure Parameters

Parameter Description

c The SMTP connection.

Table 164–30 QUIT Function and Procedure Function Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-31

Related Functions
RSET

RCPT Function

164-32 PL/SQL Packages and Types Reference

RCPT Function

This function/procedure specifies the recipient of an e-mail message.

Syntax
UTL_SMTP.RCPT (
 c IN OUT NOCOPY connection,
 recipient IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL)
RETURN reply;

UTL_SMTP.RCPT (
 c IN OUT NOCOPY connection,
 recipient IN VARCHAR2,
 parameters IN VARCHAR2 DEFAULT NULL);

Return Values

Usage Notes
To send a message to multiple recipients, call this routine multiple times. Each
invocation schedules delivery to a single e-mail address. The message transaction
must have been begun by a prior call to MAIL, and the connection to the mail server

Table 164–31 RCPT Function and Procedure Parameters

Parameter Description

c The SMTP connection.

recipient The e-mail address of the user to which the message is being
sent.

parameters The additional parameters to RCPT command as defined in
Section 6 of [RFC1869]. It should follow the format of
"XXX=XXX (XXX=XXX)".

Table 164–32 RCPT Function and Procedure Function Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-33

must have been opened and initialized by prior calls to OPEN_CONNECTION and
HELO or EHLO respectively.

The expected response from the server is a message beginning with status code 250
or 251.

RSET Function and Procedure

164-34 PL/SQL Packages and Types Reference

RSET Function and Procedure

This function terminates the current mail transaction.

Syntax
UTL_SMTP.RSET (
 c IN OUT NOCOPY connection)
RETURN reply;

UTL_SMTP.RSET (
 c IN OUT NOCOPY connection);

Parameters

Return Values

Usage Notes
This command allows the client to abandon a mail message it was in the process of
composing. No mail will be sent. The client can call RSET at any time after the
connection to the SMTP server has been opened by means of OPEN_CONNECTION
until DATA or OPEN_DATA is called. Once the email data has been sent, it will be too
late to prevent the email from being sent.

The server will always respond to RSET with a message beginning with status code
250.

Table 164–33 RSET Function and Procedure Parameters

Parameter Description

c The SMTP connection.

Table 164–34 RSET Function and Procedure Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-35

Related Functions
QUIT

VRFY Function

164-36 PL/SQL Packages and Types Reference

VRFY Function

This function verifies the validity of a destination e-mail address.

Syntax
UTL_SMTP.VRFY (
 c IN OUT NOCOPY connection
 recipient IN VARCHAR2)
RETURN reply;

Parameters

Return Values

Usage Notes
The server attempts to resolve the destination address recipient. If successful, it
returns the recipient's full name and fully qualified mailbox path. The connection to
the server must have already been established by means of OPEN_CONNECTION and
HELO or EHLO before making this request.

Successful verification returns one or more lines beginning with status code 250 or
251.

Table 164–35 VRFY Function Parameters

Parameter Description

c The SMTP connection.

recipient The e-mail address to be verified.

Table 164–36 VRFY Function Return Values

Return Value Description

reply Reply of the command (see REPLY, REPLIES Record Types). In
cases where there are multiple replies, the last reply will be
returned.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-37

WRITE_DATA Procedure

Use WRITE_DATA to write a portion of the e-mail message. A repeat call to WRITE_
DATA appends data to the e-mail message.

Syntax
UTL_SMTP.WRITE_DATA (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 CHARACTER SET ANY_CS);

Parameters

Usage Notes
The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must
be made in the right order. A program calls OPEN_DATA to send the DATA command
to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA
repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA.
After OPEN_DATA is called, the only subprograms that can be called are WRITE_
DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other APIs will result in an
INVALID_OPERATION exception being raised.

The application must ensure that the contents of the body parameter conform to the
MIME(RFC822) specification. The DATA routine will terminate the message with a
<CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as
required by RFC821. It will also translate any sequence of <CR><LF>.<CR><LF>
(single period) in the body to <CR><LF>..<CR><LF> (double period). This
conversion provides the transparency as described in Section 4.5.2 of RFC821.

 Notice that this conversion is not bullet-proof. Consider this code fragment:

 UTL_SMTP.WRITE_DATA('some message.' || chr(13) || chr(10));
 UTL_SMTP.WRITE_DATA('.' || chr(13) || chr(10));

Table 164–37 WRITE_DATA Procedure Parameters

Parameter Description

c The SMTP connection.

data The portion of the text of the message to be sent, including
headers, in [RFC822] format.

WRITE_DATA Procedure

164-38 PL/SQL Packages and Types Reference

Since the sequence <CR><LF>.<CR><LF> is split between two calls to WRITE_
DATA, the implementation of WRITE_DATA will not detect the presence of the
data-terminator sequence, and therefore, will not perform the translation. It will be
the responsibility of the user to handle such a situation, or it may result in
premature termination of the message data.

WRITE_DATA should be called only after OPEN_CONNECTION, HELO or EHLO, MAIL,
and RCPT have been called. The connection to the SMTP server must be open and a
mail transaction must be active when this routine is called.

Note that there is no function form of WRITE_DATA because the SMTP server does
not respond until the data-terminator is sent during the call to CLOSE_DATA.

Text (VARCHAR2) data sent using WRITE_DATA is converted to US7ASCII before it is
sent. If the text contains multibyte characters, each multibyte character in the text
that cannot be converted to US7ASCII is replaced by a '?' character. If 8BITMIME
extension is negotiated with the SMTP server using the EHLO subprogram,
multibyte VARCHAR2 data can be sent by first converting the text to RAW using the
UTL_RAW package, and then sending the RAW data using WRITE_RAW_DATA.

Summary of UTL_SMTP Subprograms

UTL_SMTP 164-39

WRITE_RAW_DATA Procedure

Use WRITE_RAW_DATA to write a portion of the e-mail message. A repeat call to
WRITE_RAW_DATA appends data to the e-mail message.

Syntax
UTL_SMTP.WRITE_RAW_DATA (
 c IN OUT NOCOPY connection
 data IN RAW);

Parameters

Usage Notes
The calls to OPEN_DATA, WRITE_DATA, WRITE_RAW_DATA and CLOSE_DATA must
be made in the right order. A program calls OPEN_DATA to send the DATA command
to the SMTP server. After that, it can call WRITE_DATA or WRITE_RAW_DATA
repeatedly to send the actual data. The data is terminated by calling CLOSE_DATA.
After OPEN_DATA is called, the only subprograms that can be called are WRITE_
DATA, WRITE_RAW_DATA, or CLOSE_DATA. A call to other APIs will result in an
INVALID_OPERATION exception being raised.

The application must ensure that the contents of the body parameter conform to the
MIME(RFC822) specification. The DATA routine will terminate the message with a
<CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as
required by RFC821. It will also translate any sequence of <CR><LF>.<CR><LF>
(single period) in the body to <CR><LF>..<CR><LF> (double period). This
conversion provides the transparency as described in Section 4.5.2 of RFC821.

 Notice that this conversion is not bullet-proof. Consider this code fragment:

 UTL_SMTP.WRITE_DATA('some message.' || chr(13) || chr(10));
 UTL_SMTP.WRITE_DATA('.' || chr(13) || chr(10));

Table 164–38 WRITE_RAW_DATA Procedure Parameters

Parameter Description

c The SMTP connection.

data The portion of the text of the message to be sent, including
headers, in [RFC822] format.

WRITE_RAW_DATA Procedure

164-40 PL/SQL Packages and Types Reference

Since the sequence <CR><LF>.<CR><LF> is split between two calls to WRITE_
DATA, the implementation of WRITE_DATA will not detect the presence of the
data-terminator sequence, and therefore, will not perform the translation. It will be
the responsibility of the user to handle such a situation, or it may result in
premature termination of the message data.

XXX_DATA should be called only after OPEN_CONNECTION, HELO or EHLO, MAIL,
and RCPT have been called. The connection to the SMTP server must be open and a
mail transaction must be active when this routine is called.

Note that there is no function form of WRITE_DATA because the SMTP server does
not respond until the data-terminator is sent during the call to CLOSE_DATA.

Text (VARCHAR2) data sent using WRITE_DATA is converted to US7ASCII before it is
sent. If the text contains multibyte characters, each multibyte character in the text
that cannot be converted to US7ASCII is replaced by a '?' character. If 8BITMIME
extension is negotiated with the SMTP server using the EHLO subprogram,
multibyte VARCHAR2 data can be sent by first converting the text to RAW using the
UTL_RAW package, and then sending the RAW data using WRITE_RAW_DATA.

UTL_TCP 165-1

165
UTL_TCP

With the UTL_TCP package and its procedures and functions, PL/SQL applications
can communicate with external TCP/IP-based servers using TCP/IP. Because many
Internet application protocols are based on TCP/IP, this package is useful to
PL/SQL applications that use Internet protocols and e-mail.

This chapter contains the following topics:

■ Using UTL_TCP

■ Overview

■ Types

■ Exceptions

■ Rules and Limits

■ Examples

■ Summary of UTL_TCP Subprograms

Using UTL_TCP

165-2 PL/SQL Packages and Types Reference

Using UTL_TCP

■ Overview

■ Types

■ Exceptions

■ Rules and Limits

■ Examples

Overview

The UTL_TCP package provides TCP/IP client-side access functionality in PL/SQL.

Types

■ CONNECTION Type

■ CRLF

CONNECTION Type
This is a PL/SQL record type used to represent a TCP/IP connection.

Syntax
TYPE connection IS RECORD (
 remote_host VARCHAR2(255),
 remote_port PLS_INTEGER,
 local_host VARCHAR2(255),
 local_port PLS_INTEGER,
 charset VARCHAR2(30),
 newline VARCHAR2(2),
 tx_timeout PLS_INTEGER,
 private_sd PLS_INTEGER);

Using UTL_TCP

UTL_TCP 165-3

Fields

Usage Notes
The fields in a connection record are used to return information about the
connection, which is often made using OPEN_CONNECTION. Changing the values of
those fields has no effect on the connection. The fields private_XXXX are for
implementation use only. You should not modify the values.

In the current release of the UTL_TCP package, the parameters local_host and
local_port are ignored when open_connection makes a TCP/IP connection. It
does not attempt to use the specified local host and port number when the
connection is made. The local_host and local_port fields will not be set in the
connection record returned by the function.

Table 165–1 connection Record Type Fields

Field Description

remote_host The name of the remote host when connection is established.
NULL when no connection is established.

remote_port The port number of the remote host connected. NULL when no
connection is established.

local_host The name of the local host used to establish the connection.
NULL when no connection is established.

local_port The port number of the local host used to establish the
connection. NULL when no connection is established.

charset The on-the-wire character set. Since text messages in the
database may be encoded in a character set that is different
from the one expected on the wire (that is, the character set
specified by the communication protocol, or the one stipulated
by the other end of the communication), text messages in the
database will be converted to and from the on-the-wire
character set as they are sent and received on the network.

newline The newline character sequence. This newline character
sequence is appended to the text line sent by WRITE_LINE
API.

tx_timeout A time in seconds that the UTL_TCP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent in
the network without being blocked. Zero (0) indicates not to
wait at all. NULL indicates to wait forever.

Exceptions

165-4 PL/SQL Packages and Types Reference

Time out on write operations is not supported in the current release of the UTL_TCP
package.

CRLF
The character sequence carriage-return line-feed. It is the newline sequence
commonly used many communication standards.

Syntax
CRLF varchar2(10);

Usage Notes
This package variable defines the newline character sequence commonly used in
many Internet protocols. This is the default value of the newline character sequence
for WRITE_LINE, specified when a connection is opened. While such protocols use
<CR><LF> to denote a new line, some implementations may choose to use just
line-feed to denote a new line. In such cases, users can specify a different newline
character sequence when a connection is opened.

This CRLF package variable is intended to be a constant that denotes the carriage-
return line-feed character sequence. Do not modify its value. Modification may
result in errors in other PL/SQL applications.

Exceptions

The exceptions raised by the TCP/IP package are listed in Table 165–2.

Table 165–2 TCP/IP Exceptions

Exception Description

BUFFER_TOO_SMALL Buffer is too small for input that requires look-ahead.

END_OF_INPUT Raised when no more data is available to read from the
connection.

NETWORK_ERROR Generic network error.

BAD_ARGUMENT Bad argument passed in an API call (for example, a negative
buffer size).

TRANSFER_TIMEOUT No data is read and a read time out occurred.

PARTIAL_MULTIBYTE_
CHAR

No complete character is read and a partial multibyte character
is found at the end of the input.

Using UTL_TCP

UTL_TCP 165-5

Rules and Limits

The interface provided in the package only allows connections to be initiated by the
PL/SQL program. It does not allow the PL/SQL program to accept connections
initiated outside the program.

Examples

The following code example illustrates how the TCP/IP package can be used to
retrieve a Web page over HTTP. It connects to a Web server listening at port 80
(standard port for HTTP) and requests the root document.

DECLARE
 c utl_tcp.connection; -- TCP/IP connection to the Web server
 ret_val pls_integer;
BEGIN
 c := utl_tcp.open_connection(remote_host => 'www.acme.com',
 remote_port => 80,
 charset => 'US7ASCII'); -- open connection
 ret_val := utl_tcp.write_line(c, 'GET / HTTP/1.0'); -- send HTTP request
 ret_val := utl_tcp.write_line(c);
 BEGIN
 LOOP
 dbms_output.put_line(utl_tcp.get_line(c, TRUE)); -- read result
 END LOOP;
 EXCEPTION
 WHEN utl_tcp.end_of_input THEN
 NULL; -- end of input
 END;
 utl_tcp.close_connection(c);
END;

The following code example illustrates how the TCP/IP package can be used by an
application to send e-mail (also known as email from PL/SQL). The application
connects to an SMTP server at port 25 and sends a simple text message.

PROCEDURE send_mail (sender IN VARCHAR2,
 recipient IN VARCHAR2,
 message IN VARCHAR2)
IS
 mailhost VARCHAR2(30) := 'mailhost.mydomain.com';
 smtp_error EXCEPTION;
 mail_conn utl_tcp.connection;
 PROCEDURE smtp_command(command IN VARCHAR2,

Examples

165-6 PL/SQL Packages and Types Reference

 ok IN VARCHAR2 DEFAULT '250')
 IS
 response varchar2(3);
 len pls_integer;
 BEGIN
 len := utl_tcp.write_line(mail_conn, command);
 response := substr(utl_tcp.get_line(mail_conn), 1, 3);
 IF (response <> ok) THEN
 RAISE smtp_error;
 END IF;
 END;

BEGIN
 mail_conn := utl_tcp.open_connection(remote_host => mailhost,
 remote_port => 25,
 charset => 'US7ASCII');
 smtp_command('HELO ' || mailhost);
 smtp_command('MAIL FROM: ' || sender);
 smtp_command('RCPT TO: ' || recipient);
 smtp_command('DATA', '354');
 smtp_command(message);
 smtp_command('QUIT', '221');
 utl_tcp.close_connection(mail_conn);
EXCEPTION
 WHEN OTHERS THEN
 -- Handle the error
END;

Summary of UTL_TCP Subprograms

UTL_TCP 165-7

Summary of UTL_TCP Subprograms

Table 165–3 UTL_TCP Package Subprograms

Subprogram Description

AVAILABLE Function on
page 165-8

Determines the number of bytes available for reading from a
TCP/IP connection

CLOSE_ALL_
CONNECTIONS
Procedure on page 165-10

Closes all open TCP/IP connections

CLOSE_CONNECTION
Procedure on page 165-11

Closes an open TCP/IP connection

FLUSH Procedure on
page 165-12

Transmits all data in the output buffer, if a buffer is used, to
the server immediately

GET_LINE Function on
page 165-13

Convenient forms of the read functions, which return the data
read instead of the amount of data read

GET_RAW Function on
page 165-14

Convenient forms of the read functions, which return the data
read instead of the amount of data read

GET_TEXT Function on
page 165-16

Convenient forms of the read functions, which return the data
read instead of the amount of data read

OPEN_CONNECTION
Function on page 165-18

Opens a TCP/IP connection to a specified service

READ_LINE Function on
page 165-21

Receives a text line from a service on an open connection

READ_RAW Function on
page 165-23

Receives binary data from a service on an open connection

READ_TEXT Function on
page 165-25

Receives text data from a service on an open connection

WRITE_LINE Function on
page 165-27

Transmits a text line to a service on an open connection

WRITE_RAW Function on
page 165-28

Transmits a binary message to a service on an open connection

WRITE_TEXT Function on
page 165-29

Transmits a text message to a service on an open connection

AVAILABLE Function

165-8 PL/SQL Packages and Types Reference

AVAILABLE Function

This function determines the number of bytes available for reading from a TCP/IP
connection. It is the number of bytes that can be read immediately without
blocking. Determines if data is ready to be read from the connection.

Syntax
UTL_TCP.AVAILABLE (
 c IN OUT NOCOPY connection,
 timeout IN PLS_INTEGER DEFAULT 0)
RETURN num_bytes PLS_INTEGER;

Parameters

Return Values

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. Users may use this API to determine if data is available to be read
before calling the read API so that the program will not be blocked because data is
not ready to be read from the input.

The number of bytes available for reading returned by this function may less than
than what is actually available. On some platforms, this function may only return 1,
to indicate that some data is available. If you are concerned about the portability of

Table 165–4 AVAILABLE Function Parameters

Parameter Description

c The TCP connection to determine the amount of data that is
available to be read from.

timeout A time in seconds to wait before giving up and reporting that
no data is available. Zero (0) indicates not to wait at all. NULL
indicates to wait forever.

Table 165–5 AVAILABLE Function Return Values

Parameter Description

num_bytes The number of bytes available for reading without blocking.

Summary of UTL_TCP Subprograms

UTL_TCP 165-9

your application, assume that this function returns a positive value when data is
available for reading, and 0 when no data is available. The following example
illustrates using this function in a portable manner:

DECLARE
 c utl_tcp.connection
 data VARCHAR2(256);
 len PLS_INTEGER;
BEGIN
 c := utl_tcp.open_connection(...);
 LOOP
 IF (utl_tcp.available(c) > 0) THEN
 len := utl_tcp.read_text(c, data, 256);
 ELSE
 ---do some other things

 END IF
 END LOOP;
END;

Related Functions
READ_RAW, READ_TEXT, READ_LINE

CLOSE_ALL_CONNECTIONS Procedure

165-10 PL/SQL Packages and Types Reference

CLOSE_ALL_CONNECTIONS Procedure

This procedure closes all open TCP/IP connections.

Syntax
UTL_TCP.CLOSE_ALL_CONNECTIONS;

Usage Notes
This call is provided to close all connections before a PL/SQL program avoid
dangling connections.

Related Functions
OPEN_CONNECTION, CLOSE_CONNECTION.

Summary of UTL_TCP Subprograms

UTL_TCP 165-11

CLOSE_CONNECTION Procedure

This procedure closes an open TCP/IP connection.

Syntax
UTL_TCP.CLOSE_CONNECTION (
 c IN OUT NOCOPY connection);

Parameters

Usage Notes
Connection must have been opened by a previous call to OPEN_CONNECTION. The
fields remote_host, remote_port, local_host, local_port and
charset of c will be reset after the connection is closed.

An open connection must be closed explicitly. An open connection will remain open
when the PL/SQL record variable that stores the connection goes out-of-scope in
the PL/SQL program. Failing to close unwanted connections may result in
unnecessary tying up of local and remote system resources.

Table 165–6 CLOSE_CONNECTION Procedure Parameters

Parameter Description

c The TCP connection to close.

FLUSH Procedure

165-12 PL/SQL Packages and Types Reference

FLUSH Procedure

This procedure transmits all data in the output buffer, if a buffer is used, to the
server immediately.

Syntax
UTL_TCP.FLUSH (
 c IN OUT NOCOPY connection);

Parameters

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION.

Related Functions
WRITE_RAW, WRITE_TEXT, WRITE_LINE

Table 165–7 FLUSH Procedure Parameters

Parameter Description

c The TCP connection to send data to.

Summary of UTL_TCP Subprograms

UTL_TCP 165-13

GET_LINE Function

This function returns the data read instead of the amount of data read.

Syntax
UTL_TCP.GET_LINE (
 c IN OUT NOCOPY connection,
 remove_crlf IN BOOLEAN DEFAULT FALSE,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2;

Parameters

Usage Notes
■ The connection must have already been opened through a call to OPEN_

CONNECTION.

■ See READ_LINE for the read time out, character set conversion, buffer size, and
multibyte character issues.

Related Functions
GET_RAW, GET_TEXT, READ_LINE

Table 165–8 GET_LINE Function Parameters

Parameter Description

c The TCP connection to receive data from.

remove_crlf If TRUE, the trailing CR/LF character(s) are removed from the
received message.

peek Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

GET_RAW Function

165-14 PL/SQL Packages and Types Reference

GET_RAW Function

This function returns the data read instead of the amount of data read.

Syntax
UTL_TCP.GET_RAW (
 c IN OUT NOCOPY connection,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN RAW;

Parameters

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION.

For all the get_* APIs described in this section, see the corresponding READ_* API
for the read time out issue. For GET_TEXT and GET_LINE, see the corresponding
READ_* API for character set conversion, buffer size, and multibyte character
issues.

Table 165–9 GET_RAW Function Parameters

Parameter Description

c The TCP connection to receive data from.

len The number of bytes (or characters for VARCHAR2) of data to
receive. Default is 1.

peek Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

remove_crlf If TRUE, the trailing CR/LF character(s) are removed from the
received message.

Summary of UTL_TCP Subprograms

UTL_TCP 165-15

Related Functions
GET_RAW, GET_TEXT, READ_RAW, READ_TEXT, READ_LINE

GET_TEXT Function

165-16 PL/SQL Packages and Types Reference

GET_TEXT Function

This function returns the data read instead of the amount of data read.

Syntax
UTL_TCP.GET_TEXT (
 c IN OUT NOCOPY connection,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN VARCHAR2;

Parameters

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION.

For all the get_* APIs described in this section, see the corresponding read_* API
for the read time out issue. For GET_TEXT and GET_LINE, see the corresponding
READ_* API for character set conversion, buffer size, and multibyte character
issues.

Table 165–10 GET_TEXT Function Parameters

Parameter Description

c The TCP connection to receive data from.

len The number of bytes (or characters for VARCHAR2) of data to
receive. Default is 1.

peek Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

remove_crlf If TRUE, the trailing CR/LF character(s) are removed from the
received message.

Summary of UTL_TCP Subprograms

UTL_TCP 165-17

Related Functions
READ_RAW, READ_TEXT, READ_LINE

OPEN_CONNECTION Function

165-18 PL/SQL Packages and Types Reference

OPEN_CONNECTION Function

This function opens a TCP/IP connection to a specified service.

Syntax
UTL_TCP.OPEN_CONNECTION (
 remote_host IN VARCHAR2,
 remote_port IN PLS_INTEGER,
 local_host IN VARCHAR2 DEFAULT NULL,
 local_port IN PLS_INTEGER DEFAULT NULL,
 in_buffer_size IN PLS_INTEGER DEFAULT NULL,
 out_buffer_size IN PLS_INTEGER DEFAULT NULL,
 charset IN VARCHAR2 DEFAULT NULL,
 newline IN VARCHAR2 DEFAULT CRLF,
 tx_timeout IN PLS_INTEGER DEFAULT NULL)
 RETURN connection;

Parameters

Table 165–11 OPEN_CONNECTION Function Parameters

Parameter Description

remote_host The name of the host providing the service. When remote_
host is NULL, it connects to the local host.

remote_port The port number on which the service is listening for
connections.

local_host The name of the host providing the service. NULL means don't
care.

local_port The port number on which the service is listening for
connections. NULL means don't care.

in_buffer_size The size of input buffer. The use of an input buffer can speed
up execution performance in receiving data from the server.
The appropriate size of the buffer depends on the flow of data
between the client and the server, and the network condition.
A 0 value means no buffer should be used. A NULL value
means the caller does not care if a buffer is used or not. The
maximum size of the input buffer is 32767 bytes.

Summary of UTL_TCP Subprograms

UTL_TCP 165-19

Return Values

Usage Notes
Note that connections opened by this UTL_TCP package can remain open and be
passed from one database call to another in a shared server configuration. However,
the connection must be closed explicitly. The connection will remain open when the
PL/SQL record variable that stores the connection goes out-of-scope in the PL/SQL

out_buffer_size The size of output buffer. The use of an output buffer can
speed up execution performance in sending data to the server.
The appropriate size of buffer depends on the flow of data
between the client and the server, and the network condition.
A 0 value means no buffer should be used. A NULL value
means the caller does not care if a buffer is used or not. The
maximum size of the output buffer is 32767 bytes.

charset The on-the-wire character set. Since text messages in the
database may be encoded in a character set that is different
from the one expected on the wire (that is, the character set
specified by the communication protocol, or the one stipulated
by the other end of the communication), text messages in the
database will be converted to and from the on-the-wire
character set as they are sent and received on the network
using READ_TEXT, READ_LINE, WRITE_TEXT and WRITE_
LINE. Set this parameter to NULL when no conversion is
needed.

newline The newline character sequence. This newline character
sequence is appended to the text line sent by WRITE_LINE
API.

tx_timeout A time in seconds that the UTL_TCP package should wait
before giving up in a read or write operations in this
connection. In read operations, this package gives up if no data
is available for reading immediately. In write operations, this
package gives up if the output buffer is full and no data is to be
sent in the network without being blocked. Zero (0) indicates
not to wait at all. NULL indicates to wait forever.

Table 165–12 OPEN_CONNECTION Function Return Values

Parameter Description

connection A connection to the targeted TCP/IP service.

Table 165–11 (Cont.) OPEN_CONNECTION Function Parameters

Parameter Description

OPEN_CONNECTION Function

165-20 PL/SQL Packages and Types Reference

program. Failing to close unwanted connections may result in unnecessary tying up
of local and remote system resources.

In the current release of the UTL_TCP package, the parameters local_host and
local_port are ignored when open_connection makes a TCP/IP connection. It
does not attempt to use the specified local host and port number when the
connection is made. The local_host and local_port fields will not be set in
the connection record returned by the function.

Time out on write operations is not supported in the current release of the UTL_
TCP package.

Related Functions
CLOSE_CONNECTION, CLOSE_ALL_CONNECTIONS

Summary of UTL_TCP Subprograms

UTL_TCP 165-21

READ_LINE Function

This function receives a text line from a service on an open connection. A line is
terminated by a line-feed, a carriage-return or a carriage-return followed by a
line-feed.

Syntax
UTL_TCP.READ_LINE (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN num_chars PLS_INTEGER;

Parameters

Return Values

Table 165–13 READ_LINE Function Parameters

Parameter Description

c The TCP connection to receive data from.

data The data received.

remove_crlf If TRUE, the trailing CR/LF character(s) are removed from the
received message.

peek Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

Table 165–14 READ_LINE Function Return Values

Parameter Description

num_chars The actual number of characters of data received.

READ_LINE Function

165-22 PL/SQL Packages and Types Reference

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. This function does not return until the end-of-line have been
reached, or the end of input has been reached. Text messages will be converted from
the on-the-wire character set, specified when the connection was opened, to the
database character set before they are returned to the caller.

If transfer time out is set when the connection is opened, this function waits for each
data packet to be ready to read until time out occurs. If it occurs, this function stops
reading and returns all the data read successfully. If no data is read successfully, the
transfer_timeout exception is raised. The exception can be handled and the
read operation can be retried later.

If a partial multibyte character is found at the end of input, this function stops
reading and returns all the complete multibyte characters read successfully. If no
complete character is read successfully, the partial_multibyte_char exception
is raised. The exception can be handled and the bytes of that partial multibyte
character can be read as binary by the READ_RAW function. If a partial multibyte
character is seen in the middle of the input because the remaining bytes of the
character have not arrived and read time out occurs, the transfer_timeout
exception is raised instead. The exception can be handled and the read operation
can be retried later.

Related Functions
READ_RAW, READ_TEXT, AVAILABLE

Summary of UTL_TCP Subprograms

UTL_TCP 165-23

READ_RAW Function

This function receives binary data from a service on an open connection.

Syntax
UTL_TCP.READ_RAW (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY RAW,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
 RETURN num_bytes PLS_INTEGER;

Parameters

Return Values

Table 165–15 READ_RAW Function Parameters

Parameter Description

c The TCP connection to receive data from.

data (IN OUT COPY) The data received.

len The number of bytes of data to receive.

peek Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

Table 165–16 READ_RAW Function Return Values

Parameter Description

num_bytes The actual number of bytes of data received.

READ_RAW Function

165-24 PL/SQL Packages and Types Reference

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. This function does not return until the specified number of bytes
have been read, or the end of input has been reached.

If transfer time out is set when the connection is opened, this function waits for each
data packet to be ready to read until time out occurs. If it occurs, this function stops
reading and returns all the data read successfully. If no data is read successfully, the
transfer_timeout exception is raised. The exception can be handled and the
read operation can be retried later.

Related Functions
READ_TEXT, READ_LINE, AVAILABLE

Summary of UTL_TCP Subprograms

UTL_TCP 165-25

READ_TEXT Function

This function receives text data from a service on an open connection.

Syntax
UTL_TCP.READ_TEXT (
 c IN OUT NOCOPY connection,
 data IN OUT NOCOPY VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT 1,
 peek IN BOOLEAN DEFAULT FALSE)
RETURN num_chars PLS_INTEGER;

Parameters

Return Values

Table 165–17 READ_TEXT Function Parameters

Parameter Description

c The TCP connection to receive data from.

data The data received.

len The number of characters of data to receive.

peek Normally, users want to read the data and remove it from the
input queue, that is, consume it. In some situations, users may
just want to look ahead at the data without removing it from
the input queue so that it is still available for reading (or even
peeking) in the next call. To keep the data in the input queue,
set this flag to TRUE and an input buffer must be set up when
the connection is opened. The amount of data that you can
peek at (that is, read but keep in the input queue) must be less
than the size of input buffer.

Table 165–18 READ_TEXT Function Return Values

Parameter Description

num_chars The actual number of characters of data received.

READ_TEXT Function

165-26 PL/SQL Packages and Types Reference

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. This function does not return until the specified number of characters
has been read, or the end of input has been reached. Text messages will be
converted from the on-the-wire character set, specified when the connection was
opened, to the database character set before they are returned to the caller.

Unless explicitly overridden, the size of a VARCHAR2 buffer is specified in terms of
bytes, while the parameter len refers to the maximum number of characters to be
read. When the database character set is multibyte, where a single character may
consist of more than 1 byte, you should ensure that the buffer can hold the
maximum of characters. In general, the size of the VARCHAR2 buffer should equal
the number of characters to be read, multiplied by the maximum number of bytes of
a character of the database character set.

If transfer time out is set when the connection is opened, this function waits for each
data packet to be ready to read until time out occurs. If it occurs, this function stops
reading and returns all the data read successfully. If no data is read successfully, the
transfer_timeout exception is raised. The exception can be handled and the
read operation can be retried later.

If a partial multibyte character is found at the end of input, this function stops
reading and returns all the complete multibyte characters read successfully. If no
complete character is read successfully, the partial_multibyte_char exception
is raised. The exception can be handled and the bytes of that partial multibyte
character can be read as binary by the READ_RAW function. If a partial multibyte
character is seen in the middle of the input because the remaining bytes of the
character have not arrived and read time out occurs, the transfer_timeout
exception is raised instead. The exception can be handled and the read operation
can be retried later.

Related Functions
READ_RAW, READ_LINE, AVAILABLE

Summary of UTL_TCP Subprograms

UTL_TCP 165-27

WRITE_LINE Function

This function transmits a text line to a service on an open connection. The newline
character sequence will be appended to the message before it is transmitted.

Syntax
UTL_TCP.WRITE_LINE (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 DEFAULT NULL CHARACTER SET ANY_CS)
 RETURN PLS_INTEGER;

Parameters

Return Values

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. Text messages will be converted to the on-the-wire character set,
specified when the connection was opened, before they are transmitted on the wire.

Related Functions
WRITE_RAW, WRITE_TEXT, FLUSH

Table 165–19 WRITE_LINE Function Parameters

Parameter Description

c The TCP connection to send data to.

data The buffer containing the data to be sent.

Table 165–20 WRITE_LINE Function Return Values

Parameter Description

num_chars The actual number of characters of data transmitted.

WRITE_RAW Function

165-28 PL/SQL Packages and Types Reference

WRITE_RAW Function

This function transmits a binary message to a service on an open connection. The
function does not return until the specified number of bytes have been written.

Syntax
UTL_TCP.WRITE_RAW (
 c IN OUT NOCOPY connection,
 data IN RAW,
 len IN PLS_INTEGER DEFAULT NULL)
 RETURN num_bytes PLS_INTEGER;

Parameters

Return Values

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION.

Related Functions
WRITE_TEXT, WRITE_LINE, FLUSH

Table 165–21 WRITE_RAW Function Parameters

Parameter Description

c The TCP connection to send data to.

data The buffer containing the data to be sent.

len The number of bytes of data to transmit. When len is NULL,
the whole length of data is written.

Table 165–22 WRITE_RAW Function Return Values

Parameter Description

num_bytes The actual number of bytes of data transmitted.

Summary of UTL_TCP Subprograms

UTL_TCP 165-29

WRITE_TEXT Function

This function transmits a text message to a service on an open connection.

Syntax
UTL_TCP.WRITE_TEXT (
 c IN OUT NOCOPY connection,
 data IN VARCHAR2 CHARACTER SET ANY_CS,
 len IN PLS_INTEGER DEFAULT NULL)
 RETURN num_chars PLS_INTEGER;

Parameters

Return Values

Usage Notes
The connection must have already been opened through a call to OPEN_
CONNECTION. Text messages will be converted to the on-the-wire character set,
specified when the connection was opened, before they are transmitted on the wire.

Related Functions
WRITE_RAW, WRITE_LINE, FLUSH

Table 165–23 WRITE_TEXT Function Parameters

Parameter Description

c The TCP connection to send data to.

data The buffer containing the data to be sent.

len The number of characters of data to transmit. When len is
NULL, the whole length of data is written. The actual amount of
data written may be less because of network condition.

Table 165–24 WRITE_TEXT Function Return Values

Parameter Description

num_chars The actual number of characters of data transmitted.

WRITE_TEXT Function

165-30 PL/SQL Packages and Types Reference

UTL_URL 166-1

166
UTL_URL

The UTL_URL package has two functions: ESCAPE and UNESCAPE.

This chapter contains the following topics:

■ Using UTL_URL

■ Overview

■ Exceptions

■ Examples

■ Summary of UTL_URL Subprograms

See Also: ■Chapter 156, "UTL_HTTP"

Using UTL_URL

166-2 PL/SQL Packages and Types Reference

Using UTL_URL

■ Overview

■ Exceptions

■ Examples

Overview

A Uniform Resource Locator (URL) is a string that identifies a Web resource, such
as a page or a picture. Use a URL to access such resources by way of the HyperText
Transfer Protocol (HTTP). For example, the URL for Oracle's Web site is:

http://www.oracle.com

Normally, a URL contains English alphabetic characters, digits, and punctuation
symbols. These characters are known as the unreserved characters. Any other
characters in URLs, including multibyte characters or binary octet codes, must be
escaped to be accurately processed by Web browsers or Web servers. Some
punctuation characters, such as dollar sign ($), question mark (?), colon (:), and
equals sign (=), are reserved as delimiters in a URL. They are known as the reserved
characters. To literally process these characters, instead of treating them as
delimiters, they must be escaped.

The unreserved characters are:

■ A through Z, a through z, and 0 through 9

■ Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk
(*), accent ('), left parenthesis ((), right parenthesis ())

The reserved characters are:

■ Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand
(&), equals sign (=), plus sign (+), dollar sign ($), and comma (,)

The UTL_URL package has two functions that provide escape and unescape
mechanisms for URL characters. Use the escape function to escape a URL before the
URL is used fetch a Web page by way of the UTL_HTTP package. Use the unescape
function to unescape an escaped URL before information is extracted from the URL.

For more information, refer to the Request For Comments (RFC) document
RFC2396. Note that this URL escape and unescape mechanism is different from the

Using UTL_URL

UTL_URL 166-3

x-www-form-urlencoded encoding mechanism described in the HTML
specification:

http://www.w3.org/TR/html

Exceptions

Table 166–1 lists the exceptions that can be raised when the UTL_URL package API
is invoked.

Examples

You can implement the x-www-form-urlencoded encoding using the UTL_
URL.ESCAPE function as follows:

CREATE OR REPLACE FUNCTION form_url_encode (
 data IN VARCHAR2,
 charset IN VARCHAR2) RETURN VARCHAR2 AS
BEGIN
 RETURN utl_url.escape(data, TRUE, charset); -- note use of TRUE
END;

For decoding data encoded with the form-URL-encode scheme, the following
function implements the decording scheme:

CREATE OR REPLACE FUNCTION form_url_decode(
 data IN VARCHAR2,
 charset IN VARCHAR2) RETURN VARCHAR2 AS
BEGIN
 RETURN utl_url.unescape(
 replace(data, '+', ' '),
 charset);
END;

Table 166–1 UTL_URL Exceptions

Exception Error Code Reason

BAD_URL 29262 The URL contains badly formed escape code sequences

BAD_FIXED_
WIDTH_CHARSET

29274 Fixed-width multibyte character set is not allowed as a
URL character set.

Summary of UTL_URL Subprograms

166-4 PL/SQL Packages and Types Reference

Summary of UTL_URL Subprograms

Table 166–2 UTL_URL Package Subprograms

Subprogram Description

ESCAPE Function on
page 166-5

Returns a URL with illegal characters (and optionally
reserved characters) escaped using the
%2-digit-hex-code format

UNESCAPE Function on
page 166-7

Unescapes the escape character sequences to their original
forms in a URL. Convert the %XX escape character
sequences to the original characters

Summary of UTL_URL Subprograms

UTL_URL 166-5

ESCAPE Function

This function returns a URL with illegal characters (and optionally reserved
characters) escaped using the %2-digit-hex-code format.

Syntax
UTL_URL.ESCAPE (
 url IN VARCHAR2 CHARACTER SET ANY_CS,
 escape_reserved_chars IN BOOLEAN DEFAULT FALSE,
 url_charset IN VARCHAR2 DEFAULT utl_http.body_charset)
 RETURN VARCHAR2;

Parameters

Usage Notes
Use this function to escape URLs that contain illegal characters as defined in the
URL specification RFC 2396. The legal characters in URLs are:

■ A through Z, a through z, and 0 through 9

■ Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk
(*), accent ('), left parenthesis ((), right parenthesis ())

The reserved characters consist of:

Table 166–3 ESCAPE Function Parameters

Parameter Description

url The original URL

escape_reserved_
chars

Indicates whether the URL reserved characters should be
escaped. If set to TRUE, both the reserved and illegal URL
characters are escaped. Otherwise, only the illegal URL
characters are escaped. The default value is FALSE.

url_charset When escaping a character (single-byte or multibyte),
determine the target character set that character should be
converted to before the character is escaped in %hex-code
format. If url_charset is NULL, the database charset is
assumed and no character set conversion will occur. The
default value is the current default body character set of the
UTL_HTTP package, whose default value is ISO-8859-1. The
character set can be named in Internet Assigned Numbers
Authority (IANA) or in the Oracle naming convention.

ESCAPE Function

166-6 PL/SQL Packages and Types Reference

■ Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand
(&), equals sign (=), plus sign (+), dollar sign ($), and comma (,)

Many of the reserved characters are used as delimiters in the URL. You should
escape characters beyond those listed here by using escape_url. Also, to use the
reserved characters in the name-value pairs of the query string of a URL, those
characters must be escaped separately. An escape_url cannot recognize the need to
escape those characters because once inside a URL, those characters become
indistinguishable from the actual delimiters. For example, to pass a name-value pair
$logon=scott/tiger into the query string of a URL, escape the $ and /
separately as %24logon=scott%2Ftiger and use it in the URL.

Normally, you will escape the entire URL, which contains the reserved characters
(delimiters) that should not be escaped. For example:

utl_url.escape('http://www.acme.com/a url with space.html')

Returns:

http://foo.com/a%20url%20with%20space.html

In other situations, you may want to send a query string with a value that contains
reserved characters. In that case, escape only the value fully (with escape_
reserved_chars set to TRUE) and then concatenate it with the rest of the URL.
For example:

url := 'http://www.acme.com/search?check=' || utl_url.escape
('Is the use of the "$" sign okay?', TRUE);

This expression escapes the question mark (?), dollar sign ($), and space characters
in 'Is the use of the "$" sign okay?' but not the ? after search in the
URL that denotes the use of a query string.

The Web server that you intend to fetch Web pages from may use a character set
that is different from that of your database. In that case, specify the url_charset as
the Web server character set so that the characters that need to be escaped are
escaped in the target character set. For example, a user of an EBCDIC database who
wants to access an ASCII Web server should escape the URL using US7ASCII so
that a space is escaped as %20 (hex code of a space in ASCII) instead of %40 (hex
code of a space in EBCDIC).

This function does not validate a URL for the proper URL format.

Summary of UTL_URL Subprograms

UTL_URL 166-7

UNESCAPE Function

This function unescapes the escape character sequences to its original form in a
URL, to convert the %XX escape character sequences to the original characters.

Syntax
UTL_URL.UNESCAPE (
 url IN VARCHAR2 CHARACTER SET ANY_CS,
 url_charset IN VARCHAR2 DEFAULT utl_http.body_charset)
 RETURN VARCHAR2;

Parameters

Usage Notes
The Web server that you receive the URL from may use a character set that is
different from that of your database. In that case, specify the url_charset as the Web
server character set so that the characters that need to be unescaped are unescaped
in the source character set. For example, a user of an EBCDIC database who receives
a URL from an ASCII Web server should unescape the URL using US7ASCII so
that %20 is unescaped as a space (0x20 is the hex code of a space in ASCII) instead
of a ? (because 0x20 is not a valid character in EBCDIC).

This function does not validate a URL for the proper URL format.

Table 166–4 UNESCAPE Function Parameters

Parameter Description

url The URL to unescape

url_charset After a character is unescaped, the character is assumed to be
in the source_charset character set and it will be converted
from the source_charset to the database character set
before the URL is returned. If source_charset is NULL, the
database charset is assumed and no character set conversion
occurred. The default value is the current default body
character set of the UTL_HTTP package, whose default value is
"ISO-8859-1". The character set can be named in Internet
Assigned Numbers Authority (IANA) or Oracle naming
convention.

UNESCAPE Function

166-8 PL/SQL Packages and Types Reference

WPG_DOCLOAD 167-1

167
WPG_DOCLOAD

The WPG_DOCLOAD package provides an interface to download files, BLOBs and
BFILEs.

The chapter contains the following topics:

■ Using WPG_DOCLOAD

■ Constants

■ Summary of WPG_DOCLOAD Subprograms

See Also: For more information about implementation of this
package:

■ Oracle HTTP Server Administrator's Guide

■ Oracle HTTP Server mod_plsql User's Guide

Using WPG_DOCLOAD

167-2 PL/SQL Packages and Types Reference

Using WPG_DOCLOAD

■ Constants

Constants

■ NAME_COL_LEN

■ MIMET_COL_LEN

■ MAX_DOCTABLE_NAME_LEN

NAME_COL_LEN
The NAME column in your document table must be the same as the value of name_
col_len.

name_col_len CONSTANT pls_integer := 64;

MIMET_COL_LEN
The MIME_TYPE column in your document table must be the same as the value of
mimet_col_len.

mimet_col_len CONSTANT pls_integer := 48;

 MAX_DOCTABLE_NAME_LEN
The name length of your document table must be less than max_doctable_name_
len.

max_doctable_name_len CONSTANT pls_integer := 256;

Summary of WPG_DOCLOAD Subprograms

WPG_DOCLOAD 167-3

Summary of WPG_DOCLOAD Subprograms

Table 167–1 WPG_DOCLOAD Package Subprograms

Subprogram Description

DOWNLOAD_FILE
Procedures on page 167-4

Downloads files, BLOBS and BFILES

DOWNLOAD_FILE Procedures

167-4 PL/SQL Packages and Types Reference

DOWNLOAD_FILE Procedures

There are three versions of this procedure:

■ The first version downloads files and is invoked from within a document
download procedure to signal the PL/SQL Gateway that p_filename is to be
downloaded from the document table to the client's browser.

■ The second version can be called from within any procedure to signal the
PL/SQL Gateway that p_blob is to be downloaded to the client's browser.

■ The third version can be called from within any procedure to signal the
PL/SQL Gateway that p_bfile is to be downloaded to the client's browser.

Syntax
WPG_DOCLOAD.DOWNLOAD_FILE(
 p_filename IN VARCHAR2,
 p_bcaching IN BOOLEAN DEFAULT TRUE);

WPG_DOCLOAD.DOWNLOAD_FILE(
 p_blob IN OUT NOCOPY BLOB);

WPG_DOCLOAD.DOWNLOAD_FILE(
 p_bfile IN OUT BFILE);

Parameters

Usage Notes
■ Normally, a document will be downloaded to the browser unless the browser

sends an 'If-Modified-Since' header to the gateway indicating that it has the
requested document in its cache. In that case, the gateway will determine if the

Table 167–2 DOWNLOAD_FILE Procedure Parameters

Parameter Description

p_filename The file to download from the document table.

p_blob The BLOB to download.

p_bfile The BFILE to download (see Usage Notes).

p_bcaching Whether browser caching is enabled (see Usage Notes).

Summary of WPG_DOCLOAD Subprograms

WPG_DOCLOAD 167-5

browser's cached copy is up to date, and if it is, it will send an HTTP 304 status
message to the browser indicating that the browser should display the cached
copy. However, because a document URL and a document do not necessarily
have a one-to-one relationship in the PL/SQL Web Gateway, in some cases it
may be undesirable to have the cached copy of a document displayed. In those
cases, the p_bcaching parameter should be set to FALSE to indicate to the
gateway to ignore the 'If-Modified-Since' header, and download the document.

■ p_bfile and p_blob are declared as IN OUT because the locator is initially
opened to check for file accessibility and existence. The open operation can only
be performed if the locator is writable and readable.

DOWNLOAD_FILE Procedures

167-6 PL/SQL Packages and Types Reference

ANYDATA TYPE 168-1

168
ANYDATA TYPE

An ANYDATA TYPE contains an instance of a given type, plus a description of the
type. In this sense, an ANYDATA is self-describing. An ANYDATA can be persistently
stored in the database.

This chapter contains the following topics:

■ Using ANYDATA TYPE

■ Restrictions

■ Operational Notes

■ Summary of ANYDATA Subprograms

Using ANYDATA TYPE

168-2 PL/SQL Packages and Types Reference

Using ANYDATA TYPE

Restrictions

Persistent storage of ANYDATA instances whose type contains embedded LOBs other
than BFILEs is not currently supported.

Operational Notes

■ Construction

■ Access

Construction
There are 2 ways to construct an ANYDATA. The CONVERT* calls enable construction
of the ANYDATA in its entirety with a single call. They serve as explicit CAST
functions from any type in the Oracle ORDBMS to ANYDATA.

STATIC FUNCTION ConvertBDouble(dbl IN BINARY_DOUBLE) return ANYDATA,
STATIC FUNCTION ConvertBfile(b IN BFILE) RETURN ANYDATA,
STATIC FUNCTION ConvertBFloat(fl IN BINARY_FLOAT) return ANYDATA,
STATIC FUNCTION ConvertBlob(b IN BLOB) RETURN ANYDATA,
STATIC FUNCTION ConvertChar(c IN CHAR) RETURN ANYDATA,
STATIC FUNCTION ConvertClob(c IN CLOB) RETURN ANYDATA,
STATIC FUNCTION ConvertCollection(col IN "collection_type") RETURN ANYDATA,
STATIC FUNCTION ConvertDate(dat IN DATE) RETURN ANYDATA,
STATIC FUNCTION ConvertIntervalDS(inv IN INTERVAL DAY TO SECOND) return ANYDATA,
STATIC FUNCTION ConvertIntervalYM(invIN INTERVAL YEAR TO MONTH) return ANYDATA,
STATIC FUNCTION ConvertNchar(nc IN NCHAR) return ANYDATA,
STATIC FUNCTION ConvertNClob(nc IN NCLOB) return ANYDATA,
STATIC FUNCTION ConvertNumber(num IN NUMBER) RETURN ANYDATA,
STATIC FUNCTION ConvertNVarchar2(nc IN NVARCHAR2) return ANYDATA,
STATIC FUNCTION ConvertObject(obj IN "<object_type>") RETURN ANYDATA,
STATIC FUNCTION ConvertRaw(r IN RAW) RETURN ANYDATA,
STATIC FUNCTION ConvertRef(rf IN REF "<object_type>") RETURN ANYDATA,
STATIC FUNCTION ConvertTimestamp(ts IN TIMESTAMP) return ANYDATA,
STATIC FUNCTION ConvertTimestampTZ(ts IN TIMESTAMP WITH TIMEZONE) return
ANYDATA,
STATIC FUNCTION ConvertTimestampLTZ(ts IN TIMESTAMP WITH LOCAL TIMEZONE) return
ANYDATA,

Using ANYDATA TYPE

ANYDATA TYPE 168-3

STATIC FUNCTION ConvertURowid(rid IN UROWID) return ANYDATA,
STATIC FUNCTION ConvertVarchar(c IN VARCHAR) RETURN ANYDATA,
STATIC FUNCTION ConvertVarchar2(c IN VARCHAR2) RETURN ANYDATA,

The second way to construct an ANYDATA is a piece by piece approach. The
BEGINCREATE Static Procedure call begins the construction process and
ENDCREATE Member Procedure call finishes the construction process. In between
these two calls, the individual attributes of an object type or the elements of a
collection can be set using SET* calls. For piece by piece access of the attributes of
objects and elements of collections, the PIECEWISE Member Procedure should be
invoked prior to GET* calls.

Note: The ANYDATA has to be constructed or accessed sequentially starting from its
first attribute (or collection element). The BEGINCREATE call automatically begins
the construction in a piece-wise mode. There is no need to call PIECEWISE
immediately after BEGINCREATE. ENDCREATE should be called to finish the
construction process (before which any access calls can be made).

Access
Access functions are available based on SQL. These functions do not throw
exceptions on type-mismatch. Instead, they return NULL if the type of the ANYDATA
does not correspond to the type of access. If you wish to use only ANYDATA
functions of the appropriate types returned in a query, you should use a WHERE
clause which uses GETTYPENAME and choose the type you are interested in (say
"SYS.NUMBER"). Each of these functions returns the value of a specified datatype
inside a SYS.ANYDATA wrapper.

MEMBER FUNCTION AccessBDouble(self IN ANYDATA) return BINARY_DOUBLE
 DETERMINISTIC,
MEMBER FUNCTION AccessBfile(self IN ANYDATA) return BFILE,
MEMBER FUNCTION AccessBFloat(self IN ANYDATA) return BINARY_FLOAT
 DETERMINISTIC,
MEMBER FUNCTION AccessBlob(self IN ANYDATA) return BLOB,
MEMBER FUNCTION AccessChar(self IN ANYDATA) return CHAR,
MEMBER FUNCTION AccessClob(self IN ANYDATA) return CLOB,
MEMBER FUNCTION AccessDate(self IN ANYDATA) return DATE,
MEMBER FUNCTION AccessIntervalYM(self IN ANYDATA) return INTERVAL YEAR TO MONTH,
MEMBER FUNCTION AccessIntervalDS(self IN ANYDATA) return INTERVAL DAY TO SECOND,
MEMBER FUNCTION AccessNchar(self IN ANYDATA) return NCHAR,
MEMBER FUNCTION AccessNClob(self IN ANYDATA) return NCLOB
MEMBER FUNCTION AccessNumber(self IN ANYDATA) return NUMBER,
MEMBER FUNCTION AccessNVarchar2(self IN ANYDATA) return NVARCHAR2,
MEMBER FUNCTION AccessRaw(self IN ANYDATA) return RAW,

Operational Notes

168-4 PL/SQL Packages and Types Reference

MEMBER FUNCTION AccessTimestamp(self IN ANYDATA) return TIMESTAMP,
MEMBER FUNCTION AccessTimestampLTZ(self IN ANYDATA) return TIMESTAMP WITH LOCAL
 TIMEZONE,
MEMBER FUNCTION AccessTimestampTZ(self IN ANYDATA) return TIMESTAMP WITH
 TIMEZONE,
MEMBER FUNCTION AccessURowid(self IN ANYDATA) return UROWID DETERMINISTIC
MEMBER FUNCTION AccessVarchar(self IN ANYDATA) return VARCHAR,
MEMBER FUNCTION AccessVarchar2(self IN ANYDATA) return VARCHAR2,

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-5

Summary of ANYDATA Subprograms

Table 168–1 ANYDATA Type Subprograms

Subprogram Description

BEGINCREATE Static
Procedure on page 168-6

Begins creation process on a new ANYDATA

ENDCREATE Member
Procedure on page 168-7

Ends creation of an ANYDATA

GET* Member Functions
on page 168-8

Gets the current data value (which should be of appropriate
type)

GETTYPE Member
Function on page 168-12

Gets the Type of the ANYDATA

GETTYPENAME Member
Function on page 168-13

Get the fully qualified type name for the ANYDATA

PIECEWISE Member
Procedure on page 168-14

Sets the MODE of access of the current data value to be an
attribute at a time (if the data value is of TYPECODE_OBJECT)

SET* Member Procedures
on page 168-15

Sets the current data value.

BEGINCREATE Static Procedure

168-6 PL/SQL Packages and Types Reference

BEGINCREATE Static Procedure

This procedure begins the creation process on a new ANYDATA.

Syntax
STATIC PROCEDURE BeginCreate(
 dtype IN OUT NOCOPY AnyType,
 adata OUT NOCOPY ANYDATA);

Parameters

Exception
DBMS_TYPES.INVALID_PARAMETERS: dtype is invalid (not fully constructed, and
similar deficits.)

Usage Notes
There is no need to call PIECEWISE immediately after this call. The construction
process begins in a piece-wise manner automatically.

Table 168–2 BEGINCREATE Procedure Parameters

Parameter Description

dtype The type of the ANYDATA. (Should correspond to OCI_
TYPECODE_OBJECT or a Collection typecode.)

adata ANYDATA being constructed.

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-7

ENDCREATE Member Procedure

This procedure ends creation of an ANYDATA. Other creation functions cannot be
called after this call.

Syntax
MEMBER PROCEDURE EndCreate(
 self IN OUT NOCOPY ANYDATA);

Parameters

Table 168–3 ENDCREATE Procedure Parameter

Parameter Description

self An ANYDATA.

GET* Member Functions

168-8 PL/SQL Packages and Types Reference

GET* Member Functions

These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which we are
accessing (depending on whether we have invoked the PIECEWISE call).

If PIECEWISE has NOT been called, we are accessing the ANYDATA in its entirety
and the type of the data value should match the type of the ANYDATA.

If PIECEWISE has been called, we are accessing the ANYDATA piece-wise. The type
of the data value should match the type of the attribute (or collection element) at the
current position.

Syntax
MEMBER FUNCTION GetBDouble(
 self IN ANYDATA,
 dbl OUT NOCOPY BINARY_DOUBLE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBfile(
 self IN ANYDATA,
 b OUT NOCOPY BFILE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetBFloat(
 self IN ANYDATA,
 fl OUT NOCOPY BINARY_FLOAT)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBlob(
 self IN ANYDATA,
 b OUT NOCOPY BLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetChar(
 self IN ANYDATA,
 c OUT NOCOPY CHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetClob(
 self IN ANYDATA,
 c OUT NOCOPY CLOB)
 RETURN PLS_INTEGER;

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-9

MEMBER FUNCTION GetCollection(
 self IN ANYDATA,
 col OUT NOCOPY "<collection_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetDate(
 self IN ANYDATA,
 dat OUT NOCOPY DATE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetIntervalDS(
 self IN ANYDATA,
 inv OUT NOCOPY INTERVAL DAY TO SECOND)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetIntervalYM(
 self IN ANYDATA,
 inv OUT NOCOPY INTERVAL YEAR TO MONTH)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNchar(
 self IN ANYDATA,
 nc OUT NOCOPY NCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNClob(
 self IN ANYDATA,
 nc OUT NOCOPY NCLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNumber(
 self IN ANYDATA,
 num OUT NOCOPY NUMBER)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetNVarchar2(
 self IN ANYDATA,
 nc OUT NOCOPY NVARCHAR2)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetObject(
 self IN ANYDATA,
 obj OUT NOCOPY "<object_type>")
 RETURN PLS_INTEGER;

GET* Member Functions

168-10 PL/SQL Packages and Types Reference

MEMBER FUNCTION GetRaw(
 self IN ANYDATA,
 r OUT NOCOPY RAW)
 RETURN PLS_INTEGER;

MMEMBER FUNCTION GetRef(
 self IN ANYDATA,
 rf OUT NOCOPY REF "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestamp(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestampTZ(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP WITH TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetTimestampLTZ(
 self IN ANYDATA,
 ts OUT NOCOPY TIMESTAMP WITH LOCAL TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar(
 self IN ANYDATA,
 c OUT NOCOPY VARCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar2(
 self IN ANYDATA,
 c OUT NOCOPY VARCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 168–4 GET* Function Parameter

Parameter Description

self An ANYDATA.

num The number to be obtained.

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-11

Return Values
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PIECEWISE has been already called (for a
collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the
collection when all elements have been accessed.

Exceptions
DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the
passed in type.

DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (if it is not appropriate
to add a number at this point in the creation process).

DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

GETTYPE Member Function

168-12 PL/SQL Packages and Types Reference

GETTYPE Member Function

This function gets the typecode of the ANYDATA.

Syntax
MEMBER FUNCTION GETTYPE(
 self IN ANYDATA,
 typ OUT NOCOPY AnyType)
 RETURN PLS_INTEGER;

Parameters

Return Values
The typecode corresponding to the type of the ANYDATA.

Table 168–5 GETTYPE Function Parameter

Parameter Description

self An ANYDATA.

typ The AnyType corresponding to the ANYDATA. May be NULL if
it does not represent a user-defined type.

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-13

GETTYPENAME Member Function

This function gets the fully qualified type name for the ANYDATA.

If the ANYDATA is based on a built-in type, this function will return NUMBER and
other relevant information.

If it is based on a user defined type, this function will return schema_name.type_
name, for example, SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

Syntax
MEMBER FUNCTION GETTYPENAME(
 self IN ANYDATA)
 RETURN VARCHAR2;

Parameters

Return Values
Type name of the ANYDATA.

Table 168–6 GETTYPENAME Function Parameter

Parameter Description

self An ANYDATA.

PIECEWISE Member Procedure

168-14 PL/SQL Packages and Types Reference

PIECEWISE Member Procedure

This procedure sets the MODE of access of the current data value to be an attribute
at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of access of the data value to be a collection element at a time (if
the data value is of collection type). Once this call has been made, subsequent calls
to SET* and GET* will sequentially obtain individual attributes or collection
elements.

Syntax
MEMBER PROCEDURE PIECEWISE(
 self IN OUT NOCOPY ANYDATA);

Parameters

Exceptions
■ DBMS_TYPES.INVALID_PARAMETERS

■ DBMS_TYPES.INCORRECT_USAGE: On incorrect usage.

Usage Notes
The current data value must be of an OBJECT or COLLECTION type before this call
can be made.

Piece-wise construction and access of nested attributes that are of object or
collection types is not supported.

Table 168–7 PIECEWISE Procedure Parameters

Parameter Description

self The current data value.

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-15

SET* Member Procedures

Sets the current data value.

This is a list of procedures that should be called depending on the type of the
current data value. The type of the data value should be the type of the attribute at
the current position during the piece-wise construction process.

Syntax
MEMBER PROCEDURE SETBDOUBLE(
 self IN OUT NOCOPY ANYDATA,
 dbl IN BINARY_DOUBLE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBFILE(
 self IN OUT NOCOPY ANYDATA,
 b IN BFILE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBFLOAT(
 self IN OUT NOCOPY ANYDATA,
 fl IN BINARY_FLOAT,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETBLOB(
 self IN OUT NOCOPY ANYDATA,
 b IN BLOB,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCHAR(
 self IN OUT NOCOPY ANYDATA,
 c IN CHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCLOB(
 self IN OUT NOCOPY ANYDATA,
 c IN CLOB,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETCOLLECTION(
 self IN OUT NOCOPY ANYDATA,
 col IN "<collectyion_type>",
 last_elem IN boolean DEFAULT FALSE);

SET* Member Procedures

168-16 PL/SQL Packages and Types Reference

MEMBER PROCEDURE SETDATE(
 self IN OUT NOCOPY ANYDATA,
 dat IN DATE,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALDS(
 self IN OUT NOCOPY ANYDATA,
 inv IN INTERVAL DAY TO SECOND,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALYM(
 self IN OUT NOCOPY ANYDATA,
 inv IN INTERVAL YEAR TO MONTH,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNCHAR(
 self IN OUT NOCOPY ANYDATA,
 nc IN NCHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNCLOB(
 self IN OUT NOCOPY ANYDATA,
 nc IN NClob,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNUMBER(
 self IN OUT NOCOPY ANYDATA,
 num IN NUMBER,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETNVARCHAR2(
 self IN OUT NOCOPY ANYDATA,
 nc IN NVarchar2,
 last_elem IN boolean DEFAULT FALSE),

MEMBER PROCEDURE SETOBJECT(
 self IN OUT NOCOPY ANYDATA,
 obj IN "<object_type>",
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETRAW(
 self IN OUT NOCOPY ANYDATA,
 r IN RAW,
 last_elem IN boolean DEFAULT FALSE);

Summary of ANYDATA Subprograms

ANYDATA TYPE 168-17

MEMBER PROCEDURE SETREF(
 self IN OUT NOCOPY ANYDATA,
 rf IN REF "<object_type>",
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMP(
 self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPTZ(self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP WITH TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPLTZ(
 self IN OUT NOCOPY ANYDATA,
 ts IN TIMESTAMP WITH LOCAL TIME ZONE,
 last_elem IN boolean DEFAULT FALSE),

MEMBER PROCEDURE SETVARCHAR(
 self IN OUT NOCOPY ANYDATA,
 c IN VARCHAR,
 last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR2(
 self IN OUT NOCOPY ANYDATA,
 c IN VARCHAR2,
 last_elem IN boolean DEFAULT FALSE);

Parameters

Table 168–8 SET* Procedure Parameters

Parameter Description

self An ANYDATA.

num The number, and associated information, that is to be set.

last_elem Relevant only if ANYDATA represents a collection.

Set to TRUE if it is the last element of the collection, FALSE
otherwise.

SET* Member Procedures

168-18 PL/SQL Packages and Types Reference

Exceptions
■ DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (if it is not

appropriate to add a number at this point in the creation process).

■ DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

■ DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the
passed in type.

Usage Notes
When BEGINCREATE is called, construction has already begun in a piece-wise
fashion. Subsequent calls to SET* will set the successive attribute values.

If the ANYDATA is a standalone collection, the SET* call will set the successive
collection elements.

ANYDATASET TYPE 169-1

169
ANYDATASET TYPE

An ANYDATASET TYPE contains a description of a given type plus a set of data
instances of that type. An ANYDATASET can be persistently stored in the database if
desired, or it can be used as interface parameters to communicate self-descriptive
sets of data, all of which belong to a certain type.

This chapter contains the following topics:

■ Construction

■ Summary of ANYDATASET TYPE Subprograms

Construction

169-2 PL/SQL Packages and Types Reference

Construction

The ANYDATASET needs to be constructed value by value, sequentially.

For each data instance (of the type of the ANYDATASET), the ADDINSTANCE function
must be invoked. This adds a new data instance to the ANYDATASET. Subsequently,
SET* can be called to set each value in its entirety.

The MODE of construction/access can be changed to attribute/collection element
wise by making calls to PIECEWISE.

■ If the type of the ANYDATASET is TYPECODE_OBJECT, individual attributes
will be set with subsequent SET* calls. Likewise on access.

■ If the type of the current data value is a collection type individual collection
elements will be set with subsequent SET* calls. Likewise on access. This call is
very similar to ANYDATA.PIECEWISE call defined for the type ANYDATA.

Note that there is no support for piece-wise construction and access of nested (not
top level) attributes that are of object types or collection types.

ENDCREATE should be called to finish the construction process (before which no
access calls can be made).

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-3

Summary of ANYDATASET TYPE Subprograms

Table 169–1 ANYDATASET Type Subprograms

Subprogram Description

ADDINSTANCE Member
Procedure on page 169-4

Adds a new data instance to an ANYDATASET.

BEGINCREATE Static
Procedure on page 169-5

Creates a new ANYDATASET which can be used to create a set
of data values of the given ANYTYPE.

ENDCREATE Member
Procedure on page 169-6

Ends Creation of a ANYDATASET. Other creation functions
cannot be called after this call.

GET* Member Functions
on page 169-7

Gets the current data value (which should be of appropriate
type).

GETCOUNT Member
Function on page 169-11

Gets the number of data instances in an ANYDATASET.

GETINSTANCE Member
Function on page 169-12

Gets the next instance in an ANYDATASET.

GETTYPE Member
Function on page 169-13

Gets the ANYTYPE describing the type of the data instances in
an ANYDATASET.

current data value (which should be of appropriate type).

GETTYPENAME Member
Function on page 169-14

Gets the AnyType describing the type of the data instances in
an ANYDATASET.

PIECEWISE Member
Procedure on page 169-15

Sets the MODE of construction, access of the data value to be an
attribute at a time (if the data value is of TYPECODE_OBJECT).

SET* Member Procedures
on page 169-16

Sets the current data value.

ADDINSTANCE Member Procedure

169-4 PL/SQL Packages and Types Reference

ADDINSTANCE Member Procedure

This procedure adds a new data instance to an ANYDATASET.

Syntax
MEMBER PROCEDURE AddInstance(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Exceptions
DBMS_TYPES.invalid_parameters: Invalid parameters.
DBMS_TYPES.incorrect_usage: On incorrect usage.

Usage Notes
The data instances have to be added sequentially. The previous data instance must
be fully constructed (or set to NULL) before a new one can be added.

This call DOES NOT automatically set the mode of construction to be piece-wise.
The user has to explicitly call PIECEWISE if a piece-wise construction of the
instance is intended.

Table 169–2 ADDINSTANCE Procedure Parameter

Parameter Description

self The ANYDATASET being constructed.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-5

BEGINCREATE Static Procedure

This procedure creates a new ANYDATASET which can be used to create a set of data
values of the given ANYTYPE.

Syntax
STATIC PROCEDURE BeginCreate(
 typecode IN PLS_INTEGER,
 rtype IN OUT NOCOPY AnyType,
 aset OUT NOCOPY ANYDATASET);

Parameters

Exceptions
DBMS_TYPES.invalid_parameters: dtype is invalid (not fully constructed, and like
errors.)

Table 169–3 BEGINCREATE Procedure Parameter

Parameter Description

typecode The typecode for the type of the ANYDATASET.

dtype The type of the data values. This parameter is a must for
user-defined types like TYPECODE_OBJECT, Collection
typecodes, and similar others.

aset The ANYDATASET being constructed.

ENDCREATE Member Procedure

169-6 PL/SQL Packages and Types Reference

ENDCREATE Member Procedure

This procedure ends Creation of a ANYDATASET. Other creation functions cannot be
called after this call.

Syntax
MEMBER PROCEDURE ENDCREATE(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Table 169–4 ENDCREATE Procedure Parameter

Parameter Description

self The ANYDATASET being constructed.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-7

GET* Member Functions

These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which you are
accessing it (depending on how we have invoked the PIECEWISE call). If
PIECEWISE has not been called, we are accessing the instance in its entirety and the
type of the data value should match the type of the ANYDATASET.

If PIECEWISE has been called, we are accessing the instance piece-wise. The type of
the data value should match the type of the attribute (or collection element) at the
current position.

Syntax
MEMBER FUNCTION GETBDOUBLE(
 self IN ANYDATASET,
 dbl OUT NOCOPY BINARY_DOUBLE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBFLOAT(
 self IN ANYDATASET,
 fl OUT NOCOPY BINARY_FLOAT)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBFILE(
 self IN ANYDATASET,
 b OUT NOCOPY BFILE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETBLOB(
 self IN ANYDATASET,
 b OUT NOCOPY BLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETCHAR(
 self IN ANYDATASET,
 c OUT NOCOPY CHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETCLOB(
 self IN ANYDATASET,
 c OUT NOCOPY CLOB)
 RETURN PLS_INTEGER;

GET* Member Functions

169-8 PL/SQL Packages and Types Reference

MEMBER FUNCTION GETCOLLECTION(
 self IN ANYDATASET,
 col OUT NOCOPY "<collection_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETDATE(
 self IN ANYDATASET,
 dat OUT NOCOPY DATE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETINTERVALDS(
 self IN ANYDATASET,
 inv IN OUT NOCOPY INTERVAL DAY TO SECOND)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETINTERVALYM(
 self IN ANYDATASET,
 inv IN OUT NOCOPY INTERVAL YEAR TO MONTH)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNCHAR(
 self IN ANYDATASET,
 nc OUT NOCOPY NCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNCLOB(
 self IN ANYDATASET,
 nc OUT NOCOPY NCLOB)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNUMBER(
 self IN ANYDATASET,
 num OUT NOCOPY NUMBER)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETNVARCHAR2(
 self IN ANYDATASET,
 nc OUT NOCOPY NVARCHAR2)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETOBJECT(
 self IN ANYDATASET,
 obj OUT NOCOPY "<object_type>")
 RETURN PLS_INTEGER;

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-9

MEMBER FUNCTION GETRAW(
 self IN ANYDATASET,
 r OUT NOCOPY RAW)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETREF(
 self IN ANYDATASET,
 rf OUT NOCOPY REF "<object_type>")
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMP(
 self IN ANYDATASET,
RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMPLTZ(
 self IN ANYDATASET,
 ts OUT NOCOPY TIMESTAMP WITH LOCAL TIME ZONE)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETTIMESTAMPTZ(
 self IN ANYDATASET,
 ts OUT NOCOPY TIMESTAMP WITH TIME ZONE)
 RETURN PLS_INTEGER,

MEMBER FUNCTION GETUROWID(
 self IN ANYDATASET,
 rid OUT NOCOPY UROWID)
 RETURN PLS_INTEGER

MEMBER FUNCTION GETVARCHAR(
 self IN ANYDATASET,
 c OUT NOCOPY VARCHAR)
 RETURN PLS_INTEGER;

MEMBER FUNCTION GETVARCHAR2(
 self IN ANYDATASET,
 c OUT NOCOPY VARCHAR2)
 RETURN PLS_INTEGER;

GET* Member Functions

169-10 PL/SQL Packages and Types Reference

Parameters

Return Values
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PIECEWISE has been already called (for a
collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the
collection when all elements have been accessed.

Exceptions
DBMS_TYPES.INVALID_PARAMETERs: Invalid Parameters (if it is not appropriate
to add a number at this point in the creation process).

DBMS_TYPES.INCORRECT_USAGE: Incorrect usage

DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the
passed in type.

Table 169–5 GET* Procedure Parameters

Parameter Description

self The ANYDATASET being accessed.

num The number, and associated information., that is to be
obtained.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-11

GETCOUNT Member Function

This function gets the number of data instances in an ANYDATASET.

Syntax
MEMBER FUNCTION GetCount(
 self IN ANYDATASET)
 RETURN PLS_INTEGER;

Parameter

Return Values
The number of data instances.

Table 169–6 GETCOUNT Function Parameter

Parameter Description

self The ANYDATASET being accessed.

GETINSTANCE Member Function

169-12 PL/SQL Packages and Types Reference

GETINSTANCE Member Function

This function gets the next instance in an ANYDATASET. Only sequential access to
the instances in an ANYDATASET is allowed. After this function has been called, the
GET* functions can be invoked on the ANYDATASET to access the current instance.
If PIECEWISE is called before doing the GET* calls, the individual attributes (or
collection elements) can be accessed.

It is an error to invoke this function before the ANYDATASET is fully created.

Syntax
MEMBER FUNCTION GETINSTANCE(
 self IN OUT NOCOPY ANYDATASET)
 RETURN PLS_INTEGER;

Parameters

Return Values
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

DBMS_TYPES.NO_DATA signifies the end of the ANYDATASET (all instances have
been accessed).

Usage Notes
This function should be called even before accessing the first instance.

Table 169–7 GETINSTANCE Function Parameter

Parameter Description

self The ANYDATASET being accessed.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-13

GETTYPE Member Function

Gets the AnyType describing the type of the data instances in an ANYDATASET.

Syntax
MEMBER FUNCTION GETTYPE(
 self IN ANYDATASET,
 typ OUT NOCOPY AnyType)
 RETURN PLS_INTEGER;

Parameters

Return Values
The typecode corresponding to the type of the ANYDATA.

Table 169–8 GETTYPE Function Parameter

Parameter Description

self The ANYDATASET.

typ The ANYTYPE corresponding to the AnyData. May be NULL if
it does not represent a user-defined function.

GETTYPENAME Member Function

169-14 PL/SQL Packages and Types Reference

GETTYPENAME Member Function

This procedure gets the fully qualified type name for the ANYDATASET.

If the ANYDATASET is based on a built-in, this function will return NUMBER and
associated information.

If it is based on a user defined type, this function will return schema_name.type_
name. for example, SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

Syntax
MEMBER FUNCTION GETTYPENAME(
 self IN ANYDATASET)
 RETURN VARCHAR2;

Parameter

Return Values
Type name of the ANYDATASET.

Table 169–9 GETTYPENAME Function Parameter

Parameter Description

self The ANYDATASET being constructed.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-15

PIECEWISE Member Procedure

This procedure sets the MODE of construction, access of the data value to be an
attribute at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of construction, access of the data value to be a collection element at
a time (if the data value is of a collection TYPE). Once this call has been made,
subsequent SET* and GET* calls will sequentially obtain individual attributes or
collection elements.

Syntax
MEMBER PROCEDURE PIECEWISE(
 self IN OUT NOCOPY ANYDATASET);

Parameters

Exceptions
DBMS_TYPES.INVALID_PARAMETERS: Invalid parameters.

DBMS_TYPES.INCORRECT_USAGE: On incorrect usage.

Usage Notes
The current data value must be of an object or collectyon type before this call can be
made. There is no support for piece-wise construction or access of embedded object
type attributes or nested collections.

Table 169–10 PIECEWISE Procedure Parameter

Parameter Description

self The ANYDATASET being constructed.

SET* Member Procedures

169-16 PL/SQL Packages and Types Reference

SET* Member Procedures

This procedure sets the current data value.

The type of the current data value depends on the MODE with which we are
constructing (depending on how we have invoked the PIECEWISE call). The type of
the current data should be the type of the ANYDATASET if PIECEWISE has NOT
been called. The type should be the type of the attribute at the current position if
PIECEWISE has been called.

Syntax
MEMBER PROCEDURE SETBDOUBLE(
 self IN OUT NOCOPY ANYDATASET,
 dbl IN BINARY_DOUBLE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBFLOAT(
 self IN OUT NOCOPY ANYDATASET,
 fl IN BINARY_FLOAT,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBFILE(
 self IN OUT NOCOPY ANYDATASET,
 b IN BFILE,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETBLOB(
 self IN OUT NOCOPY ANYDATASET,
 b IN BLOB,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCHAR(
 self IN OUT NOCOPY ANYDATASET,
 c IN CHAR,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCLOB(
 self IN OUT NOCOPY ANYDATASET,
 c IN CLOB,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETCOLLECTION(
 self IN OUT NOCOPY ANYDATASET,

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-17

 col IN "<collection_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETDATE(
 self IN OUT NOCOPY ANYDATASET,
 dat IN DATE,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALDS(
 self IN OUT NOCOPY ANYDATASET,
 inv IN INTERVAL DAY TO SECOND,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETINTERVALYM(
 self IN OUT NOCOPY ANYDATASET,
 inv IN INTERVAL YEAR TO MONTH,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNCHAR(
 self IN OUT NOCOPY ANYDATASET,
 nc IN NCHAR,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNCLOB(
self IN OUT NOCOPY ANYDATASET,

 nc IN NClob,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNUMBER(
 self IN OUT NOCOPY ANYDATASET,
 num IN NUMBER,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETNVARCHAR2(
 self IN OUT NOCOPY ANYDATASET,
 nc IN NVarchar2,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETOBJECT(
 self IN OUT NOCOPY ANYDATASET,
 obj IN "<object_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETRAW(
 self IN OUT NOCOPY ANYDATASET,

SET* Member Procedures

169-18 PL/SQL Packages and Types Reference

 r IN RAW,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETREF(
 self IN OUT NOCOPY ANYDATASET,
 rf IN REF "<object_type>",
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMP(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPLTZ(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP WITH LOCAL TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETTIMESTAMPTZ(
 self IN OUT NOCOPY ANYDATASET,
 ts IN TIMESTAMP WITH TIME ZONE,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETUROWID(
 self IN OUT NOCOPY ANYDATASET,
 rid IN UROWID,
 last_elem IN BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR(
 self IN OUT NOCOPY ANYDATASET,
 c IN VARCHAR,
 last_elem BOOLEAN DEFAULT FALSE);

MEMBER PROCEDURE SETVARCHAR2(
 self IN OUT NOCOPY ANYDATASET,
 c IN VARCHAR2,
 last_elem BOOLEAN DEFAULT FALSE);

Parameters

Table 169–11 SET* Procedure Parameters

Parameter Description

self The ANYDATASET being accessed.

Summary of ANYDATASET TYPE Subprograms

ANYDATASET TYPE 169-19

Exceptions
■ DBMS_TYPES.INVALID_PARAMETERS: Invalid parameters (if it is not

appropriate to add a number at this point in the creation process).

■ DBMS_TYPES.INCORRECT_USAGE: Incorrect usage.

■ DBMS_TYPES.TYPE_MISMATCH: When the expected type is different from the
passed in type.

num The number, and associated information, that is to be set.

last_elem Relevant only if PIECEWISE has been already called (for a
collection). Set to TRUE if it is the last element of the collection,
FALSE otherwise.

Table 169–11 SET* Procedure Parameters

Parameter Description

SET* Member Procedures

169-20 PL/SQL Packages and Types Reference

ANYTYPE TYPE 170-1

170
ANYTYPE TYPE

An ANYTYPE TYPE can contain a type description of any persistent SQL type,
named or unnamed, including object types and collection types. It can also be used
to construct new transient type descriptions.

New persistent types can only be created using the CREATE TYPE statement. Only
new transient types can be constructed using the ANYTYPE interfaces.

Thios chapter discusses the following:

■ Summary of ANYTYPE Subprograms

Summary of ANYTYPE Subprograms

170-2 PL/SQL Packages and Types Reference

Summary of ANYTYPE Subprograms

Table 170–1 ANYTYPE Type Subprograms

Subprogram Description

BEGINCREATE Static
Procedure on page 170-3

Creates a new instance of ANYTYPE which can be used to
create a transient type description.

SETINFO Member
Procedure on page 170-4

Sets any additional information required for constructing a
COLLECTION or builtin type.

ADDATTR Member
Procedure on page 170-6

Adds an attribute to an ANYTYPE (of typecode DBMS_
TYPES.TYPECODE_OBJECT).

ENDCREATE Member
Procedure on page 170-8

Ends creation of a transient ANYTYPE. Other creation functions
cannot be called after this call.

GETPERSISTENT Static
Function on page 170-9

Returns an ANYTYPE corresponding to a persistent type
created earlier using the CREATE TYPE SQL statement.

GETINFO Member
Function on page 170-10

Gets the type information for the ANYTYPE.

GETATTRELEMINFO
Member Function on
page 170-12

Gets the type information for an attribute of the type (if it is of
TYPECODE_OBJECT). Gets the type information for a
collection's element type if the self parameter is of a collection
type.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-3

BEGINCREATE Static Procedure

This procxedure creates a new instance of ANYTYPE which can be used to create a
transient type description.

Syntax
STATIC PROCEDURE BEGINCREATE(
 typecode IN PLS_INTEGER,
 atype OUT NOCOPY ANYTYPE);

Parameters

Table 170–2 BEGINCREATE Procedure Parameters

Parameter Description

typecode Use a constant from DBMS_TYPES package.
Typecodes for user-defined type:

can be DBMS_TYPES.TYPECODE_OBJECT

 DBMS_TYPES.TYPECODE_VARRAY or

 DBMS_TYPES.TYPECODE_TABLE

Typecodes for builtin types:

DBMS_TYPES.TYPECODE_NUMBER, and similar
types.

atype ANYTYPE for a transient type

SETINFO Member Procedure

170-4 PL/SQL Packages and Types Reference

SETINFO Member Procedure

This procedure sets any additional information required for constructing a
COLLECTION or builtin type.

Syntax
MEMBER PROCEDURE SETINFO(
 self IN OUT NOCOPY ANYTYPE,
 prec IN PLS_INTEGER,
 scale IN PLS_INTEGER,
 len IN PLS_INTEGER,
 csid IN PLS_INTEGER,
 csfrm IN PLS_INTEGER,
 atype IN ANYTYPE DEFAULT NULL,
 elem_tc IN PLS_INTEGER DEFAULT NULL,
 elem_count IN PLS_INTEGER DEFAULT 0);

Parameters

Table 170–3 SETINFO Procedure Parameters

Parameter Description

self The transient ANYTYPE that is being constructed.

prec Optional.Required if typecode represents a NUMBER.

Give precision and scale. Ignored otherwise.

scale Optional.Required if typecode represents a NUMBER.

Give precision and scale. Ignored otherwise.

len Optional. Required if typecode represents aRAW,CHAR,
VARCHAR, or VARCHAR2 type. Gives length.

csid Required if typecode represents types requiring character
information such as CHAR, VARCHAR, VARCHAR2, or CFILE.

csfrm Required if typecode represents types requiring character
information such as CHAR, VARCHAR, VARCHAR2, or CFILE.

atype Optional. Required if collection element typecode is a
user-defined type such as TYPECODE_OBJECT, and similar
others.. It is also required for a built-in type that needs
user-defined type information such as TYPECODE_REF. This
parameter is not needed otherwise.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-5

Exceptions
■ DBMS_TYPES.INVALID_PARAMETER: Invalid Parameters (typecode, typeinfo)

■ DBMS_TYPES.INCORRECT_USAGE: Incorrect usage (cannot call after calling
ENDCREATE, and similar actions.)

Usage Notes
It is an error to call this function on an ANYTYPE that represents a persistent user
defined type.

The Following Parameters Are Required For Collection Types:

elem_tc Must be of the collection element's typecode (from DBMS_
TYPES package).

elem_count Pass 0 for elem_count if the self represents a nested table
(TYPECODE_TABLE). Otherwise pass the collection count if self
represents a VARRAY.

Table 170–3 (Cont.) SETINFO Procedure Parameters

Parameter Description

ADDATTR Member Procedure

170-6 PL/SQL Packages and Types Reference

ADDATTR Member Procedure

This procedure adds an attribute to an ANYTYPE (of typecode DBMS_
TYPES.TYPECODE_OBJECT).

Syntax
MEMBER PROCEDURE ADDATTR(
 self IN OUT NOCOPY ANYTYPE,
 aname IN VARCHAR2,
 typecode IN PLS_INTEGER,
 prec IN PLS_INTEGER,
 scale IN PLS_INTEGER,
 len IN PLS_INTEGER,
 csid IN PLS_INTEGER,
 csfrm IN PLS_INTEGER,
 attr_type IN ANYTYPE DEFAULT NULL);

Parameters

Table 170–4 ADDATTR Procedure Parameters

Parameter Description

self The transient ANYTYPE that is being constructed. Must be of
type DBMS_TYPES.TYPECODE_OBJECT.

aname Optional. Attribute's name. Could be NULL.

typecode Attribute's typecode. Can be built-in or user-defined
typecode (from DBMS_TYPES package).

prec Optional. Required if typecode represents a NUMBER. Give
precision and scale. Ignored otherwise.

scale Optional. Required if typecode represents a NUMBER. Give
precision and scale. Ignored otherwise.

len Optional. Required if typecode represents a RAW, CHAR,
VARCHAR, or VARCHAR2 type. Give length.

csid Optional. Required if typecode represents a type requiring
character information, such as CHAR, VARCHAR, VARCHAR2,
CFILE.

csfrm Optional. Required if typecode represents a type requiring
character information, such as CHAR, VARCHAR, VARCHAR2,
CFILE.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-7

Exceptions
■ DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (typecode,

typeinfo)

■ DBMS_TYPES.INCORRECT_USAGE: Incorrect usage (cannot call after calling
EndCreate, and similar actions.)

attr_type Optional. ANYTYPE corresponding to a user-defined type. This
parameter is required if the attribute is a user defined type.

Table 170–4 (Cont.) ADDATTR Procedure Parameters

Parameter Description

ENDCREATE Member Procedure

170-8 PL/SQL Packages and Types Reference

ENDCREATE Member Procedure

This procedure ends creation of a transient ANYTYPE. Other creation functions
cannot be called after this call.

Syntax
MEMBER PROCEDURE ENDCREATE(
 self IN OUT NOCOPY ANYTYPE);

Parameter

Table 170–5 ENDCREATE Procedure Parameter

Parameter Description

self The transient ANYTYPE that is being constructed.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-9

GETPERSISTENT Static Function

This procedure returns an ANYTYPE corresponding to a persistent type created
earlier using the CREATE TYPE SQL statement.

Syntax
STATIC FUNCTION GETPERSISTENT(
 schema_name IN VARCHAR2,
 type_name IN VARCHAR2,
 version IN VARCHAR2 DEFAULT NULL)
 RETURN ANYTYPE;

Parameters

Return Values
An ANYTYPE corresponding to a persistent type created earlier using the CREATE
TYPE SQL statement.

Table 170–6 GETPERSISTENT Function Parameters

Parameter Description

schema_name Schema name of the type.

type_name Type name.

version Type version.

GETINFO Member Function

170-10 PL/SQL Packages and Types Reference

GETINFO Member Function

This function gets the type information for the ANYTYPE.

Syntax
MEMBER FUNCTION GETINFO (
 self IN ANYTYPE,
 prec OUT PLS_INTEGER,
 scale OUT PLS_INTEGER,
 len OUT PLS_INTEGER,
 csid OUT PLS_INTEGER,
 csfrm OUT PLS_INTEGER,
 schema_name OUT VARCHAR2,
 type_name OUT VARCHAR2,
 version OUT varchar2,
 count OUT PLS_INTEGER)
 RETURN PLS_INTEGER;

Parameters

Table 170–7 GETINFO Function Parameters

Parameter Description

self The ANYTYPE.

prec If typecode represents a number. Gives precision and scale.
Ignored otherwise.

scale If typecode represents a number. Gives precision and scale.
Ignored otherwise.

len If typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2
type. Gives length.

csid If typecode represents a type requiring character information
such as: CHAR, VARCHAR, VARCHAR2, CFILE.

csid If typecode represents a type requiring character information
such as: CHAR, VARCHAR, VARCHAR2, CFILE.

schema_name Type's schema (if persistent).

type_name Type's typename.

version Type's version.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-11

Return Values
The typecode of self.

Exceptions
■ DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (position is beyond

bounds or the ANYTYPE is not properly Constructed).

count If self is a VARRAY, this gives the VARRAY count. If self is of
TYPECODE_OBJECT, this gives the number of attributes.

Table 170–7 (Cont.) GETINFO Function Parameters

Parameter Description

GETATTRELEMINFO Member Function

170-12 PL/SQL Packages and Types Reference

GETATTRELEMINFO Member Function

This function gets the type information for an attribute of the type (if it is of
TYPECODE_OBJECT). Gets the type information for a collection's element type if the
self parameter is of a collection type.

Syntax
MEMBER FUNCTION GETATTRELEMINFO (
 self IN ANYTYPE,
 pos IN PLS_INTEGER,
 prec OUT PLS_INTEGER,
 scale OUT PLS_INTEGER,
 len OUT PLS_INTEGER,
 csid OUT PLS_INTEGER,
 csfrm OUT PLS_INTEGER,
 attr_elt_type OUT ANYTYPE
 aname OUT VARRCHAR2)
 RETURN PLS_INTEGER;

Parameters

Table 170–8 GETATTRELEMINFO Function Parameters

Parameter Description

self The ANYTYPE.

pos If self is of TYPECODE_OBJECT, this gives the attribute position
(starting at 1). It is ignored otherwise.

prec If attribute/collection element typecode represents a NUMBER.
Gives precision and scale. Ignored otherwise.

scale If attribute/collection element typecode represents a NUMBER.
Gives precision and scale. Ignored otherwise.

len If typecode represents a RAW, CHAR, VARCHAR, or VARCHAR2
type. Gives length.

csid, csfrm If typecode represents a type requiring character information
such as: CHAR, VARCHAR, VARCHAR2, CFILE. Gives character
set ID, character set form.

attr_elt_type If attribute/collection element typecode represents a
user-defined type, this returns the ANYTYPE corresponding to
it. User can subsequently describe the attr_elt_type.

Summary of ANYTYPE Subprograms

ANYTYPE TYPE 170-13

Return Values
The typecode of the attribute or collection element.

Exceptions
DBMS_TYPES.INVALID_PARAMETERS: Invalid Parameters (position is beyond
bounds or the ANYTYPE is not properly constructed).

aname Attribute name (if it is an attribute of an object type, NULL
otherwise).

Table 170–8 (Cont.) GETATTRELEMINFO Function Parameters

Parameter Description

GETATTRELEMINFO Member Function

170-14 PL/SQL Packages and Types Reference

Oracle Streams AQ TYPEs 171-1

171
Oracle Streams AQ TYPEs

This chapter describes the types used with Oracle Streams Advanced Queuing (AQ)
packages for PL/SQL, DBMS_AQ, and DBMS_AQADM.

This chapter contains the following topics:

■ Summary of Types

See Also: Oracle Streams Advanced Queuing User's Guide and
Reference for information about using Oracle Streams AQ.

Summary of Types

171-2 PL/SQL Packages and Types Reference

Summary of Types

■ AQ$_AGENT Type

■ AQ$_AGENT_LIST_T Type

■ AQ$_DESCRIPTOR Type

■ AQ$_POST_INFO Type

■ AQ$_POST_INFO_LIST Type

■ AQ$_PURGE_OPTIONS_T Type

■ AQ$_RECIPIENT_LIST_T Type

■ AQ$_REG_INFO Type

■ AQ$_REG_INFO_LIST Type

■ AQ$_SUBSCRIBER_LIST_T Type

■ DEQUEUE_OPTIONS_T Type

■ ENQUEUE_OPTIONS_T Type

■ MESSAGE_PROPERTIES_T Type

■ MESSAGE_PROPERTIES_ARRAY_T Type

■ MSGID_ARRAY_T Type

Summary of Types

Oracle Streams AQ TYPEs 171-3

AQ$_AGENT Type

Identifies a producer or a consumer of a message.

Syntax
TYPE SYS.AQ$_AGENT IS OBJECT (
 name VARCHAR2(30),
 address VARCHAR2(1024),
 protocol NUMBER DEFAULT 0);

Attributes

Table 171–1 AQ$_AGENT Attributes

Attribute Description

name Name of a producer or consumer of a message. The name must follow object
name guidelines in the Oracle Database SQL Reference with regard to reserved
characters.

address Protocol-specific address of the recipient. If the protocol is 0, then the address
is of the form [schema.]queue[@dblink].

For example, a queue named emp_messages in the hr queue at the site
dbs1.net has the address: hr.emp_messages@dbs1.net

protocol Protocol to interpret the address and propagate the message. Protocols 1-127
are reserved for internal use. If the protocol number is in the range 128 - 255,
the address of the recipient is not interpreted by Oracle Streams AQ.

AQ$_AGENT_LIST_T Type

171-4 PL/SQL Packages and Types Reference

AQ$_AGENT_LIST_T Type

Identifies the list of agents for which DBMS_AQ.LISTEN listens.

Syntax
TYPE SYS.AQ$_AGENT_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY INTEGER;

See Also: "AQ$_AGENT Type" on page 171-3

Summary of Types

Oracle Streams AQ TYPEs 171-5

AQ$_DESCRIPTOR Type

Specifies the Oracle Streams AQ descriptor received by the AQ PL/SQL callbacks
upon notification.

Syntax
TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (
 queue_name VARCHAR2(61),
 consumer_name VARCHAR2(30),
 msg_id RAW(16),
 msg_prop MSG_PROP_T);

Attributes

See Also: "MESSAGE_PROPERTIES_T Type" on page 171-18

Table 171–2 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_name Name of the queue in which the message was enqueued which
resulted in the notification

consumer_name Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

AQ$_POST_INFO Type

171-6 PL/SQL Packages and Types Reference

AQ$_POST_INFO Type

Specifies anonymous subscriptions to which you want to post messages.

Syntax
TYPE SYS.AQ$_POST_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 payload RAW(2000) DEFAULT NULL);

Attributes

Table 171–3 AQ$_POST_INFO Attributes

Attribute Description

name Name of the anonymous subscription to which you want to post

namespace To receive notifications from other applications through DBMS_AQ.POST or
OCISubscriptionPost(), the namespace must be DBMS_
AQ.NAMESPACE_ANONYMOUS

payload The payload to be posted to the anonymous subscription

Summary of Types

Oracle Streams AQ TYPEs 171-7

AQ$_POST_INFO_LIST Type

Identifies the list of anonymous subscriptions to which you want to post messages.

Syntax
TYPE SYS.AQ$_POST_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_POST_INFO;

See Also: "AQ$_POST_INFO Type" on page 171-6

AQ$_PURGE_OPTIONS_T Type

171-8 PL/SQL Packages and Types Reference

AQ$_PURGE_OPTIONS_T Type

Specifies the options available for purging a queue table.

Syntax
TYPE AQ$_PURGE_OPTIONS_T is
RECORD (block boolean DEFAULT FALSE);

Usage Notes
If block is TRUE, then an exclusive lock on all the queues in the queue table is held
while purging the queue table. This will cause concurrent enqueuers and dequeuers
to block while the queue table is purged. The purge call always succeeds if block is
TRUE.

The default for block is FALSE. This will not block enqueuers and dequeuers, but
it can cause the purge to fail with an error during high concurrency times.

See Also: "PURGE_QUEUE_TABLE Procedure" on page 17-42.

Summary of Types

Oracle Streams AQ TYPEs 171-9

AQ$_RECIPIENT_LIST_T Type

Identifies the list of agents that receive the message. This type can be used only
when the queue is enabled for multiple dequeues.

Syntax
TYPE SYS.AQ$_RECIPIENT_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY_INTEGER;

See Also: "AQ$_AGENT Type" on page 171-3

AQ$_REG_INFO Type

171-10 PL/SQL Packages and Types Reference

AQ$_REG_INFO Type

Specifies the information regarding the registrant for notification on a queue.

Syntax
TYPE SYS.AQ$_REG_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 callback VARCHAR2(4000),
 context RAW(2000) DEFAULT NULL);

Attributes

Usage Notes
You can use the following notification mechanisms:

■ OCI callback

■ e-mail callback

■ PL/SQL callback

Table 171–4 AQ$_REG_INFO Type Attributes

Attribute Description

name Specifies the name of the subscription. The subscription name is of the form
schema.queue if the registration is for a single consumer queue or
schema.queue:consumer_name if the registration is for a multiconsumer
queues.

namespace Specifies the namespace of the subscription. To receive notification from
Oracle Streams AQ queues, the namespace must be DBMS_AQ.NAMESPACE_
AQ. To receive notifications from other applications through DBMS_
AQ.POST or OCISubscriptionPost(), the namespace must be DBMS_
AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification. For HTTP
notifications, use http://www.company.com:8080. For e-mail
notifications, use mailto://xyz@company.com. For raw message payload
for the PLSQLCALLBACK procedure, use
plsql://schema.procedure?PR=0. For user-defined type message
payload converted to XML for the PLSQLCALLBACK procedure, use
plsql://schema.procedure?PR=1

context Specifies the context that is to be passed to the callback function

Summary of Types

Oracle Streams AQ TYPEs 171-11

Table 171–5 shows the actions performed for nonpersistent queues for different
notification mechanisms when RAW presentation is specified. Table 171–6 shows
the actions performed when XML presentation is specified.

Table 171–5 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

Queue Payload
Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives the RAW
data in the payload.

Not supported PL/SQL callback receives the
RAW data in the payload.

Oracle object type Not supported Not supported Not supported

Table 171–6 Actions Performed for Nonpersistent Queues When XML Presentation Specified

Queue
Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Oracle object
type

OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

AQ$_REG_INFO_LIST Type

171-12 PL/SQL Packages and Types Reference

AQ$_REG_INFO_LIST Type

Identifies the list of registrations to a queue.

Syntax
TYPE SYS.AQ$_REG_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_REG_INFO;

See Also: "AQ$_REG_INFO Type" on page 171-10

Summary of Types

Oracle Streams AQ TYPEs 171-13

AQ$_SUBSCRIBER_LIST_T Type

Identifies the list of subscribers that subscribe to a queue.

Syntax
TYPE SYS.AQ$_SUBSCRIBER_LIST_T IS TABLE OF SYS.AQ$_AGENT
 INDEX BY BINARY_INTEGER;

See Also: "AQ$_AGENT Type" on page 171-3

DEQUEUE_OPTIONS_T Type

171-14 PL/SQL Packages and Types Reference

DEQUEUE_OPTIONS_T Type

Specifies the options available for the dequeue operation.

Syntax
TYPE DEQUEUE_OPTIONS_T IS RECORD (
 consumer_name VARCHAR2(30) DEFAULT NULL,
 dequeue_mode BINARY_INTEGER DEFAULT REMOVE,
 navigation BINARY_INTEGER DEFAULT NEXT_MESSAGE,
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 wait BINARY_INTEGER DEFAULT FOREVER,
 msgid RAW(16) DEFAULT NULL,
 correlation VARCHAR2(128) DEFAULT NULL,
 deq_condition VARCHAR2(4000) DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL);

Attributes

Table 171–7 DEQUEUE_OPTIONS_T Attributes

Attribute Description

consumer_name Name of the consumer. Only those messages matching the consumer
name are accessed. If a queue is not set up for multiple consumers,
then this field should be set to NULL.

For secure queues, consumer_name must be a valid AQ agent name,
mapped to the database user performing the dequeue operation,
through dbms_aqadm.enable_db_access procedure call.

dequeue_mode Specifies the locking behavior associated with the dequeue. Possible
settings are:

BROWSE: Read the message without acquiring any lock on the message.
This specification is equivalent to a select statement.

LOCKED: Read and obtain a write lock on the message. The lock lasts
for the duration of the transaction. This setting is equivalent to a select
for update statement.

REMOVE: Read the message and delete it. This setting is the default. The
message can be retained in the queue table based on the retention
properties.

REMOVE_NODATA: Mark the message as updated or deleted. The
message can be retained in the queue table based on the retention
properties.

Summary of Types

Oracle Streams AQ TYPEs 171-15

navigation Specifies the position of the message that will be retrieved. First, the
position is determined. Second, the search criterion is applied. Finally,
the message is retrieved. Possible settings are:

NEXT_MESSAGE: Retrieve the next message that is available and
matches the search criteria. If the previous message belongs to a
message group, then AQ retrieves the next available message that
matches the search criteria and belongs to the message group. This
setting is the default.

NEXT_TRANSACTION: Skip the remainder of the current transaction
group (if any) and retrieve the first message of the next transaction
group. This setting can only be used if message grouping is enabled for
the current queue.

FIRST_MESSAGE: Retrieves the first message which is available and
matches the search criteria. This setting resets the position to the
beginning of the queue.

FIRST_MESSAGE_MULTI_GROUP: indicates that a call to DBMS_
AQ.DEQUEUE_ARRAY will reset the position to the beginning of the
queue and dequeue messages (possibly across different transaction
groups) that are available and match the search criteria, until reaching
the ARRAY_SIZE limit. Refer to the TRANSACTION_GROUP attribute for
the message to distinguish between transaction groups.

NEXT_MESSAGE_MULTI_GROUP: indicates that a call to DBMS_
AQ.DEQUEUE_ARRAY will dequeue the next set of messages (possibly
across different transaction groups) that are available and match the
search criteria, until reaching the ARRAY_SIZE limit. Refer to the
TRANSACTION_GROUP attribute for the message to distinguish
between transaction groups.

visibility Specifies whether the new message is dequeued as part of the current
transaction.The visibility parameter is ignored when using the BROWSE
dequeue mode. Possible settings are:

ON_COMMIT: The dequeue will be part of the current transaction. This
setting is the default.

IMMEDIATE: The dequeue operation is not part of the current
transaction, but an autonomous transaction which commits at the end
of the operation.

Table 171–7 (Cont.) DEQUEUE_OPTIONS_T Attributes

Attribute Description

DEQUEUE_OPTIONS_T Type

171-16 PL/SQL Packages and Types Reference

wait Specifies the wait time if there is currently no message available which
matches the search criteria. Possible settings are:

FOREVER: Wait forever. This setting is the default.

NO_WAIT: Do not wait.

number: Wait time in seconds.

msgid Specifies the message identifier of the message to be dequeued.

correlation Specifies the correlation identifier of the message to be dequeued.
Special pattern matching characters, such as the percent sign (%) and
the underscore (_) can be used. If more than one message satisfies the
pattern, then the order of dequeuing is undetermined.

deq_condition A conditional expression based on the message properties, the message
data properties, and PL/SQL functions.

A deq_condition is specified as a Boolean expression using syntax
similar to the WHERE clause of a SQL query. This Boolean expression
can include conditions on message properties, user data properties
(object payloads only), and PL/SQL or SQL functions (as specified in
the WHERE clause of a SQL query). Message properties include
priority, corrid and other columns in the queue table

To specify dequeue conditions on a message payload (object payload),
use attributes of the object type in clauses. You must prefix each
attribute with tab.user_data as a qualifier to indicate the specific
column of the queue table that stores the payload. The deq_
condition parameter cannot exceed 4000 characters. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
undetermined.

transformation Specifies a transformation that will be applied after dequeuing the
message. The source type of the transformation must match the type of
the queue.

Table 171–7 (Cont.) DEQUEUE_OPTIONS_T Attributes

Attribute Description

Summary of Types

Oracle Streams AQ TYPEs 171-17

ENQUEUE_OPTIONS_T Type

Specifies the options available for the enqueue operation.

Syntax
TYPE SYS.ENQUEUE_OPTIONS_T IS RECORD (
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 relative_msgid RAW(16) DEFAULT NULL,
 sequence_deviation BINARY_INTEGER DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL);

Attributes

Table 171–8 ENQUEUE_OPTIONS_T Attributes

Attribute Description

visibility Specifies the transactional behavior of the enqueue request.
Possible settings are:

ON_COMMIT: The enqueue is part of the current transaction. The
operation is complete when the transaction commits. This setting
is the default.

IMMEDIATE: The enqueue operation is not part of the current
transaction, but an autonomous transaction which commits at the
end of the operation. This is the only value allowed when
enqueuing to a non-persistent queue.

relative_msgid Specifies the message identifier of the message which is
referenced in the sequence deviation operation. This field is valid
only if BEFORE is specified in sequence_deviation. This
parameter is ignored if sequence deviation is not specified.

sequence_deviation Specifies whether the message being enqueued should be
dequeued before other messages already in the queue. Possible
settings are:

BEFORE: The message is enqueued ahead of the message
specified by relative_msgid.

TOP: The message is enqueued ahead of any other messages.

transformation Specifies a transformation that will be applied before enqueuing
the message. The return type of the transformation function must
match the type of the queue.

MESSAGE_PROPERTIES_T Type

171-18 PL/SQL Packages and Types Reference

MESSAGE_PROPERTIES_T Type

Describes the information that AQ uses to manage individual messages. These are
set at enqueue time, and their values are returned at dequeue time.

Syntax
TYPE message_properties_t IS RECORD (
 priority BINARY_INTEGER DEFAULT 1,
 delay BINARY_INTEGER DEFAULT NO_DELAY,
 expiration BINARY_INTEGER DEFAULT NEVER,
 correlation VARCHAR2(128) DEFAULT NULL,
 attempts BINARY_INTEGER,
 recipient_list AQ$_RECIPIENT_LIST_T,
 exception_queue VARCHAR2(61) DEFAULT NULL,
 enqueue_time DATE,
 state BINARY_INTEGER,
 sender_id sys.aq$_agent DEFAULT NULL,
 original_msgid RAW(16) DEFAULT NULL,
 transaction_group VARCHAR2(30) DEFAULT NULL,
 user_property SYS.ANYDATA DEFAULT NULL);

See Also: "AQ$_RECIPIENT_LIST_T Type" on page 171-9

Summary of Types

Oracle Streams AQ TYPEs 171-19

Attributes

Table 171–9 MESSAGE_PROPERTIES_T Attributes

Attribute Description

priority Specifies the priority of the message. A smaller number indicates
higher priority. The priority can be any number, including
negative numbers.

delay Specifies the delay of the enqueued message. The delay represents
the number of seconds after which a message is available for
dequeuing. Dequeuing by msgid overrides the delay specification.
A message enqueued with delay set is in the WAITING state, and
when the delay expires, the message goes to the READY state.
DELAY processing requires the queue monitor to be started.
However the queue monitor is started automatically by the system
if needed. Delay is set by the producer who enqueues the message.

The possible settings follow:

NO_DELAY: The message is available for immediate dequeuing

number: The number of seconds to delay the message

expiration Specifies the expiration of the message. It determines, in seconds,
the duration the message is available for dequeuing. This
parameter is an offset from the time the message is ready for
dequeue. Expiration processing requires the queue monitor to be
running. However the queue monitor is started automatically by
the system if needed.

The possible settings follow:

NEVER: The message does not expire

number: The number of seconds message remains in READY state.
If the message is not dequeued before it expires, then it is moved
to the exception queue in the EXPIRED state.

correlation Returns the identifier supplied by the producer of the message at
enqueue time.

attempts Returns the number of attempts that have been made to dequeue
the message. This parameter cannot be set at enqueue time.

recipient_list This parameter is only valid for queues that allow multiple
consumers. The default recipients are the queue subscribers. This
parameter is not returned to a consumer at dequeue time.

For type definition, see the "AQ$_AGENT Type" on page 171-3.

MESSAGE_PROPERTIES_T Type

171-20 PL/SQL Packages and Types Reference

exception_queue Specifies the name of the queue into which the message is moved
if it cannot be processed successfully.

Messages are moved automatically into the exception queue.
Messages are moved into the exception queue in the following
cases:

■ RETRY_COUNT, the number of unsuccessful dequeue attempts,
has exceeded the specification for the MAX_RETRIES
parameter in the DBMS_AQADM.CREATE_QUEUE procedure
during queue creation.

For multiconsumer queues, the message becomes eligible to
be moved to the exception queue even if failed dequeue
attempts exceeds the MAX_RETRIES parameter for only one of
the consumers. But the message will not be moved until either
all other consumers have successfully consumed the message
or failed more than MAX_RETRIES. You can view MAX_
RETRIES for a queue in the ALL_QUEUES data dictionary
view.

If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN
ABORT on the instance, then RETRY_COUNT is not
incremented.

■ A message was not dequeued before the expiration time
elapsed.

■ Message propagation to the specified destination queue failed
with one of the following errors:

* There were no recipients for the multiconsumer destination
queue.

* Recipients were specified for a single-consumer destination
queue.

* Destination queue was an exception queue

* There was an error when applying transformation.

The default is the exception queue associated with the queue table.
If the exception queue specified does not exist at the time of the
move, then the message is moved to the default exception queue
associated with the queue table, and a warning is logged in the
alert file. If the default exception queue is specified, then the
parameter returns a NULL value at dequeue time.

enqueue_time Specifies the time the message was enqueued. This value is
determined by the system and cannot be set by the user at enqueue
time.

Table 171–9 (Cont.) MESSAGE_PROPERTIES_T Attributes

Attribute Description

Summary of Types

Oracle Streams AQ TYPEs 171-21

state Specifies the state of the message at the time of the dequeue. This
parameter cannot be set at enqueue time. The possible states
follow:

■ dbmsaq.READY: The message is ready to be processed.

■ dbmsaq.WAITING: The message delay has not yet been
reached.

■ dbmsaq.PROCESSED: The message has been processed and is
retained.

■ dbmsaq.EXPIRED: The message has been moved to the
exception queue.

sender_id The application-sender identification specified at enqueue time by
the message producer. Sender id is of type aq$_agent.

Sender name is required for secure queues at enqueue time. This
must be a valid AQ agent name, mapped to the database user
performing the enqueue operation, through dbms_
aqadm.enable_db_access procedure call. Sender address and
protocol should not be specified.

The Sender id in the message properties returned at dequeue time
may have a sender address if the message was propagated from
another queue. The value of the address is the source_queue,
source database name if it was a remote database [format
source_queue@source_database_name]

original_msgid This parameter is used by Oracle Streams AQ for propagating
messages.

transaction_group Specifies the transaction_group for the dequeued message.
Messages belonging to the same transaction group will have the
same value for this attribute. This attribute is only set by the
DBMS_AQ.DEQUEUE_ARRAY. This attribute cannot be used to set
the transaction group of a message through DBMS_AQ.ENQUEUE or
DBMS_AQ.ENQUEUE_ARRAY calls.

user_property This optional attribute is used to store additional information
about the payload.

Table 171–9 (Cont.) MESSAGE_PROPERTIES_T Attributes

Attribute Description

MESSAGE_PROPERTIES_ARRAY_T Type

171-22 PL/SQL Packages and Types Reference

MESSAGE_PROPERTIES_ARRAY_T Type

This type is used by dbms_aq.enqueue_array and dbms_aq.dequeue_array
calls to hold the set of message properties. Each element in the payload_array
should have a corresponding element in the MESSAGE_PROPERTIES_ARRAY_T
VARRAY.

Syntax
TYPE MESSAGE_PROPERTIES_ARRAY_T IS VARRAY (2147483647)
 OF MESSAGE_PROPERTIES_T;

See Also: "MESSAGE_PROPERTIES_T Type" on page 171-18

Summary of Types

Oracle Streams AQ TYPEs 171-23

MSGID_ARRAY_T Type

The msgid_array_t type is used in dbms_aq.enqueue_array and dbms_
aq.dequeue_array calls to hold the set of message IDs that correspond to the
enqueued or dequeued messages.

Syntax
TYPE MSGID_ARRAY_T IS TABLE OF RAW(16) INDEX BY BINARY_INTEGER

MSGID_ARRAY_T Type

171-24 PL/SQL Packages and Types Reference

Database URI TYPEs 172-1

172
Database URI TYPEs

Oracle supports the UriType family of types that can be used to store and query
Uri-refs inside the database. The UriType itself is an abstract object type and the
HTTPURITYPE, XDBURITYPE and DBURITYPE are subtypes of it.

You can create a UriType column and store instances of the DBURITYPE,
XDBURITYPE or the HTTPURITYPE inside of it. You can also define your own
subtypes of the UriType to handle different URL protocols.

Oracle also provides a UriFactory package that can be used as a factory method
to automatically generate various instances of these UriTypes by scanning the
prefix, such as http:// or /oradb. You can also register your subtype and provide
the prefix that you support. For instance, if you have written a subtype to handle
the gopher protocol, you can register the prefix gopher:// to be handled by your
subtype. The UriFactory will then generate your subtype instance for any URL
starting with that prefix.

This chapter contains the following topics:

■ Summary of URITYPE Supertype Subprograms

■ Summary of HTTPURITYPE Subtype Subprograms

■ Summary of DBURITYPE Subtype Subprogams

■ Summary of XDBURITYPE Subtype Subprograms

■ Summary of URIFACTORY Package Subprograms

See Also:

■ Oracle XML DB Developer's Guide

Summary of URITYPE Supertype Subprograms

172-2 PL/SQL Packages and Types Reference

Summary of URITYPE Supertype Subprograms

The UriType is the abstract super type. It provides a standard set of functions to
get the value pointed to by the URI. The actual implementation of the protocol must
be defined by the subtypes of this type.

Instances of this type cannot be created directly. However, you can create columns
of this type and store subtype instances in it, and also select from columns without
knowing the instance of the URL stored.

Table 172–1 URITYPE Type Subprograms

Method Description

GETBLOB on page 172-3 Returns the BLOB located at the address specified by the URL.

GETCLOB on page 172-4 Returns the CLOB located at the address specified by the URL.

GETCONTENTTYPE on
page 172-5

Returns the URL, in escaped format, stored inside the UriType
instance.

GETEXTERNALURL on
page 172-6

Returns the URL, in escaped format, stored inside the UriType
instance.

GETURL on page 172-7 Returns the URL, in non-escaped format, stored inside the
UriType instance.

GETXML on page 172-8 Returns the XMLType located at the address specified by the
URL.

Summary of URITYPE Supertype Subprograms

Database URI TYPEs 172-3

GETBLOB

This function returns the BLOB located at the address specified by the URL. This
function can be overridden in the subtype instances. The options are described in
the following table.

Syntax Description

MEMBER FUNCTION GETBLOB()
RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL.

MEMBER FUNCTION GETBLOB(
CONTENT OUT VARCHAR2)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL and the content type.

FUNCTION GETBLOB(
CSID IN NUMBER)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL in the specified character set.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

CSID (IN) Character set id of the document. Must be a valid Oracle id
and greater than 0; otherwise returns an error

GETCLOB

172-4 PL/SQL Packages and Types Reference

GETCLOB

This function returns the CLOB located at the address specified by the URL. This
function can be overridden in the subtype instances. This function returns either a
permanent CLOB or a temporary CLOB. If a temporary CLOB is returned, it must be
freed. The options are described in the following table.

Syntax Description

MEMBER FUNCTION GETCLOB()
RETURN CLOB;

This function returns the CLOB located at the address
specified by the URL.

MEMBER FUNCTION GETCLOB(
CONTENT OUT VARCHAR2)

RETURN CLOB;

This function returns the CLOB located at the address
specified by the URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of URITYPE Supertype Subprograms

Database URI TYPEs 172-5

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI. This
function can be overridden in the subtype instances. This function returns the
content type as VARCHAR2.

Syntax
MEMBER FUNCTION GETCONTENTTYPE()
RETURN VARCHAR2;

GETEXTERNALURL

172-6 PL/SQL Packages and Types Reference

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the UriType
instance. The subtype instances override this member function to provide
additional semantics. For instance, the HTTPURITYPE function does not store the
prefix http:// in the URL itself. When generating the external URL, it appends the
prefix and generates it. For this reason, use the getExternalUrl function or the
getUrl function to get to the URL value instead of using the attribute present in
the UriType instance.

Syntax
MEMBER FUNCTION GETEXTERNALURL()
RETURN VARCHAR2;

Summary of URITYPE Supertype Subprograms

Database URI TYPEs 172-7

GETURL

This function returns the URL, in non-escaped format, stored inside the UriType
instance. The subtype instances override this member function to provide
additional semantics. For instance, the HTTPURITYPE function does not store the
prefix http:// in the URL itself. When generating the external URL, it appends the
prefix and generates it. For this reason, use the getExternalUrl function or the
getUrl function to get to the URL value instead of using the attribute present in
the UriType instance.

Syntax
MEMBER FUNCTION GETURL()
RETURN VARCHAR2;

GETXML

172-8 PL/SQL Packages and Types Reference

GETXML

This function returns the XMLType located at the address specified by the URL. This
function can be overridden in the subtype instances. The options are described in
the following table.

Syntax Description

MEMBER FUNCTION GETXML()
RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL.

MEMBER FUNCTION GETXML(
CONTENT OUT VARCHAR2)

RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of HTTPURITYPE Subtype Subprograms

Database URI TYPEs 172-9

Summary of HTTPURITYPE Subtype Subprograms

The HTTPURITYPE is a subtype of the UriType that provides support for the HTTP
protocol. This uses the UTL_HTTP package underneath to access the HTTP URLs.
Proxy and secure wallets are not supported in this release.

Table 172–2 HTTPURITYPE Type Subprorgams

Method Description

CREATEURI on page 172-10 Creates an instance of HTTPURITYPE from the given URI.

GETBLOB on page 172-11 Returns the BLOB located at the address specified by the URL.

GETCLOB on page 172-12 Returns the CLOB located at the address specified by the URL.

GETCONTENTTYPE on
page 172-13

Returns the content type of the document pointed to by the
URI.

GETEXTERNALURL on
page 172-14

Returns the URL, in escaped format, stored inside the
UriType instance.

GETRUL on page 172-15 Returns the URL, in non-escaped format, stored inside the
UriType instance.

GETXML on page 172-16 Returns the XMLType located at the address specified by the
URL

HTTPURITYPE on
page 172-17

Creates an instance of HTTPURITYPE from the given URI.

CREATEURI

172-10 PL/SQL Packages and Types Reference

CREATEURI

This static function constructs a HTTPURITYPE instance. The HTTPURITYPE
instance does not contain the prefix http:// in the stored URL.

Syntax
STATIC FUNCTION CREATEURI(

URL IN VARCHAR2)
RETURN HTTPURITYPE;

Parameter IN / OUT Description

URL (IN) The URL string containing a valid HTTP URL; escaped format.

Summary of HTTPURITYPE Subtype Subprograms

Database URI TYPEs 172-11

GETBLOB

This function returns the BLOB located at the address specified by the HTTP URL.

Syntax Description

MEMBER FUNCTION GETBLOB()
RETURN BLOB;

This function returns the BLOB located at the address
specified by the HTTP URL.

MEMBER FUNCTION GETBLOB(
CONTENT OUT VARCHAR2)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the HTTP URL and the content type.

FUNCTION GETBLOB(
CSID IN NUMBER)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL in the specified character set.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

CSID (IN) Character set id of the document. Must be a valid Oracle id
and greater than 0; otherwise returns an error.

GETCLOB

172-12 PL/SQL Packages and Types Reference

GETCLOB

This function returns the CLOB located by the HTTP URL address. If a temporary
CLOB is returned, it must be freed.

Syntax Description

MEMBER FUNCTION GETCLOB()
RETURN CLOB;

Returns the CLOB located at the address specified by the
HTTP URL.

MEMBER FUNCTION GETCLOB(
CONTENT OUT VARCHAR2)

RETURN CLOB;

Returns the CLOB located at the address specified by the
HTTP URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of HTTPURITYPE Subtype Subprograms

Database URI TYPEs 172-13

GETCONTENTTYPE

Returns the content type of the document pointed to by the URI.

Syntax
MEMBER FUNCTION GETCONTENTTYPE()
RETURN VARCHAR2;

GETEXTERNALURL

172-14 PL/SQL Packages and Types Reference

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the HTTPURITYPE
instance. The subtype instances override this member function. The HTTPURITYPE
function does not store the prefix http://, but generates it for the external URL.

Syntax
MEMBER FUNCTION GETEXTERNALURL()
RETURN VARCHAR2;

Summary of HTTPURITYPE Subtype Subprograms

Database URI TYPEs 172-15

GETRUL

This function returns the URL, in non-escaped format, stored inside the
HTTPURITYPE instance.

Syntax
MEMBER FUNCTION GETURL()
RETURN VARCHAR2;

GETXML

172-16 PL/SQL Packages and Types Reference

GETXML

This function returns the XMLType located at the address specified by the URL. An
error is thrown if the address does not point to a valid XML document.

Syntax Description

MEMBER FUNCTION GETXML()
RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL.

MEMBER FUNCTION GETXML(
CONTENT OUT VARCHAR2)

RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of HTTPURITYPE Subtype Subprograms

Database URI TYPEs 172-17

HTTPURITYPE

This constructs a HTTPURITYPE instance. The HTTPURITYPE instance does not
contain the prefix http:// in the stored URL.

Syntax
CONSTRUCTOR FUNCTION HTTPURITYPE(

URL IN VARCHAR2);

Parameter IN / OUT Description

URL (IN) The URL string containing a valid HTTP URL. The URL
string is expected in escaped format. For example, non-url
characters are represented as the hexadecimal value for the
UTF-8 encoding of those characters.

Summary of DBURITYPE Subtype Subprogams

172-18 PL/SQL Packages and Types Reference

Summary of DBURITYPE Subtype Subprogams

The DBURITYPE is a subtype of the UriType that provides support for DBUri-refs.
A DBUri-ref is an intra-database URL that can be used to reference any row or
row-column data in the database. The URL is specified as an XPath expression over
a XML visualization of the database. The schemas become elements which contain
tables and views. These tables and view further contain the rows and columns
inside them.

Table 172–3 DBURITYPE Type Subprograms

Method Description

CREATEURI on page 172-19 Constructs a DBURITYPE instance.

DBURITYPE on page 172-20 Creates an instance of DBURITYPE from the given URI.

GETBLOB on page 172-21 Returns the BLOB located at the address specified by the
DBURITYPE instance.

GETCLOB on page 172-22 Returns the CLOB located at the address specified by the
DBURITYPE instance.

GETCONTENTTYPE on
page 172-23

Returns the content type of the document pointed to by the
URI.

GETEXTERNALURL on
page 172-24

Returns the URL, in escaped format, stored inside the
DBURITYPE instance.

GETURL on page 172-25 Returns the URL, in non-escaped format, stored inside the
DBURITYPE instance.

GETXML on page 172-26 Returns the XMLType located at the address specified by the
URL

Summary of DBURITYPE Subtype Subprogams

Database URI TYPEs 172-19

CREATEURI

This static function constructs a DBURITYPE instance. Parses the URL given and
creates a DBURITYPE instance.

Syntax
STATIC FUNCTION CREATEURI(

URL IN VARCHAR2)
RETURN DBURITYPE;

Parameter IN / OUT Description

URL (IN) The URL string, in escaped format, containing a valid
DBURITYPE.

DBURITYPE

172-20 PL/SQL Packages and Types Reference

DBURITYPE

This constructs a DBURITYPE instance.

Syntax
CONSTRUCTOR FUNCTION DBURITYPE(

URL IN VARCHAR2);

Parameter IN / OUT Description

URL (IN) The URL string containing a valid DBURITYPE. The URL
string is expected in escaped format. For example, non-URL
characters are represented as the hexadecimal value for the
UTF-8 encoding of those characters.

Summary of DBURITYPE Subtype Subprogams

Database URI TYPEs 172-21

GETBLOB

This function returns the BLOB located at the address specified by the URL. The
options are described in the following table.

Syntax Description

MEMBER FUNCTION GETBLOB()
RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL.

MEMBER FUNCTION GETBLOB(
CONTENT OUT VARCHAR2)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL and the content type.

FUNCTION GETBLOB(
CSID IN NUMBER)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL in the specified character set.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

CSID (IN) Character set id of the document. Must be a valid Oracle id
and greater than 0; otherwise returns an error.

GETCLOB

172-22 PL/SQL Packages and Types Reference

GETCLOB

This function returns the CLOB located at the address specified by the DBURITYPE
instance. If a temporary CLOB is returned, it must be freed. The document returned
may be an XML document or a text document. When the DBUri-ref identifies an
element in the XPath, the result is a well-formed XML document. On the other
hand, if it identifies a text node, then what is returned is only the text content of the
column or attribute. The options are described in the following table.

Syntax Description

MEMBER FUNCTION GETCLOB()
RETURN CLOB;

Returns the CLOB located at the address specified by the
DBURITYPE instance.

MEMBER FUNCTION GETCLOB(
CONTENT OUT VARCHAR2)

RETURN CLOB;

Returns the CLOB located at the address specified by the
DBURITYPE instance and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of DBURITYPE Subtype Subprogams

Database URI TYPEs 172-23

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI.

Syntax
MEMBER FUNCTION GETCONTENTTYPE()
RETURN VARCHAR2;

GETEXTERNALURL

172-24 PL/SQL Packages and Types Reference

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the DBURITYPE
instance. The DBUri servlet URL that processes the DBURITYPE has to be appended
before using the escaped URL in web pages.

Syntax
MEMBER FUNCTION GETEXTERNALURL()
RETURN VARCHAR2;

Summary of DBURITYPE Subtype Subprogams

Database URI TYPEs 172-25

GETURL

This function returns the URL, in non-escaped format, stored inside the DBURITYPE
instance.

Syntax
MEMBER FUNCTION GETURL()
RETURN VARCHAR2;

GETXML

172-26 PL/SQL Packages and Types Reference

GETXML

This function returns the XMLType located at the address specified by the URL. The
options are described in the following table.

Syntax Description

MEMBER FUNCTION GETXML()
RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL.

MEMBER FUNCTION GETXML(
CONTENT OUT VARCHAR2)

RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of XDBURITYPE Subtype Subprograms

Database URI TYPEs 172-27

Summary of XDBURITYPE Subtype Subprograms

XDBURITYPE is a new subtype of URIType. It provides a way to expose documents
in the Oracle XML DB hierarchy as URIs that can be embedded in any URIType
column in a table. The URL part of the URI is the hierarchical name of the XML
document it refers to. The optional fragment part uses the XPath syntax, and is
separated from the URL part by '#'. The more general XPointer syntax for specifying
a fragment is not currently supported.

Table 172–4 XDBURITYPE Type Subprograms

Method Description

CREATEURI on page 172-28 Returns the UriType corresponding to the specified URL.

GETBLOB on page 172-29 Returns the BLOB corresponding to the contents of the
document specified by the XDBURITYPE instance.

GETCLOB on page 172-22 Returns the CLOB corresponding to the contents of the
document specified by the XDBURITYPE instance.

GETCONTENTTYPE on
page 172-31

Returns the content type of the document pointed to by the
URI.

GETEXTERNALURL on
page 172-24

Returns the URL, in escaped format, stored inside the
XDBURITYPE instance.

GETURL on page 172-25 Returns the URL, in non-escaped format, stored inside the
XDBURITYPE instance.

GETXML on page 172-34 Returns the XMLType corresponding to the contents of the
document specified by the URL.

XDBURITYPE on
page 172-35

Creates an instance of XDBURITYPE from the given URI.

CREATEURI

172-28 PL/SQL Packages and Types Reference

CREATEURI

This static function constructs a XDBURITYPE instance. Parses the URL given and
creates a XDBURITYPE instance.

Syntax
STATIC FUNCTION CREATEURI(

URL IN VARCHAR2)
RETURN XDBURITYPE

Parameter IN / OUT Description

URL (IN) The URL string, in escaped format, containing a valid
XDBURITYPE.

Summary of XDBURITYPE Subtype Subprograms

Database URI TYPEs 172-29

GETBLOB

This function returns the BLOB located at the address specified by the XDBURITYPE
instance. The options are described in the following table.

Syntax Description

MEMBER FUNCTION GETBLOB()
RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL.

MEMBER FUNCTION GETBLOB(
CONTENT OUT VARCHAR2)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL and the content type.

FUNCTION GETBLOB(
CSID IN NUMBER)

RETURN BLOB;

This function returns the BLOB located at the address
specified by the URL in the specified character set.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

CSID (IN) Character set id of the document. Must be a valid Oracle id
and greater than 0; otherwise returns an error.

GETCLOB

172-30 PL/SQL Packages and Types Reference

GETCLOB

This function returns the CLOB located at the address specified by the XDBURITYPE
instance. If a temporary CLOB is returned, it must be freed. The options are
described in the following table.

Syntax Description

MEMBER FUNCTION GETCLOB()
RETURN CLOB;

Returns the CLOB located at the address specified by the
XDBUirType instance.

MEMBER FUNCTION GETCLOB(
CONTENT OUT VARCHAR2)

RETURN CLOB;

Returns the CLOB located at the address specified by the
XDBUirType instance and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of XDBURITYPE Subtype Subprograms

Database URI TYPEs 172-31

GETCONTENTTYPE

This function returns the content type of the document pointed to by the URI. This
function returns the content type as VARCHAR2.

Syntax
MEMBER FUNCTION GETCONTENTTYPE()
RETURN VARCHAR2;

GETEXTERNALURL

172-32 PL/SQL Packages and Types Reference

GETEXTERNALURL

This function returns the URL, in escaped format, stored inside the XDBURITYPE
instance.

Syntax
MEMBER FUNCTION GETEXTERNALURL()
RETURN VARCHAR2;

Summary of XDBURITYPE Subtype Subprograms

Database URI TYPEs 172-33

GETURL

This function returns the URL, in non-escaped format, stored inside the
XDBURITYPE instance.

Syntax
MEMBER FUNCTION GETURL()
RETURN VARCHAR2;

GETXML

172-34 PL/SQL Packages and Types Reference

GETXML

This function returns the XMLType located at the address specified by the URL. The
options are described in the following table.

Syntax Description

MEMBER FUNCTION GETXML()
 RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL.

MEMBER FUNCTION GETXML(
CONTENT OUT VARCHAR2)

RETURN XMLTYPE;

This function returns the XMLType located at the address
specified by the URL and the content type.

Parameter IN / OUT Description

CONTENT (OUT) Content type of the document to which URI is pointing.

Summary of XDBURITYPE Subtype Subprograms

Database URI TYPEs 172-35

XDBURITYPE

This constructs a XDBURITYPE instance.

Syntax
CONSTRUCTOR FUNCTION XDBURITYPE(

URL IN VARCHAR2);

Parameter IN / OUT Description

URL (IN) The URL string containing a valid XDBUirType. The URL
string is expected in escaped format. For example, non-URL
characters are represented as the hexadecimal value for the
UTF-8 encoding of those characters.

Summary of URIFACTORY Package Subprograms

172-36 PL/SQL Packages and Types Reference

Summary of URIFACTORY Package Subprograms

The UriFactory package contains factory methods that can be used to generate
the appropriate instance of the URI types without having to hard code the
implementation in the program.

The UriFactory package also provides the ability to register new subtypes of the
UriType to handle various other protocols. For example, you can invent a new
protocol ecom:// and define a subtype of the UriType to handle that protocol and
register it with UriFactory. After that any factory method would generate the
new subtype instance if it sees the ecom:// prefix.

Table 172–5 URIFACTORY Type Subprograms

Method Description

GETURL on page 172-37 Returns the correct URL handler for the given URL string.

ESCAPEURI on page 172-38 Returns a URL in escaped format.

UNESCAPEURI on page 172-39 Returns a URL in unescaped format.

REGISTERURLHANDLER on
page 172-40

Registers a particular type name for handling a particular
URL.

UNREGISTERURLHANDLER on
page 172-41

Unregisters a URL handler.

Summary of URIFACTORY Package Subprograms

Database URI TYPEs 172-37

GETURL

This factory method returns the correct URL handler for the given URL string. It
returns a subtype instance of the UriType that can handle the protocol. By default,
it always creates an XDBURITYPE instance, if it cannot resolve the URL. A URL
handler can be registered for a particular prefix using the REGISTERURLHANDLER
function. If the prefix matches, GETURL would then use that subtype.

Syntax
FUNCTION GETURL(

URL IN VARCHAR2)
RETURN URITYPE;

Parameter IN / OUT Description

URL (IN) The URL string, in escaped format, containing a valid HTTP
URL.

ESCAPEURI

172-38 PL/SQL Packages and Types Reference

ESCAPEURI

This function returns a URL in escaped format. The subtype instances override this
member function to provide additional semantics. For instance, the HTTPURITYPE
does not store the prefix http:// in the URL itself. When generating the external
URL, it appends the prefix and generates it. For this reason, use the
GETEXTERNALURL function or the GETURL function to get to the URL value instead
of using the attribute present in the UriType.

Syntax
MEMBER FUNCTION ESCAPEURI()
RETURN VARCHAR2;

Parameter IN / OUT Description

URL (IN) The URL string to be returned in escaped format.

Summary of URIFACTORY Package Subprograms

Database URI TYPEs 172-39

UNESCAPEURI

This function returns a URL in unescaped format. This function is the reverse of the
ESCAPEURI function. This function scans the string and converts any non-URL
hexadecimal characters into the equivalent UTF-8 characters. Since the return type
is a VARCHAR2, the characters would be converted into the equivalent characters as
defined by the database character set.

Syntax
FUNCTION UNESCAPEURI()
RETURN VARCHAR2;

Parameter IN / OUT Description

URL (IN) The URL string to be returned in unescaped format.

REGISTERURLHANDLER

172-40 PL/SQL Packages and Types Reference

REGISTERURLHANDLER

Registers a particular type name for handling a particular URL. The type specified
must be valid and must be a subtype of the UriType or one of its subtypes. It must
also implement the createUri static member function. This function is called by
the GETURL function to generate an instance of the type. The stripprefix
parameter indicates that the prefix must be stripped off before calling this function.

Syntax
PROCEDURE REGISTERURLHANDLER(

PREFIX IN VARCHAR2,
SCHEMANAME IN VARCHAR2,
TYPENAME IN VARCHAR2,
IGNORECASE IN BOOLEAN := TRUE,
STRIPPREFIX IN BOOLEAN := TRUE);

Parameter IN / OUT Description

PREFIX (IN) The prefix to handle; for example, http://.

SCHEMANAME (IN) Name of the schema where the type resides; case sensitive.

TYPENAME (IN) The name of the type to handle the URL; case sensitive.

IGNORECASE (IN) Ignore case when matching prefixes.

STRIPPREFIX (IN) Strip prefix before generating the instance of the type.

Summary of URIFACTORY Package Subprograms

Database URI TYPEs 172-41

UNREGISTERURLHANDLER

This procedure unregisters a URL handler. This only unregisters user registered
handler prefixes and not predefined system prefixes such as http://.

Syntax
PROCEDURE UNREGISTERURLHANDLER(

PREFIX IN VARCHAR2);

Parameter IN / OUT Description

PREFIX (IN) The prefix to be unregistered.

UNREGISTERURLHANDLER

172-42 PL/SQL Packages and Types Reference

JMS Types 173-1

173
JMS Types

PL/SQL users can use the DBMS_AQ package to enqueue and dequeue messages
from JMS queues. The JMS types member and static functions and procedures in
this chapter are needed to populate JMS messages for enqueuing or to interpret a
dequeued JMS message.

This chapter contains these topics:

■ Using JMS Types

■ Overview

■ Java Versus PL/SQL Data Types

■ More on Bytes, Stream and Map Messages

■ Upcasting and Downcasting Between General and Specific Messages

■ JMS Types Error Reporting

■ Oracle JMS Type Constants

■ CONVERT_JMS_SELECTOR

■ Summary of JMS Types

Using JMS Types

173-2 PL/SQL Packages and Types Reference

Using JMS Types

■ Overview

■ Java Versus PL/SQL Data Types

■ More on Bytes, Stream and Map Messages

■ Upcasting and Downcasting Between General and Specific Messages

■ JMS Types Error Reporting

■ Oracle JMS Type Constants

■ JMS Types Error Reporting

■ Oracle JMS Type Constants

■ CONVERT_JMS_SELECTOR

Overview

Java Message Service (JMS) is a well known public standard interface for accessing
messaging systems. Oracle JMS (OJMS) implements JMS based on Oracle Streams
Advanced Queuing (AQ) and a relational database system (RDBMS). Messages are
stored in queues as OJMS specific ADTs. Java clients use OJMS packages to
enqueue, dequeue, and manipulate these messages.

PL/SQL users, on the other hand, use the DBMS_AQ package to enqueue and
dequeue JMS messages and the member functions in this chapter to populate and
interpret them. Oracle Streams AQ offers such member functions for the following
JMS ADTs:

■ aq$_jms_header

■ aq$_jms_message

■ aq$_jms_text_message

■ aq$_jms_bytes_message

■ aq$_jms_map_message

■ aq$_jms_stream_message

In addition to these populating and interpreting member functions, Oracle Streams
AQ offers:

Using JMS Types

JMS Types 173-3

■ Casting between aq$_jms_message and other message ADTs.

■ PL/SQL stored procedures for converting JMS selectors to equivalent Oracle
Streams AQ rules

Java Versus PL/SQL Data Types

Data types do not map one-to-one between PL/SQL and Java.

Some Java types, such as BYTE and SHORT, are not present in PL/SQL. PL/SQL
type INT was chosen to represent these types. If a PL/SQL INT value intended to
hold a Java BYTE or SHORT value exceeds the corresponding range Java enforces, an
out-of-range error is thrown.

Other Java types have more than one counterpart in PL/SQL with different
capabilities. A Java String can be represented by both VARCHAR2 and CLOB, but
VARCHAR2 has a maximum limit of 4000 bytes. When retrieving TEXT data from
map, stream, and bytes message types, a CLOB is always returned. When updating
the map, stream and bytes message types, users can submit either a VARCHAR2 or
CLOB.

Similarly, a Java BYTE ARRAY can be represented by both RAW and BLOB, with RAW
having a maximum size of 32767. When retrieving BYTE ARRAY data from map,
stream, and bytes message types, a BLOB is always returned. When updating the
map, stream and bytes message types, users can submit either a RAW or BLOB.

New JMS Support in Oracle Database 10g
In Oracle Database 10g, a new AQ$_JMS_VALUE ADT has been added in the SYS
schema for OJMS PL/SQL users. It is specifically used to implement the read_
object procedure of aq$_jms_stream_message and get_object procedure of
aq$_jms_map_message, to mimic the Java general object class Object. AQ$_
JMS_VALUE ADT can represent any data type that JMS StreamMessage and
MapMessage can hold.

The collection ADT AQ$_JMS_NAMEARRAY was added for the getNames method of
MapMessage. It holds an array of names.

In this release the ADT AQ$_JMS_EXCEPTION was added to represent a Java
exception thrown in an OJMS JAVA stored procedure on the PL/SQL side. Now

See Also: JMS specification 3.11.3, Conversion Provided by
StreamMessage and MapMessage

More on Bytes, Stream and Map Messages

173-4 PL/SQL Packages and Types Reference

you can retrieve a Java exception thrown by an OJMS stored procedure and analyze
it on the PL/SQL side.

More on Bytes, Stream and Map Messages

Oracle uses Java stored procedure to implement some of the procedures of AQ$_
MAP_MESSAGE, AQ$_JMS_STREAM_MESSAGE, and AQ$_JMS_BYTES_MESSAGE
types. These types have some common functionalities that are different from AQ$_
JMS_TEXT_MESSAGE type. This section discusses these common functionalities.

This section contains these topics:

■ Using Java Stored Procedures to Encode and Decode Oracle Streams AQ
Messages

■ Read-Only and Write-Only Modes Enforced for Stream and Bytes Messages

■ Differences Between Bytes and Stream Messages

■ Getting and Setting Bytes, Map, and Stream Messages as RAW Bytes

Using Java Stored Procedures to Encode and Decode Oracle Streams AQ Messages
The major difference between map, stream, bytes, and other messages is that the
message payload is encoded as a byte stream by JAVA. Retrieving and updating
these payloads in PL/SQL therefore requires Oracle JAVA stored procedures.

A message payload is stored in two places during processing. On the PL/SQL side
it is stored as the data members of a JMS message ADT, and on the Jserv side it is
stored as a static variable. (Jserv is the JVM inside Oracle Database.) When the
payload is processed, the payload data is first transformed to a static variable on the
Jserv side. Once the static variable is initialized, all later updates on the message
payload are performed on this static variable. At the end of processing, payload
data is flushed back to the PL/SQL side.

Oracle provides member procedures that maintain the status of the Jserv static
variable and enforce rules when calling these member procedures. These
procedures are in the following ADTs:

■ aq$_jms_bytes_message

■ aq$_jms_map_message

■ aq$_jms_stream_message

Using JMS Types

JMS Types 173-5

Initialize the Jserv Static Variable
Before you make any other calls to manipulate the payload data, the Jserv static
variable must be properly initialized. This is done by calling the prepare or
clear_body procedure. The prepare procedure uses the payload data in PL/SQL
ADTs to initialize the static variable, while clear_body initializes the static
variable to an empty payload (empty hashtable or stream).

Get the Payload Data Back to PL/SQL
Calling the flush procedure synchronizes changes made to the Jserv static variable
back to the PL/SQL ADTs. The flush call is required when you want the changes
made to be reflected in the ADT payload. It is important to synchronize the changes
back to the ADT, because it is the ADT payload that matters.

Garbage Collect the Static Variable
The clean procedure forces garbage collection of the static variable. It is there to do
cleanup and free JVM memory. You can avoid memory leaks by doing it
immediately after finishing processing the message.

Use a Message Store: A Static Variable Collection
Instead of a single static variable, Oracle uses a collection of static variables to
process the message payload on the Jserv side. This collection is called the message
store. Each map, bytes, or stream message type has its own message store within
one session.

Oracle uses the operation ID parameter to locate the correct static variable to work
on within the message store. Initialization calls such as prepare and clear_body
give users an operation ID, which is used in later message access.

After users complete message processing, they must call the clean procedure with
the operation ID to clean up the message store. This avoids possible memory leaks.
The clean_all static procedures of message ADTs aq$_jms_bytes_message,

Note: It is important to call the prepare or clear_body
procedure before any other calls to properly initialize the Jserv
static variables. Usually these two methods are called once at the
beginning. But they can be called multiple times for one message.
Any call of these two methods without first calling the flush
procedure wipes out all updates made to the messages.

More on Bytes, Stream and Map Messages

173-6 PL/SQL Packages and Types Reference

aq$_jms_map_message, and aq$_jms_stream_message clean up all static
variables of their corresponding message stores.

Typical Calling Sequences
This section describes typical procedures for retrieving and populating messages.

Here is a typical procedure for retrieving messages

1. Call prepare for a message.

This call also gives you an operation ID if you do not specify one.

2. Call multiple retrieving procedures with the provided operation ID.

3. Call the clean procedure with the provided operation ID.

Here is a typical procedure for populating messages:

1. Call clear_body for a message.

For aq$_jms_map_message, you can also call prepare to update the
message based on the existing payload. This call also gives you an operation ID
if you do not specify one.

2. Call multiple updating procedures with the provided operation ID.

3. Call the flush method with the provided operation ID.

4. Call the clean procedure with the provided operation ID.

Read-Only and Write-Only Modes Enforced for Stream and Bytes Messages
According to the JMS specification, when a message is received, its body is
read-only. Users can call the clear_body method to make the body writable. This
method erases the current message body and sets the message body to be empty.

The OJMS JAVA API follows the rule set by JMS specification. In updating the JMS
message ADTs in PL/SQL, however, Oracle enforces the rule selectively:

■ Map messages

The restriction is relaxed, because adding more entries on top of a existing map
payload is a convenient way for users to update the payload. Therefore there
are no read-only or write-only modes for map messages.

■ Stream and bytes messages

The restriction is not relaxed, because these payloads use a stream when
reading and writing data. It is difficult to update the payload while in the

Using JMS Types

JMS Types 173-7

middle of a stream. Oracle enforces read-only and write-only modes in
processing stream and bytes message payloads. Calling the prepare procedure
initializes the message payload in read-only mode. Calling the clear_body
procedure initializes the message payload in write-only mode.

Calling the reset procedure resets the pointer to the beginning of the stream
and switches the mode from write-only to read-only. The reset procedure
keeps the updates made to the message payload in the Jserv static variable.

The prepare procedure, on the other hand, overwrites the message payload in
the Jserv static variable with the payload in the PL/SQL ADT.

Oracle provides member function get_mode for users to query the mode.

Differences Between Bytes and Stream Messages
Member functions of bytes messages are not exactly the same as those of stream
messages. Stream messages are encoded using Java ObjectOutputStream and
bytes messages are encoded using Java DataOutputStream. In stream messages
each primitive type is written and read as a Java Object, but in a bytes message they
are written and read as raw bytes according to the encoding mechanism of
DataOutputStream.

For stream messages, the read_bytes method works on a stream of bytes to the
end of the byte array field written by the corresponding write_bytes method.
The read_bytes method of bytes message works on a stream of bytes to the end
of the whole byte stream. This is why the read_bytes member procedure of aq$_
bytes_message also requires a length parameter to tell how long it is to read.

You will not see a type conversion error raised by bytes message, because bytes
messages do not support type conversion.

Methods get_unsigned_byte and get_unsigned_short are available for
bytes messages, but not for stream messages. This is because stream messages read
Java objects, and there are no Java objects as unsigned bytes or unsigned shorts.

Methods read_string and write_string methods are not available for bytes
messages. The bytes message ADT must enforce some character encoding. It has
methods read_utf and write_utf which support utf-8 encoding.

Note: All data written by bytes messages use
DataOutputStream as the basis. See JDK API documentation
JavaSoft.com for details on how the data is encoded into bytes.

Upcasting and Downcasting Between General and Specific Messages

173-8 PL/SQL Packages and Types Reference

Getting and Setting Bytes, Map, and Stream Messages as RAW Bytes
The payloads of bytes, map, and stream message types are stored as either RAW or
BLOB in the database. In this release Oracle Streams AQ provides the following
member functions to set and get these payloads as raw bytes without interpreting
them:

set_bytes(payload IN BLOB)
set_bytes(payload IN RAW)
get_bytes(payload OUT BLOB)
get_bytes(payload OUT RAW)

These functions were provided for bytes messages in Oracle9i Release 2 (9.2).

Upcasting and Downcasting Between General and Specific Messages

OJMS ADT aq$_jms_message is used to represent a general message, so that
different types of messages can reside on the same Oracle Streams AQ queue.
Oracle Streams AQ supports retrieving and populating of aq$_jms_message by
supporting upcasting and downcasting between this ADT and ADTs of specific
message types.

To read an aq$_jms_message, you must first downcast it to a specific message
type according to its message_type field

To populate an aq$_jms_message, you must first populate a specific message and
upcast it to aq$_jms_message. This avoids copying all member functions of other
specific message ADTs to this ADT. It also guarantees that the manipulation of this
ADT is consistent with other specific message ADTs.

Using JMS Types

JMS Types 173-9

JMS Types Error Reporting

Table 173–1 lists Oracle JMS types related errors.

Table 173–1 Oracle JMS Types Errors

ORA error
number

dbms_jms_plsql package
constants Explanation

ORA-24190 ERROR_DATA_OVERFLOW The payload data exceeds the size that an out parameter can
hold. For example, the get_text procedure with a
VARCHAR2 parameter of aq$_jms_text_message or get_
bytes procedure with a RAW parameter of aq$_jms_
bytes_message.

ORA-24191 ERROR_PROP_NAME_EXIST Setting a property that is previous set

ORA-24192 ERROR_PROP_NAME_NULL Occurs when setting a property with null property name.

ORA-24193 ERROR_EXCEED_RANGE PL/SQL number type exceeds the valid range of the
respective Java type. For example set_byte_property,
set_short_property of aq$_jms_head ADT; set_byte
and set_short of aq$_jms_map_message ADT; write_
byte and write_short of aq$_jms_stream_message
and aq$_jms_bytes_message ADT.

ORA-24194 ERROR_TYPE_MISMATCH The type conversion between the Java type of the retrieving
method and the Java type of a field of the payload is not
valid.

ORA-24195 ERROR_MAP_TOO_LARGE The size of the map exceeds the aq$_jms_namearray ADT
capacity. The current size limit is 1024. You can use the get_
names function with offset and length parameters to
retrieve the name array in multiple small chunks.

ORA-24196 ERROR_WRONG_MODE The message payload is being accessed with a wrong access
mode. For example, trying to read a message payload with
write-only mode or trying to write a message payload with
the read-only mode.

Oracle JMS Type Constants

173-10 PL/SQL Packages and Types Reference

Oracle JMS Type Constants

This section lists some useful constants when dealing with message type functions.

DBMS_AQ Package Constants
DBMS_AQ package constants specify different types of JMS messages. They are
useful when dealing with general message types during upcasting and
downcasting or constructing a general message with a specific message type:

JMS_TEXT_MESSAGE CONSTANT BINARY_INTEGER;
JMS_BYTES_MESSAGE CONSTANT BINARY_INTEGER;
JMS_STREAM_MESSAGE CONSTANT BINARY_INTEGER;
JMS_MAP_MESSAGE CONSTANT BINARY_INTEGER;
JMS_OBJECT_MESSAGE CONSTANT BINARY_INTEGER;

SYS.DBMS_JMS_PLSQL Package Constants
SYS.DBMS_JMS_PLSQL package constants are new in Oracle Database 10g.

ORA-24197 ERROR_JAVA_EXCEPTION ORA-24197 error is raised when a Java exception is raised
that does not fit in any of the other error categories. You can
use the get_exception static procedure of aq$_jms_map_
message, aq$_jms_bytes_message, and aq$_jms_
stream_message to retrieve the exception information last
thrown by the Java stored procedure.

A single static variable is used to store the last exception and
is overwritten if another exception is thrown before you
retrieve it. A new ADT aq$_jms_exception is created to
represent the exception information on the PL/SQL side.

ORA-24198 ERROR_INVALID_ID An invalid operation ID is being provided to access a
message.

ORA-24199 ERROR_STORE_OVERFLOW The number of messages (with the same type) that users are
trying to manipulate exceeds the size of the message store on
the Java stored procedure side. The current size of the store is
20. It unusual to need to manipulate more than 20 messages
at the same time. A common mistake is to forget to call the
clean procedure after using one message. The clean
procedure frees the message slot for use by other messages
attempting access.

Table 173–1 (Cont.) Oracle JMS Types Errors

ORA error
number

dbms_jms_plsql package
constants Explanation

Using JMS Types

JMS Types 173-11

These constants specify the mode of message payload. They are useful when
interpreting the mode of the message payload returned from the get_mode
function:

MESSAGE_ACCESS_READONLY CONSTANT PLS_INTEGER;
MESSAGE_ACCESS_WRITEONLY CONSTANT PLS_INTEGER;

These constants specify the ADT type of an Oracle Streams AQ queue. They are
useful during the conversion of JMS selectors to Oracle Streams AQ rules:

DESTPLOAD_JMSTYPE CONSTANT PLS_INTEGER;
DESTPLOAD_USERADT CONSTANT PLS_INTEGER;
DESTPLOAD_ANYDATA CONSTANT PLS_INTEGER;

These constants specify the type of data that can be held by a aq$_jms_value
type. They are useful when interpreting the aq$_jms_value returned by the get_
object method of AQ$_JMS_MAP_MESSAGE or read_object method of AQ$_
JMS_STREAM_MESSAGE:

DATA_TYPE_BYTE CONSTANT PLS_INTEGER;
DATA_TYPE_SHORT CONSTANT PLS_INTEGER;
DATA_TYPE_INTEGER CONSTANT PLS_INTEGER;
DATA_TYPE_LONG CONSTANT PLS_INTEGER;
DATA_TYPE_FLOAT CONSTANT PLS_INTEGER;
DATA_TYPE_DOUBLE CONSTANT PLS_INTEGER;
DATA_TYPE_BOOLEAN CONSTANT PLS_INTEGER;
DATA_TYPE_CHARACTER CONSTANT PLS_INTEGER;
DATA_TYPE_STRING CONSTANT PLS_INTEGER;
DATA_TYPE_BYTES CONSTANT PLS_INTEGER;
DATA_TYPE_UNSIGNED_BYTE CONSTANT PLS_INTEGER;
DATA_TYPE_UNSIGNED_SHORT CONSTANT PLS_INTEGER;

These constants specify the error number of the ORA errors that can be raised by
the functions of message type ADTs. They are useful in user error handlers:

ERROR_DATA_OVERFLOW CONSTANT PLS_INTEGER := -24190;
ERROR_PROP_NAME_EXIST CONSTANT PLS_INTEGER := -24191;
ERROR_PROP_NAME_NULL CONSTANT PLS_INTEGER := -24192;
ERROR_EXCEED_RANGE CONSTANT PLS_INTEGER := -24193;
ERROR_TYPE_MISMATCH CONSTANT PLS_INTEGER := -24194;
ERROR_MAP_TOO_LARGE CONSTANT PLS_INTEGER := -24195;
ERROR_WRONG_MODE CONSTANT PLS_INTEGER := -24196;
ERROR_JAVA_EXCEPTION CONSTANT PLS_INTEGER := -24197;
ERROR_INVALID_ID CONSTANT PLS_INTEGER := -24198;
ERROR_STORE_OVERFLOW CONSTANT PLS_INTEGER := -24199;

CONVERT_JMS_SELECTOR

173-12 PL/SQL Packages and Types Reference

CONVERT_JMS_SELECTOR

Oracle Database includes three stored procedures to help users convert JMS
selectors into Oracle Streams AQ rules. These rules can be used in ADD_
SUBSCRIBER operations as subscriber rules or in DEQUEUE operations as dequeue
conditions. These procedures are in the SYS.dbms_jms_plsql package.

Convert with Minimal Specification
The first procedure assumes the destination payload type is one of the JMS ADTs
whose corresponding constant is dbms_jms_plsql.DESTPLOAD_JMSTYPE and
also assumes that the J2EE compliant mode is true.

Syntax
Function convert_jms_selector(selector IN VARCHAR2) RETURN VARCHAR2

Returns
The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions
ORA-24197 if the Java stored procedure throws an exception during execution.

Convert with Destination Payload Type Specified
The second procedure takes one more parameter: dest_pload_type. The
conversion of a JMS selector to an Oracle Streams AQ rule happens only if this
parameter is SYS.dbms_jms_plsql.DESTPLOAD_JMSTYPE or SYS.dbms_jms_
plsql.DESTPLOAD_ANYDATA. The function returns exactly the same VARCHAR2
value as the selector parameter if the dest_pload_type parameter is SYS.dbms_
jms_plsql.DESTPLOAD_USERADT. The function returns null if dest_pload_
type parameter is none of these three constants.

This function assumes that the J2EE compliant mode is true.

Syntax
Function convert_jms_selector(
 selector IN VARCHAR2,
 dest_pload_type IN PLS_INTEGER)
RETURN VARCHAR2

Using JMS Types

JMS Types 173-13

Returns
The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions
ORA-24197 if the Java stored procedure throws an exception during execution.

Convert with Destination Payload Type and Compliant Mode Specified
The third procedure takes a dest_pload_type parameter and a compliant
parameter. The conversion of a JMS selector to an Oracle Streams AQ rule happens
only if the dest_pload_type parameter is SYS.dbms_jms_plsql.DESTPLOAD_
JMSTYPE or SYS.dbms_jms_plsql.DESTPLOAD_ANYDATA. The function returns
exactly the same VARCHAR2 value as the selector parameter if the dest_pload_
type parameter is SYS.dbms_jms_plsql.DESTPLOAD_USERADT. The function
returns null if the dest_pload_type parameter is none of these three constants.

The compliant parameter controls if the conversion is in J2EE compliant mode or
not. The noncompliant conversion of a JMS selector is for backward compatibility.

Syntax
Function convert_jms_selector(
 selector IN VARCHAR2,
 dest_pload_type IN PLS_INTEGER,
 compliant IN BOOLEAN)

Returns
The converted Oracle Streams AQ rule or null if there is any conversion error.

Exceptions
ORA-24197 if the Java stored procedure throws an exception during execution.

Summary of JMS Types

173-14 PL/SQL Packages and Types Reference

Summary of JMS Types

■ SYS.AQ$_JMS_MESSAGE Type

■ SYS.AQ$_JMS_TEXT_MESSAGE Type

■ SYS.AQ$_JMS_BYTES_MESSAGE Type

■ SYS.AQ$_JMS_MAP_MESSAGE Type

■ SYS.AQ$_JMS_STREAM_MESSAGE Type

■ SYS.AQ$_JMS_OBJECT_MESSAGE Type

■ SYS.AQ$_JMS_NAMESARRAY Type

■ SYS.AQ$_JMS_VALUE Type

■ SYS.AQ$_JMS_EXCEPTION Type

Summary of JMS Types

JMS Types 173-15

SYS.AQ$_JMS_MESSAGE Type

This ADT type can represent any of five different JMS message types: text message,
bytes message, stream message, map message, or object message. Queues created
using this ADT can therefore store all five types of JMS messages.

This section contains these topics:

■ CONSTRUCT Static Functions

■ Cast Methods

■ JMS Header Methods

■ System Properties Methods

■ User Properties Methods

■ Payload Methods

Syntax
TYPE AQ$_JMS_MESSAGE AS OBJECT(
 header aq$_jms_header,
 senderid varchar2(100),
 message_type INT,
 text_len INT,
 bytes_len INT,
 text_vc varchar2(4000),
 bytes_raw raw(2000),
 text_lob clob,
 bytes_lob blob,
 STATIC FUNCTION construct (mtype IN INT)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (text_msg IN aq$_jms_text_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (bytes_msg IN aq$_jms_bytes_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (stream_msg IN aq$_jms_stream_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (map_msg IN aq$_jms_map_message)
 RETURN aq$_jms_message,
 STATIC FUNCTION construct (object_msg IN aq$_jms_object_message)
 RETURN aq$_jms_message,
 MEMBER FUNCTION cast_to_bytes_msg RETURN aq$_jms_bytes_message,
 MEMBER FUNCTION cast_to_map_msg RETURN aq$_jms_map_message,

SYS.AQ$_JMS_MESSAGE Type

173-16 PL/SQL Packages and Types Reference

 MEMBER FUNCTION cast_to_object_msg RETURN aq$_jms_object_message,
 MEMBER FUNCTION cast_to_stream_msg RETURN aq$_jms_stream_message,
 MEMBER FUNCTION cast_to_text_msg RETURN aq$_jms_text_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property (property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_text (payload IN VARCHAR2),
 MEMBER PROCEDURE set_text (payload IN CLOB),
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),

Summary of JMS Types

JMS Types 173-17

 MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
 MEMBER PROCEDURE get_text (payload OUT CLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB));

CONSTRUCT Static Functions
There are six CONSTRUCT static functions in this type.

STATIC FUNCTION construct (mtype IN INT) RETURN aq$_jms_message
Creates an instance of aq$_jms_message, which can hold a specific type of JMS
message (TextMessage, BytesMessage, MapMessage, StreamMessage or
ObjectMessage). The message type of the created aq$_jms_message instance
depends on the mtype parameter passed to the construct method. Once a message
has been constructed, it can be used to store JMS messages of the type it has been
constructed to hold.

The mtype parameter must be one of the following constants described in "Oracle
JMS Type Constants" on page 173-10:

DBMS_AQ.JMS_TEXT_MESSAGE
DBMS_AQ.JMS_BYTES_MESSAGE
DBMS_AQ.JMS_STREAM_MESSAGE
DBMS_AQ.JMS_MAP_MESSAGE
DBMS_AQ.JMS_OBJECT_MESSAGE

STATIC FUNCTION construct (text_msg IN aq$_jms_text_message) RETURN aq$_
jms_message
Creates an aq$_jms_message from an aq$_jms_text_message.

STATIC FUNCTION construct (bytes_msg IN aq$_jms_bytes_message) RETURN
aq$_jms_message;
Creates an aq$_jms_message from an aq$_jms_bytes_message.

STATIC FUNCTION construct (stream_msg IN aq$_jms_stream_message)
RETURN aq$_jms_message;
Creates an aq$_jms_message from an aq$_jms_stream_message.

STATIC FUNCTION construct (map_msg IN aq$_jms_map_message) RETURN
aq$_jms_message;
Creates an aq$_jms_message from an aq$_jms_map_message.

STATIC FUNCTION construct (object_msg IN aq$_jms_object_message) RETURN

SYS.AQ$_JMS_MESSAGE Type

173-18 PL/SQL Packages and Types Reference

aq$_jms_message;
Creates an aq$_jms_message from an aq$_jms_object_message.

Cast Methods

cast_to_bytes_msg RETURN aq$_jms_bytes_message
Casts an aq$_jms_message to an aq$_jms_bytes_message. Returns an aq$_
jms_bytes_message or null if the message_type attribute of the aq$_jms_
message is not DBMS_AQ.JMS_BYTES_MESSAGE. This function raises ORA-24198
if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_
BYTES_MESSAGE.

cast_to_map_msg RETURN aq$_jms_map_message
Casts an aq$_jms_message to an aq$_jms_map_message. Returns an aq$_
jms_map_message or null if the message_type attribute of the aq$_jms_
message is not DBMS_AQ.JMS_MAP_MESSAGE. This function raises ORA-24198 if
the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_
MAP_MESSAGE.

cast_to_object_msg RETURN aq$_jms_object_message
Casts an aq$_jms_message to an aq$_jms_object_message. Returns an aq$_
jms_object_message or null if the message_type attribute of the aq$_jms_
message is not DBMS_AQ.JMS_OBJECT_MESSAGE. This function raises ORA-24198
if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_
OBJECT_MESSAGE.

cast_to_stream_msg RETURN aq$_jms_stream_message
Casts an aq$_jms_message to an aq$_jms_stream_message. Returns an aq$_
jms_stream_message or null if the message_type attribute of the aq$_jms_
message is not DBMS_AQ.JMS_STREAM_MESSAGE. This function raises ORA-24198
if the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_
STREAM_MESSAGE.

cast_to_text_msg RETURN aq$_jms_text_message
Casts an aq$_jms_message to an aq$_jms_text_message. Returns an aq$_
jms_text_message or null if the message_type attribute of the aq$_jms_
message is not DBMS_AQ.JMS_TEXT_MESSAGE. This function raises ORA-24198 if
the message_type field of the aq$_jms_message is not DBMS_AQJMS.JMS_
TEXT_MESSAGE.

Summary of JMS Types

JMS Types 173-19

JMS Header Methods

set_replyto (replyto IN sys.aq$_agent)
Sets the replyto parameter, which corresponds to JMSReplyTo.

get_replyto RETURN sys.aq$_agent
Returns replyto, which corresponds to JMSReplyTo.

set_type (type IN VARCHAR)
Sets the JMS type, which can be any text and corresponds to JMSType.

get_type RETURN VARCHAR
Returns type, which corresponds to JMSType.

System Properties Methods

set_userid (userid IN VARCHAR)
Sets userid, which corresponds to JMSXUserID.

set_appid (appid IN VARCHAR)
Sets appid, which corresponds to JMSXAppID.

set_groupid (groupid IN VARCHAR)
Sets groupid, which corresponds to JMSXGroupID.

set_groupseq (groupseq IN INT)
Sets groupseq, which corresponds to JMSXGroupSeq.

get_userid RETURN VARCHAR
Returns userid, which corresponds to JMSXUserID.

get_appid RETURN VARCHAR
Returns appid, which corresponds to JMSXAppID.

get_groupid RETURN VARCHAR
Returns groupid, which corresponds to JMSXGroupID.

get_groupseq RETURN VARCHAR
Returns groupseq, which corresponds to JMSXGroupSeq.

SYS.AQ$_JMS_MESSAGE Type

173-20 PL/SQL Packages and Types Reference

User Properties Methods

clear_properties
Clears all user properties. This procedure does not affect system properties.

set_boolean_property (property_name IN VARCHAR, property_value IN
BOOLEAN)
Checks whether property_name is null or exists. If it is not null, the procedure
stores property_value in an internal representation (a NUMBER type). Raises
exception ORA-24191 if the property name exists or ORA-24192 if the property
name is null.

set_byte_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If it is not null, the procedure
checks whether property_value is within -128 to 127 (8-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the byte datatype. Raises
exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_double_property (property_name IN VARCHAR, property_value IN DOUBLE
PRECISION)
Checks whether property_name is null or exists. If it is not null, the procedure
stores property_value. Raises exception ORA-24191 if the property name exists
or ORA-24192 if the property name is null.

set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
Checks whether property_name is null or exists. If it is not null, the procedure
stores property_value. Raises exception ORA-24191 if the property name exists
or ORA-24192 if the property name is null.

set_int_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If it is not null, the procedure
checks whether property_value is within -2147483648 to 2147483647 (32-bits).
This check is necessary because the INT datatype is 38 bits in PL/SQL and Oracle
Database. Raises exception ORA-24191 if the property name exists, ORA-24192 if
the property name is null, or ORA-24193 if the property value exceeds the valid
range.

set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
Checks whether property_name is null or exists. If it is not null, the procedure
stores property_value. In PL/SQL and Oracle Database, the NUMBER datatype is
38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is needed.

Summary of JMS Types

JMS Types 173-21

Raises exception ORA-24191 if the property name exists or ORA-24192 if the
property name is null.

set_short_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If it is not null, the procedure
checks whether property_value is within -32768 to 32767 (16-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises
exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
Checks whether property_name is null or exists. If it is not null, the procedure
stores property_value. Raises exception ORA-24191 if the property name exists
or ORA-24192 if the property name is null.

get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
If the property with the corresponding property name passed in exists, and if it is a
BOOLEAN property, then this function returns the value of the property. Otherwise it
returns a null.

get_byte_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
BYTE property, then this function returns the value of the property. Otherwise it
returns a null.

get_double_property (property_name IN VARCHAR) RETURN DOUBLE
PRECISION
If the property with the corresponding property name passed in exists, and if it is a
DOUBLE property, then this function returns the value of the property. Otherwise it
returns a null.

get_float_property (property_name IN VARCHAR) RETURN FLOAT
If the property with the corresponding property name passed in exists, and if it is a
FLOAT property, then this function returns the value of the property. Otherwise it
returns a null.

get_int_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
Integer property, then this function returns the value of the property. Otherwise it
returns a null.

SYS.AQ$_JMS_MESSAGE Type

173-22 PL/SQL Packages and Types Reference

get_long_property (property_name IN VARCHAR) RETURN NUMBER
If the property with the corresponding property name passed in exists, and if it is a
long property, then this function returns the value of the property. Otherwise it
returns a null.

get_short_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
short property, then this function returns the value of the property. Otherwise it
returns a null.

get_string_property (property_name IN VARCHAR) RETURN VARCHAR
If the property with the corresponding property name passed in exists, and if it is a
STRING property, then this function returns the value of the property. Otherwise it
returns a null.

Payload Methods

set_text (payload IN VARCHAR2)
Sets the payload, a VARCHAR2 value, to an internal representation.

set_text (payload IN CLOB),
Sets the payload, a CLOB value, to an internal representation.

set_bytes (payload IN RAW)
Sets the payload, a RAW value, to an internal representation.

set_bytes (payload IN BLOB)
Sets the payload, a BLOB value, to an internal representation.

get_text (payload OUT VARCHAR2)
Puts the internal representation of the payload into a VARCHAR2 variable payload.

get_text (payload OUT CLOB)
Puts the internal representation of the payload into a CLOB variable payload.

get_bytes (payload OUT RAW)
Puts the internal representation of the payload into a RAW variable payload.

get_bytes (payload OUT BLOB)
Puts the internal representation of the payload into a BLOB variable payload.

Summary of JMS Types

JMS Types 173-23

SYS.AQ$_JMS_TEXT_MESSAGE Type

This type is the ADT used to store a TextMessage in an Oracle Streams AQ queue.

This section contains these topics:

■ CONSTRUCT Function

■ JMS Header Methods

■ System Properties Methods

■ User Properties Methods

■ Payload Methods

Syntax
TYPE AQ$_JMS_TEXT_MESSAGE AS OBJECT(
 header aq$_jms_header,
 text_len INT,
 text_vc varchar2(4000),
 text_lob clob,
 STATIC FUNCTION construct RETURN aq$_jms_text_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,

SYS.AQ$_JMS_TEXT_MESSAGE Type

173-24 PL/SQL Packages and Types Reference

 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)
 RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR)
 RETURN VARCHAR,
 MEMBER PROCEDURE set_text (payload IN VARCHAR2),
 MEMBER PROCEDURE set_text (payload IN CLOB),
 MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
 MEMBER PROCEDURE get_text (payload OUT CLOB));

CONSTRUCT Function

STATIC FUNCTION construct RETURN aq$_jms_text_message
Creates an empty aq$_jms_text_message.

JMS Header Methods

set_replyto (replyto IN sys.aq$_agent)
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

set_type (type IN VARCHAR)
Sets the JMS type, which can be any text, and which corresponds to JMSType in
JMS.

get_replyto RETURN sys.aq$_agent
Returns replyto, which corresponds to JMSReplyTo.

get_type RETURN VARCHAR
Returns type, which corresponds to JMSType.

Summary of JMS Types

JMS Types 173-25

System Properties Methods

set_userid (userid IN VARCHAR)
Sets userid, which corresponds to JMSXUserID in JMS.

set_appid (appid IN VARCHAR)
Sets appid, which corresponds to JMSXAppID in JMS.

set_groupid (groupid IN VARCHAR)
Sets groupid, which corresponds to JMSXGroupID in JMS.

set_groupseq (groupseq IN INT)
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

get_userid RETURN VARCHAR
Returns userid, which corresponds to JMSXUserID.

get_appid RETURN VARCHAR
Returns appid, which corresponds to JMSXAppID.

get_groupid RETURN VARCHAR
Returns groupid, which corresponds to JMSXGroupID.

get_groupseq RETURN INT
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

clear_properties
Clears all user properties. This procedure does not affect system properties.

set_boolean_property (property_name IN VARCHAR, property_value IN
BOOLEAN)
Checks whether property_name is null or exists. If not, the procedure stores
property_value in an internal representation. Raises exception ORA-24191 if the
property name exists or ORA-24192 if the property name is null.

set_byte_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -128 to 127 (8-bits). This check is necessary
because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception

SYS.AQ$_JMS_TEXT_MESSAGE Type

173-26 PL/SQL Packages and Types Reference

ORA-24191 if the property name exists, ORA-24192 if the property name is null, or
ORA-24193 if the property value exceeds the valid range.

set_double_property (property_name IN VARCHAR, property_value IN DOUBLE
PRECISION)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_int_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -2147483648 to 2147483647 (32-bits). This
check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38
bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the
property name is null, or ORA-24193 if the property value exceeds the valid range.

set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38
bits. In Java, the long datatype is 64 bits. Therefore, no range check is
needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the
property name is null.

set_short_property property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -32768 to 32767 (16-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises
exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

Summary of JMS Types

JMS Types 173-27

get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
If the property with the corresponding property name passed in exists, and if it is a
BOOLEAN property, then this function returns the value of the property. Otherwise it
returns a null.

get_byte_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
BYTE property, then this function returns the value of the property. Otherwise it
returns a null.

get_double_property (property_name IN VARCHAR) RETURN DOUBLE
PRECISION
If the property with the corresponding property name passed in exists, and if it is a
DOUBLE property, then this function returns the value of the property. Otherwise it
returns a null.

get_float_property (property_name IN VARCHAR) RETURN FLOAT
If the property with the corresponding property name passed in exists, and if it is a
FLOAT property, then this function returns the value of the property. Otherwise it
returns a null.

get_int_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
Integer property, then this function returns the value of the property. Otherwise it
returns a null.

get_long_property (property_name IN VARCHAR) RETURN NUMBER
If the property with the corresponding property name passed in exists, and if it is a
long property, then this function returns the value of the property. Otherwise it
returns a null.

get_short_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
short property, then this function returns the value of the property. Otherwise it
returns a null.

get_string_property (property_name IN VARCHAR) RETURN VARCHAR)
If the property with the corresponding property name passed in exists, and if it is a
STRING property, then this function returns the value of the property. Otherwise it
returns a null.

SYS.AQ$_JMS_TEXT_MESSAGE Type

173-28 PL/SQL Packages and Types Reference

Payload Methods

set_text (payload IN VARCHAR2)
Sets the payload, a VARCHAR2 value, to an internal representation.

set_text (payload IN CLOB)
Sets the payload, a CLOB value, to an internal representation.

get_text (payload OUT VARCHAR2)
Puts the internal representation of the payload into a VARCHAR2 variable payload.

get_text (payload OUT CLOB)
Puts the internal representation of the payload into a CLOB variable payload.

Summary of JMS Types

JMS Types 173-29

SYS.AQ$_JMS_BYTES_MESSAGE Type

This type is the ADT used to store a BytesMessage in an Oracle Streams AQ
queue.

This section contains these topics:

■ CONSTRUCT Function

■ JMS Header Methods

■ System Properties Methods

■ User Properties Methods

■ Payload Methods

Syntax
TYPE AQ$_JMS_BYTES_MESSAGE AS OBJECT(
 header aq$_jms_header,
 bytes_len INT,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_bytes_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-30 PL/SQL Packages and Types Reference

 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE reset (id IN PLS_INTEGER),
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER FUNCTION get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN,
 MEMBER FUNCTION read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_bytes (id IN PLS_INTEGER,
 value OUT NOCOPY BLOB, length IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_char (id IN PLS_INTEGER) RETURN CHAR,
 MEMBER FUNCTION read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION,
 MEMBER FUNCTION read_float (id IN PLS_INTEGER) RETURN FLOAT,
 MEMBER FUNCTION read_int (id IN PLS_INTEGER) RETURN INT,
 MEMBER FUNCTION read_long (id IN PLS_INTEGER) RETURN NUMBER,
 MEMBER FUNCTION read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_unsigned_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_unsigned_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE read_utf (id IN PLS_INTEGER, value OUT NOCOPY CLOB),
 MEMBER PROCEDURE write_boolean (id IN PLS_INTEGER, value IN BOOLEAN),
 MEMBER PROCEDURE write_byte (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB),

Summary of JMS Types

JMS Types 173-31

 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW,
 offset IN PLS_INTEGER, length IN PLS_INTEGER),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_char (id IN PLS_INTEGER, value IN CHAR),
 MEMBER PROCEDURE write_double (id IN PLS_INTEGER,
 value IN DOUBLE PRECISION),
 MEMBER PROCEDURE write_float (id IN PLS_INTEGER, value IN FLOAT),
 MEMBER PROCEDURE write_int (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_long (id IN PLS_INTEGER, value IN NUMBER),
 MEMBER PROCEDURE write_short (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_utf (id IN PLS_INTEGER, value IN VARCHAR2),
 MEMBER PROCEDURE write_utf (id IN PLS_INTEGER, value IN CLOB));

CONSTRUCT Function

STATIC FUNCTION construct RETURN aq$_jms_bytes_message
Creates an empty aq$_jms_bytes_message.

JMS Header Methods

set_replyto (replyto IN sys.aq$_agent)
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

set_type (type IN VARCHAR)
Sets the JMS type, which can be any text, and which corresponds to JMSType in
JMS.

get_replyto RETURN sys.aq$_agent
Returns replyto, which corresponds to JMSReplyTo.

get_type RETURN VARCHAR
Returns type, which corresponds to JMSType.

System Properties Methods

set_userid (userid IN VARCHAR)
Sets userid, which corresponds to JMSXUserID in JMS.

set_appid (appid IN VARCHAR)
Sets appid, which corresponds to JMSXAppID in JMS.

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-32 PL/SQL Packages and Types Reference

set_groupid (groupid IN VARCHAR)
Sets groupid, which corresponds to JMSXGroupID in JMS.

set_groupseq (groupseq IN INT)
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

get_userid RETURN VARCHAR
Returns userid, which corresponds to JMSXUserID.

get_appid RETURN VARCHAR
Returns appid, which corresponds to JMSXAppID.

get_groupid RETURN VARCHAR
Returns groupid, which corresponds to JMSXGroupID.

get_groupseq RETURN NUMBER
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

clear_properties
Clears all user properties. This procedure does not affect system properties.

set_boolean_property (property_name IN VARCHAR, property_value IN
BOOLEAN)
Checks whether property_name is null or exists. If not, the procedure stores
property_value in an internal representation. Raises exception ORA-24191 if the
property name exists or ORA-24192 if the property name is null.

set_byte_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -128 to 127 (8-bits). This check is necessary
because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception
ORA-24191 if the property name exists, ORA-24192 if the property name is null, or
ORA-24193 if the property value exceeds the valid range.

set_double_property (property_name IN VARCHAR, property_value IN DOUBLE
PRECISION)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

Summary of JMS Types

JMS Types 173-33

set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_int_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -2147483648 to 2147483647 (32-bits). This
check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38
bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the
property name is null, or ORA-24193 if the property value exceeds the valid range.

set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38
bits. In Java, the long datatype is 64 bits. Therefore, no range check is
needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the
property name is null.

set_short_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -32768 to 32767 (16-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises
exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
If the property with the corresponding property name passed in exists, and if it is a
BOOLEAN property, then this function returns the value of the property. Otherwise it
returns a null.

get_byte_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
BYTE property, then this function returns the value of the property. Otherwise it
returns a null.

get_double_property (property_name IN VARCHAR) RETURN DOUBLE

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-34 PL/SQL Packages and Types Reference

PRECISION
If the property with the corresponding property name passed in exists, and if it is a
DOUBLE property, then this function returns the value of the property. Otherwise it
returns a null.

get_float_property (property_name IN VARCHAR) RETURN FLOAT
If the property with the corresponding property name passed in exists, and if it is a
FLOAT property, then this function returns the value of the property. Otherwise it
returns a null.

get_int_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
Integer property, then this function returns the value of the property. Otherwise it
returns a null.

get_long_property (property_name IN VARCHAR) RETURN NUMBER
If the property with the corresponding property name passed in exists, and if it is a
long property, then this function returns the value of the property. Otherwise it
returns a null.

get_short_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
short property, then this function returns the value of the property. Otherwise it
returns a null.

get_string_property (property_name IN VARCHAR) RETURN VARCHAR
If the property with the corresponding property name passed in exists, and if it is a
STRING property, then this function returns the value of the property. Otherwise it
returns a null.

Payload Methods

set_bytes (payload in RAW)
Sets the payload, a RAW value, to an internal representation.

set_bytes (payload in BLOB)
Sets the payload, a BLOB value, to an internal representation.

get_bytes (payload out RAW)
Puts the internal representation of the payload into a RAW variable payload. Raises
exception ORA-24190 if the length of the internal payload is more than 32767 (the
maximum length of RAW in PL/SQL).

Summary of JMS Types

JMS Types 173-35

get_bytes (payload out BLOB)
Puts the internal representation of the payload into a BLOB variable payload.

prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
Takes the byte array stored in aq$_jms_bytes_message and decodes it as a Java
object in the Java stored procedure. The result of the decoding is stored as a static
variable in Jserv session memory. Parameter id is used to identify the slot where
the Java object is stored in the Oracle Database JVM session memory. If id is null,
then a new slot is created for this PL/SQL object. Subsequent JMS operations on the
payload need to provide this operation ID.

This function also sets the message access mode to MESSAGE_ACCESS_READONLY.
Subsequent calls of write_XXX procedure raise an ORA-24196 error. Users can call
the clear_body procedure to set the message access mode to MESSAGE_ACCESS_
READONLY.

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

reset (id IN PLS_INTEGER)
Resets the starting position of the stream to the beginning and puts the bytes
message in read-only mode. Raises exception ORA-24197 if the Java stored
procedure throws an exception during execution or ORA-24198 if the operation ID
is invalid.

flush (id IN PLS_INTEGER)
Takes the static variable in Jserv and synchronizes the content back to the aq$_
jms_bytes_message. This procedure will not affect the underlying access mode.
This procedure raises ORA-24197 if the Java stored procedure throws an exception
during execution or ORA-24198 if the operation ID is invalid.

clear_body (id IN PLS_INTEGER)
Sets the Java stored procedure static variable to empty payload. Parameter id is
used to identify the slot where the Java object is stored in the Oracle Database JVM
session memory. If id is null, a new slot is created for this PL/SQL object.
Subsequent JMS operations on the payload need to provide this operation ID.

It also sets the message access mode to MESSAGE_ACCESS_WRITEONLY. Later calls
of read_XXX procedure raise ORA-24196 error. Users can call the reset or
prepare procedures to set the message access mode to MESSAGE_ACCESS_
READONLY. Write-only and read-only modes affect only the payload functions of
AQ$_JMS_BYTES_MESSAGE. They do not affect the header functions.

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-36 PL/SQL Packages and Types Reference

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

clean (id IN PLS_INTEGER)
Closes and cleans up the DataInputStream or DataOutputStream at the Java
stored procedure side corresponding to the operation ID. It is very important to call
this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java
stored procedure throws an exception during execution or ORA-24198 if the
operation ID is invalid.

clean_all
Closes and cleans up all the messages in the corresponding type of message store at
the Java stored procedure side. This procedure raises ORA-24197 if the Java stored
procedure throws an exception during execution.

get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER
Returns the current mode of this message. The return value is either SYS.dbms_
jms.plsql.MESSAGE_ACCESS_READONLY or SYS.dbms_
jms.plsql.MESSAGE_ACCESS_WRITEONLY. Raises exception ORA-24197 if the
Java stored procedure throws an exception during execution or ORA-24198 if the
operation ID is invalid.

read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN
Reads a Boolean value from the bytes message and returns the Boolean value read.
Null is returned if the end of the message stream has been reached. Parameter id is
the operation ID. Raises exception ORA-24196 if the bytes message is in write-only
mode, ORA-24197 if the Java stored procedure throws an exception during
execution, or ORA-24198 if the operation ID is invalid.

read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads a BYTE value from the bytes message and returns the BYTE value read. Null
is returned if the end of the stream has been reached. Because there is no BYTE type
in PL/SQL, Oracle Database uses PLS_INTEGER to represent a BYTE. Although
PL/SQL users get a PLS_INTEGER, they are guaranteed that the value is in the Java
BYTE value range. If this value is issued with a write_byte function, then there
will not be an out of range error. Parameter id is the operation ID. Raises exception
ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

read_bytes (id IN PLS_INTEGER, value OUT NO COPYBLOB, length IN PLS_

Summary of JMS Types

JMS Types 173-37

INTEGER) RETURN PLS_INTEGER
Reads length of the bytes from bytes message stream into value and returns the
total number of bytes read. If there is no more data (because the end of the stream
has been reached), then it returns -1. Raises exceptions ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

read_char (id IN PLS_INTEGER) RETURN CHAR
Reads a character value from the bytes message and returns the character value
read. Null is returned if the end of the stream has been reached. Raises exception
ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION
Reads a double from the bytes message and returns the character value read. Null is
returned if the end of the stream has been reached. Raises exception ORA-24196 if
the bytes message is in write-only mode, ORA-24197 if the Java stored procedure
throws an exception during execution, or ORA-24198 if the operation ID is invalid.

read_float (id IN PLS_INTEGER) RETURN FLOAT
Reads a float from the bytes message and returns the float read. Null is returned if
the end of the stream has been reached. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

read_int (id IN PLS_INTEGER) RETURN INT
Reads an INT from the bytes message and returns the INT read. Null is returned if
the end of the stream has been reached. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

read_long (id IN PLS_INTEGER) RETURN NUMBER
Reads a long from the bytes message and returns the long read. Null is returned if
the end of the stream has been reached. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads a short value from the bytes message and returns the short value read. Null is
returned if the end of the stream has been reached. Because there is no short type in
PL/SQL, PLS_INTEGER is used to represent a BYTE. Although PL/SQL users get

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-38 PL/SQL Packages and Types Reference

an PLS_INTEGER, they are guaranteed that the value is in the Java short value
range. If this value is issued with a write_short function, then there will not be
an out of range error. Raises exception ORA-24196 if the bytes message is in
write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

read_unsigned_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads an unsigned 8-bit number from the bytes message stream and returns the
next byte from the bytes message stream, interpreted as an unsigned 8-bit number.
Null is returned if the end of the stream has been reached. Raises exception
ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

read_unsigned_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads an unsigned 16-bit number from the bytes message stream and returns the
next two bytes from the bytes message stream, interpreted as an unsigned 16-bit
integer. Null is returned if the end of the stream has been reached. Raises exception
ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

read_utf (id IN PLS_INTEGER, value OUT NOCOPY CLOB)
Reads a string that has been encoded using a UTF-8 format from the bytes message.
Null is returned if the end of the stream has been reached. Raises exception
ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

write_boolean (id IN PLS_INTEGER, value IN BOOLEAN)
Writes a Boolean to the bytes message stream as a 1-byte value. The value true is
written as the value (byte)1. The value false is written as the value (byte)0. Raises
exception ORA-24196 if the bytes message is in write-only mode, ORA-24197 if the
Java stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

 write_byte (id IN PLS_INTEGER, value IN PLS_INTEGER)
Writes a byte to the bytes message. Because there is no BYTE type in PL/SQL, PLS_
INTEGER is used to represent a BYTE. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-39

write_bytes (id IN PLS_INTEGER, value IN RAW)
Writes an array of bytes to the bytes message. Raises exception ORA-24196 if the
bytes message is in write-only mode, ORA-24197 if the Java stored procedure
throws an exception during execution, or ORA-24198 if the operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN BLOB)
Writes an array of bytes to the bytes message. Raises exception ORA-24196 if the
bytes message is in write-only mode, ORA-24197 if the Java stored procedure
throws an exception during execution, or ORA-24198 if the operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN RAW, offset IN PLS_INTEGER, length IN
PLS_INTEGER)
Writes a portion of a byte array to the bytes message stream. Parameter offset is
the initial offset within the byte array. If the range [offset, offset+length] exceeds the
boundary of the byte array value, then a Java IndexOutOfBounds exception is
thrown in the Java stored procedure and this procedure raises error ORA-24197. The
index starts from 0. Raises exception ORA-24196 if the bytes message is in
write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN BLOB, offset IN INT, length IN INT)
Writes a portion of a byte array to the bytes message stream. Parameter offset is
the initial offset within the byte array. If the range [offset, offset+length] exceeds the
boundary of the byte array value, then a Java IndexOutOfBounds exception is
thrown in the Java stored procedure and this procedure raises error ORA-24197. The
index starts from 0. Raises exception ORA-24196 if the bytes message is in
write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_char (id IN PLS_INTEGER, value IN CHAR)
Writes a character value to the bytes message. If this value has multiple characters,
it is the first character that is written. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION)
Writes a double to the bytes message. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_BYTES_MESSAGE Type

173-40 PL/SQL Packages and Types Reference

write_float (id IN PLS_INTEGER, value IN FLOAT)
Writes a float to the bytes message. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_int (id IN PLS_INTEGER, value IN PLS_INTEGER)
Writes an INT to the bytes message. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_long (id IN PLS_INTEGER, value IN NUMBER)
Writes a long to the bytes message. Raises exception ORA-24196 if the bytes
message is in write-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_short (id IN PLS_INTEGER, value IN PLS_INTEGER)
Writes a short to the bytes message as two bytes, high byte first. Because there is no
short type in PL/SQL, INT is used to represent a short. Raises exception ORA-24193
if the parameter value exceeds the valid range, ORA-24196 if the bytes message is in
write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_utf (id IN PLS_INTEGER, value IN VARCHAR2)
Writes a string to the bytes message stream using UTF-8 encoding in a
machine-independent manner. Raises exception ORA-24196 if the bytes message is
in write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_utf (id IN PLS_INTEGER, value IN CLOB)
Writes a string to the bytes message stream using UTF-8 encoding in a
machine-independent manner. Raises exception ORA-24196 if the bytes message is
in write-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-41

SYS.AQ$_JMS_MAP_MESSAGE Type

This type is the ADT used to store a MapMessage in an Oracle Streams AQ queue.

This section contains these topics:

■ CONSTRUCT Function

■ JMS Header Methods

■ System Properties Methods

■ User Properties Methods

■ Payload Methods

Syntax
TYPE aq$_jms_map_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_map_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),
 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,

SYS.AQ$_JMS_MAP_MESSAGE Type

173-42 PL/SQL Packages and Types Reference

 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER PROCEDURE set_boolean (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BOOLEAN),
 MEMBER PROCEDURE set_byte (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN RAW),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN RAW, offset IN INT, length IN INT),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BLOB),
 MEMBER PROCEDURE set_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN BLOB, offset IN INT, length IN INT),
 MEMBER PROCEDURE set_char (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN CHAR),
 MEMBER PROCEDURE set_double (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN FLOAT),
 MEMBER PROCEDURE set_int (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),

Summary of JMS Types

JMS Types 173-43

 MEMBER PROCEDURE set_long (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN NUMBER),
 MEMBER PROCEDURE set_short (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN PLS_INTEGER),
 MEMBER PROCEDURE set_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN VARCHAR2),
 MEMBER PROCEDURE set_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value IN CLOB),
 MEMBER FUNCTION get_boolean (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN BOOLEAN,
 MEMBER FUNCTION get_byte (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_bytes (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY BLOB),
 MEMBER FUNCTION get_char (id IN PLS_INTEGER, name IN VARCHAR2) RETURN CHAR,
 MEMBER FUNCTION get_double (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float (id IN PLS_INTEGER, name IN VARCHAR2) RETURN FLOAT,
 MEMBER FUNCTION get_int (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER FUNCTION get_long (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN NUMBER,
 MEMBER FUNCTION get_short (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_string (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY CLOB),
 MEMBER FUNCTION get_names (id IN PLS_INTEGER) RETURN aq$_jms_namearray,
 MEMBER FUNCTION get_names (id IN PLS_INTEGER, names OUT aq$_jms_namearray,
 offset IN PLS_INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE get_object (id IN PLS_INTEGER, name IN VARCHAR2,
 value OUT NOCOPY AQ$_JMS_VALUE),
 MEMBER FUNCTION get_size (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION item_exists (id IN PLS_INTEGER, name IN VARCHAR2)
 RETURN BOOLEAN);

CONSTRUCT Function

STATIC FUNCTION construct RETURN aq$_jms_map_message
Creates an empty aq$_jms_map_message object.

JMS Header Methods

set_replyto (replyto IN sys.aq$_agent)
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

SYS.AQ$_JMS_MAP_MESSAGE Type

173-44 PL/SQL Packages and Types Reference

set_type (type IN VARCHAR)
Sets the JMS type, which can be any text, and which corresponds to JMSType in
JMS.

get_replyto RETURN sys.aq$_agent
Returns replyto, which corresponds to JMSReplyTo.

get_type RETURN VARCHAR
Returns type, which corresponds to JMSType.

System Properties Methods

set_userid (userid IN VARCHAR)
Sets userid, which corresponds to JMSXUserID in JMS.

set_appid (appid IN VARCHAR)
Sets appid, which corresponds to JMSXAppID in JMS.

set_groupid (groupid IN VARCHAR)
Sets groupid, which corresponds to JMSXGroupID in JMS.

set_groupseq (groupseq IN INT)
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

get_userid RETURN VARCHAR
Returns userid, which corresponds to JMSXUserID.

get_appid RETURN VARCHAR
Returns appid, which corresponds to JMSXAppID.

get_groupid RETURN VARCHAR
Returns groupid, which corresponds to JMSXGroupID.

get_groupseq RETURN NUMBER
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

clear_properties
Clears all user properties. This procedure does not affect system properties.

set_boolean_property (property_name IN VARCHAR, property_value IN

Summary of JMS Types

JMS Types 173-45

BOOLEAN)
Checks whether property_name is null or exists. If not, the procedure stores
property_value in an internal representation. Raises exception ORA-24191 if the
property name exists or ORA-24192 if the property name is null.

set_byte_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -128 to 127 (8-bits). This check is necessary
because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception
ORA-24191 if the property name exists, ORA-24192 if the property name is null, or
ORA-24193 if the property value exceeds the valid range.

set_double_property (property_name IN VARCHAR, property_value IN DOUBLE
PRECISION)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_int_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -2147483648 to 2147483647 (32-bits). This
check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38
bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the
property name is null, or ORA-24193 if the property value exceeds the valid range.

set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38
bits. In Java, the long datatype is 64 bits. Therefore, no range check is
needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the
property name is null.

set_short_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -32768 to 32767 (16-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises

SYS.AQ$_JMS_MAP_MESSAGE Type

173-46 PL/SQL Packages and Types Reference

exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
If the property with the corresponding property name passed in exists, and if it is a
BOOLEAN property, then this function returns the value of the property. Otherwise it
returns a null.

get_byte_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
BYTE property, then this function returns the value of the property. Otherwise it
returns a null.

get_double_property (property_name IN VARCHAR) RETURN DOUBLE
PRECISION
If the property with the corresponding property name passed in exists, and if it is a
DOUBLE property, then this function returns the value of the property. Otherwise it
returns a null.

get_float_property (property_name IN VARCHAR) RETURN FLOAT
If the property with the corresponding property name passed in exists, and if it is a
FLOAT property, then this function returns the value of the property. Otherwise it
returns a null.

get_int_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
Integer property, then this function returns the value of the property. Otherwise it
returns a null.

get_long_property (property_name IN VARCHAR) RETURN NUMBER
If the property with the corresponding property name passed in exists, and if it is a
long property, then this function returns the value of the property. Otherwise it
returns a null.

get_short_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
short property, then this function returns the value of the property. Otherwise it
returns a null.

Summary of JMS Types

JMS Types 173-47

get_string_property (property_name IN VARCHAR) RETURN VARCHAR
If the property with the corresponding property name passed in exists, and if it is a
STRING property, then this function returns the value of the property. Otherwise it
returns a null.

Payload Methods

set_bytes (payload IN RAW)
Sets the internal payload as a RAW variable without any interpretation. The
payload of aq$_jms_map_message is stored as either RAW or BLOB in the
database. This member function sets a payload as a RAW variable without
interpreting it.

set_bytes (payload IN BLOB)
Sets the internal payload as a BLOB variable without any interpretation. The
payload of aq$_jms_map_message is stored as either RAW or BLOB in the
database. This member function sets a payload as a BLOB variable without
interpreting it.

get_bytes (payload OUT RAW)
Puts the internal payload into a RAW variable without any interpretation. The
payload of aq$_jms_map_message is stored as either RAW or BLOB in the
database. This member function gets a payload as raw bytes without interpreting it.
Raises exceptions ORA-24190 if the length of internal payload is more than 32767.

get_bytes (payload OUT BLOB)
Puts the internal payload into a BLOB variable without any interpretation. The
payload of aq$_jms_map_message is stored as either RAW or BLOB in the
database. This member function gets a payload as a BLOB without interpreting it.

prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
Takes the byte array stored in aq$_jms_map_message and decodes it as a Java
object in the Java stored procedure. The result of the decoding is stored as a static
variable in Jserv session memory. Parameter id is used to identify the slot where
the Java object is stored in the Oracle Database JVM session memory. If id is null,
then a new slot is created for this PL/SQL object. Subsequent JMS operations on the
payload need to provide this operation ID.

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

SYS.AQ$_JMS_MAP_MESSAGE Type

173-48 PL/SQL Packages and Types Reference

flush (id IN PLS_INTEGER)
Takes the static variable in Jserv and synchronizes the content back to aq$_jms_
map_message. This procedure raises ORA-24197 if the Java stored procedure
throws an exception during execution or ORA-24198 if the operation ID is invalid.

clear_body (id IN PLS_INTEGER)
Sets the Java stored procedure static variable to empty payload. Parameter id is
used to identify the slot where the Java object is stored in the Oracle Database JVM
session memory. If id is null, a new slot is created for this PL/SQL object.
Subsequent JMS operations on the payload need to provide this operation ID.

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

clean (id IN PLS_INTEGER)
Closes and cleans up the DataInputStream or DataOutputStream at the Java
stored procedure side corresponding to the operation ID. It is very important to call
this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java
stored procedure throws an exception during execution or ORA-24198 if the
operation ID is invalid.

clean_all
Closes and cleans up all the messages in the corresponding type of message store at
the Java stored procedure side. This procedure raises ORA-24197 if the Java stored
procedure throws an exception during execution.

set_boolean (id IN PLS_INTEGER, name IN VARCHAR2, value IN BOOLEAN)
Sets the Boolean value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_byte (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
Sets the BYTE value with the specified name in the map. Because there is no BYTE
type in PL/SQL, PLS_INTEGER is used to represent a byte. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN RAW))
Sets the byte array value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-49

set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN RAW, offset IN INT,
length IN INT)
Sets a portion of the byte array value with the specified name in the map. Parameter
offset is the initial offset within the byte array, and parameter length is the
number of bytes to use. If the range [offset … offset+length] exceeds the boundary
of the byte array value, then a Java IndexOutOfBounds exception is thrown in the
Java stored procedure and this procedure raises an ORA-24197 error. The index
starts from 0. Raises exception ORA-24197 if the Java stored procedure throws an
exception during execution or ORA-24198 if the operation ID is invalid.

set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN BLOB)
Sets the byte array value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value IN BLOB, offset IN INT,
length IN INT)
Sets a portion of the byte array value with the specified name in the map. Parameter
offset is the initial offset within the byte array, and parameter length is the
number of bytes to use. If the range [offset … offset+length] exceeds the boundary
of the byte array value, then a Java IndexOutOfBounds exception is thrown in the
Java stored procedure, and this procedure raises an ORA-24197 error. The index
starts from 0. Raises exception ORA-24197 if the Java stored procedure throws an
exception during execution or ORA-24198 if the operation ID is invalid.

set_char (id IN PLS_INTEGER, name IN VARCHAR2, value IN CHAR)
Sets the character value with the specified name in the map. If this value has
multiple characters, then it is the first character that is used. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_double (id IN PLS_INTEGER, name IN VARCHAR2, value IN DOUBLE
PRECISION)
Sets the double value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_float (id IN PLS_INTEGER, name IN VARCHAR2, value IN FLOAT)
This procedure is to set the float value with the specified name in the map. Raises
exception ORA-24197 if the Java stored procedure throws an exception during
execution or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_MAP_MESSAGE Type

173-50 PL/SQL Packages and Types Reference

set_int (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
Sets the int value with the specified name in the map. Raises exception ORA-24197
if the Java stored procedure throws an exception during execution or ORA-24198 if
the operation ID is invalid.

set_long (id IN PLS_INTEGER, name IN VARCHAR2, value IN NUMBER)
Sets the long value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_short (id IN PLS_INTEGER, name IN VARCHAR2, value IN PLS_INTEGER)
Sets the short value with the specified name in the map. Because there is no short
type in PL/SQL, PLS_INTEGER is used to represent a short. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_string (id IN PLS_INTEGER, name IN VARCHAR2, value IN VARCHAR2)
Sets the string value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

set_string (id IN PLS_INTEGER, name IN VARCHAR2, value IN CLOB))
Sets the string value with the specified name in the map. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

get_boolean (id IN PLS_INTEGER, name IN VARCHAR2) RETURN BOOLEAN
Retrieves the Boolean value with the specified name. If there is no item by this
name, then null is returned. Raises exception ORA-24194 if the type conversion
between the type of real value and the expected type is invalid, ORA-24197 if the
Java stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

get_byte (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
Retrieves the BYTE value with the specified name. If there is no item by this name,
then null is returned. Because there is no BYTE type in PL/SQL, PLS_INTEGER is
used to represent a byte. Although the PL/SQL users get an PLS_INTEGER, they
are guaranteed that the value is in the Java BYTE value range. If this value is issued
with a set_byte function, then there will not be an out of range error. Raises
exception ORA-24194 if the type conversion between the type of real value and the
expected type is invalid, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-51

get_bytes (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY BLOB)
Retrieves the byte array value with the specified name. If there is no item by this
name, then null is returned. Because the size of the array might be larger than the
limit of PL/SQL RAW type, a BLOB is always returned here. The BLOB returned is a
copy, which means it can be modified without affecting the message payload. Raises
exception ORA-24194 if the type conversion between the type of real value and the
expected type is invalid, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

get_char (id IN PLS_INTEGER, name IN VARCHAR2) RETURN CHAR
Retrieves and returns the character value with the specified name. If there is no item
by this name, then null is returned. Raises exception ORA-24194 if the type
conversion between the type of real value and the expected type is invalid.

get_double (id IN PLS_INTEGER, name IN VARCHAR2) RETURN DOUBLE
PRECISION
Retrieves and returns the double value with the specified name. If there is no item
by this name, then null is returned. Raises exception ORA-24194 if the type
conversion between the type of real value and the expected type is invalid.

get_float (id IN PLS_INTEGER, name IN VARCHAR2) RETURN FLOAT
Retrieves the float value with the specified name. If there is no item by this name,
then null is returned. Raises exception ORA-24194 if the type conversion between
the type of real value and the expected type is invalid, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

get_int (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
Retrieves the INT value with the specified name. If there is no item by this name,
then null is returned. Raises exception ORA-24194 if the type conversion between
the type of real value and the expected type is invalid, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

get_long (id IN PLS_INTEGER, name IN VARCHAR2) RETURN NUMBER
Retrieves the long value with the specified name. If there is no item by this name,
then null is returned. Raises exception ORA-24194 if the type conversion between
the type of real value and the expected type is invalid, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

SYS.AQ$_JMS_MAP_MESSAGE Type

173-52 PL/SQL Packages and Types Reference

get_short (id IN PLS_INTEGER, name IN VARCHAR2) RETURN PLS_INTEGER
Retrieves the short value with the specified name. If there is no item by this name,
then null is returned. Because there is no short type in PL/SQL, INT is used to
represent a short. Although the PL/SQL users get an PLS_INTEGER, they are
guaranteed that the value is in the Java short value range. If this value is issued
with a set_short function, then there will not be an out of range error. Raises
exception ORA-24194 if the type conversion between the type of real value and the
expected type is invalid, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

get_string (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY CLOB)
Retrieves the string value with the specified name. If there is no item by this name,
then null is returned. Raises exception ORA-24194 if the type conversion between
the type of real value and the expected type is invalid, ORA-24197 if the Java stored
procedure throws an exception during execution, or ORA-24198 if the operation ID
is invalid.

get_names (id IN PLS_INTEGER) RETURN aq$_jms_namearray
Retrieves all the names within the map message and returns them in a varray.
Because aq$_jms_namearray has a size as 1024 and each element is a
VARCHAR(200), this function will return an error if the size of the name array of
the payload exceeds the limit. Raises exception ORA-24195 if the size of the name
array or the size of a name exceeds the limit.

get_names (id IN PLS_INTEGER, names OUT aq$_jms_namearray, offset IN PLS_
INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER
Retrieves a portion of the names within the map message. Because aq$_jms_
namearray has a size as 1024 and each element is a VARCHAR(200), this function
will return an error if either limits are exceeded during the retrieval. (This means
there is no sense to put a length parameter greater than 1024.) The index of the
names of a map messages begins from 0. Parameter offset is the offset from
which to start retrieving.

The function returns the number of names that have been retrieved. The names
retrieved is the intersection of the interval [offset, offset+length-1] and interval [0,
size-1] where size is the size of this map message. If the intersection is an empty set,
then names will be returned as null and the function returns 0 as the number of
names retrieved. If users iterate the names by retrieving in small steps, then this can
be used to test that there are no more names to read from map message.

Raises exception ORA-24195 if the size of the name array or the size of a name
exceed the limit, ORA-24197 if the Java stored procedure throws an exception
during execution or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-53

get_object (id IN PLS_INTEGER, name IN VARCHAR2, value OUT NOCOPY AQ$_
JMS_VALUE)
Returns a general value ADT AQ$_JMS_VALUE. If there is no item by this name,
then null is returned.Users can use the type attribute of this ADT to interpret the
data. See the map in the AQ$_JMS_VALUE ADT for the correspondence among
dbms_jms_plsql package constants, Java data type and AQ$_JMS_VALUE
attribute. Note this member procedure might bring additional overhead compared
to other get member procedures or functions. It is used only if the user does not
know the data type of the fields within a message before hand. Otherwise it is a
good idea to use a specific get member procedure or function. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

get_size (id IN PLS_INTEGER) RETURN PLS_INTEGER
Retrieves the size of the map message. Raises exception ORA-24197 if the Java
stored procedure throws an exception during execution or ORA-24198 if the
operation ID is invalid.

item_exists (id IN PLS_INTEGER, name IN VARCHAR2) RETURN BOOLEAN
Indicates that an item exists in this map message by returning TRUE. Raises
exception ORA-24197 if the Java stored procedure throws an exception during
execution or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-54 PL/SQL Packages and Types Reference

SYS.AQ$_JMS_STREAM_MESSAGE Type

This type is the ADT used to store a StreamMessage in an Oracle Streams AQ
queue.

This section contains these topics:

■ CONSTRUCT Function

■ JMS Header Methods

■ System Properties Methods

■ User Properties Methods

■ Payload Methods

Syntax
TYPE aq$_jms_stream_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob,
 STATIC FUNCTION construct RETURN aq$_jms_stream_message,
 MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
 MEMBER PROCEDURE set_type (type IN VARCHAR),
 MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
 MEMBER FUNCTION get_type RETURN VARCHAR,
 MEMBER PROCEDURE set_userid (userid IN VARCHAR),
 MEMBER PROCEDURE set_appid (appid IN VARCHAR),
 MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
 MEMBER PROCEDURE set_groupseq (groupseq IN INT),
 MEMBER FUNCTION get_userid RETURN VARCHAR,
 MEMBER FUNCTION get_appid RETURN VARCHAR,
 MEMBER FUNCTION get_groupid RETURN VARCHAR,
 MEMBER FUNCTION get_groupseq RETURN INT,
 MEMBER PROCEDURE clear_properties,
 MEMBER PROCEDURE set_boolean_property(property_name IN VARCHAR,
 property_value IN BOOLEAN),
 MEMBER PROCEDURE set_byte_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_double_property (property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION),
 MEMBER PROCEDURE set_float_property (property_name IN VARCHAR,
 property_value IN FLOAT),

Summary of JMS Types

JMS Types 173-55

 MEMBER PROCEDURE set_int_property (property_name IN VARCHAR,
 property_value IN INT),
 MEMBER PROCEDURE set_long_property (property_name IN VARCHAR,
 property_value IN NUMBER),
 MEMBER PROCEDURE set_short_property (property_name IN VARCHAR,
 property_valuE IN INT),
 MEMBER PROCEDURE set_string_property (property_name IN VARCHAR,
 property_value IN VARCHAR),
 MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN,
 MEMBER FUNCTION get_byte_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_double_property (property_name IN VARCHAR)
 RETURN DOUBLE PRECISION,
 MEMBER FUNCTION get_float_property (property_name IN VARCHAR) RETURN FLOAT,
 MEMBER FUNCTION get_int_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_long_property (property_name IN VARCHAR) RETURN NUMBER,
 MEMBER FUNCTION get_short_property (property_name IN VARCHAR) RETURN INT,
 MEMBER FUNCTION get_string_property (property_name IN VARCHAR) RETURN VARCHAR,
 MEMBER PROCEDURE set_bytes (payload IN RAW),
 MEMBER PROCEDURE set_bytes (payload IN BLOB),
 MEMBER PROCEDURE get_bytes (payload OUT RAW),
 MEMBER PROCEDURE get_bytes (payload OUT BLOB),
 MEMBER FUNCTION prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER PROCEDURE reset (id IN PLS_INTEGER),
 MEMBER PROCEDURE flush (id IN PLS_INTEGER),
 MEMBER PROCEDURE clear_body (id IN PLS_INTEGER),
 MEMBER PROCEDURE clean (id IN PLS_INTEGER),
 STATIC PROCEDURE clean_all,
 MEMBER FUNCTION get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN,
 MEMBER FUNCTION read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_bytes (id IN PLS_INTEGER) RETURN BLOB,
 MEMBER PROCEDURE read_bytes (id IN PLS_INTEGER, value OUT NOCOPY BLOB),
 MEMBER FUNCTION read_char (id IN PLS_INTEGER) RETURN CHAR,
 MEMBER FUNCTION read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION,
 MEMBER FUNCTION read_float (id IN PLS_INTEGER) RETURN FLOAT,
 MEMBER FUNCTION read_int (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_long (id IN PLS_INTEGER) RETURN NUMBER,
 MEMBER FUNCTION read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER,
 MEMBER FUNCTION read_string RETURN CLOB,
 MEMBER PROCEDURE read_string (id IN PLS_INTEGER, value OUT NOCOPY CLOB),
 MEMBER PROCEDURE read_object (id IN PLS_INTEGER,
 value OUT NOCOPY AQ$_JMS_VALUE),
 MEMBER PROCEDURE write_boolean (id IN PLS_INTEGER, value IN BOOLEAN),
 MEMBER PROCEDURE write_byte (id IN PLS_INTEGER, value IN INT),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW),

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-56 PL/SQL Packages and Types Reference

 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN RAW,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB),
 MEMBER PROCEDURE write_bytes (id IN PLS_INTEGER, value IN BLOB,
 offset IN INT, length IN INT),
 MEMBER PROCEDURE write_char (id IN PLS_INTEGER, value IN CHAR),
 MEMBER PROCEDURE write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION),
 MEMBER PROCEDURE write_float (id IN PLS_INTEGER, value IN FLOAT),
 MEMBER PROCEDURE write_int (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_long (id IN PLS_INTEGER, value IN NUMBER),
 MEMBER PROCEDURE write_short (id IN PLS_INTEGER, value IN PLS_INTEGER),
 MEMBER PROCEDURE write_string (id IN PLS_INTEGER, value IN VARCHAR2),
 MEMBER PROCEDURE write_string (id IN PLS_INTEGER, value IN CLOB));

CONSTRUCT Function

STATIC FUNCTION construct RETURN aq$_jms_stream_message
Creates an empty aq$_jms_stream_message object.

JMS Header Methods

set_replyto (replyto IN sys.aq$_agent)
Sets the replyto parameter, which corresponds to JMSReplyTo in JMS.

set_type (type IN VARCHAR)
Sets the JMS type, which can be any text, and which corresponds to JMSType in
JMS.

get_replyto RETURN sys.aq$_agent
Returns replyto, which corresponds to JMSReplyTo.

get_type RETURN VARCHAR
Returns type, which corresponds to JMSType.

System Properties Methods

set_userid (userid IN VARCHAR)
Sets userid, which corresponds to JMSXUserID in JMS.

set_appid (appid IN VARCHAR)
Sets appid, which corresponds to JMSXAppID in JMS.

Summary of JMS Types

JMS Types 173-57

set_groupid (groupid IN VARCHAR)
Sets groupid, which corresponds to JMSXGroupID in JMS.

set_groupseq (groupseq IN INT)
Sets groupseq, which corresponds to JMSXGroupSeq in JMS.

get_userid RETURN VARCHAR
Returns userid, which corresponds to JMSXUserID.

get_appid RETURN VARCHAR
Returns appid, which corresponds to JMSXAppID.

get_groupid RETURN VARCHAR
Returns groupid, which corresponds to JMSXGroupID.

get_groupseq RETURN NUMBER
Returns groupseq, which corresponds to JMSXGroupSeq.

User Properties Methods

clear_properties
Clears all user properties. This procedure does not affect system properties.

set_boolean_property (property_name IN VARCHAR, property_value IN
BOOLEAN)
Checks whether property_name is null or exists. If not, the procedure stores
property_value in an internal representation. Raises exception ORA-24191 if the
property name exists or ORA-24192 if the property name is null.

set_byte_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -128 to 127 (8-bits). This check is necessary
because neither PL/SQL nor RDBMS defines the BYTE datatype. Raises exception
ORA-24191 if the property name exists, ORA-24192 if the property name is null, or
ORA-24193 if the property value exceeds the valid range.

set_double_property (property_name IN VARCHAR, property_value IN DOUBLE
PRECISION)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-58 PL/SQL Packages and Types Reference

set_float_property (property_name IN VARCHAR, property_value IN FLOAT)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

set_int_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -2147483648 to 2147483647 (32-bits). This
check is necessary because in PL/SQL and Oracle Database, the INT datatype is 38
bits. Raises exception ORA-24191 if the property name exists, ORA-24192 if the
property name is null, or ORA-24193 if the property value exceeds the valid range.

set_long_property (property_name IN VARCHAR, property_value IN NUMBER)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. In PL/SQL and Oracle Database, the NUMBER datatype is 38
bits. In Java, the long datatype is 64 bits. Therefore, no range check is
needed.Raises exception ORA-24191 if the property name exists or ORA-24192 if the
property name is null.

set_short_property (property_name IN VARCHAR, property_value IN INT)
Checks whether property_name is null or exists. If not, the procedure checks
whether property_value is within -32768 to 32767 (16-bits). This check is
necessary because neither PL/SQL nor RDBMS defines the short datatype. Raises
exception ORA-24191 if the property name exists, ORA-24192 if the property name
is null, or ORA-24193 if the property value exceeds the valid range.

set_string_property (property_name IN VARCHAR, property_value IN VARCHAR)
Checks whether property_name is null or exists. If not, the procedure stores
property_value. Raises exception ORA-24191 if the property name exists or
ORA-24192 if the property name is null.

get_boolean_property (property_name IN VARCHAR) RETURN BOOLEAN
If the property with the corresponding property name passed in exists, and if it is a
BOOLEAN property, then this function returns the value of the property. Otherwise it
returns a null.

get_byte_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
BYTE property, then this function returns the value of the property. Otherwise it
returns a null.

get_double_property (property_name IN VARCHAR) RETURN DOUBLE

Summary of JMS Types

JMS Types 173-59

PRECISION
If the property with the corresponding property name passed in exists, and if it is a
DOUBLE property, then this function returns the value of the property. Otherwise it
returns a null.

get_float_property (property_name IN VARCHAR) RETURN FLOAT
If the property with the corresponding property name passed in exists, and if it is a
FLOAT property, then this function returns the value of the property. Otherwise it
returns a null.

get_int_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
Integer property, then this function returns the value of the property. Otherwise it
returns a null.

get_long_property (property_name IN VARCHAR) RETURN NUMBER
If the property with the corresponding property name passed in exists, and if it is a
long property, then this function returns the value of the property. Otherwise it
returns a null.

get_short_property (property_name IN VARCHAR) RETURN INT
If the property with the corresponding property name passed in exists, and if it is a
short property, then this function returns the value of the property. Otherwise it
returns a null.

get_string_property (property_name IN VARCHAR) RETURN VARCHAR
If the property with the corresponding property name passed in exists, and if it is a
STRING property, then this function returns the value of the property. Otherwise it
returns a null.

Payload Methods

get_bytes (payload OUT RAW)
Puts the internal payload into a RAW variable without any interpretation. The
payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the
database. This member function gets a payload as raw bytes without interpreting it.
Raises exception ORA-24190 if the length of internal payload is more than 32767.

get_bytes (payload OUT BLOB)
Puts the internal payload into a BLOB variable without any interpretation. The
payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-60 PL/SQL Packages and Types Reference

database. This member function gets a payload as a BLOB variable without
interpreting it.

set_bytes (payload IN RAW)
Sets the internal payload as the RAW variable without any interpretation. The
payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the
database. This member function sets a payload as raw bytes without interpreting it.

set_bytes (payload IN BLOB)
Sets the internal payload as the BLOB variable without any interpretation. The
payload of type aq$_jms_stream_message is stored as either RAW or BLOB in the
database. This member function sets a payload as a BLOB variable without
interpreting it.

prepare (id IN PLS_INTEGER) RETURN PLS_INTEGER
Takes the byte array stored in aq$_jms_stream_message and decodes it as a Java
object in the Java stored procedure. The result of the decoding is stored as a static
variable in Jserv session memory. Parameter id is used to identify the slot where
the Java object is stored in the Oracle Database JVM session memory. If id is null,
then a new slot is created for this PL/SQL object. Subsequent JMS operations on the
payload need to provide this operation ID.

This function also sets the message access mode to MESSAGE_ACCESS_READONLY.
Subsequent calls of write_XXX procedure raise an ORA-24196 error. Users can call
the clear_body procedure to set the message access mode to MESSAGE_ACCESS_
READONLY.

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

reset (id IN PLS_INTEGER)
Resets the starting position of the stream to the beginning and puts the stream
message in MESSAGE_ACCESS_READONLY mode.

flush (id IN PLS_INTEGER)
Takes the static variable in Jserv and synchronizes the content back to aq$_jms_
stream_message. This procedure will not affect the underlying access mode. This
procedure raises ORA-24197 if the Java stored procedure throws an exception
during execution or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-61

clear_body (id IN PLS_INTEGER)
Sets the Java stored procedure static variable to empty payload. Parameter id is
used to identify the slot where the Java object is stored in the Oracle Database JVM
session memory. If id is null, a new slot is created for this PL/SQL object.
Subsequent JMS operations on the payload need to provide this operation ID.

It also sets the message access mode to MESSAGE_ACCESS_WRITEONLY. Later calls
of read_XXX procedure raise ORA-24196 error. Users can call the reset or
prepare procedures to set the message access mode to MESSAGE_ACCESS_
READONLY. Write-only and read-only modes affect only the payload functions of
AQ$_JMS_BYTES_MESSAGE. They do not affect the header functions.

This function raises ORA-24197 if the Java stored procedure throws an exception
during execution, ORA-24198 if the operation ID is invalid, or ORA-24199 if the
Java stored procedure message store overflows.

clean (id IN PLS_INTEGER)
Closes and cleans up the DataInputStream or DataOutputStream at the Java
stored procedure side corresponding to the operation ID. It is very important to call
this procedure to avoid memory leaks. This procedure raises ORA-24197 if the Java
stored procedure throws an exception during execution or ORA-24198 if the
operation ID is invalid.

clean_all
Closes and cleans up all the messages in the corresponding type of message store at
the Java stored procedure side. This procedure raises ORA-24197 if the Java stored
procedure throws an exception during execution.

get_mode (id IN PLS_INTEGER) RETURN PLS_INTEGER
Returns the current mode of this message. The return value is either SYS.dbms_
aqjms.READ_ONLY or SYS.dbms_aqjms.WRITE_ONLY. Raises exception
ORA-24197 if the Java stored procedure throws an exception during execution or
ORA-24198 if the operation ID is invalid.

read_boolean (id IN PLS_INTEGER) RETURN BOOLEAN
Reads and returns a Boolean value from the stream message. If the end of the
message stream has been reached, then null is returned. Raises exception
ORA-24194 if the type conversion between the type of real value and the expected
type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197
if the Java stored procedure throws an exception during execution, or ORA-24198 if
the operation ID is invalid.

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-62 PL/SQL Packages and Types Reference

read_byte (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads and returns a byte value from the stream message. If the end of the message
stream has been reached, then null is returned. Because there is no BYTE type in
PL/SQL, INT is used to represent a byte. Although PL/SQL users get an INT, they
are guaranteed that the value is in the Java BYTE value range. If this value is issued
with a write_byte function, then there will not be an out of range error. Raises
exception ORA-24194 if the type conversion between the type of real value and the
expected type is invalid, ORA-24196 if the stream message is in write-only mode,
ORA-24197 if the Java stored procedure throws an exception during execution, or
ORA-24198 if the operation ID is invalid.

read_bytes (id IN PLS_INTEGER) RETURN BLOB
Reads and returns a byte array from the stream message. If the end of the message
stream has been reached, then null is returned. Raises exception ORA-24194 if the
type conversion between the type of real value and the expected type is invalid or
ORA-24196 if the stream message is in write-only mode.

read_bytes (id IN PLS_INTEGER, value OUT NOCOPY BLOB)
Reads a byte array from the stream message. If the end of the message stream has
been reached, then null is returned. Raises exception ORA-24194 if the type
conversion between the type of real value and the expected type is invalid,
ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

read_char (id IN PLS_INTEGER) RETURN CHAR
Reads and returns a character value from the stream message. If the end of the
message stream has been reached, then null is returned. Raises exception
ORA-24194 if the type conversion between the type of real value and the expected
type is invalid, ORA-24196 if the stream message is in write-only mode, ORA-24197
if the Java stored procedure throws an exception during execution, or ORA-24198 if
the operation ID is invalid.

read_double (id IN PLS_INTEGER) RETURN DOUBLE PRECISION
Reads and returns a double from the stream message. If the end of the message
stream has been reached, then null is returned. Raises exception ORA-24194 if the
type conversion between the type of real value and the expected type is invalid,
ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

Summary of JMS Types

JMS Types 173-63

read_float (id IN PLS_INTEGER) RETURN FLOAT
Reads and returns a float from the stream message. If the end of the message stream
has been reached, then null is returned. Raises exception ORA-24194 if the type
conversion between the type of real value and the expected type is invalid,
ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

read_int (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads and returns an INT from the stream message. If the end of the message
stream has been reached, then null is returned. Raises exception ORA-24194 if the
type conversion between the type of real value and the expected type is invalid,
ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

read_long (id IN PLS_INTEGER) RETURN NUMBER
Reads and returns a long from the stream message. If the end of the message stream
has been reached, then null is returned. Raises exception ORA-24194 if the type
conversion between the type of real value and the expected type is invalid,
ORA-24196 if the stream message is in write-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

read_short (id IN PLS_INTEGER) RETURN PLS_INTEGER
Reads and returns a short value from the stream message. If the end of the message
stream has been reached, then null is returned. Because there is no short type in
PL/SQL, INT is used to represent a byte. Although PL/SQL users get an INT, they
are guaranteed that the value is in the Java short value range. If this value is issued
with a write_short function, then there will not be an out of range error. Raises
exception ORA-24194 if the type conversion between the type of real value and the
expected type is invalid, ORA-24196 if the stream message is in write-only mode,
ORA-24197 if the Java stored procedure throws an exception during execution, or
ORA-24198 if the operation ID is invalid.

read_string RETURN CLOB
Reads and returns a string from the stream message. If the end of the message
stream has been reached, then null is returned. Raises exception ORA-24194 if the
type conversion between the type of real value and the expected type is invalid or
ORA-24196 if the stream message is in write-only mode.

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-64 PL/SQL Packages and Types Reference

read_string (id IN PLS_INTEGER, value OUT NOCOPY CLOB)
Reads a string from the stream message. If the end of the message stream has been
reached, then null is returned. Raises exception ORA-24194 if the type conversion
between the type of real value and the expected type is invalid, ORA-24196 if the
stream message is in write-only mode, ORA-24197 if the Java stored procedure
throws an exception during execution, or ORA-24198 if the operation ID is invalid.

read_object (id IN PLS_INTEGER, value OUT NOCOPY AQ$_JMS_VALUE)
Returns a general value ADT AQ$_JMS_VALUE. Users can use the type attribute of
this ADT to interpret the data. See Table 173–2 on page 173-69 for the
correspondence among dbms_jms_plsql package constants, Java data type and
AQ$_JMS_VALUE attribute. This member procedure might bring additional
overhead compared to other read member procedures or functions. It is used only if
the user does not know the data type of the fields within a message beforehand.
Otherwise it is a good idea to use a specific read member procedure or function.

Raises exception ORA-24194 if the type conversion between the type of real value
and the expected type is invalid, ORA-24196 if the stream message is in write-only
mode, ORA-24197 if the Java stored procedure throws an exception during
execution, or ORA-24198 if the operation ID is invalid.

write_boolean (id IN PLS_INTEGER, value IN BOOLEAN)
Writes a Boolean to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_byte (id IN PLS_INTEGER, value IN INT)
Writes a byte to the stream message. Because there is no BYTE type in PL/SQL, INT
is used to represent a byte. Raises exceptions ORA-24196 if the stream message is in
read-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN RAW)
Writes a byte array field to the stream message. Consecutively written byte array
fields are treated as two distinct fields when the fields are read. Raises exceptions
ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN RAW, offset IN INT, length IN INT)
Writes a portion of a byte array as a byte array field to the stream message.
Consecutively written byte array fields are treated as two distinct fields when the
fields are read. Parameter offset is the initial offset within the byte array, and

Summary of JMS Types

JMS Types 173-65

parameter length is the number of bytes to use. If the range [offset, offset+length]
exceeds the boundary of the byte array value, then a Java IndexOutOfBounds
exception is thrown in the Java stored procedure. The index starts from 0.

Raises exceptions ORA-24196 if the stream message is in read-only mode,
ORA-24197 if the Java stored procedure throws an exception during execution, or
ORA-24198 if the operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN BLOB)
Writes a byte array field to the stream message. Consecutively written byte array
fields are treated as two distinct fields when the fields are read. Raises exceptions
ORA-24196 if the stream message is in read-only mode, ORA-24197 if the Java
stored procedure throws an exception during execution, or ORA-24198 if the
operation ID is invalid.

write_bytes (id IN PLS_INTEGER, value IN BLOB, offset IN INT, length IN INT)
Writes a portion of a byte array as a byte array field to the stream message.
Consecutively written byte array fields are treated as two distinct fields when the
fields are read. Parameter offset is the initial offset within the byte array, and
parameter length is the number of bytes to use. If the range [offset, offset+length]
exceeds the boundary of the byte array value, then a Java IndexOutOfBounds
exception is thrown in the Java stored procedure. The index starts from 0.

Raises exceptions ORA-24196 if the stream message is in read-only mode,
ORA-24197 if the Java stored procedure throws an exception during execution, or
ORA-24198 if the operation ID is invalid.

write_char (id IN PLS_INTEGER, value IN CHAR)
Writes a character value to the stream message. If this value has multiple characters,
then it is the first character that is written. Raises exceptions ORA-24196 if the
stream message is in read-only mode, ORA-24197 if the Java stored procedure
throws an exception during execution, or ORA-24198 if the operation ID is invalid.

write_double (id IN PLS_INTEGER, value IN DOUBLE PRECISION)
Writes a double to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_float (id IN PLS_INTEGER, value IN FLOAT)
Writes a float to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

SYS.AQ$_JMS_STREAM_MESSAGE Type

173-66 PL/SQL Packages and Types Reference

write_int (id IN PLS_INTEGER, value IN PLS_INTEGER)
Writes an INT to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_long (id IN PLS_INTEGER, value IN NUMBER)
Writes a long to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_short (id IN PLS_INTEGER, value IN PLS_INTEGER)
Writes a short to the stream message. Because there is no short type in PL/SQL, INT
is used to represent a short. Raises exceptions ORA-24196 if the stream message is
in read-only mode, ORA-24197 if the Java stored procedure throws an exception
during execution, or ORA-24198 if the operation ID is invalid.

write_string (id IN PLS_INTEGER, value IN VARCHAR2)
Writes a string to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

write_string (id IN PLS_INTEGER, value IN CLOB)
Writes a string to the stream message. Raises exceptions ORA-24196 if the stream
message is in read-only mode, ORA-24197 if the Java stored procedure throws an
exception during execution, or ORA-24198 if the operation ID is invalid.

Summary of JMS Types

JMS Types 173-67

SYS.AQ$_JMS_OBJECT_MESSAGE Type

This type is the ADT used to store an ObjectMessage in an Oracle Streams AQ
queue.

Syntax
TYPE aq$_jms_object_message AS object(
 header aq$_jms_header,
 bytes_len int,
 bytes_raw raw(2000),
 bytes_lob blob);

SYS.AQ$_JMS_NAMESARRAY Type

173-68 PL/SQL Packages and Types Reference

SYS.AQ$_JMS_NAMESARRAY Type

This type represents the name array returned by the get_names procedure of aq$_
jms_map_message. The maximum number of names this type can hold is 1024.
The maximum length of each name is 200 characters.

Syntax
CREATE OR REPLACE TYPE AQ$_JMS_NAMESARRAY AS VARRAY(1024) OF VARCHAR(100);

Usage Notes
If the names array in the message payload is greater than 1024, then use the
following function to retrieve the names in multiple portions:

MEMBER FUNCTION get_names(id IN PLS_INTEGER, names OUT aq$_jms_namearray,
 offset IN PLS_INTEGER, length IN PLS_INTEGER) RETURN PLS_INTEGER;

Summary of JMS Types

JMS Types 173-69

SYS.AQ$_JMS_VALUE Type

This type represents the general data returned by the get_object procedure of
aq$_jms_map_message and the read_object procedure of aq$_jms_stream_
message. The type field in this ADT is used to decide which type of data this
object is really holding. Table 173–2 lists the mapping between the sys.dbms_jms_
plsql type constants, the corresponding Java type, and the data field of ADT aq$_
jms_value which effectively holds the data.

Syntax
CREATE OR REPLACE TYPE AQ$_JMS_VALUE AS object(
 type number(2),
 num_val number,
 char_val char(1),
 text_val clob,
 bytes_val blob);

Table 173–2 AQ$_JMS_VALUE Type Fields and Java Fields

Type Java Type aq$_jms_value Data Field

DBMS_JMS_PLSQL.DATA_TYPE_BYTE byte num_val

DBMS_JMS_PLSQL.DATA_TYPE_SHORT short num_val

DBMS_JMS_PLSQL.DATA_TYPE_INTEGER int num_val

DBMS_JMS_PLSQL.DATA_TYPE_LONG long num_val

DBMS_JMS_PLSQL.DATA_TYPE_FLOAT float num_val

DBMS_JMS_PLSQL.DATA_TYPE_DOUBLE double num_val

DBMS_JMS_PLSQL.DATA_TYPE_BOOLEAN boolean num_val:

0 FALSE, 1 TRUE

DBMS_JMS_PLSQL.DATA_TYPE_
CHARACTER

char char_val

DBMS_JMS_PLSQL.DATA_TYPE_STRING java.lang.String text_val

DBMS_JMS_PLSQL.DATA_TYPE_BYTES byte[] bytes_val

SYS.AQ$_JMS_EXCEPTION Type

173-70 PL/SQL Packages and Types Reference

SYS.AQ$_JMS_EXCEPTION Type

This type represents a Java exception thrown on the Java stored procedure side. The
id field is reserved for future use. The exp_name stores the Java exception name,
the err_msg field stores the Java exception error message, and the stack field
stores the stack trace of the Java exception.

Syntax
CREATE OR REPLACE TYPE AQ$_JMS_EXCEPTION AS OBJECT (
 id number, -- Reserved and not used. Right now always return 0.
 exp_name varchar(200),
 err_msg varchar(500),
 stack varchar(4000));

Logical Change Record TYPEs 174-1

174
Logical Change Record TYPEs

This chapter describes the logical change record (LCR) types. In Streams, LCRs are
message payloads that contain information about changes to a database. These
changes can include changes to the data, which are data manipulation language
(DML) changes, and changes to database objects, which are data definition
language (DDL) changes.

When you use Streams, the capture process captures changes in the form of LCRs
and enqueues them into a queue. These LCRs can be propagated from a queue in
one database to a queue in another database. Finally, the apply process can apply
LCRs at a destination database. You also have the option of creating, enqueuing,
and dequeuing LCRs manually.

This chapter contains these topics:

■ Summary of Logical Change Record Types

■ Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

See Also: Oracle Streams Concepts and Administration for more
information about LCRs

Summary of Logical Change Record Types

174-2 PL/SQL Packages and Types Reference

Summary of Logical Change Record Types

These LCR types can be used with the following Oracle-supplied PL/SQL
packages:

■ DBMS_APPLY_ADM

■ DBMS_AQ

■ DBMS_AQADM

■ DBMS_CAPTURE_ADM

■ DBMS_PROPAGATION_ADM

■ DBMS_RULE

■ DBMS_RULE_ADM

■ DBMS_STREAMS

■ DBMS_STREAMS_ADM

■ DBMS_TRANSFORM

Table 174–1 Logical Change Record (LCR) Types

Type Description

"LCR$_DDL_RECORD Type"
on page 174-3

Represents a data definition language (DDL) change to a
database object

"LCR$_ROW_RECORD Type"
on page 174-14

Represents a data manipulation language (DML) change
to a database object

"LCR$_ROW_LIST Type" on
page 174-44

Identifies a list of column values for a row in a table

"LCR$_ROW_UNIT Type" on
page 174-45

Identifies the value for a column in a row

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-3

LCR$_DDL_RECORD Type

This type represents a data definition language (DDL) change to a database object.

If you create or modify a DDL LCR, then make sure the ddl_text is consistent
with the base_table_name, base_table_owner, object_type,
object_owner, object_name, and command_type attributes.

This section contains information about the constructor for DDL LCRs and
information about the member subprograms for this type:

■ LCR$_DDL_RECORD Constructor

■ Summary of LCR$_DDL_RECORD Subprograms, which also include the
subprograms described in "Common Subprograms for LCR$_DDL_RECORD
and LCR$_ROW_RECORD" on page 174-33

Note:

■ When passing a name as a parameter to an LCR constructor,
you can enclose the name in double quotes to handle names
that use mixed case or lower case for database objects. For
example, if a name contains any lower case characters, then
you must enclose it in double quotes.

■ The application does not need to specify a transaction identifier
or SCN when it creates an LCR because the apply process
generates these values and stores them in memory. If a
transaction identifier or SCN is specified in the LCR, then the
apply process ignores it and assigns a new value.

LCR$_DDL_RECORD Type

174-4 PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Constructor
Creates a SYS.LCR$_DDL_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
 source_database_name IN VARCHAR2,

command_type IN VARCHAR2,
object_owner IN VARCHAR2,

 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 ddl_text IN CLOB,

logon_user IN VARCHAR2,
 current_schema IN VARCHAR2,
 base_table_owner IN VARCHAR2,
 base_table_name IN VARCHAR2,
 tag IN RAW DEFAULT NULL,

transaction_id IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL)
RETURN SYS.LCR$_DDL_RECORD;

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-5

LCR$_DDL_RECORD Constructor Function Parameters

Table 174–2 Constructor Function Parameters for LCR$_DDL_RECORD

Parameter Description

source_database_name The database where the DDL statement occurred. If you do not
include the domain name, then the local domain is appended
to the database name automatically. For example, if you
specify DBS1 and the local domain is .NET, then DBS1.NET is
specified automatically. This parameter should be set to a
non-NULL value.

command_type The type of command executed in the DDL statement. This
parameter should be set to a non-NULL value.

See Also: The "SQL Command Codes" table in the Oracle Call
Interface Programmer's Guide for a complete list of command
types

The following command types are not supported in DDL LCRs:

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW LOG
ALTER SUMMARY
CREATE SCHEMA
CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW LOG
CREATE SUMMARY
DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG
DROP SUMMARY
RENAME

The snapshot equivalents of the materialized view command
types are also not supported.

object_owner The user who owns the object on which the DDL statement
was executed

object_name The database object on which the DDL statement was executed

LCR$_DDL_RECORD Type

174-6 PL/SQL Packages and Types Reference

object_type The type of object on which the DDL statement was executed.

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object
types not listed. The GET_OBJECT_TYPE member procedure
returns NULL for object types not listed.

ddl_text The text of the DDL statement. This parameter should be set to
a non-NULL value.

logon_user The user whose session executed the DDL statement

current_schema The schema that is used if no schema is specified explicitly for
the modified database objects in ddl_text. If a schema is
specified in ddl_text that differs from the one specified for
current_schema, then the schema specified in ddl_text is
used.

This parameter should be set to a non-NULL value.

base_table_owner If the DDL statement is a table related DDL (such as CREATE
TABLE and ALTER TABLE), or if the DDL statement involves a
table (such as creating a trigger on a table), then
base_table_owner specifies the owner of the table involved.
Otherwise, base_table_owner is NULL.

Table 174–2 (Cont.) Constructor Function Parameters for LCR$_DDL_RECORD

Parameter Description

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-7

Summary of LCR$_DDL_RECORD Subprograms

base_table_name If the DDL statement is a table related DDL (such as CREATE
TABLE and ALTER TABLE), or if the DDL statement involves a
table (such as creating a trigger on a table), then
base_table_name specifies the name of the table involved.
Otherwise, base_table_name is NULL.

tag A binary tag that enables tracking of the LCR. For example,
this tag may be used to determine the original source database
of the DDL statement if apply forwarding is used.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

transaction_id The identifier of the transaction

scn The SCN at the time when the change record for a captured
LCR was written to the redo log. The SCN value is
meaningless for a user-created LCR.

Table 174–3 LCR$_DDL_RECORD Type Subprograms

Subprogram Description

"EXECUTE Member Procedure" on
page 174-8

Executes the LCR under the security domain of the
current user

"GET_BASE_TABLE_NAME
Member Function" on page 174-8

Returns the base (dependent) table name

"GET_BASE_TABLE_OWNER
Member Function" on page 174-9

Returns the base (dependent) table owner

"GET_CURRENT_SCHEMA Member
Function" on page 174-9

Returns the default schema (user) name

"GET_DDL_TEXT Member
Procedure" on page 174-9

Gets the DDL text in a CLOB

"GET_LOGON_USER Member
Function" on page 174-10

Returns the logon user name

"GET_OBJECT_TYPE Member
Function" on page 174-10

Returns the type of the object involved for the DDL

"SET_BASE_TABLE_NAME Member
Procedure" on page 174-10

Sets the base (dependent) table name

Table 174–2 (Cont.) Constructor Function Parameters for LCR$_DDL_RECORD

Parameter Description

LCR$_DDL_RECORD Type

174-8 PL/SQL Packages and Types Reference

EXECUTE Member Procedure
Executes the DDL LCR under the security domain of the current user. Any apply
process handlers that would be run for an LCR are not run when the LCR is applied
using this procedure.

Syntax
MEMBER PROCEDURE EXECUTE();

GET_BASE_TABLE_NAME Member Function
Returns the base (dependent) table name.

Syntax
MEMBER FUNCTION GET_BASE_TABLE_NAME()
RETURN VARCHAR2;

"SET_BASE_TABLE_OWNER
Member Procedure" on page 174-11

Sets the base (dependent) table owner

"SET_CURRENT_SCHEMA Member
Procedure" on page 174-11

Sets the default schema (user) name

"SET_DDL_TEXT Member
Procedure" on page 174-12

Sets the DDL text

"SET_LOGON_USER Member
Procedure" on page 174-12

Sets the logon user name

"SET_OBJECT_TYPE Member
Procedure" on page 174-13

Sets the object type

Common Subprograms See "Common Subprograms for
LCR$_DDL_RECORD and LCR$_ROW_RECORD"
on page 174-33 for a list of subprograms common to
the SYS.LCR$_ROW_RECORD and
SYS.LCR$_DDL_RECORD types

Note: The EXECUTE member procedure can be invoked only in an
apply handler for an apply process.

Table 174–3 (Cont.) LCR$_DDL_RECORD Type Subprograms

Subprogram Description

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-9

GET_BASE_TABLE_OWNER Member Function
Returns the base (dependent) table owner.

Syntax
MEMBER FUNCTION GET_BASE_TABLE_OWNER()
RETURN VARCHAR2;

GET_CURRENT_SCHEMA Member Function
Returns the current schema name.

Syntax
MEMBER FUNCTION GET_CURRENT_SCHEMA()
RETURN VARCHAR2;

GET_DDL_TEXT Member Procedure
Gets the DDL text in a CLOB.

The following is an example of a PL/SQL procedure that uses this procedure to get
the DDL text in a DDL LCR:

CREATE OR REPLACE PROCEDURE ddl_in_lcr (ddl_lcr in SYS.LCR$_DDL_RECORD)
IS
 ddl_text CLOB;
BEGIN
 DBMS_OUTPUT.PUT_LINE(' ---');
 DBMS_OUTPUT.PUT_LINE(' Displaying DDL text in a DDL LCR: ');
 DBMS_OUTPUT.PUT_LINE(' ---');
 DBMS_LOB.CREATETEMPORARY(ddl_text, true);
 ddl_lcr.GET_DDL_TEXT(ddl_text);
 DBMS_OUTPUT.PUT_LINE('DDL text:' || ddl_text);
 DBMS_LOB.FREETEMPORARY(ddl_text);
END;
/

Note: GET_DDL_TEXT is a member procedure and not a member
function to make it easier for you to manage the space used by the
CLOB. Notice that the previous example creates temporary space
for the CLOB and then frees the temporary space when it is no
longer needed.

LCR$_DDL_RECORD Type

174-10 PL/SQL Packages and Types Reference

Syntax
MEMBER FUNCTION GET_DDL_TEXT
 ddl_text IN/OUT CLOB);

Parameter

GET_LOGON_USER Member Function
Returns the logon user name.

Syntax
MEMBER FUNCTION GET_LOGON_USER()
RETURN VARCHAR2;

GET_OBJECT_TYPE Member Function
Returns the type of the object involved for the DDL.

Syntax
MEMBER FUNCTION GET_OBJECT_TYPE()
RETURN VARCHAR2;

SET_BASE_TABLE_NAME Member Procedure
Sets the base (dependent) table name.

Syntax
MEMBER PROCEDURE SET_BASE_TABLE_NAME(
 base_table_name IN VARCHAR2);

Parameter

Table 174–4 GET_DDL_TEXT Procedure Parameter

Parameter Description

ddl_text The DDL text in the DDL LCR

Table 174–5 SET_BASE_TABLE_NAME Procedure Parameter

Parameter Description

base_table_name The name of the base table

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-11

SET_BASE_TABLE_OWNER Member Procedure
Sets the base (dependent) table owner.

Syntax
MEMBER PROCEDURE SET_BASE_TABLE_OWNER(
 base_table_owner IN VARCHAR2);

Parameter

SET_CURRENT_SCHEMA Member Procedure
Sets the default schema (user) name.

Syntax
MEMBER PROCEDURE SET_CURRENT_SCHEMA(
 current_schema IN VARCHAR2);

Parameter

Table 174–6 SET_BASE_TABLE_OWNER Procedure Parameter

Parameter Description

base_table_owner The name of the base owner

Table 174–7 SET_CURRENT_SCHEMA Procedure Parameter

Parameter Description

current_schema The name of the schema to set as the current schema. This
parameter should be set to a non-NULL value.

LCR$_DDL_RECORD Type

174-12 PL/SQL Packages and Types Reference

SET_DDL_TEXT Member Procedure
Sets the DDL text.

Syntax
MEMBER PROCEDURE SET_DDL_TEXT(
 ddl_text IN CLOB);

Parameter

SET_LOGON_USER Member Procedure
Sets the logon user name.

Syntax
MEMBER PROCEDURE SET_LOGON_USER(
 logon_user IN VARCHAR2);

Parameter

Table 174–8 SET_DDL_TEXT Procedure Parameter

Parameter Description

ddl_text The DDL text. This parameter should be set to a non-NULL
value.

Table 174–9 SET_LOGON_USER Procedure Parameter

Parameter Description

logon_user The name of the schema to set as the logon user

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-13

SET_OBJECT_TYPE Member Procedure
Sets the object type.

Syntax
MEMBER PROCEDURE SET_OBJECT_TYPE(

object_type IN VARCHAR2);

Parameter

Table 174–10 SET_OBJECT_TYPE Procedure Parameter

Parameter Description

object_type The object type.

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object
types not listed. The GET_OBJECT_TYPE member procedure
returns NULL for object types not listed.

LCR$_ROW_RECORD Type

174-14 PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type

This type represents a data manipulation language (DML) change to a row in a
table. This type uses the LCR$_ROW_LIST type.

If you create or modify a row LCR, then make sure the command_type attribute is
consistent with the presence or absence of old column values and the presence or
absence of new column values.

This section contains information about the constructor for DDL LCRs and
information about the member subprograms for this type:

■ LCR$_ROW_RECORD Constructor

■ Summary of LCR$_ROW_RECORD Subprograms, which also include the
subprograms described in Common Subprograms for LCR$_DDL_RECORD
and LCR$_ROW_RECORD

Note:

■ When passing a name as a parameter to an LCR constructor,
you can enclose the name in double quotes to handle names
that use mixed case or lower case for database objects. For
example, if a name contains any lower case characters, then
you must enclose it in double quotes.

■ The application does not need to specify a transaction identifier
or SCN when it creates an LCR because the apply process
generates these values and stores them in memory. If a
transaction identifier or SCN is specified in the LCR, then the
apply process ignores it and assigns a new value.

See Also: "LCR$_ROW_LIST Type" on page 174-44

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-15

LCR$_ROW_RECORD Constructor
Creates a SYS.LCR$_ROW_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
 source_database_name IN VARCHAR2,

 command_type IN VARCHAR2,
object_owner IN VARCHAR2,
object_name IN VARCHAR2,

 tag IN RAW DEFAULT NULL,
 transaction_id IN VARCHAR2 DEFAULT NULL,
 scn IN NUMBER DEFAULT NULL,

old_values IN SYS.LCR$_ROW_LIST DEFAULT NULL,
 new_values IN SYS.LCR$_ROW_LIST DEFAULT NULL)
RETURN SYS.LCR$_ROW_RECORD;

LCR$_ROW_RECORD Type

174-16 PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Constructor Function Parameters

Table 174–11 Constructor Function Parameters for LCR$_ROW_RECORD

Parameter Description

source_database_name The database where the row change occurred. If you do not
include the domain name, then the local domain is appended
to the database name automatically. For example, if you
specify DBS1 and the local domain is .NET, then DBS1.NET is
specified automatically. This parameter should be set to a
non-NULL value.

command_type The type of command executed in the DML statement. This
parameter should be set to a non-NULL value.

Valid values are the following:

INSERT
UPDATE
DELETE
LOB ERASE
LOB WRITE
LOB TRIM

If INSERT, then an LCR should have a new_values collection
that is not empty and an empty or NULL old_values
collection.

If UPDATE, then an LCR should have a new_values collection
that is not empty and an old_values collection that is not
empty.

If DELETE, then an LCR should have a NULL or empty
new_values collection and an old_values collection that is
not empty.

If LOB ERASE, LOB WRITE, or LOB TRIM, then an LCR should
have a new_values collection that is not empty and an empty
or NULL old_values collection.

object_owner The user who owns the table on which the row change
occurred. This parameter should be set to a non-NULL value.

object_name The table on which the DML statement was executed. This
parameter should be set to a non-NULL value.

tag A binary tag that enables tracking of the LCR. For example,
this tag may be used to determine the original source database
of the DML change when apply forwarding is used.

See Also: Oracle Streams Replication Administrator's Guide for
more information about tags

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-17

Summary of LCR$_ROW_RECORD Subprograms

transaction_id The identifier of the transaction

scn The SCN at the time when the change record was written to
the redo log. The SCN value is meaningless for a user-created
LCR.

old_values The column values for the row before the DML change. If the
DML statement is an UPDATE or a DELETE statement, then the
values of columns in the row before the DML statement. If the
DML statement is an INSERT statement, then there are no old
values.

new_values The column values for the row after the DML change. If the
DML statement is an UPDATE or an INSERT statement, then
the values of columns in the row after the DML statement. If
the DML statement is a DELETE statement, then there are no
new values.

If the LCR reflects a LOB operation, then the supplementally
logged columns and any relevant LOB information.

Table 174–12 LCR$_ROW_RECORD Type Subprograms

Subprogram Description

"ADD_COLUMN Member Procedure"
on page 174-19

Adds the value as old or new, depending on the
value type specified, for the column

"CONVERT_LONG_TO_LOB_CHUNK
Member Procedure" on page 174-20

Converts LONG data in a row LCR into fixed
width CLOB, or converts LONG RAW data in a row
LCR into a BLOB

"DELETE_COLUMN Member
Procedure" on page 174-20

Deletes the old value, the new value, or both, for
the specified column, depending on the value
type specified

"EXECUTE Member Procedure" on
page 174-21

Executes the LCR under the security domain of
the current user

"GET_LOB_INFORMATION Member
Function" on page 174-22

Gets the LOB information for the column

"GET_LOB_OFFSET Member Function"
on page 174-23

Returns the LOB offset for the specified column

Table 174–11 (Cont.) Constructor Function Parameters for LCR$_ROW_RECORD

Parameter Description

LCR$_ROW_RECORD Type

174-18 PL/SQL Packages and Types Reference

"GET_LOB_OPERATION_SIZE Member
Function" on page 174-23

Gets the operation size for the LOB column

"GET_LONG_INFORMATION Member
Function" on page 174-25

Gets the LONG information for the column

"GET_VALUE Member Function" on
page 174-25

Returns the old or new value for the specified
column, depending on the value type specified

"GET_VALUES Member Function" on
page 174-26

Returns a list of old or new values, depending on
the value type specified

"RENAME_COLUMN Member
Procedure" on page 174-28

Renames a column in an LCR

"SET_LOB_INFORMATION Member
Procedure" on page 174-28

Sets LOB information for the column

"SET_LOB_OFFSET Member Procedure"
on page 174-29

Sets the LOB offset for the specified column

"SET_LOB_OPERATION_SIZE Member
Procedure" on page 174-30

Sets the operation size for the LOB column

"SET_VALUE Member Procedure" on
page 174-31

Overwrites the value of the specified column

"SET_VALUES Member Procedure" on
page 174-32

Replaces the existing old or new values for the
LCR, depending on the value type specified

Common Subprograms See "Common Subprograms for
LCR$_DDL_RECORD and
LCR$_ROW_RECORD" on page 174-33 for a list
of subprograms common to the
SYS.LCR$_ROW_RECORD and
SYS.LCR$_DDL_RECORD types

Table 174–12 (Cont.) LCR$_ROW_RECORD Type Subprograms

Subprogram Description

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-19

ADD_COLUMN Member Procedure
Adds the value as old or new, depending on the value type specified, for the
column. An error is raised if a value of the same type already exists for the column.

To set a column value that already exists, run SET_VALUE.

Syntax
MEMBER PROCEDURE ADD_COLUMN(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 column_value IN SYS.AnyData);

Parameters

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure on a LOB column.

See Also: "SET_VALUE Member Procedure" on page 174-31

Table 174–13 ADD_COLUMN Procedure Parameters

Parameter Description

value_type The type of value to add for the column. Specify old to add
the old value of the column. Specify new to add the new value
of the column.

column_name The column name. This name is not validated. An error may be
raised during application of the LCRs if an invalid name is
specified.

column_value The value of the column. If NULL, then an error is raised.

A NULL column value can be specified by encapsulating the
NULL value in a SYS.AnyData wrapper.

LCR$_ROW_RECORD Type

174-20 PL/SQL Packages and Types Reference

CONVERT_LONG_TO_LOB_CHUNK Member Procedure
Converts LONG data in a row LCR into a CLOB, or converts LONG RAW data in a row
LCR into a BLOB.

This procedure may change the operation code from LONG_WRITE to LOB_WRITE
for the row LCR.

This procedure may be used in rule-based transformations and apply handlers.

The following restrictions apply to this member procedure:

■ LONG data can be sent as a part of a row LCR with one of the following
operation codes: INSERT, UPDATE, or LONG_WRITE. Because LONG data may be
sent in multiple pieces, make sure that this method is invoked on either none or
all LONG pieces.

■ LOB to LONG conversion is not supported.

■ A row LCR on which this procedure is executed must have been created by
capture process. That is, this procedure does not support user-enqueued
row LCRs.

Syntax
MEMBER PROCEDURE CONVERT_LONG_TO_LOB_CHUNK();

DELETE_COLUMN Member Procedure
Deletes the old value, the new value, or both, for the specified column, depending
on the value type specified.

Syntax
MEMBER PROCEDURE DELETE_COLUMN(
 column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 174–14 DELETE_COLUMN Procedure Parameters

Parameter Description

column_name The column name. An error is raised if the column does not
exist in the LCR.

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-21

EXECUTE Member Procedure
Executes the row LCR under the security domain of the current user. Any apply
process handlers that would be run for an LCR are not run when the LCR is applied
using this procedure.

Syntax
MEMBER PROCEDURE EXECUTE(
 conflict_resolution IN BOOLEAN);

Parameters

value_type The type of value to delete for the column. Specify old to
delete the old value of the column. Specify new to delete the
new value of the column. If * is specified, then both the old
and new values are deleted.

Note: The EXECUTE member procedure can be invoked only in an
apply handler for an apply process.

Table 174–15 EXECUTE Procedure Parameters

Parameter Description

conflict_resolution If true, then any conflict resolution defined for the table using
the SET_UPDATE_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package is used to resolve conflicts
resulting from the execution of the LCR.

If false, then conflict resolution is not used.

Table 174–14 DELETE_COLUMN Procedure Parameters

Parameter Description

LCR$_ROW_RECORD Type

174-22 PL/SQL Packages and Types Reference

GET_LOB_INFORMATION Member Function
Gets the LOB information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

Returns NULL if the specified column does not exist.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the
use_old parameter is a convenient way to get the value of the columns.

Syntax
MEMBER FUNCTION GET_LOB_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN NUMBER;

Parameters

Table 174–16 GET_LOB_INFORMATION Function Parameters

Parameter Description

value_type The type of value to return for the column, either old or new

column_name The name of the column

use_old If Y and value_type is new, and no new value exists, then
returns the corresponding old value. If N and value_type is
new, then does not return the old value if no new value exists.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-23

GET_LOB_OFFSET Member Function
Gets the LOB offset for the specified column in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Returns a non-NULL value
only if all of the following conditions are met:

■ The value exists for the column

■ The column value is an out-of-line LOB. That is, the information is
DBMS_LCR.LAST_LOB_CHUNK or DBMS_LCR.LOB_CHUNK

■ The command type is LOB ERASE or LOB WRITE

Otherwise, returns NULL.

Syntax
GET_LOB_OFFSET(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2)
RETURN NUMBER;

Parameters

GET_LOB_OPERATION_SIZE Member Function
Gets the operation size for the LOB column in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Returns a non-NULL value
only if all of the following conditions are met:

■ The value exists for the column

■ The column value is an out-of-line LOB

■ The command type is LOB ERASE or LOB TRIM

■ The information is DBMS_LCR.LAST_LOB_CHUNK

Otherwise, returns NULL.

Table 174–17 GET_LOB_OFFSET Procedure Parameters

Parameter Description

value_type The type of value to return for the column. Currently, only new
can be specified.

column_name The name of the LOB column

LCR$_ROW_RECORD Type

174-24 PL/SQL Packages and Types Reference

Syntax
MEMBER FUNCTION GET_LOB_OPERATION_SIZE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2)
RETURN NUMBER,

Parameters

Table 174–18 GET_LOB_OPERATION_SIZE Function Parameters

Parameter Description

value_type The type of value to return for the column. Currently, only new
can be specified.

column_name The name of the LOB column

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-25

GET_LONG_INFORMATION Member Function
Gets the LONG information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LONG CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LONG CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LONG CONSTANT NUMBER := 3;
DBMS_LCR.LONG_CHUNK CONSTANT NUMBER := 4;
DBMS_LCR.LAST_LONG_CHUNK CONSTANT NUMBER := 5;

Returns NULL if the specified column does not exist.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the
use_old parameter is a convenient way to get the value of the columns.

Syntax
MEMBER FUNCTION GET_LONG_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN NUMBER;

Parameters

GET_VALUE Member Function
Returns the old or new value for the specified column, depending on the value type
specified.

Table 174–19 GET_LONG_INFORMATION Function Parameters

Parameter Description

value_type The type of value to return for the column, either old or new

column_name The name of the column

use_old If Y and value_type is new, and no new value exists, then
returns the corresponding old value. If N and value_type is
new, then does not return the old value if no new value exists.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.

LCR$_ROW_RECORD Type

174-26 PL/SQL Packages and Types Reference

If the command type of the row LCR is UPDATE, then specifying 'Y' for the
use_old parameter is a convenient way to get the value of a column.

Syntax
MEMBER FUNCTION GET_VALUE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN SYS.AnyData;

Parameters

GET_VALUES Member Function
Returns a list of old or new values, depending on the value type specified.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the
use_old parameter is a convenient way to get the values of all columns.

Syntax
MEMBER FUNCTION GET_VALUES(
 value_type IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN SYS.LCR$_ROW_LIST;

Table 174–20 GET_VALUE Function Parameters

Parameter Description

value_type The type of value to return for the column. Specify old to get
the old value for the column. Specify new to get the new value
for the column.

column_name The column name. If the column is present and has a NULL
value, returns a SYS.AnyData instance containing a NULL
value. If the column value is absent, then returns a NULL.

use_old If Y and value_type is new, and no new value exists, then
returns the corresponding old value.

If N and value_type is new, then returns NULL if no new
value exists.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-27

Parameter

Table 174–21 GET_VALUES Procedure Parameter

Parameter Description

value_type The type of values to return. Specify old to return a list of old
values. Specify new to return a list of new values.

use_old If Y and value_type is new, then returns a list of all new
values in the LCR. If a new value does not exist in the list, then
returns the corresponding old value. Therefore, the returned
list contains all existing new values and old values for the new
values that do not exist.

If N and value_type is new, then returns a list of all new
values in the LCR without returning any old values.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.

LCR$_ROW_RECORD Type

174-28 PL/SQL Packages and Types Reference

RENAME_COLUMN Member Procedure
Renames a column in an LCR.

Syntax
MEMBER PROCEDURE RENAME_COLUMN(
 from_column_name IN VARCHAR2,
 to_column_name IN VARCHAR2,
 value_type IN VARCHAR2 DEFAULT '*');

Parameters

SET_LOB_INFORMATION Member Procedure
Sets LOB information for the column.

Syntax
MEMBER PROCEDURE SET_LOB_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_information IN NUMBER);

Table 174–22 RENAME_COLUMN Procedure Parameters

Parameter Description

from_column_name The existing column name

to_column_name The new column name. An error is raised if a column with the
specified name already exists.

value_type The type of value for which to rename the column.

Specify old to rename the old value of the column. An error is
raised if the old value does not exist in the LCR.

Specify new to rename the new value of the column. An error
is raised if the new value does not exist in the LCR.

If * is specified, then the column names for both old and new
value are renamed. An error is raised if either column value
does not exist in the LCR.

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure.

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-29

Parameters

SET_LOB_OFFSET Member Procedure
Sets the LOB offset for the specified column in the number of characters for CLOB
columns and the number of bytes for BLOB columns.

Syntax
MEMBER PROCEDURE SET_LOB_OFFSET(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_offset IN NUMBER);

Table 174–23 SET_LOB_INFORMATION Procedure Parameters

Parameter Description

value_type The type of value to set for the column, either old or new.
Specify old only if lob_information is set to
DBMS_LCR.NOT_A_LOB.

column_name The name of the column. An exception is raised if the column
value does not exist. You may need to set this parameter for
non-LOB columns.

lob_information Specify one of the following values:

 DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
 DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
 DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
 DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
 DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
 DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure.

LCR$_ROW_RECORD Type

174-30 PL/SQL Packages and Types Reference

Parameters

SET_LOB_OPERATION_SIZE Member Procedure
Sets the operation size for the LOB column in the number of characters for CLOB
columns and bytes for BLOB columns.

Syntax
MEMBER PROCEDURE SET_LOB_OPERATION_SIZE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 lob_operation_size IN NUMBER);

Table 174–24 SET_LOB_OFFSET Procedure Parameters

Parameter Description

value_type The type of value to set for the column. Currently, only new
can be specified.

column_name The column name. An error is raised if the column value does
not exist in the LCR.

lob_offset The LOB offset number. Valid values are NULL or a positive
integer less than or equal to DBMS_LOB.LOBMAXSIZE.

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure.

Summary of Logical Change Record Types

Logical Change Record TYPEs 174-31

Parameters

SET_VALUE Member Procedure
Overwrites the old or new value of the specified column.

One reason you may want to overwrite an old value for a column is to resolve an
error that resulted from a conflict.

Syntax
MEMBER PROCEDURE SET_VALUE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 column_value IN SYS.AnyData);

Table 174–25 SET_LOB_OPERATION_SIZE Procedure Parameters

Parameter Description

value_type The type of value to set for the column. Currently, only new
can be specified.

column_name The name of the LOB column. An exception is raised if the
column value does not exist in the LCR.

lob_operation_size If lob_information for the LOB is or will be
DBMS_LCR.LAST_LOB_CHUNK, then can be set to either a valid
LOB ERASE value or a valid LOB TRIM value. A LOB_ERASE
value must be a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE. A LOB_TRIM value must be a
nonnegative integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

Otherwise, set to NULL.

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure on a LONG, LONG RAW, or LOB column.

LCR$_ROW_RECORD Type

174-32 PL/SQL Packages and Types Reference

Parameters

SET_VALUES Member Procedure
Replaces all old values or all new values for the LCR, depending on the value type
specified.

Syntax
MEMBER PROCEDURE SET_VALUES(
 value_type IN VARCHAR2,
 value_list IN SYS.LCR$_ROW_LIST);

Parameters

Table 174–26 SET_VALUE Procedure Parameters

Parameter Description

value_type The type of value to set. Specify old to set the old value of the
column. Specify new to set the new value of the column.

column_name The column name. An error is raised if the specified
column_value does not exist in the LCR for the specified
column_type.

column_value The new value of the column. If NULL is specified, then an
error is raised. To set the value to NULL, encapsulate the NULL
in a SYS.AnyData instance.

Note: When you are processing a row LCR with a rule-based
transformation, DML handler, or error handler, you cannot use this
member procedure on a LONG, LONG RAW, or LOB column.

Table 174–27 SET_VALUES Procedure Parameters

Parameter Description

value_type The type of values to replace. Specify old to replace the old
values. Specify new to replace the new values.

value_list List of values to replace the existing list. Use a NULL or an
empty list to remove all values.

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-33

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

The following functions and procedures are common to both the
LCR$_DDL_RECORD and LCR$_ROW_RECORD type.

See Also: For descriptions of the subprograms for these types
that are exclusive to each type:

■ "Summary of LCR$_DDL_RECORD Subprograms" on
page 174-7

■ "Summary of LCR$_ROW_RECORD Subprograms" on
page 174-17

Table 174–28 Summary of Common Subprograms for DDL and Row LCR Types

Subprogram Description

"GET_COMMAND_TYPE Member
Function" on page 174-34

Returns the command type of the LCR

"GET_COMMIT_SCN Member
Function" on page 174-35

Returns the commit system change number (SCN) of
the transaction to which the current LCR belongs

"GET_COMPATIBLE Member
Function" on page 174-35

Returns the minimal database compatibility
required to support the LCR

"GET_EXTRA_ATTRIBUTE Member
Function" on page 174-36

Returns the value for the specified extra attribute in
the LCR

"GET_OBJECT_NAME Member
Function" on page 174-38

Returns the name of the object that is changed by the
LCR

"GET_OBJECT_OWNER Member
Function" on page 174-38

Returns the owner of the object that is changed by
the LCR

"GET_SCN Member Function" on
page 174-38

Returns the system change number (SCN) of
the LCR

"GET_SOURCE_DATABASE_NAME
Member Function" on page 174-38

Returns the source database name.

"GET_TAG Member Function" on
page 174-38

Returns the tag for the LCR

"GET_TRANSACTION_ID Member
Function" on page 174-39

Returns the transaction identifier of the LCR

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

174-34 PL/SQL Packages and Types Reference

GET_COMMAND_TYPE Member Function
Returns the command type of the LCR.

Syntax
MEMBER FUNCTION GET_COMMAND_TYPE()
RETURN VARCHAR2;

"IS_NULL_TAG Member Function"
on page 174-39

Returns Y if the tag for the LCR is NULL, or returns N
if the tag for the LCR is not NULL

"SET_COMMAND_TYPE Member
Procedure" on page 174-40

Sets the command type in the LCR

"SET_EXTRA_ATTRIBUTE Member
Procedure" on page 174-40

Sets the value for the specified extra attribute in the
LCR

"SET_OBJECT_NAME Member
Procedure" on page 174-41

Sets the name of the object that is changed by
the LCR

"SET_OBJECT_OWNER Member
Procedure" on page 174-42

Sets the owner of the object that is changed by
the LCR

"SET_SOURCE_DATABASE_NAME
Member Procedure" on page 174-42

Sets the source database name of the object that is
changed by the LCR

"SET_TAG Member Procedure" on
page 174-43

Sets the tag for the LCR

See Also: The "SQL Command Codes" table in the Oracle Call
Interface Programmer's Guide for a complete list of command types

Table 174–28 Summary of Common Subprograms for DDL and Row LCR Types

Subprogram Description

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-35

GET_COMMIT_SCN Member Function
Returns the commit system change number (SCN) of the transaction to which the
current LCR belongs.

The commit SCN for a transaction is available only during apply or during error
transaction execution. This function can be used only in a DML handler, DDL
handler, or error handler. Such a handler may use the SCN obtained by this
procedure to flashback to the transaction commit time for an LCR. In this case, the
flashback must be performed at the source database for the LCR.

The commit SCN may not be available for an LCR that is part of an incomplete
transaction. For example, user-enqueued LCRs may not have a commit SCN. If the
commit SCN is not available for an LCR, then this function returns NULL.

Syntax
MEMBER FUNCTION GET_COMMIT_SCN()
RETURN NUMBER;

GET_COMPATIBLE Member Function
Returns the minimal database compatibility required to support the LCR. You
control the compatibility of an Oracle database using the COMPATIBLE initialization
parameter.

The return value for this function can be one of the following:

DDL LCRs always return DBMS_STREAMS.COMPATIBLE_9_2.

You may use the following functions for constant compatibility return values:

■ The DBMS_STREAMS.COMPATIBLE_9_2 function returns the
DBMS_STREAMS.COMPATIBLE_9_2 constant.

■ The DBMS_STREAMS.COMPATIBLE_10_1 function returns
DBMS_STREAMS.COMPATIBLE_10_1 constant.

Return Value
COMPATIBLE Initialization Parameter
Equivalent

DBMS_STREAMS.COMPATIBLE_9_2 9.2.0

DBMS_STREAMS.COMPATIBLE_10_1 10.0.0

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

174-36 PL/SQL Packages and Types Reference

You can use these functions with the GET_COMPATIBLE member function for an
LCR in rule conditions and apply handlers.

Syntax
MEMBER FUNCTION GET_COMPATIBLE()
RETURN NUMBER;

GET_EXTRA_ATTRIBUTE Member Function
Returns the value for the specified extra attribute in the LCR. The returned extra
attribute is contained within a SYS.AnyData instance. You can use the
INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to
instruct a capture process to capture one or more extra attributes.

Syntax
MEMBER FUNCTION GET_EXTRA_ATTRIBUTE(
 attribute_name IN VARCHAR2)
RETURN SYS.AnyData;

Note: You can determine which database objects in a database are
not supported by Streams by querying the
DBA_STREAMS_UNSUPPORTED data dictionary view.

See Also:

■ Oracle Streams Concepts and Administration for examples of rules
that discard changes that are not supported by Streams

■ Chapter 95, "DBMS_STREAMS" and Chapter 96,
"DBMS_STREAMS_ADM"

■ Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization
parameter

See Also: "INCLUDE_EXTRA_ATTRIBUTE Procedure" on
page 19-25

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-37

Parameters

Table 174–29 GET_EXTRA_ATTRIBUTE Function Parameter

Parameter Description

attribute_name The name of the extra attribute to return. Valid names are:

■ row_id

The rowid of the row changed in a row LCR. This attribute
is not included in DDL LCRs, nor in row LCRs for
index-organized tables. The type is UROWID.

■ serial#

The serial number of the session that performed the
change captured in the LCR. The type is NUMBER.

■ session#

The identifier of the session that performed the change
captured in the LCR. The type is NUMBER.

■ thread#

The thread number of the instance in which the change
captured in the LCR was performed. Typically, the thread
number is relevant only in a Real Application Clusters
environment. The type is NUMBER.

■ tx_name

The name of the transaction that includes the LCR. The
type is VARCHAR2.

■ username

The name of the user who performed the change captured
in the LCR. The type is VARCHAR2.

An error is raised if the specified attribute_name is not
valid.

If no value exists for the specified extra attribute, then returns a
NULL.

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

174-38 PL/SQL Packages and Types Reference

GET_OBJECT_NAME Member Function
Returns the name of the object that is changed by the LCR.

Syntax
MEMBER FUNCTION GET_OBJECT_NAME()
RETURN VARCHAR2;

GET_OBJECT_OWNER Member Function
Returns the owner of the object that is changed by the LCR.

Syntax
MEMBER FUNCTION GET_OBJECT_OWNER()
RETURN VARCHAR2;

GET_SCN Member Function
Returns the system change number (SCN) of the LCR.

Syntax
MEMBER FUNCTION GET_SCN()
RETURN NUMBER;

GET_SOURCE_DATABASE_NAME Member Function
Returns the global name of the source database name. The source database is the
database where the change occurred.

Syntax
MEMBER FUNCTION GET_SOURCE_DATABASE_NAME()
RETURN VARCHAR2;

GET_TAG Member Function
Returns the tag for the LCR. An LCR tag is a binary tag that enables tracking of the
LCR. For example, this tag may be used to determine the original source database
of the DML or DDL change when apply forwarding is used.

Syntax
MEMBER FUNCTION GET_TAG()
RETURN RAW;

See Also: Oracle Streams Replication Administrator's Guide for more
information about tags

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-39

GET_TRANSACTION_ID Member Function
Returns the transaction identifier of the LCR.

Syntax
MEMBER FUNCTION GET_TRANSACTION_ID()
RETURN VARCHAR2;

IS_NULL_TAG Member Function
Returns Y if the tag for the LCR is NULL, or returns N if the tag for the LCR is not
NULL.

Syntax
MEMBER FUNCTION IS_NULL_TAG()
RETURN VARCHAR2;

See Also: Oracle Streams Replication Administrator's Guide for more
information about tags

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

174-40 PL/SQL Packages and Types Reference

SET_COMMAND_TYPE Member Procedure
Sets the command type in the LCR. If the command type specified cannot be
interpreted, then an error is raised. For example, changing INSERT to GRANT would
raise an error.

Syntax
MEMBER PROCEDURE SET_COMMAND_TYPE(
 command_type IN VARCHAR2);

Parameter

SET_EXTRA_ATTRIBUTE Member Procedure
Sets the value for the specified extra attribute in the LCR. You can use the
INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to
instruct a capture process to capture one or more extra attributes.

Syntax
MEMBER PROCEDURE SET_EXTRA_ATTRIBUTE(
 attribute_name IN VARCHAR2,
 attribute_value IN SYS.AnyData);

See Also:

■ The description of the command_type parameter in
"LCR$_DDL_RECORD Constructor Function Parameters" on
page 174-5

■ The description of the command_type parameter in
"LCR$_ROW_RECORD Constructor Function Parameters" on
page 174-16

■ The "SQL Command Codes" table in the Oracle Call Interface
Programmer's Guide for a complete list of command types

Table 174–30 SET_COMMAND_TYPE Procedure Parameter

Parameter Description

command_type The command type. This parameter should be set to a
non-NULL value.

See Also: "INCLUDE_EXTRA_ATTRIBUTE Procedure" on
page 19-25

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-41

Parameters

SET_OBJECT_NAME Member Procedure
Sets the name of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_OBJECT_NAME(

Table 174–31 SET_EXTRA_ATTRIBUTE Procedure Parameter

Parameter Description

attribute_name The name of the extra attribute to set. Valid names are:

■ row_id

The rowid of the row changed in a row LCR. This attribute
is not included in DDL LCRs, nor in row LCRs for
index-organized tables. The type is VARCHAR2.

■ serial#

The serial number of the session that performed the
change captured in the LCR. The type is NUMBER.

■ session#

The identifier of the session that performed the change
captured in the LCR. The type is NUMBER.

■ thread#

The thread number of the instance in which the change
captured in the LCR was performed. Typically, the thread
number is relevant only in a Real Application Clusters
environment. The type is NUMBER.

■ tx_name

The name of the transaction that includes the LCR. The
type is VARCHAR2.

■ username

The name of the user who performed the change captured
in the LCR. The type is VARCHAR2.

An error is raised if the specified attribute_name is not
valid.

attribute_value The value to which the specified extra attribute is set. If set to
NULL, then the specified extra attribute is removed from the
LCR. To set to NULL, encapsulate the NULL in a SYS.AnyData
instance.

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

174-42 PL/SQL Packages and Types Reference

 object_name IN VARCHAR2);

Parameter

SET_OBJECT_OWNER Member Procedure
Sets the owner of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_OBJECT_OWNER(
 object_owner IN VARCHAR2);

Parameter

SET_SOURCE_DATABASE_NAME Member Procedure
Sets the source database name of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_SOURCE_DATABASE_NAME(

source_database_name IN VARCHAR2);

Parameter

Table 174–32 SET_OBJECT_NAME Procedure Parameter

Parameter Description

object_name The name of the object

Table 174–33 SET_OBJECT_OWNER Procedure Parameter

Parameter Description

object_owner The schema that contains the object

Table 174–34 SET_SOURCE_DATABASE_NAME Procedure Parameter

Parameter Description

source_database_name The source database of the change. If you do not include the
domain name, then the local domain is appended to the
database name automatically. For example, if you specify DBS1
and the local domain is .NET, then DBS1.NET is specified
automatically. This parameter should be set to a non-NULL
value.

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-43

SET_TAG Member Procedure
Sets the tag for the LCR. An LCR tag is a binary tag that enables tracking of the
LCR. For example, this tag may be used to determine the original source database
of the change when apply forwarding is used.

Syntax
MEMBER PROCEDURE SET_TAG(

tag IN RAW);

Parameter

See Also: Oracle Streams Replication Administrator's Guide for more
information about tags

Table 174–35 SET_TAG Procedure Parameter

Parameter Description

tag The binary tag for the LCR. The size limit for a tag value is two
kilobytes.

LCR$_ROW_LIST Type

174-44 PL/SQL Packages and Types Reference

LCR$_ROW_LIST Type

Identifies a list of column values for a row in a table.

This type uses the LCR$_ROW_UNIT type and is used in the LCR$_ROW_RECORD
type.

Syntax
CREATE TYPE SYS.LCR$_ROW_LIST AS TABLE OF SYS.LCR$_ROW_UNIT
/

See Also:

■ "LCR$_ROW_UNIT Type" on page 174-45

■ "LCR$_ROW_RECORD Type" on page 174-14

Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD

Logical Change Record TYPEs 174-45

LCR$_ROW_UNIT Type

Identifies the value for a column in a row.

This type is used in the LCR$_ROW_LIST type.

Syntax
CREATE TYPE LCR$_ROW_UNIT AS OBJECT (
 column_name VARCHAR2(4000),
 data SYS.AnyData,
 lob_information NUMBER,
 lob_offset NUMBER,
 lob_operation_size NUMBER
 long_information NUMBER);
/

Attributes

See Also: "LCR$_ROW_LIST Type" on page 174-44

Table 174–36 LCR$_ROW_UNIT Attributes

Attribute Description

column_name The name of the column

data The data contained in the column

lob_information Contains the LOB information for the column and contains one
of the following values:

 DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
 DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
 DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
 DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
 DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
 DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

lob_offset The LOB offset specified in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Valid
values are NULL or a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

LCR$_ROW_UNIT Type

174-46 PL/SQL Packages and Types Reference

lob_operation_size If lob_information for the LOB is
DBMS_LCR.LAST_LOB_CHUNK, then can be set to either a valid
LOB ERASE value or a valid LOB TRIM value. A LOB_ERASE
value must be a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE. A LOB_TRIM value must be a
nonnegative integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

If lob_information is not DBMS_LCR.LAST_LOB_CHUNK
and for all other operations, is NULL.

long_information Contains the LONG information for the column and contains
one of the following values:

DBMS_LCR.not_a_long CONSTANT NUMBER := 1;

DBMS_LCR.null_long CONSTANT NUMBER := 2;

DBMS_LCR.inline_long CONSTANT NUMBER := 3;

DBMS_LCR.long_chunk CONSTANT NUMBER := 4;

DBMS_LCR.last_long_chunk CONSTANT NUMBER := 5;

Table 174–36 (Cont.) LCR$_ROW_UNIT Attributes

Attribute Description

interMedia ORDAudio TYPE 175-1

175
interMedia ORDAudio TYPE

The interMedia ORDAudio object type supports the storage and management of
audio data.

Audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data is digitally recorded. Oracle interMedia
ORDAudio can store and retrieve audio data of any data format. Oracle
interMedia ORDAudio can automatically extract metadata from audio data of a
variety of popular audio formats. Oracle interMedia ORDAudio can also extract
application attributes and store them in the comments attribute of the object in
XML form.

■ Documentation of ORDAudio

Documentation of ORDAudio

175-2 PL/SQL Packages and Types Reference

Documentation of ORDAudio

For a complete description of this package within the context of Oracle interMedia,
see ORDAudio in the Oracle interMedia Reference.

interMedia ORDDoc TYPE 176-1

176
interMedia ORDDoc TYPE

The interMedia ORDDoc object type supports the storage and management of
heterogeneous media data including image, audio, and video.

Heterogeneous media data can have different formats depending upon the
application generating the media data. Oracle interMedia can store and retrieve
media data of any data format. The interMedia ORDDoc data type can be used in
applications that require you to store different types of heterogeneous media data
in the same column so you can build a common metadata index on all the different
types of media data. Using this index, you can search across all the different types
of heterogeneous media data. Note that you cannot use this same search technique
if the different types of heterogeneous media data are stored in different types of
objects in different columns of relational tables.

■ Documentation of ORDDoc

Documentation of ORDDoc

176-2 PL/SQL Packages and Types Reference

Documentation of ORDDoc

For a complete description of this package within the context of Oracle interMedia,
see ORDDoc in the Oracle interMedia Reference.

interMedia ORDImage TYPE 177-1

177
interMedia ORDImage TYPE

The interMedia ORDImage object type supports the storage, management, and
manipulation of image data.

Digitized images consist of the image data (digitized bits) and attributes that
describe and characterize the image data.

The image data (pixels) can have varying depths (bits for each pixel) depending on
how the image was captured, and can be organized in various ways. The
organization of the image data is known as the data format. Oracle interMedia
ORDImage can store and retrieve image data of any data format. Oracle
interMedia ORDImage can process (cut, scale, and generate thumbnails) of
images, convert the format of images, and automatically extract properties of
images of a variety of popular data formats.

■ Documentation of ORDImage

Documentation of ORDImage

177-2 PL/SQL Packages and Types Reference

Documentation of ORDImage

For a complete description of this package within the context of Oracle interMedia,
see ORDImage in the Oracle interMedia Reference.

interMedia ORDImageSignature TYPE 178-1

178
interMedia ORDImageSignature TYPE

The interMedia ORDImageSignature object type supports content-based
retrieval of images (image matching).

The interMedia ORDImageSignature object type supports the extraction of
color, texture, and shape information from an image. This extracted information,
referred to as the image signature, is stored in an ORDImageSignature object. You
can then use object methods to find matching images based on their extracted
signatures.

■ Documentation of ORDImageSignature

Documentation of ORDImageSignature

178-2 PL/SQL Packages and Types Reference

Documentation of ORDImageSignature

For a complete description of this package within the context of Oracle interMedia,
see ORDImageSignature in the Oracle interMedia Reference.

interMedia SQL/MM Still Image TYPE 179-1

179
interMedia SQL/MM Still Image TYPE

Oracle interMedia provides support for the SQL/MM Still Image Standard, which
supports the storage, retrieval, and modification of images in the database and the
ability to locate images using visual predicates.

The following object relational types for images and image characteristics are
included in this support: SI_StillImage, SI_AverageColor, SI_Color, SI_
ColorHistogram, SI_FeatureList, SI_PositionalColor, and SI_
Texture.

■ Documentation of SQL/MM Still Image

Documentation of SQL/MM Still Image

179-2 PL/SQL Packages and Types Reference

Documentation of SQL/MM Still Image

For a complete description of this package within the context of Oracle interMedia,
see SQL/MM Still Image in the Oracle interMedia Reference.

interMedia ORDVideo TYPE 180-1

180
interMedia ORDVideo TYPE

The interMedia ORDVideo object type supports the storage and management of
video data.

Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
application-specific information, such as the description of the video training tape,
date recorded, instructor's name, producer's name, and so forth, within the video
data.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and
bit rates depending upon how the video data was digitally recorded. Oracle
interMedia ORDVideo can store and retrieve video data of any data format.
Oracle interMedia ORDVideo can automatically extract metadata from video
data of a variety of popular video formats. Oracle interMedia ORDVideo can also
extract application attributes and store them in the comments attribute of the object
in XML form identical to what is provided by the interMedia Annotator utility.

■ Documentation of ORDVideo

Documentation of ORDVideo

180-2 PL/SQL Packages and Types Reference

Documentation of ORDVideo

For a complete description of this package within the context of Oracle interMedia,
see ORDVideo in the Oracle interMedia Reference.

Rule TYPEs 181-1

181
Rule TYPEs

This chapter describes the types used with rules, rule sets, and evaluation contexts.

This chapter contains the following topic:

■ Summary of Rule Types

See Also:

■ Chapter 81, "DBMS_RULE"

■ Chapter 82, "DBMS_RULE_ADM"

Summary of Rule Types

181-2 PL/SQL Packages and Types Reference

Summary of Rule Types

Table 181–1 Rule Types

Type Description

"RE$ATTRIBUTE_VALUE Type" on
page 181-4

Specifies the value of a variable attribute

"RE$ATTRIBUTE_VALUE_LIST
Type" on page 181-4

Identifies a list of attribute values

"RE$COLUMN_VALUE Type" on
page 181-5

Specifies the value of a table column

"RE$COLUMN_VALUE_LIST Type"
on page 181-6

Identifies a list of column values

"RE$NAME_ARRAY Type" on
page 181-6

Identifies a list of names

"RE$NV_ARRAY Type" on
page 181-6

Identifies a list of name-value pairs

"RE$NV_LIST Type" on page 181-6 Identifies an object containing a list of name-value
pairs and methods that operate on this list. This
object type is used to represent the event context
and the action context for a rule

"RE$NV_NODE Type" on page 181-9 Identifies a name-value pair

"RE$RULE_HIT Type" on
page 181-10

Specifies a rule found as a result of evaluation

"RE$RULE_HIT_LIST Type" on
page 181-10

Identifies a list of rules found as a result of
evaluation

"RE$TABLE_ALIAS Type" on
page 181-11

Provides the table corresponding to an alias used in
a rule evaluation context

"RE$TABLE_ALIAS_LIST Type" on
page 181-12

Identifies a list of table aliases used in a rule
evaluation context

"RE$TABLE_VALUE Type" on
page 181-12

Specifies the value of a table row using a ROWID

"RE$TABLE_VALUE_LIST Type" on
page 181-12

Identifies a list of table values

"RE$VARIABLE_TYPE Type" on
page 181-13

Provides the type of a variable used in a rule
evaluation context

Summary of Rule Types

Rule TYPEs 181-3

Rule types are used with the following Oracle-supplied PL/SQL packages:

■ DBMS_RULE

■ DBMS_RULE_ADM

You can use the DBMS_RULE_ADM package to create and administer rules, rule sets,
and evaluation contexts, and you can use the DBMS_RULE package to evaluate rules.

When you use Streams, rules determine which changes are captured by a capture
process, which events are propagated by a propagation, which events are applied
by an apply process, and which events are dequeued by a messaging client. The
following Streams packages use rules:

■ DBMS_APPLY_ADM

■ DBMS_CAPTURE_ADM

■ DBMS_PROPAGATION_ADM

■ DBMS_STREAMS

■ DBMS_STREAMS_ADM

■ DBMS_STREAMS_AUTH

"RE$VARIABLE_TYPE_LIST Type"
on page 181-15

Identifies a list of variables and their types used in a
rule evaluation context

"RE$VARIABLE_VALUE Type" on
page 181-16

Specifies the value of a variable

"RE$VARIABLE_VALUE_LIST Type"
on page 181-16

Identifies a list of variable values

See Also: Oracle Streams Concepts and Administration

Table 181–1 (Cont.) Rule Types

Type Description

RE$ATTRIBUTE_VALUE Type

181-4 PL/SQL Packages and Types Reference

RE$ATTRIBUTE_VALUE Type

Specifies the value of a variable attribute.

Syntax
TYPE SYS.RE$ATTRIBUTE_VALUE (

variable_name VARCHAR2(32),
attribute_name VARCHAR2(4000),
attribute_value SYS.AnyData);

Attributes

RE$ATTRIBUTE_VALUE_LIST Type

Identifies a list of attribute values.

Syntax
TYPE SYS.RE$ATTRIBUTE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$ATTRIBUTE_VALUE;

Note: The variable name and attribute name may be enclosed in
double quotation marks (") if the name contains special characters.

Table 181–2 RE$ATTRIBUTE_VALUE Attributes

Attribute Description

variable_name Specifies the variable used in a rule

attribute_name Specifies the attribute name. The attribute name may be a
multi-component name, such as a1.b2.c3.

attribute_value Specifies the attribute value

Summary of Rule Types

Rule TYPEs 181-5

RE$COLUMN_VALUE Type

Specifies the value of a table column.

Syntax
TYPE SYS.RE$COLUMN_VALUE (

table_alias VARCHAR2(32),
 column_name VARCHAR2(4000),

column_value SYS.AnyData);

Attributes

Note: The column name may be enclosed in double quotation
marks (") if the name contains special characters.

Table 181–3 RE$COLUMN_VALUE Attributes

Attribute Description

table_alias Specifies the alias used for the table in a rule

column_name Specifies the column name

column_value Specifies the column value

RE$COLUMN_VALUE_LIST Type

181-6 PL/SQL Packages and Types Reference

RE$COLUMN_VALUE_LIST Type

Identifies a list of column values.

Syntax
TYPE SYS.RE$COLUMN_VALUE_LIST AS VARRAY(1024) OF SYS.RE$COLUMN_VALUE;

RE$NAME_ARRAY Type

Identifies a list of names.

Syntax
TYPE SYS.RE$NAME_ARRAY AS VARRAY(1024) OF VARCHAR2(30);

RE$NV_ARRAY Type

Identifies a list of name-value pairs.

Syntax
TYPE SYS.RE$NV_ARRAY AS VARRAY(1024) OF SYS.RE$NV_NODE;

RE$NV_LIST Type

Identifies an object containing a list of name-value pairs and methods that operate
on this list. This object type is used to represent the event context for rule set
evaluation and the action context for a rule.

Syntax
TYPE SYS.RE$NV_LIST AS OBJECT(
 actx_list SYS.RE$NV_ARRAY);

Summary of Rule Types

Rule TYPEs 181-7

Attributes

RE$NV_LIST Subprograms
This section describes the following member procedures and member functions of
the SYS.RE$NV_LIST type:

■ ADD_PAIR Member Procedure

■ GET_ALL_NAMES Member Function

■ GET_VALUE Member Function

■ REMOVE_PAIR Member Procedure

ADD_PAIR Member Procedure
Adds a name-value pair to the list of name-value pairs.

Syntax
MEMBER PROCEDURE ADD_PAIR(
 name IN VARCHAR2,
 value IN SYS.AnyData);

Parameters

Table 181–4 RE$NV_LIST Attributes

Attribute Description

actx_list The list of name-value pairs

Note: The name may be enclosed in double quotation marks (") if
the name contains special characters.

Table 181–5 ADD_PAIR Procedure Parameters

Parameter Description

name The name in the name-value pair being added to the list. If the
name already exists in the list, then an error is raised.

value The value in the name-value pair being added to the list

RE$NV_LIST Type

181-8 PL/SQL Packages and Types Reference

GET_ALL_NAMES Member Function
Returns a list of all the names in the name-value pair list.

Syntax
MEMBER FUNCTION GET_ALL_NAMES()
RETURN SYS.RE$NAME_ARRAY;

GET_VALUE Member Function
Returns the value for the specified name in a name-value pair list.

Syntax
MEMBER FUNCTION GET_VALUE(
 name IN VARCHAR2)
RETURN SYS.AnyData;

Parameters

REMOVE_PAIR Member Procedure
Removes the name-value pair with the specified name from the name-value pair
list.

Syntax
MEMBER PROCEDURE REMOVE_PAIR(
 name IN VARCHAR2);

Note: The name may be enclosed in double quotation marks (") if
the name contains special characters.

Table 181–6 GET_VALUE Procedure Parameters

Parameter Description

name The name whose value to return

Note: The name may be enclosed in double quotation marks (") if
the name contains special characters.

Summary of Rule Types

Rule TYPEs 181-9

Parameters

RE$NV_NODE Type

Identifies a name-value pair.

Syntax
TYPE SYS.RE$NV_NODE (

nvn_name VARCHAR2(30),
 nvn_value SYS.AnyData);

Attributes

Table 181–7 REMOVE_PAIR Procedure Parameters

Parameter Description

name The name of the pair to remove

Note: The name may be enclosed in double quotation marks (") if
the name contains special characters.

Table 181–8 RE$NV_NODE Attributes

Attribute Description

nvn_name Specifies the name in the name-value pair

nvn_value Specifies the value in the name-value pair

RE$RULE_HIT Type

181-10 PL/SQL Packages and Types Reference

RE$RULE_HIT Type

Specifies a rule found as a result of an evaluation.

Syntax
TYPE SYS.RE$RULE_HIT (

rule_name VARCHAR2(65),
rule_action_context RE$NV_LIST);

Attributes

RE$RULE_HIT_LIST Type

Identifies a list of rules found as a result of an evaluation.

Syntax
TYPE SYS.RE$RULE_HIT_LIST AS VARRAY(1024) OF SYS.RE$RULE_HIT;

See Also:

■ "CREATE_RULE Procedure" on page 82-11

■ "ALTER_RULE Procedure" on page 82-6

Table 181–9 RE$RULE_HIT Attributes

Attribute Description

rule_name The rule name in the form schema_name.rule_name. For
example, a rule named employee_rule in the hr schema is
returned in the form "hr"."employee_rule".

rule_action_context The rule action context as specified in the CREATE_RULE or
ALTER_RULE procedure of the DBMS_RULE_ADM package

Summary of Rule Types

Rule TYPEs 181-11

RE$TABLE_ALIAS Type

Provides the table corresponding to an alias used in a rule evaluation context. A
specified table name must satisfy the schema object naming rules.

Syntax
TYPE SYS.RE$TABLE_ALIAS IS OBJECT(

table_alias VARCHAR2(32),
table_name VARCHAR2(194));

Attributes

Note: The table name may be enclosed in double quotation marks
(") if the name contains special characters.

See Also: Oracle Database SQL Reference for information about
schema object naming rules

Table 181–10 RE$TABLE_ALIAS Attributes

Attribute Description

table_alias The alias used for the table in a rule

table_name The table name referred to by the alias. A synonym can be specified.
The table name is resolved in the evaluation context schema.

The format is one of the following:

schema_name.table_name

table_name

For example, if the schema_name is hr and the table_name is
employees, then enter the following:

hr.employees

RE$TABLE_ALIAS_LIST Type

181-12 PL/SQL Packages and Types Reference

RE$TABLE_ALIAS_LIST Type

Identifies a list of table aliases used in a rule evaluation context.

Syntax
TYPE SYS.RE$TABLE_ALIAS_LIST AS VARRAY(1024) OF SYS.RE$TABLE_ALIAS;

RE$TABLE_VALUE Type

Specifies the value of a table row using a ROWID.

Syntax
TYPE SYS.RE$TABLE_VALUE(

table_alias VARCHAR2(32),
 table_rowid VARCHAR2(18));

Attributes

RE$TABLE_VALUE_LIST Type

Identifies a list of table values.

Syntax
TYPE SYS.RE$TABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$TABLE_VALUE;

Table 181–11 RE$TABLE_VALUE Attributes

Attribute Description

table_alias Specifies the alias used for the table in a rule

table_rowid Specifies the rowid for the table row

Note: Each table alias in the list in the list must be unique.

Summary of Rule Types

Rule TYPEs 181-13

RE$VARIABLE_TYPE Type

Provides the type of a variable used in a rule evaluation context. A specified
variable name must satisfy the schema object naming rules.

Syntax
TYPE SYS.RE$VARIABLE_TYPE (

variable_name VARCHAR2(32),
 variable_type VARCHAR2(4000),

 variable_value_function VARCHAR2(228),
 variable_method_function VARCHAR2(228));

Attributes

Note: The variable name may be enclosed in double quotation
marks (") if the name contains special characters.

See Also: Oracle Database SQL Reference for information about
schema object naming rules

Table 181–12 RE$VARIABLE_TYPE Attributes

Attribute Description

variable_name The variable name used in a rule

variable_type The type that is resolved in the evaluation context
schema. Any valid Oracle built-in datatype, user-defined
type, or Oracle-supplied type can be specified. See the
Oracle Database SQL Reference for more information about
these types.

RE$VARIABLE_TYPE Type

181-14 PL/SQL Packages and Types Reference

Usage Notes
The functions for both the for the variable_value_function parameter and
variable_method_function parameter have the following format:

schema_name.package_name.function_name@dblink

Any of the following parts of the format may be omitted: schema_name,
package_name, and @dblink.

For example, if the schema_name is hr, the package_name is var_pac, the
function_name is func_value, and the dblink is dbs1.net, then enter the
following:

hr.var_pac.func_value@dbs1.net

The following sections describe the signature of the functions.

variable_value_function A value function that can be specified for implicit
variables. A synonym can be specified. The function
name is resolved in the evaluation context schema. It is
executed on behalf of the owner of a rule set using the
evaluation context or containing a rule that uses the
evaluation context.

See the "Usage Notes" for more information.

variable_method_function Specifies a value function, which can return the result of
a method invocation. Specifying such a function can
speed up evaluation, if there are many simple rules that
invoke the method on the variable. The function can be a
synonym or a remote function.

The function name is resolved in the evaluation context
schema. It is executed on behalf of the owner of a rule set
using the evaluation context or containing a rule that
uses the evaluation context.

See the "Usage Notes" for more information.

Table 181–12 (Cont.) RE$VARIABLE_TYPE Attributes

Attribute Description

Summary of Rule Types

Rule TYPEs 181-15

Signature for variable_value_function
The function must have the following signature:

FUNCTION variable_value_function_name(
 evaluation_context_schema IN VARCHAR2,
 evaluation_context_name IN VARCHAR2,
 variable_name IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST)
RETURN SYS.RE$VARIABLE_VALUE;

Signature for variable_method_function
This function must have the following signature:

FUNCTION variable_method_function_name(
 evaluation_context_schema IN VARCHAR2,
 evaluation_context_name IN VARCHAR2,
 variable_value IN SYS.RE$VARIABLE_VALUE,
 method_name IN VARCHAR2,
 event_context IN SYS.RE$NV_LIST)
RETURN SYS.RE$ATTRIBUTE_VALUE;

RE$VARIABLE_TYPE_LIST Type

Identifies a list of variables and their types used in a rule evaluation context.

Syntax
TYPE SYS.RE$VARIABLE_TYPE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_TYPE;

RE$VARIABLE_VALUE Type

181-16 PL/SQL Packages and Types Reference

RE$VARIABLE_VALUE Type

Specifies the value of a variable.

Syntax
TYPE SYS.RE$VARIABLE_VALUE (

variable_name VARCHAR2(32),
variable_data SYS.AnyData);

Attributes

RE$VARIABLE_VALUE_LIST Type

Identifies a list of variable values.

Syntax
TYPE SYS.RE$VARIABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_VALUE;

Note: The variable name may be enclosed in double quotation
marks (") if the name contains special characters.

Table 181–13 RE$VARIABLE_VALUE Attributes

Attribute Description

variable_name Specifies the variable name used in a rule

variable_data Specifies the data for the variable value

XMLTYPE 182-1

182
XMLTYPE

XMLType is a system-defined opaque type for handling XML data. It as predefined
member functions on it to extract XML nodes and fragments.

You can create columns of XMLType and insert XML documents into it. You can also
generate XML documents as XMLType instances dynamically using the SYS_
XMLGEN and SYS_XMLAGG SQL functions.

This chapter contains the following topics:

■ Summary of XMLType Subprograms

See Also:

■ Oracle XML DB Developer's Guide

Summary of XMLType Subprograms

182-2 PL/SQL Packages and Types Reference

Summary of XMLType Subprograms

Table 182–1 summarizes functions and procedures of the XMLType.

Table 182–1 XMLTYPE Subprograms

Method Description

CREATENONSCHEMABASEDXML
on page 182-4

Creates a non schema based XML from the input schema
based instance.

CREATESCHEMABASEDXML on
page 182-5

Creates a schema based XMLType instance from the
non-schema based instance using the input schema URL.

CREATEXML on page 6 Static function for creating and returning an XMLType
instance.

EXISTSNODE on page 182-9 Takes a XMLType instance and a XPath and returns 1 or 0
indicating if applying the XPath returns a non-empty set
of nodes.

EXTRACT on page 182-10 Takes a XMLType instance and an XPath, applies the
XPath expression and returns the results as an XMLType.

GETBLOBVAL on page 182-11 Returns the value of the XMLType instance as a BLOB

GETCLOBVAL on page 182-12 Returns the value of the XMLType instance as a CLOB.

GETNAMESPACE on
page 182-13

Returns the namespace for the top level element in a
schema based document.

GETNUMBERVAL on
page 182-14

Returns the value of the XMLType instance as a NUMBER.
This is only valid if the input XMLType instance contains a
simple text node and is convertible to a number.

GETROOTELEMENT on
page 182-15

Returns the root element of the input instance. Returns
NULL if the instance is a fragment

GETSCHEMAURL on
page 182-16

Returns the XML schema URL if the input is an XML
Schema based.

GETSTRINGVAL on
page 182-17

Returns the value of the XMLType instance as a string.

ISFRAGMENT on page 182-18 Checks if the input XMLType instance is a fragment or not.
A fragment is a XML instance, which has more than one
root element.

ISSCHEMABASED on
page 182-19

Returns 1 or 0 indicating if the input XMLType instance is a
schema based one or not.

Summary of XMLType Subprograms

XMLTYPE 182-3

ISSCHEMAVALID on
page 182-20

Checks if the input instance is schema valid according to
the given schema URL.

ISSCHEMAVALIDATED on
page 182-21

Checks if the instance has been validated against the
schema.

SCHEMAVALIDATE on
page 182-22

Validates the input instance according to the XML Schema.
Raises error if the input instance is non-schema based.

SETSCHEMAVALIDATED on
page 182-23

Sets the schema valid flag to avoid costly schema
validation.

TOOBJECT on page 182-24 Converts the XMLType instance to an object type.

TRANSFORM on page 182-25 Takes an XMLType instance and an associated stylesheet
(which is also an XMLType instance), applies the stylesheet
and returns the result as XML.

XMLTYPE on page 182-26 Constructs an instance of the XMLType datatype. The
constructor can take in the XML as a CLOB, VARCHAR2 or take
in a object type.

Table 182–1 (Cont.) XMLTYPE Subprograms

Method Description

CREATENONSCHEMABASEDXML

182-4 PL/SQL Packages and Types Reference

CREATENONSCHEMABASEDXML

Member function. Creates a non-schema based XML document from a schema
based instance.

Syntax
MEMBER FUNCTION CREATENONSCHEMABASEDXML
return XMLType deterministic;

Summary of XMLType Subprograms

XMLTYPE 182-5

CREATESCHEMABASEDXML

Member function. Creates a schema based XMLType instance from a non-schema based
XMLType value. It uses either the supplied SCHEMA URL, or the SCHEMALOCATION attribute
of the instance.

Syntax
MEMBER FUNCTION CREATESCHEMABASEDXML(

SCHEMA IN VARCHAR2 := NULL)
RETURN XMLTYPE DETERMINISTIC;

Parameter IN / OUT Description

SCHEMA (IN) Optional XMLSchema URL used to convert the value to the
specified schema..

CREATEXML

182-6 PL/SQL Packages and Types Reference

CREATEXML

Static function for creating and returning an XMLType instance. The string and clob
parameters used to pass in the date must contain well-formed and valid XML
documents. The options are described in the following table.

Syntax Description

STATIC FUNCTION CREATEXML(
XMLDATA IN VARCHAR2)

RETURN XMLTYPE DETERMINISTIC;

Creates the XMLType instance from a string.

STATIC FUNCTION CREATEXML(
XMLDATA IN CLOB)

RETURN XMLTYPE DETERMINISTIC;

Creates the XMLType instance from a CLOB.

STATIC FUNCTION CREATEXML (
XMLDATA IN CLOB,
SCHEMA IN VARCHAR2,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN XMLTYPE DETERMINISTIC;

This static function creates a schema-based
XMLType instance using the specified
schema and xml data parameters.

STATIC FUNCTION CREATEXML (
XMLDATA IN VARCHAR2,
SCHEMA IN VARCHAR2,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN XMLTYPE DETERMINISTIC;

This static function creates a schema-based
XMLType instance using the specified
schema and xml data parameters.

STATIC FUNCTION CREATEXML (
XMLDATA IN "<ADT_1>",
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN XMLTYPE DETERMINISTIC;

Creates an XML instance from an instance of
an user-defined type.

STATIC FUNCTION CREATEXML (
XMLDATA IN SYS_REFCURSOR,
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN XMLTYPE DETERMINISTIC;

Creates an XML instance from a cursor
reference. You can pass in any arbitrary SQL
query as a CURSOR.

Summary of XMLType Subprograms

XMLTYPE 182-7

STATIC FUNCTION CREATEXML (
XMLDATA IN ANYDATA,
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN SYS.XMLTYPE DETERMINISTIC
PARALLEL_ENABLE

Creates an XML instance from ANYDATA. If
the ANYDATA instance contains an ADT, the
XMLType returned is the same as would be
returned for a call directly on the ADT. If the
ANYDATA contains a scalar, the XMLType
contains a leaf node with the scalar value.
The element name for this node is taken
from the optional element string if present,
and is "ANYDATA" if it is not.

STATIC FUNCTION CREATEXML (
XMLDATA IN BLOB,
CSID IN NUMBER,
SCHEMA IN VARCHAR2,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SYS.XMLTYPE DETERMINISTIC

Creates an XML instance from a BLOB.

STATIC FUNCTION CREATEXML (
XMLDATA IN BFILE,
CSID IN NUMBER,
SCHEMA IN VARCHAR2,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SYS.XMLTYPE DETERMINISTIC

Creates an XML instance from a BFILE.

Parameter IN / OUT Description

XMLDATA (IN) The actual data in the form of a BFILE, BLOB, CLOB, REF cursor,
VARCHAR2 or object type.

SCHEMA (IN) Optional Schema URL to be used to make the input conform to the
given schema.

VALIDATED (IN) Flag to indicate that the instance is valid according to the given
XML Schema. (Default is 0)

WELLFORMED (IN) Flag to indicate that the input is well formed. If set, then the
database would not do well formed check on the input instance.
(Default is 0)

ELEMENT (IN) Optional element name in the case of the ADT_1 or REF CURSOR
constructors. (Default is NULL)

CSID (IN) The character set id of input XML data.

Syntax Description

CREATEXML

182-8 PL/SQL Packages and Types Reference

Summary of XMLType Subprograms

XMLTYPE 182-9

EXISTSNODE

Member function. Checks if the node exists. If the XPath string is NULL or the document
is empty, then a value of 0 is returned, otherwise returns 1. The options are described in
the following table.

Syntax Description

MEMBER FUNCTION EXISTSNODE(
XPATH IN VARCHAR2)

RETURN NUMBER DETERMINISTIC;

Given an XPath expression, checks if the
XPath applied over the document can return
any valid nodes.

MEMBER FUNCTION EXISTSNODE(
XPATH IN VARCHAR2,
NSMAP IN VARCHAR2)

RETURN NUMBER DETERMINISTIC;

This member function uses the XPath
expression with the namespace information
and checks if applying the XPath returns any
nodes or not.

Parameter IN / OUT Description

XPATH (IN) The XPath expression to test.

NSMAP (IN) Optional namespace mapping.

EXTRACT

182-10 PL/SQL Packages and Types Reference

EXTRACT

Member function. Extracts an XMLType fragment and returns an XMLType instance
containing the result node(s). If the XPath does not result in any nodes, then returns NULL.
The options are described in the following table.

Syntax Description

MEMBER FUNCTION EXTRACT(
XPATH IN VARCHAR2)

RETURN XMLTYPE DETERMINISTIC;

Given an XPath expression, applies the XPath
to the document and returns the fragment as
an XMLType.

MEMBER FUNCTION EXTRACT(
XPATH IN VARCHAR2,
NSMAP IN VARCHAR2)

RETURN XMLTYPE DETERMINISTIC;

This member function applies the XPath
expression and namespace mapping, over the
XML data to return a XMLType instance
containing the resultant fragment.

Parameter IN / OUT Description

XPATH (IN) The XPath expression to apply.

NSMAP (IN) Optional prefix to namespace mapping information.

Summary of XMLType Subprograms

XMLTYPE 182-11

GETBLOBVAL

Member function. Returns a BLOB containing the serialized XML representation; if the
returns is a temporary BLOB, then it must be freed after use.

Syntax
MEMBER FUNCTION GETBLOBVAL()
RETURN BLOB DETERMINISTIC;

GETCLOBVAL

182-12 PL/SQL Packages and Types Reference

GETCLOBVAL

Member function. Returns a CLOB containing the serialized XML representation; if the
returns is a temporary CLOB, then it must be freed after use.

Syntax
MEMBER FUNCTION GETCLOBVAL()
RETURN CLOB DETERMINISTIC;

Summary of XMLType Subprograms

XMLTYPE 182-13

GETNAMESPACE

Member function. Returns the namespace of the top level element in the instance.
Returns NULL if the input is a fragment or is a non-schema based instance.

Syntax
MEMBER FUNCTION GETNAMESPACE
RETURN VARCHAR2 DETERMINISTIC;

GETNUMBERVAL

182-14 PL/SQL Packages and Types Reference

GETNUMBERVAL

Member function. Returns a numeric value, formatted from the text value pointed to by
the XMLType instance. The XMLType must point to a valid text node that contains a
numerical value. The options are described in the following table.

Syntax
MEMBER FUNCTION GETNUMBERVAL()
RETURN NUMBER DETERMINISTIC;

Summary of XMLType Subprograms

XMLTYPE 182-15

GETROOTELEMENT

Member function. Gets the root element of the XMLType instance. Returns NULL if
the instance is a fragment.

Syntax
MEMBER FUNCTION GETROOTELEMENT
RETURN VARCHAR2 DETERMINISTIC;

GETSCHEMAURL

182-16 PL/SQL Packages and Types Reference

GETSCHEMAURL

Member function. Returns the XML Schema URL corresponding to the XMLType
instance, if the XMLType instance is a schema-based document. Otherwise returns
NULL.

Syntax
MEMBER FUNCTION GETSCHEMAURL
RETURN VARCHAR2 DETERMINISTIC;

Summary of XMLType Subprograms

XMLTYPE 182-17

GETSTRINGVAL

Member function. Returns the document as a string. Returns s string containing the
seralized XML representation, or in case of text nodes, the text itself. If the XML document is
bigger than the maximum size of the varchar2, which is 4000, then an error is raised at run
time.

Syntax
MEMBER FUNCTION GETSTRINGVAL()
RETURN VARCHAR2 DETERMINISTIC;

ISFRAGMENT

182-18 PL/SQL Packages and Types Reference

ISFRAGMENT

Determines if the XMLType instance corresponds to a well-formed document, or a
fragment. Returns 1 or 0 indicating if the XMLType instance contains a fragment or
a well-formed document.

Syntax
MEMBER FUNCTION ISFRAGMENT()
RETURN NUMBER DETERMINISTIC;

Summary of XMLType Subprograms

XMLTYPE 182-19

ISSCHEMABASED

Member function. Determines whether the XMLType instance is schema-based or
not. Returns 1 or 0 depending on whether the XMLType instance is schema-based.

Syntax
MEMBER FUNCTION ISSCHEMABASED
RETURN NUMBER DETERMINISTIC;

ISSCHEMAVALID

182-20 PL/SQL Packages and Types Reference

ISSCHEMAVALID

Member function. Checks if the input instance is conformant to a specified schema.
Does not change the validation status of the XML instance. If a XML Schema URL is
not specified and the xml document is schema based, the conformance is checked
against the XMLType instance's own schema.

Syntax
MEMBER FUNCTION ISSCHEMAVALID(

SCHURL IN VARCHAR2 := NULL,
ELEM IN VARCHAR2 := NULL)

RETURN NUMBER DETERMINISTIC;

Parameter IN / OUT Description

SCHURL (IN) The URL of the XML Schema against which to check conformance.

ELEM (IN) Element of a specified schema, against which to validate. This is
useful when we have a XML Schema which defines more than one
top level element, and we want to check conformance against a
specific one of these elements.

Summary of XMLType Subprograms

XMLTYPE 182-21

ISSCHEMAVALIDATED

Member function. Returns the validation status of the XMLType instance -- tells if a schema
based instance has been actually validated against its schema. Returns 1 if the instance has
been validated against the schema, 0 otherwise.

Syntax
MEMBER FUNCTION ISSCHEMAVALIDATED
RETURN NUMBER DETERMINISTIC;

SCHEMAVALIDATE

182-22 PL/SQL Packages and Types Reference

SCHEMAVALIDATE

Member procedure. Validates the XML instance against its schema if it hasn't
already been done. For non-schema based documents an error is raised. If
validation fails an error is raised; else, the document's status is changed to
validated.

Syntax
MEMBER PROCEDURE SCHEMAVALIDATE(

SELF IF OUT NOCOPY XMLTYPE);

Parameter IN / OUT Description

SELF (OUT) XML instance being validated against the schema.

Summary of XMLType Subprograms

XMLTYPE 182-23

SETSCHEMAVALIDATED

Member function. Sets the VALIDATION state of the input XML instance.

Syntax
MEMBER PROCEDURE SETSCHEMAVALIDATED(

SELF IF OUT NOCOPY XMLTYPE,
FLAG IN BINARY_INTEGER := 1);

Parameter IN / OUT Description

SELF (OUT) XML instance.

FLAG (IN) 0 - NOT VALIDATED; 1 - VALIDATED (Default)

TOOBJECT

182-24 PL/SQL Packages and Types Reference

TOOBJECT

Member procedure. Converts the XML value to an object type using the
XMLSCHEMA mapping, if available. If a SCHEMA is not supplied or the input is a
non-schema based XML, the procedure uses cannonical mapping between elements
and object type attributes.

Syntax
MEMBER PROCEDURE TOOBJECT(

SELF IN XMLTYPE,
OBJECT OUT "<ADT_1>",
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL);

See Also:

■ An in-depth discussion of this topic inside Oracle XML DB
Developer's Guide

Parameter IN / OUT Description

SELF (IN) Instance to be converted. Implicit if used as a member procedure.

OBJECT (IN) Converted object. An object instance of the required type may be
passed in to this function

SCHEMA (IN) Schema URL. The mapping of the XMLType instance to the
converted object instance may be specified using a schema.

ELEMENT (IN) Top-level element name. An XML Schema document does not
specify the top-level element for a conforming XML instance
document without this parameter.

Summary of XMLType Subprograms

XMLTYPE 182-25

TRANSFORM

Member function. This member function transforms the XML data using the XSL
stylesheet argument and the top-level parameters passed as a string of name=value
pairs. If any of the arguments other than the parammap is NULL, then a NULL is
returned.

Syntax
MEMBER FUNCTION TRANSFORM(

XSL IN XMLTYPE,
PARAMMAP IN VARCHAR2 := NULL)

RETURN XMLTYPE DETERMINISTIC;

Parameter IN / OUT Description

XSL (IN) The XSL stylesheet describing the transformation

PARAMMAP (IN) Top level parameters to the XSL - string of name=value pairs

XMLTYPE

182-26 PL/SQL Packages and Types Reference

XMLTYPE

XMLType constructor. The options are described in the following table.

Syntax Description

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN CLOB,
SCHEMA IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC;

This constructor function creates an optionally
schema-based XMLType instance using the
specified schema and xml data parameters.

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN VARCHAR2,
SCHEMA IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC;

This constructor function creates an optionally
schema-based XMLType instance using the
specified schema and xml data parameters.

CONSTRUCTOR FUNCTION XMLTYPE (
XMLDATA IN "W<ADT_1>",
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC;

This constructor function creates an optionally
schema-based XMLType instance from the
specified object type parameter.

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN SYS_REFCURSOR,
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC;

This constructor function creates an optionally
schema-based XMLType instance from the
specified REF CURSOR parameter.

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN ANYDATA,
SCHEMA IN VARCHAR2 := NULL,
ELEMENT IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC
PARALLEL_ENABLE

This constructor function creates an optionally
schema-based XMLType instance from the
specified ANYDATA parameter. If the ANYDATA
instance contains an ADT, the XMLType
returned is the same as would be returned for a
call directly on the ADT. If the ANYDATA
contains a scalar, the XMLType contains a leaf
node with the scalar value. The element name
for this node is taken from the optional element
string if present, and is "ANYDATA" if it is not.

Summary of XMLType Subprograms

XMLTYPE 182-27

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN BLOB, CSID IN NUMBER,
SCHEMA IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC

This constructor function creates an optionally
schema-based XMLType instance from the
specified BLOB parameter.

CONSTRUCTOR FUNCTION XMLTYPE(
XMLDATA IN BFILE,
CSID IN NUMBER,
SCHEMA IN VARCHAR2 := NULL,
VALIDATED IN NUMBER := 0,
WELLFORMED IN NUMBER := 0)

RETURN SELF AS RESULT DETERMINISTIC

This constructor function creates an optionally
schema-based XMLType instance from the
specified BFILE parameter.

Parameter IN / OUT Description

XMLDATA (IN) The data in the form of a BFILE, BLOB, CLOB, REFs, VARCHAR2 or
object type.

SCHEMA (IN) Optional Schema URL to be used to make the input conform to the
given schema.

VALIDATED (IN) Indicates that the instance is valid to the given XML Schema.

WELLFORMED (IN) Indicates that the input is well formed. If set, then the database
would not do well formed check on the input instance.

ELEMENT (IN) Optional element name in the case of the ADT_1 or REF CURSOR
constructors. (Default is NULL)

CSID (IN) The character set id of input XML data.

Syntax Description

XMLTYPE

182-28 PL/SQL Packages and Types Reference

Index-1

Index
A
ABORT procedure, 78-4
ABORT_GLOBAL_INSTANTIATION

procedure, 19-4
ABORT_REDEF_TABLE procedure, 68-5
ABORT_SCHEMA_INSTANTIATION

procedure, 19-5
ABORT_TABLE_INSTANTIATION

procedure, 19-6
ABORTED_REQUEST_THRESHOLD

procedure, 87-4
ACCEPT_SQL_PROFILE procedure, 91-6
ACLCHECKPRIVILEGES function, 108-6
ACTIVE_INSTANCES procedure, 104-8
ADD_COLUMN member procedure, 174-19
ADD_COOKIES procedure, 156-36
ADD_GLOBAL_PROPAGATION_RULES

procedure, 96-14
ADD_GLOBAL_RULES procedure, 96-19
ADD_PAIR member procedure, 181-7
ADD_RULE procedure, 82-4
ADD_SCHEMA_PROPAGATION_RULES

procedure, 96-34
ADD_SCHEMA_RULES procedure, 96-39
ADD_SQLSET_REFERENCE function, 91-8
ADD_SUBSET_PROPAGATION_RULES

procedure, 96-46
ADD_SUBSET_RULES procedure, 96-52
ADD_TABLE_PROPAGATION_RULES

procedure, 96-58
ADD_TABLE_RULES procedure, 96-63
ADD_WARNING_SETTING_CAT

procedure, 105-4

ADD_WARNING_SETTING_NUM
procedure, 105-5

ADD2MULTI procedure, 136-4
ADDATTR member procedure

of ANYTYPE TYPE, 170-6
ADDINSTANCE member procedure

of ANYDATASET TYPE, 169-4
ADDRESS function

of HTF package, 123-17
ADDRESS procedure

of HTP package, 128-17
ADMIN_TABLES procedure, 70-6
ADVISE_COMMIT procedure, 101-5
ADVISE_NOTHING procedure, 101-6
ADVISE_ROLLBACK procedure, 101-7
ALL_XML_SCHEMAS catalog view, 118-20
ALL_XML_TAB_COLS catalog view, 118-27
ALL_XML_TABLES catalog view, 118-24
ALL_XML_VIEW_COLS catalog view, 118-33
ALL_XML_VIEWS catalog view, 118-30
ALLOCATE_UNIQUE procedure, 46-6
ALTER_APPLY procedure, 15-4
ALTER_CAPTURE procedure, 19-7
ALTER_COMPILE procedure, 26-4
ALTER_DATABASE_TAB_MONITORING

procedure, 93-16
ALTER_PROPAGATION procedure, 65-3
ALTER_RULE procedure, 82-6
ALTER_SCHEMA_TAB_MONITORING

procedure, 93-17
ALTER_SQL_PROFILE procedure, 91-9
ALTER_STATS_HISTORY_RETENTION

procedure, 93-18
ALTER_TABLE_NOT_REFERENCEABLE

Index-2

procedure, 26-5
ALTER_TABLE_REFERENCEABLE

procedure, 26-7
AMATCH function, 134-6
ANALYZE_DATABASE procedure, 104-6
ANALYZE_PART_OBJECT procedure, 104-9
ANALYZE_SCHEMA procedure, 104-10
ANCHOR function

of HTF package, 123-18
ANCHOR procedure

of HTP package, 128-18
ANCHOR2 function

of HTF package, 123-19
ANCHOR2 procedure

of HTP package, 128-19
anonymous PL/SQL blocks

dynamic SQL and, 90-3
AnyData datatype

queues
creating, 96-107
removing, 96-94

ANYDATA TYPE, 168-1
ANYDATASET TYPE, 169-1
ANYTYPE TYPE, 170-1
APPENDCHILD function, 113-42
APPENDDATA procedure, 113-43
APPLETCLOSE function

of HTF package, 123-20
APPLETCLOSE procedure

of HTP package, 128-20
APPLETOPEN function

of HTF package, 123-21
APPLETOPEN procedure

of HTP package, 128-21
APPLY procedure, 23-21
apply process

altering, 15-4
conflict handlers

setting, 15-54
creating, 15-14, 96-19, 96-39, 96-52, 96-63
DBMS_APPLY_ADM package, 15-1
DDL handler

setting, 15-4, 15-14
DML handlers

setting, 15-30

dropping, 15-24
enqueuing events, 15-36
error handlers

setting, 15-30
error queue

deleting errors, 15-22, 15-23
executing errors, 15-26, 15-27
getting error messages, 15-28

instantiation
global SCN, 15-40
schema SCN, 15-49
table SCN, 15-52

message handler
setting, 15-4, 15-14

parameters
commit_serialization, 15-46
disable_on_error, 15-46
disable_on_limit, 15-46
maximum_scn, 15-46
parallelism, 15-47
setting, 15-45
time_limit, 15-47
trace_level, 15-48
transaction_limit, 15-48

precommit handler
setting, 15-4, 15-14

rules
defining global, 96-19
defining schema, 96-39
defining subset, 96-52
defining table, 96-63
removing, 96-96

specifying execution, 15-38
starting, 15-58
stopping, 15-59
substitute key columns

setting, 15-43
AREA function

of HTF package, 123-23
AREA procedure

of HTP package, 128-23
arrays

BIND_ARRAY procedure, 90-9
bulk DML using DBMS_SQL, 90-28, 90-32

ATTACH_SESSION procedure, 27-19

Index-3

ATTACH_SIMPLE_TABLESPACE procedure, 99-6
ATTACH_TABLESPACES procedure, 99-8
AUTHORIZE function, 131-4
AVAILABLE function, 165-8
AWR_REPORT_HTML function, 106-3
AWR_REPORT_TEXT function, 106-4

B
BASE function

of HTF package, 123-24
BASE procedure

of HTP package, 128-24
BASE64_DECODE function, 154-3
BASE64_ENCODE function, 154-4
BASEFONT function

of HTF package, 123-25
BASEFONT procedure

of HTP package, 128-25
BEGIN_DISCRETE_TRANSACTION

procedure, 101-8
BEGIN_REQUEST function, 156-37
BEGINCREATE static procedure

of ANYDATA TYPE, 168-6
of ANYDATASET TYPE, 169-5
of ANYTYPE TYPE, 170-3

BGSOUND function
of HTF package, 123-26

BGSOUND procedure
of HTP package, 128-26

BIG function
of HTF package, 123-27

BIG procedure
of HTP package, 128-27

BIND_ARRAY procedures, 90-27
BIND_VARIABLE procedures, 90-30
BIND_VARIABLES function, 137-6
binning, 24-3

categorical, 24-3
numerical, 24-3
quantile, 24-3

BIT_AND function, 161-5
BIT_COMPLEMENT function, 161-6
BIT_OR function, 161-7
BIT_XOR function, 161-8

BLOCKQUOTECLOSE function
of HTF package, 123-28

BLOCKQUOTECLOSE procedure
of HTP package, 128-28

BLOCKQUOTEOPEN function
of HTF package, 123-29

BLOCKQUOTEOPEN procedure
of HTP package, 128-29

BODYCLOSE function
of HTF package, 123-30

BODYCLOSE procedure
of HTP package, 128-30

BODYOPEN function
of HTF package, 123-31

BODYOPEN procedure
of HTP package, 128-31

BOLD function
of HTF package, 123-32

BOLD procedure
of HTP package, 128-32

BR function
of HTF package, 123-33

BR procedure
of HTP package, 128-33

BROKEN procedure, 41-6
BUILD procedure, 19-14
BUILD_CHAIN_ROWS_TABLE procedure, 39-3
BUILD_EXCEPTIONS_TABLE procedure, 39-5
BUILD_PART_INDEX procedure, 62-6

C
CALENDARPRINT procedures, 137-7
CAN_REDEF_TABLE procedure, 68-6
CANCEL_TUNING_TASK procedure, 91-10
CANONICALIZE procedure, 104-12
capture process

altering, 19-7
building a Streams data dictionary, 19-14
creating, 96-19, 96-39, 96-52, 96-63
instantiation

aborting database preparation, 19-4
aborting schema preparation, 19-5
aborting table preparation, 19-6
preparing a database for, 19-27

Index-4

preparing a schema for, 19-28
preparing a table for, 19-29

parameters
disable_on_limit, 19-31
maximum_scn, 19-31
message_limit, 19-31
parallelism, 19-31
setting, 19-30
startup_seconds, 19-32
time_limit, 19-32
trace_level, 19-32
write_alert_log, 19-32

rules
defining global, 96-19
defining schema, 96-39
defining subset, 96-52
defining table, 96-63
removing, 96-96

starting, 19-33
stopping, 19-34

CAST_FROM_BINARY_DOUBLE function, 161-9
CAST_FROM_BINARY_FLOAT function, 161-11
CAST_FROM_BINARY_INTEGER

function, 161-13
CAST_FROM_NUMBER function, 161-14
CAST_TO_BINARY_DOUBLE function, 161-15
CAST_TO_BINARY_FLOAT function, 161-17
CAST_TO_BINARY_INTEGER function, 161-19
CAST_TO_NUMBER function, 161-20
CAST_TO_NVARCHAR2 function, 161-23
CAST_TO_RAW function, 161-21
CAST_TO_VARCHAR2 function, 161-22
categorical binning, 24-3
catproc.sql script, 1-3
CELLSPRINT procedures, 137-9
CENTER function

of HTF package, 123-34
CENTER procedure

of HTP package, 128-34
CENTERCLOSE function

of HTF package, 123-35
CENTERCLOSE procedure

of HTP package, 128-35
CENTEROPEN function

of HTF package, 123-36

CENTEROPEN procedure
of HTP package, 128-36

CFG_GET function, 108-7
CFG_REFRESH procedure, 108-8
CFG_UPDATE procedure, 108-9
Change Data Capture

DBMS_CDC_PUBLISH package, 20-1
DBMS_CDC_SUBSCRIBE package, 21-1

CHANGE functions and procedures, 134-8
CHANGE procedure, 41-7
change tables

tablespaces created in, 20-25
CHANGE_JOIN_POS procedure, 60-3
CHECK_OBJECT procedure, 70-8
CHECKIN function, 109-3
CHECKOUT procedure, 109-4
CHECKPRIVILEGES function, 108-11
CHECKSUM functions, 133-4
CHOOSE_DATE procedure, 137-12
CITE function

of HTF package, 123-37
CITE procedure

of HTP package, 128-37
CLEAR_COOKIES procedure, 156-39
CLEAR_PENDING_AREA procedure, 76-10
CLEAR_PLSQL_TRACE procedure, 100-8
CLEAR_USED procedure, 59-4
CLEARKEYCOLUMNLIST procedure, 117-4,

119-4
CLEARUPDATECOLUMNLIST procedure, 117-4,

119-5
CLIENT_ID_STAT_DISABLE procedure, 53-3
CLIENT_ID_STAT_ENABLE procedure, 53-4
CLIENT_ID_TRACE_DISABLE procedure, 53-5
CLIENT_ID_TRACE_ENABLE procedure, 53-6
clipping

see trimming, 24-4
CLOB2FILE procedure, 121-2
CLONE_SIMPLE_TABLESPACE procedure, 99-11
CLONE_TABLESPACES procedure, 99-14
CLONENODE function, 113-44
CLOSE_ALL_CONNECTIONS procedure, 165-10
CLOSE_CONNECTION procedure, 165-11
CLOSE_CURSOR procedure, 90-35
CLOSE_ITERATOR procedure, 81-4

Index-5

CLOSE_PERSISTENT_CONN procedure, 156-40
CLOSE_PERSISTENT_CONNS procedure, 156-41
CLOSECONTEXT procedure, 114-4, 116-4, 117-5,

119-6
CODE function

of HTF package, 123-38
CODE procedure

of HTP package, 128-38
collections

table items, 90-28, 90-32
column masking for VPD, 79-6
COLUMN_VALUE procedure, 90-36
COLUMN_VALUE_LONG procedure, 90-39
column-level VPD, 79-15
COMMA_TO_TABLE procedures, 104-14
COMMAND function and procedure, 164-13
COMMAND_REPLIES function, 164-15
COMMENT function

of HTF package, 123-39
COMMENT procedure

of HTP package, 128-39
COMMIT procedure, 101-9
COMMIT_COMMENT procedure, 101-10
COMMIT_FORCE procedure, 101-11
COMPARE function, 161-24
COMPARE_OLD_VALUES procedure, 15-12
COMPATIBLE_10_1 function, 95-4, 174-35
COMPATIBLE_9_2 function, 95-5, 174-35
COMPILE_FROM_REMOTE procedure, 44-4
COMPILE_SCHEMA procedure, 104-15
COMPILESCHEMA procedure, 118-4
COMPUTE_CONFUSION_MATRIX

procedure, 23-27
COMPUTE_LIFT procedure, 23-31
COMPUTE_ROC procedure, 23-35
CONCAT function, 161-25
CONFIGUREAUTOSYNC procedure, 111-6
CONNECTION record type, 164-3
constants

DBMS_DATA_MINING, 23-3
DBMS_MGWMSG package, 52-2

CONTINUE function, 27-20
CONVERT function, 46-8, 114-5, 161-26
CONVERT_ANYDATA_TO_LCR_DDL

function, 95-6

CONVERT_ANYDATA_TO_LCR_ROW
function, 95-7

CONVERT_LONG_TO_LOB_CHUNK member
procedure, 174-20

CONVERT_RAW_VALUE procedures, 93-19
CONVERT_RAW_VALUE_NVARCHAR

procedure, 93-20
CONVERT_RAW_VALUE_ROWID

procedure, 93-21
CONVERTTOBLOB procedure, 45-24
CONVERTTOCLOB procedure, 45-28
COPIES function, 161-28
COPY_FILE procedure, 35-3
COPY_TABLE_DEPENDENTS procedure, 68-7
COPYEVOLVE procedure, 118-5
cost matrix, 23-18
CREATE PACKAGE BODY command, 1-3
CREATE PACKAGE command, 1-3
CREATE_ALTER_TYPE_ERROR_TABLE

procedure, 104-16
CREATE_APPLY procedure, 15-14
CREATE_BASELINE function and

procedure, 106-5
CREATE_BIN_CAT procedure, 24-10
CREATE_BIN_NUM procedure, 24-11
CREATE_CALL function, 153-4
CREATE_CAPTURE procedure

capture process
creating, 19-16

CREATE_CLIP procedure, 24-12
CREATE_CONSUMER_GROUP procedure, 76-11
CREATE_EDIT_TABLES procedure, 60-4
CREATE_EVALUATION_CONTEXT

procedure, 82-9
CREATE_INDEX_COST procedure, 88-4
CREATE_MODEL procedure, 23-24
CREATE_NORM_LIN procedure, 24-13
CREATE_OUTLINE procedure, 59-5
CREATE_PENDING_AREA procedure, 76-12
CREATE_PIPE function, 63-19
CREATE_PLAN procedure, 76-14
CREATE_PLAN_DIRECTIVE procedure, 76-16
CREATE_PROPAGATION procedure, 65-6
CREATE_RULE procedure, 82-11
CREATE_RULE_SET procedure, 82-13

Index-6

CREATE_SERVICE function, 153-5
CREATE_SERVICE procedure, 85-4
CREATE_SIMPLE_PLAN procedure, 76-19
CREATE_SNAPSHOT function and

procedure, 106-6
CREATE_SQLSET procedure, 91-11
CREATE_STAT_TABLE procedure, 93-22
CREATE_TABLE_COST procedures, 88-5
CREATE_TRANSFORMATION procedure, 102-3
CREATE_TUNING_TASK functions, 91-12
CREATEATTRIBUTE function, 113-45
CREATECDATASECTION function, 113-46
CREATECOMMENT function, 113-47
CREATEDATASTOREPREF procedure, 111-7
CREATEDOCUMENT function, 113-48
CREATEDOCUMENTFRAGMENT

function, 113-49
CREATEELEMENT function, 113-50
CREATEENTITYREFERENCE function, 113-51
CREATEFILTERPREF procedure, 111-8
CREATEFOLDER function, 108-12
CREATEINDEX procedure, 111-9
CREATELEXERPREF procedure, 111-10
CREATENONSCHEMABASEDXML

function, 182-4
CREATEOIDPATH function, 108-13
CREATEPREFERENCES procedure, 111-11
CREATEPROCESSINGINSTRUCTION

function, 113-52
CREATERESOURCE function, 108-14
CREATESCHEMABASEDXML function, 182-5
CREATESECTIONGROUPPREF procedure, 111-12
CREATESTOPLISTPREF procedure, 111-13
CREATESTORAGEPREF procedure, 111-14
CREATETEXTNODE function, 113-53
CREATEURI function, 172-10, 172-19, 172-28
CREATEWORLDLISTPREF procedure, 111-15
CREATEXML function, 182-6
creating

packages, 1-3
CTX_ADM package documentation, 2-2
CTX_CLS package documentation, 3-2
CTX_DDL package documentation, 4-2
CTX_DOC package documentation, 5-2
CTX_OUTPUT package documentation, 6-2

CTX_QUERY package documentation, 7-2
CTX_REPORT package documentation, 8-2
CTX_THES package documentation, 9-2
CTX_ULEXER package documentation, 10-2
CURRENT_INSTANCE function, 104-17
cursors

DBMS_SQL package, 90-7

D
data dictionary

removing Streams information, 96-92
DATA function and procedure, 164-16
data types

DBMS_DATA_MINING, 23-6
table of, 24-2

DATA_BLOCK_ADDRESS_BLOCK
function, 104-18

DATA_BLOCK_ADDRESS_FILE function, 104-19
database

locking
OWA_OPT_LOCK package, 133-2

database tables
creating for DBMS_TRACE, 100-4

datatypes
DBMS_DESCRIBE, 31-11
PL/SQL

numeric codes for, 31-7
DB_VERSION procedure, 104-20
DBA_XML_SCHEMAS catalog view, 118-21
DBA_XML_TAB_COLS catalog view, 118-25
DBA_XML_TABLES catalog view, 118-22
DBA_XML_VIEW_COLS catalog view, 118-31
DBA_XML_VIEWS catalog view, 118-28
DBMS_ALERT package, 13-1
DBMS_APPLICATION_INFO package, 14-1
DBMS_APPLY_ADM package, 15-1
DBMS_CAPTURE package, 171-1
DBMS_CAPTURE_ADM package

capture process
DBMS_CAPTURE_ADM package, 19-1

DBMS_CDC_PUBLISH package, 20-1
ALTER_AUTOLOG_CHANGE_SOURCE

procedure, 20-7
ALTER_CHANGE_SET procedure, 20-9

Index-7

ALTER_CHANGE_TABLE procedure, 20-13
CREATE_AUTOLOG_CHANGE_SOURCE

procedure, 20-16
CREATE_CHANGE_SET procedure, 20-19
CREATE_CHANGE_TABLE procedure, 20-22
DROP_CHANGE_SET procedure, 20-27
DROP_CHANGE_SOURCE procedure, 20-28
DROP_CHANGE_TABLE procedure, 20-29
DROP_SUBSCRIPTION procedure, 20-31
PURGE procedure, 20-33
PURGE_CHANGE_SET procedure, 20-34
PURGE_CHANGE_TABLE procedure, 20-35

DBMS_CDC_SUBSCRIBE package, 21-1
ACTIVATE_SUB SCRIPTION procedure, 21-11
CREATE_SUBSCRIPTION procedure, 21-8
deprecated subprograms, 21-3
DROP_SUBSCRIBER_VIEW procedure, 21-4
DROP_SUBSCRIPTION procedure, 21-10
EXTEND_WINDOW procedure, 21-11
GET_SUBSCRIPTION_HANDLE

procedure, 21-3
PREPARE_SUBSCRIBER_VIEW

procedure, 21-4
PURGE_WINDOW procedure, 21-13
SUBSCRIBE procedure, 21-15

DBMS_DATA_MINING
constants, 23-3
data types, 23-6
errors, 23-9
function settings, 23-11
introduction, 23-2
package, 23-1
subprograms, 23-19
user views, 23-10

DBMS_DATA_MINING_TRANSFORM
introduction, 24-2
package, 24-1
subprograms, 24-8

DBMS_DATAPUMP package, 25-1
ADD_FILE procedure, 25-10
ATTACH function, 25-14
DATA_FILTER procedure, 25-16
DETACH procedure, 25-19
GET_STATUS procedure, 25-20
LOG_ENTRY procedure, 25-23

METADATA_FILTER procedure, 25-25
METADATA_REMAP procedure, 25-28, 25-31
METADATA_TRANSFORM procedure, 25-28,

25-31
OPEN function, 25-34
roles used by, 25-2
SET_PARALLEL procedure, 25-38
SET_PARAMETER procedure, 25-40
START_JOB procedure, 25-45
STOP_JOB procedure, 25-47
types used by, 25-4

DBMS_DDL package, 26-1
DBMS_DEBUG package, 27-1
DBMS_DEFER package documentation, 28-2
DBMS_DEFER_QUERY package

documentation, 29-2
DBMS_DEFER_SYS package documentation, 30-2
DBMS_DESCRIBE package, 31-1
DBMS_DIMENSION package, 32-1
DBMS_DISTRIBUTED_TRUST_ADMIN

package, 33-1
DBMS_FGA package, 34-1
DBMS_FILE_TRANSFER package, 35-1
DBMS_FLASHBACK package, 36-1
DBMS_FREQUENT_ITEMSET package, 37-1
DBMS_HS_PASSTHROUGH package, 38-1
DBMS_IOT package, 39-1
DBMS_JAVA package documentation, 40-2
DBMS_JOB package, 41-1
DBMS_LDAP package documentation, 42-2
DBMS_LDAP_UTL package documentation, 43-2
DBMS_LIBCACHE package, 44-1
DBMS_LOB package, 45-1
DBMS_LOCK package, 46-1
DBMS_LOGMNR package, 47-1

ADD_LOGFILE procedure, 47-7
COLUMN_PRESENT function, 47-9
END_LOGMNR procedure, 47-11
MINE_VALUE function, 47-12
REMOVE_LOGFILE procedure, 47-14
START_LOGMNR procedure, 47-16

DBMS_LOGMNR_CDC_PUBLISH
See DBMS_CDC_PUBLISH, 20-1

DBMS_LOGMNR_CDC_SUBSCRIBE
See DBMS_CDC_SUBSCRIBE, 21-1

Index-8

DBMS_LOGMNR_D package, 48-1
BUILD procedure, 48-4
SET_TABLESPACE procedure, 48-8

DBMS_LOGSTDBY package, 49-1
APPLY_SET procedure, 49-4
APPLY_UNSET procedure, 49-8
BUILD procedure, 49-12
GUARD BYPASS OFF procedure, 49-13
INSTANTIATE_TABLE procedure, 49-13
SKIP procedure, 49-15
SKIP_ERROR procedure, 49-22
SKIP_TRANSACTION procedure, 49-25
UNSKIP procedure, 49-27
UNSKIP_ERROR procedure, 49-30
UNSKIP_TRANSACTION procedure, 49-31

DBMS_METADATA package, 50-1
ADD_TRANSFORM function, 50-9
CLOSE procedure, 50-13
CONVERT function, 50-14
GET_DDL function, 50-20
GET_QUERY procedure, 50-25
GET_XML function, 50-20
OPEN procedure, 50-26
OPENW procedure, 50-35
PUT function, 50-37
security, 50-3
SET_COUNT procedure, 50-39
SET_FILTER procedure, 50-41
SET_PARSE_ITEM procedure, 50-55
SET_REMAP_PARAM procedure, 50-59
SET_TRANSFORM_PARAM procedure, 50-59
types used by, 50-4

DBMS_MGWADM package
constants, 51-12
summary of subprograms, 51-29

DBMS_MGWMSG package
constants, 52-2
summary of subprograms, 52-24

DBMS_MONITOR package
stastics tracing and gathering

DBMS_MONITOR package, 53-1
DBMS_MVIEW package

BEGIN_TABLE_REORGANIZATION
procedure, 54-5

END_TABLE_REORGANIZATION

procedure, 54-6
EXPLAIN_MVIEW procedure, 54-8
EXPLAIN_REWRITE procedure, 54-10
I_AM_A_REFRESH function, 54-12
PMARKER function, 54-13
PURGE_DIRECT_LOAD_LOG

procedure, 54-14
PURGE_LOG procedure, 54-15
PURGE_MVIEW_FROM_LOG

procedure, 54-16
REFRESH procedure, 54-18
REFRESH_ALL_MVIEWS procedure, 54-21
REFRESH_DEPENDENT procedure, 54-23
REGISTER_MVIEW procedure, 54-26
UNREGISTER_MVIEW procedure, 54-29

DBMS_OBFUSCATION_TOOLKIT package, 55-1
DBMS_ODCI package, 56-1

ESTIMATE_CPU_UNITS function, 56-3
methods, 56-2

DBMS_OFFLINE_OG package
documentation, 57-2

DBMS_OLAP package, 58-1
DBMS_OUTLN package, 59-1
DBMS_OUTLN_EDIT package, 60-1
DBMS_OUTPUT package, 61-1
DBMS_PCLXUTIL package, 62-1
DBMS_PIPE package, 63-1
DBMS_PROFILER package, 64-1
DBMS_PROPAGATION_ADM package, 65-1
DBMS_RANDOM package, 66-1
DBMS_RECTIFIER_DIFF package

documentation, 67-2
DBMS_REDEFINITION package, 68-1
DBMS_REFRESH package documentation, 69-2
DBMS_REPAIR package, 70-1
DBMS_REPCAT package documentation, 71-2
DBMS_REPCAT_ADMIN package

documentation, 72-2
DBMS_REPCAT_INSTANTIATE package

documentation, 73-2
DBMS_REPCAT_RGT package

documentation, 74-2
DBMS_REPUTIL package documentation, 75-2
DBMS_RESOURCE_MANAGER package, 76-1
DBMS_RESOURCE_MANAGER_PRIVS

Index-9

package, 77-1
DBMS_RESUMABLE package, 78-1
DBMS_RLS package, 79-1
DBMS_RLS.ADD_GROUPED_POLICY parameters

enable, 79-15
function_schema, 79-14
long_predicate, 79-15
object_name, 79-14
object_schema, 79-14
policy_function, 79-14
policy_group

, 79-14
policy_name, 79-14
policy_type, 79-15
sec_relevant_cols, 79-15
statement_types, 79-14
static_policy, 79-15
update_check, 79-15

DBMS_RLS.ADD_POLICY parameters
enable, 79-6
function_schema, 79-5
long_predicate, 79-6
object_name, 79-5
object_schema, 79-5
policy_function, 79-6
policy_name, 79-5
policy_type, 79-6
sec_relevant_cols, 79-6
sec_relevant_cols_opt, 79-6
statement_types, 79-6
static_policy, 79-6
update_check, 79-6

DBMS_RLS.ADD_POLICY policy types
CONTEXT_SENSITIVE, 79-7
DYNAMIC, 79-7
SHARED_CONTEXT_SENSITIVE, 79-7
SHARED_STATIC, 79-7
STATIC, 79-7

DBMS_RLS.ADD_POLICY_CONTEXT parameters
attribute, 79-17
namespace, 79-17
object_name, 79-17
object_schema, 79-17

DBMS_RLS.CREATE_POLICY_GROUP parameters
object_name, 79-13

object_schema, 79-13
policy_group, 79-13

DBMS_RLS.DELETE_POLICY_GROUP parameters
object_name, 79-19
object_schema, 79-19
policy_group, 79-19

DBMS_RLS.DISABLE_GROUPED_POLICY
parameters

group_name, 79-23
object_name, 79-23
object_schema, 79-23
policy_name, 79-23

DBMS_RLS.DROP_GROUPED_POLICY parameters
object_name, 79-20
object_schema, 79-20
policy_group, 79-20
policy_name, 79-20

DBMS_RLS.DROP_POLICY parameters
object_name, 79-10
object_schema, 79-10
policy_name, 79-10

DBMS_RLS.DROP_POLICY_CONTEXT parameters
attribute, 79-21
namespace, 79-21
object_name, 79-21
object_schema, 79-21

DBMS_RLS.ENABLE_GROUPED_POLICY
parameters

enable, 79-22
group_name, 79-22
object_name, 79-22
object_schema, 79-22
policy_name, 79-22

DBMS_RLS.ENABLE_POLICY parameters
enable, 79-12
object_name, 79-12
object_schema, 79-12
policy_name, 79-12

DBMS_RLS.REFRESH_GROUPED_POLICY
parameters

group_name, 79-24
object_name, 79-24
object_schema, 79-24
policy_name, 79-24

DBMS_RLS.REFRESH_POLICY parameters

Index-10

object_name, 79-11
object_schema, 79-11
policy_name, 79-11

DBMS_ROWID package, 80-1
DBMS_RULE package, 81-1
DBMS_RULE_ADM package, 82-1
DBMS_SCHEDULER package, 83-1
DBMS_SERVER_ALERT package, 84-1
DBMS_SERVICE package, 85-1
DBMS_SESSION package, 86-1
DBMS_SHARED_POOL package, 87-1
DBMS_SPACE package, 88-1
DBMS_SPACE_ADMIN package, 89-1
DBMS_SQL package, 90-1
DBMS_SQLTUNE package, 91-1
DBMS_STAT_FUNCS package, 92-1
DBMS_STATS package, 93-1
DBMS_STORAGE_MAP package, 94-1
DBMS_STREAMS package, 95-1
DBMS_STREAMS_ADM package, 96-1, 96-2
DBMS_STREAMS_AUTH package, 97-1
DBMS_STREAMS_MESSAGING package, 98-1
DBMS_STREAMS_TABLESPACE package, 99-1
DBMS_TRACE package, 100-1
DBMS_TRANSACTION package, 101-1
DBMS_TRANSFORM package, 102-1
DBMS_TTS package, 110-1
DBMS_TYPES package, 103-1
DBMS_UTILITY package, 104-1
DBMS_WARNING package, 105-1
DBMS_WM package documentation, 107-2
DBMS_WORKLOAD_REPOSITORY

package, 106-1
DBMS_XDB package, 108-1

ACLCHECKPRIVILEGES function, 108-6
CFG_GET function, 108-7
CFG_REFRESH procedure, 108-8
CFG_UPDATE procedure, 108-9
CHECKPRIVILEGES function, 108-11
CONFIGUREAUTOSYNC procedure, 111-6
constants, 108-2
ConText synchronization settings, 111-4
CREATEDATASTOREPREF procedure, 111-7
CREATEFILTERPREF procedure, 111-8
CREATEFOLDER function, 108-12

CREATEINDEX procedure, 111-9
CREATELEXERPREF procedure, 111-10
CREATEOIDPATH function, 108-13
CREATEPREFERENCES procedure, 111-11
CREATERESOURCE function, 108-14
CREATESECTIONGROUPPREF

procedure, 111-12
CREATESTOPLISTPREF procedure, 111-13
CREATESTORAGEPREF procedure, 111-14
CREATEWORLDLISTPREF procedure, 111-15
DELETERESOURCE procedure, 108-17
DROPPREFERENCES procedure, 111-16
EXISTSRESOURCE function, 108-18
filtering settings, 111-3
general indexing settings, 111-3
GETACLDOCUMENT function, 108-19
GETLOCKTOKEN procedure, 108-20
GETRESOID function, 108-22
GETXDB_TABLESPACE function, 108-23
LINK procedure, 108-24
LOCKRESOURCE function, 108-25
methods, 108-4, 111-5
miscellaneous settings, 111-4
MOVEXDB_TABLESPACE procedure, 108-26
other index preference settings, 111-4
REBUILDHIERARCHICALINDEX

procedure, 108-27
RENAMERESOURCE procedure, 108-28
sectioning and section group settings, 111-3
SETACL procedure, 108-29
stoplist settings, 111-3
SYNC settings, 111-4
UNLOCKRESOURCE function, 108-30

DBMS_XDB_VERSION package, 109-1
CHECKIN function, 109-3
CHECKOUT procedure, 109-4
GETCONTENTSBLOBBYRESID function, 109-5
GETCONTENTSCLOBBYRESID function, 109-6
GETCONTENTSXMLBYRESID function, 109-7
GETPREDECESSORS function, 109-8
GETPREDSBYRESID function, 109-9
GETRESOURCEBYRESID function, 109-10
GETSUCCESSORS function, 109-11
GETSUCCSBYRESID function, 109-12
MAKEVERSIONED function, 109-13

Index-11

UNCHECKOUT function, 109-14
DBMS_XDBT package, 111-1
DBMS_XDBZ package, 112-1

DISABLE_HIERARCHY procedure, 112-3
ENABLE_HIERARCHY procedure, 112-4
GET_ACLOID function, 112-5
GET_USERID function, 112-6
IS_HIERARCHY_ENABLED function, 112-7
PURGELDAPCACHE function, 112-8

DBMS_XMLDOM package, 113-1
ADOPTNODE function, 113-41
APPENDDATA procedure, 113-43
CREATEATTRIBUTE function, 113-45
CREATECDATASECTION function, 113-46
CREATECOMMENT function, 113-47
CREATEDOCUMENT function, 113-48
CREATEDOCUMENTFRAGMENT, 113-49
CREATEELEMENT function, 113-50
CREATEENTITYREFERENCE function, 113-51
CREATEPROCESSINGINSTRUCTION

function, 113-52
CREATETEXTNODE function, 113-53
DELETEDATA procedure, 113-54
description, 113-2
exceptions, 113-5
FINDENTITY function, 113-55
FINDNOTATION function, 113-56
FREEDOCFRAG procedure, 113-57, 113-58
FREEDOCUMENT procedure, 113-59
GETATTRIBUTE function, 113-61
GETATTRIBUTENODE function, 113-63
GETBUBLICID function, 113-93
GETCHARSET function, 113-67
GETCHILDRENBYTAGNAME function, 113-65
GETDATA function, 113-66
GETDOCTYPE function, 113-67
GETDOCUMENTELEMENT function, 113-68
GETELEMENTSBYTAGNAME

function, 113-69, 113-70
GETENTITIES function, 113-70
GETEXPANDEDNAME function, 113-72
GETIMPLEMENTATION function, 113-73
GETLENGTH function, 113-75, 113-76
GETNAME function, 113-77, 113-78
GETNAMEDITEM function, 113-78

GETNAMESPACE function, 113-80
GETNAMESPACE procedure, 113-79
GETNEXTSIBLING function, 113-80
GETNODENAME function, 113-81
GETNODETYPE function, 113-82
GETNODEVALUE function, 113-83
GETNOTATIONNAME function, 113-84
GETNOTATIONS function, 113-85
GETOWNERDOCUMENT function, 113-87
GETOWNERELEMENT function, 113-88
GETPARENTNODE function, 113-89
GETPREFIX function, 113-90
GETPREVIOUSSIBLING function, 113-91
GETPUBLICID function, 113-92, 113-93
GETQUALIFIEDNAME function, 113-93,

113-94
GETSCHEMANODE function, 113-94
GETSPECIFIED function, 113-95
GETSTANDALONE function, 113-96
GETSYSTEMID function, 113-97, 113-98
GETTAGNAME function, 113-98
GETTARGET function, 113-86
GETVALUE function, 113-99
GETVERSION function, 113-100
GETXMLTYPE function, 113-101
HASATTRIBUTE function, 113-102
HASATTRIBUTES function, 113-103
HASCHILDNODES function, 113-104
HASFEATURE function, 113-105
IMPORTNODE function, 113-106
inheritance, 113-3
INSERTBEFORE function, 113-107
INSERTDATA procedure, 113-108
ISNULL function, 113-109, 113-113
ITEM function, 113-113
MAKEATTR function, 113-114
MAKECDATASECTION function, 113-115
MAKECHARACTERDATA function, 113-116
MAKECOMMENT function, 113-117
MAKEDOCUMENT function, 113-118
MAKEDOCUMENTFRAGMENT

function, 113-119
MAKEDOCUMENTTYPE function, 113-120
MAKEELEMENT function, 113-121
MAKEENTITY function, 113-122

Index-12

MAKEENTITYREFERENCE function, 113-123
MAKENODE function, 113-124, 113-127
MAKENOTATION function, 113-127
MAKEPROCESSINGINSTRUCTION

function, 113-128
MAKETEXT function, 113-129
methods

ADOPTNODE function, 113-41
APPENDCHILD function, 113-42
APPENDDATA procedure, 113-43
CLONENODE function, 113-44
CREATEATTRIBUTE function, 113-45
CREATECDATASECTION function, 113-46
CREATECOMMENT function, 113-47
CREATEDOCUMENT function, 113-48
CREATEDOCUMENTFRAGMENT

function, 113-49
CREATEELEMENT function, 113-50
CREATEENTITYREFERENCE

function, 113-51
CREATEPROCESSINGINSTRUCTION

function, 113-52
CREATETEXTNODE function, 113-53
DELETEDATA procedure, 113-54
DOMAttr interface, 113-11
DOMCDataSection interface, 113-12
DOMCharacterData interface, 113-13
DOMComment interface, 113-14
DOMDocument interface, 113-15
DOMDocumentFragment interface, 113-17,

113-41
DOMDocumentType interface, 113-18,

113-41
DOMElement interface, 113-19, 113-41
DOMEntity interface, 113-20, 113-41
DOMEntityReference interface, 113-21,

113-41
DOMImplementation interface, 113-22,

113-41
DOMNamedNodeMap interface, 113-23,

113-41
DOMNode

APPENDCHILD
function, 113-42

CLONENODE function, 113-44

FREENODE procedure, 113-60

GETATTRIBUTES
function, 113-62

GETCHILDNODES
function, 113-64

GETEXPANDEDNAME
procedure, 113-71

GETFIRSTCHILD
function, 113-72

GETLASTCHILD
function, 113-74

GETLOCALNAME
procedure, 113-76

DOMNodeList interface, 113-24, 113-41
DOMNotation interface, 113-25, 113-41
DOMProcessingInstruction interface, 113-26,

113-41
DOMText interface, 113-8, 113-27, 113-41
FINDENTITY function, 113-55
FINDNOTATION function, 113-56
FREEDOCFRAG procedure, 113-57, 113-58
FREEDOCUMENT procedure, 113-59
FREENODE procedure, 113-60
GETATTRIBUTE function, 113-61
GETATTRIBUTENODE function, 113-63
GETATTRIBUTES function, 113-62
GETBUBLICID function, 113-93
GETCHARSET function, 113-67
GETCHILDNODES function, 113-64
GETCHILDRENBYTAGNAME

function, 113-65
GETDATA function, 113-66
GETDOCTYPE function, 113-67
GETDOCUMENTELEMENT

function, 113-68
GETELEMENTSBYTAGNAME

function, 113-69, 113-70
GETENTITIES function, 113-70
GETEXPANDEDNAME function, 113-72
GETEXPANDEDNAME procedure, 113-71

Index-13

GETFIRSTCHILD function, 113-72
GETIMPLEMENTATION function, 113-73
GETLASTCHILD function, 113-74
GETLENGTH function, 113-75, 113-76
GETLOCALNAME procedure, 113-76
GETNAME function, 113-77, 113-78
GETNAMEDITEM function, 113-78
GETNAMESPACE function, 113-80
GETNAMESPACE procedure, 113-79
GETNEXTSIBLING function, 113-80
GETNODENAME function, 113-81
GETNODETYPE function, 113-82
GETNODEVALUE function, 113-83
GETNOTATIONNAME function, 113-84
GETNOTATIONS function, 113-85
GETOWNERDOCUMENT function, 113-87
GETOWNERELEMENT function, 113-88
GETPARENTNODE function, 113-89
GETPREFIX function, 113-90
GETPREVIOUSSIBLING function, 113-91
GETPUBLICID function, 113-92, 113-93
GETQUALIFIEDNAME function, 113-93,

113-94
GETSCHEMANODE function, 113-94
GETSPECIFIED function, 113-95
GETSTANDALONE function, 113-96
GETSYSTEMID function, 113-97, 113-98
GETTAGNAME function, 113-98
GETTARGET function, 113-86
GETVALUE function, 113-99
GETVERSION function, 113-100
GETXMLTYPE function, 113-101
HASATTRIBUTE function, 113-102
HASATTRIBUTES function, 113-103
HASCHILDNODES function, 113-104
HASFEATURE function, 113-105
IMPORTNODE function, 113-106
INSERTBEFORE function, 113-107
INSERTDATA procedure, 113-108
ISNULL function, 113-109, 113-113
ITEM function, 113-113
MAKEATTR function, 113-114
MAKECDATASECTION function, 113-115
MAKECHARACTERDATA

function, 113-116

MAKECOMMENT function, 113-117
MAKEDOCUMENT function, 113-118
MAKEDOCUMENTFRAGMENT

function, 113-119
MAKEDOCUMENTTYPE function, 113-120
MAKEELEMENT function, 113-121
MAKEENTITY function, 113-122
MAKEENTITYREFERENCE

function, 113-123
MAKENODE function, 113-124, 113-127
MAKENOTATION function, 113-127
MAKEPROCESSINGINSTRUCTION

function, 113-128
MAKETEXT function, 113-129
NEWDOMDOCUMENT function, 113-130
NORMALIZE procedure, 113-131
REMOVEATTRIBUTE procedure, 113-132
REMOVEATTRIBUTENODE

function, 113-133
REMOVENAMEDITEM function, 113-135
REPLACECHILD function, 113-136
REPLACEDATA procedure, 113-137
RESOLVENAMESPACEPREFIX

function, 113-138
SETATTRIBUTE procedure, 113-139
SETATTRIBUTENODE function, 113-140
SETCHARSET procedure, 113-145
SETDATA procedure, 113-141
SETNAMEDITEM function, 113-142
SETNODEVALUE procedure, 113-143
SETPREFIX procedure, 113-144
SETSTANDALONE procedure, 113-145
SETVALUE procedure, 113-146
SETVERSION procedure, 113-147
SPLITTEXT function, 113-148
SUBSTRINGDATA function, 113-149
WRITETOBUFFER procedure, 113-150
WRITETOCLOB procedure, 113-151
WRITETOFILE procedure, 113-152

NEWDOMDOCUMENT function, 113-130
NORMALIZE procedure, 113-131
REMOVEATTRIBUTE procedure, 113-132
REMOVEATTRIBUTENODE function, 113-133
REMOVENAMEDITEM function, 113-135
REPLACECHILD function, 113-136

Index-14

REPLACEDATA procedure, 113-137
RESOLVENAMESPACEPREFIX

function, 113-138
SETATTRIBUTE procedure, 113-139
SETATTRIBUTENODE function, 113-140
SETCHARSET procedure, 113-145
SETDATA procedure, 113-141
SETNAMEDITEM function, 113-142
SETNODEVALUE procedure, 113-143
SETPREFIX procedure, 113-144
SETSTANDALONE procedure, 113-145
SETVALUE procedure, 113-146
SETVERSION procedure, 113-147
SPLITTEXT function, 113-148
SUBSTRINGDATA function, 113-149
types, 113-4
WRITETOBUFFER procedure, 113-150
WRITETOCLOB procedure, 113-151
WRITETOFILE procedure, 113-152

DBMS_XMLGEN package, 114-1
CLOSECONTEXT procedure, 114-4
CONVERT function, 114-5
GETNUMROWSPROCESSED function, 114-6
GETXML function, 114-7
GETXMLTYPE function, 114-9
NEWCONTEXT function, 114-10
RESTARTQUERY procedure, 114-11
SETCONVERTSPECIALCHARS

procedure, 114-12
SETMAXROWS procedure, 114-13
SETROWSETTAG procedure, 114-15
SETROWTAG procedure, 114-16
SETSKIPROWS procedure, 114-17
USEITEMTAGSFORCOLL procedure, 114-18
USENULLATTRIBUTEINDICATOR

procedure, 114-19
DBMS_XMLPARSER package, 115-1

FREEPARSER procedure, 115-2
GETDOCTYPE function, 115-3
GETDOCUMENT function, 115-3
GETRELEASEVERSION function, 115-4
GETVALIDATIONMODE function, 115-4
NEWPARSER function, 115-4
PARSE function, 115-4
PARSE procedure, 115-4

PARSEBUFFER procedure, 115-5
PARSECLOB procedure, 115-6
PARSEDTD procedure, 115-6
PARSEDTDBUFFER procedure, 115-7
PARSEDTDCLOB procedure, 115-7
SETBASEDIR procedure, 115-8
SETDOCTYPE procedure, 115-8
SETERRORLOG procedure, 115-8
SETPRESERVEWHITESPACE procedure, 115-9
SETVALIDATIONMODE procedure, 115-9
SHOWWARNINGS procedure, 115-10

DBMS_XMLQUERY package, 116-1
CLOSECONTEXT procedure, 116-4
constants, 116-2
GETDTD function, 116-5
GETDTD procedure, 116-5
GETEXCEPTIONCONTENT procedure, 116-5
GETNUMROWSPROCESSED procedure, 116-6
GETVERSION procedure, 116-6
GETXML function, 116-7
GETXML procedure, 116-7
NEWCONTEXT function, 116-8
PROPAGATEORIGINALEXCEPTION

procedure, 116-8
REMOVEXSLTPARAM procedure, 116-9
SETBINDVALUE procedure, 116-9
SETCOLLIDATTRNAME procedure, 116-10
SETDATAHEADER procedure, 116-10
SETDATEFORMAT procedure, 116-11
SETENCODINGTAG procedure, 116-11
SETERRORTAG procedure, 116-12
SETMAXROWS procedure, 116-12
SETMETAHEADER procedure, 116-13
SETRAISEEXCEPTION procedure, 116-13
SETRAISENOROWSEXCEPTION

procedure, 116-14
SETROWIDATTRNAME procedure, 116-14
SETROWIDATTRVALUE procedure, 116-15
SETROWSETTAG procedure, 116-15
SETROWTAG procedure, 116-15
SETSKIPROWS procedure, 116-16
SETSQLTOXMLNAMEESCAPING

procedure, 116-16
SETSTYLESHEETHEADER procedure, 116-17
SETTAGCASE procedure, 116-17

Index-15

SETXSLT procedure, 116-18
SETXSLTPARAM procedure, 116-19
types, 116-2
USENULLATTRIBUTEINDICATOR

procedure, 116-19
USETYPEFORCOLLELEMTAG

procedure, 116-20
DBMS_XMLSAVE package, 117-1

CLEARKEYCOLUMNLIST procedure, 117-4
CLEARUPDATECOLUMNLIST

procedure, 117-4
CLOSECONTEXT procedure, 117-5
constants, 117-2
DELETEXML function, 117-5
GETEXCEPTIONCONTENT procedure, 117-6
INSERTXML function, 117-6
NEWCONTEXT function, 117-7
PROPAGATEORIGINALEXCEPTION

procedure, 117-7
REMOVEXSLTPARAM procedure, 117-8
SETBATCHSIZE procedure, 117-8
SETCOMMITBATCH procedure, 117-9
SETDATEFORMAT procedure, 117-9
SETIGNORECASE procedure, 117-10
SETKEYCOLUMN procedure, 117-10
SETPRESERVEWHITESPACE

procedure, 117-11
SETROWTAG procedure, 117-11
SETSQLTOXMLNAMEESCAPING

procedure, 117-11
SETUPDATECOLUMN procedure, 117-12
SETXSLT procedure, 117-12
SETXSLTPARAM procedure, 117-13
UPDATEXML function, 117-14

DBMS_XMLSCHEMA package, 118-1
ALL_XML_SCHEMAS catalog view, 118-20
ALL_XML_TAB_COLS catalog view, 118-27
ALL_XML_TABLES catalog view, 118-24
ALL_XML_VIEW_COLS catalog view, 118-33
ALL_XML_VIEWS catalog view, 118-30
catalog views, 118-18
COMPILESCHEMA procedure, 118-4
constants, 118-2
COPYEVOLVE procedure, 118-5
DBA_XML_SCHEMAS catalog view, 118-21

DBA_XML_TAB_COLS catalog view, 118-25
DBA_XML_TABLES catalog view, 118-22
DBA_XML_VIEW_COLS catalog view, 118-31
DBA_XML_VIEWS catalog view, 118-28
DELETESCHEMA procedure, 118-8
GENERATEBEAN procedure, 118-10
GENERATESCHEMA function, 118-11
GENERATESCHEMAS function, 118-12
REGISTERSCHEMA procedure, 118-13
REGISTERURI procedure, 118-16
USER_XML_SCHEMAS catalog view, 118-19
USER_XML_TAB_COLS catalog view, 118-26
USER_XML_TABLES catalog view, 118-23
USER_XML_VIEW_COLS catalog view, 118-32
USER_XML_VIEWS catalog view, 118-29

DBMS_XMLSTORE package, 119-1
CLEARKEYCOLUMNLIST procedure, 119-4
CLEARUPDATECOLUMNLIST

procedure, 119-5
CLOSECONTEXT procedure, 119-6
DELETEXML function, 119-7
INSERTXML function, 119-8
NEWCONTEXT function, 119-9
SETKEYCOLUMN procedure, 119-10
SETROWTAG procedure, 119-11
SETUPDATECOLUMN procedure, 119-12
types, 119-2
UPDATEXML function, 119-13

DBMS_XPLAN package, 120-1
DBMS_XSLPROCESSOR package, 121-1

CLOB2FILE procedure, 121-2
FREEPROCESSOR procedure, 121-3
FREESTYLESHEET procedure, 121-3
NEWPROCESSOR function, 121-4
NEWSTYLESHEET function, 121-4
PROCESSXSL function, 121-5
READ2CLOB function, 121-7
REMOVEPARAM procedure, 121-7
RESETPARAMS procedure, 121-8
SELECTNODES function, 121-8
SELECTSINGLENODE function, 121-8
SETERRORLOG procedure, 121-9
SETPARAM procedure, 121-9
SHOWWARNINGS procedure, 121-10
TRANSFORMNODE function, 121-10

Index-16

VALUEOF procedure, 121-11
DBUriType, 172-18
DBURITYPE function, 172-20
DBUriType subtype, 172-18

CREATEURI function, 172-19
DBURITYPE function, 172-20
GETBLOB function, 172-21
GETCLOB function, 172-22
GETCONTENTTYPE function, 172-23
GETEXTERNALURL function, 172-24
GETURL function, 172-25
GETXML function, 172-26
methods, 172-18

DEBUG_EXPTOC package, 122-1
DEBUG_OFF procedure, 27-21
DEBUG_ON procedure, 27-22
DEFINE_ARRAY procedure, 90-40
DEFINE_COLUMN procedure, 90-43
DEFINE_COLUMN_LONG procedure, 90-45
DELETE_ALL_ERRORS procedure, 15-22
DELETE_BREAKPOINT function, 27-23
DELETE_COLUMN member procedure, 174-20
DELETE_COLUMN_STATS pocedure, 93-23
DELETE_CONSUMER_GROUP procedure, 76-20
DELETE_DATABASE_STATS procedure, 93-25
DELETE_DICTIONARY_STATS procedure, 93-26
DELETE_ERROR procedure, 15-23
DELETE_FIXED_OBJECTS_STATS

procedure, 93-28
DELETE_INDEX_STATS procedure, 93-29
DELETE_OBJECT procedure, 163-6
DELETE_OER_BREAKPOINT function, 27-24
DELETE_PLAN procedure, 76-21
DELETE_PLAN_CASCADE procedure, 76-23
DELETE_PLAN_DIRECTIVE procedure, 76-22
DELETE_SERVICE procedure, 85-5
DELETE_SQLSET procedure, 91-15
DELETE_SYSTEM_STATS procedure, 93-32
DELETE_TABLE_STATS procedure, 93-33
DELETEDATA procedure, 113-54
DELETERESOURCE procedure, 108-17
DELETESCHEMA procedure, 118-8
DELETEXML function, 117-5, 119-7
DEQUEUE procedure, 98-3
DESCRIBE_COLUMNS procedure, 90-46

DESCRIBE_COLUMNS2 procedure, 90-47
DESCRIBE_DIMENSION procedure, 32-4
DESCRIBE_PROCEDURE procedure, 31-9
DESDecrypt procedure, 55-7, 55-14
DESEncrypt procedure, 55-16
DETACH_SESSION procedure, 27-25
DETACH_SIMPLE_TABLESPACE

procedure, 99-17
DETACH_TABLESPACES procedure, 99-19
DFN function

of HTF package, 123-40
DFN procedure

of HTP package, 128-40
DIRECTORY_OBJECT_SET type, 99-3
DIRLISTCLOSE function

of HTF package, 123-41
DIRLISTCLOSE procedure

of HTP package, 128-41
DIRLISTOPEN function

of HTF package, 123-42
DIRLISTOPEN procedure

of HTP package, 128-42
DISABLE procedure

of DBMS_FLASHBACK package, 36-9
of DBMS_OUTPUT package, 61-8
of OWA_CACHE package, 129-4

DISABLE_BREAKPOINT function, 27-26
DISABLE_HIERARCHY procedure, 112-3
DISCONNECT_SESSION procedure, 85-6
DISPLAY function, 120-11
DISPLAY_AWR function, 120-9
DISPLAY_CURSOR function, 120-13
DIV function

of HTF package, 123-43
DIV procedure

of HTP package, 128-43
DLISTCLOSE function

of HTF package, 123-44
DLISTCLOSE procedure

of HTP package, 128-44
DLISTDEF function

of HTF package, 123-46
DLISTDEF procedure

of HTP package, 128-46
DLISTOPEN function

Index-17

of HTF package, 123-45
DLISTOPEN procedure

of HTP package, 128-45
DLISTTERM function

of HTF package, 123-47
DLISTTERM procedure

of HTP package, 128-47
DOMAttr methods, 113-11
DOMCDataSection methods, 113-12
DOMCharacterData methods, 113-13
DOMComment methods, 113-14
DOMDocument methods, 113-15
DOMDocumentFragment methods, 113-17
DOMDocumentType methods, 113-18, 113-41
DOMElement methods, 113-19
DOMEntity methods, 113-20, 113-41
DOMEntityReference methods, 113-21, 113-41
DOMImplementation methods, 113-22, 113-41
DOMNamedNodeMap methods, 113-23, 113-41
DOMNodeList methods, 113-24, 113-41
DOMNotation methods, 113-25, 113-41
DOMProcessingInstruction methods, 113-26
DOMText methods, 113-8, 113-27, 113-41
DOWNGRADE procedure, 110-4
DOWNLOAD_FILE procedures, 167-4
DROP_ALL function, 94-5
DROP_APPLY procedure, 15-24
DROP_BASELINE procedure, 106-7
DROP_BY_CAT procedure, 59-6
DROP_CAPTURE procedure

capture process
dropping, 19-23

DROP_EDIT_TABLES procedure, 60-5
DROP_EVALUATION_CONTEXT

procedure, 82-15
DROP_FILE function, 94-7
DROP_MODEL procedure, 23-40
DROP_PROPAGATION procedure, 65-11
DROP_RULE procedure, 82-16
DROP_RULE_SET procedure, 82-17
DROP_SNAPSHOT_RANGE procedure, 106-8
DROP_SQL_PROFILE procedure, 91-16
DROP_SQLSETprocedure, 91-17
DROP_STAT_TABLE procedure, 93-35
DROP_TRANSFORMATION procedure, 102-5

DROP_TUNING_TASK procedure, 91-18
DROP_UNUSED procedure, 59-7
DROPPREFERENCES procedure, 111-16
DUMP_ORPHAN_KEYS procedure, 70-10
dynamic SQL

anonymous blocks and, 90-3
DBMS_SQL functions, using, 90-2
execution flow in, 90-7

E
EHLO function and procedure, 164-18
EM function

of HTF package, 123-48
EM procedure

of HTP package, 128-48
e-mail from PL/SQL (email), 165-5
EMPHASIS function

of HTF package, 123-49
EMPHASIS procedure

of HTP package, 128-49
ENABLE procedure, 61-9
ENABLE_AT_SYSTEM_CHANGE_NUMBER

procedure, 36-10
ENABLE_AT_TIME procedure, 36-11
ENABLE_BREAKPOINT function, 27-27
ENABLE_HIERARCHY procedure, 112-4
END_REQUEST procedure, 156-43
END_RESPONSE procedure, 156-44
ENDCREATE member procedure

of ANYDATA TYPE, 168-7
of ANYDATASET TYPE, 169-6
of ANYTYPE TYPE, 170-8

ENQUEUE procedure, 98-6
error queue

deleting errors, 15-22, 15-23
executing errors, 15-26, 15-27
getting error messages, 15-28

errors
DBMS_DATA_MINING, 23-9

ESCAPE function, 166-5
ESCAPE_SC function

of HTF package, 123-50
ESCAPE_SC procedure

of HTP package, 128-50

Index-18

ESCAPE_URL function
of HTF package, 123-51

ESCAPEURI function, 172-38
ESTIMATE_CPU_UNITS function, 56-3
ETINSTANCE member function

of ANYDATASET TYPE, 169-12
EVALUATE procedure, 81-5
EXACT_TEXT_SIGNATURES procedure, 59-8
EXEC_DDL_STATEMENT procedure, 104-21
EXECUTE function, 90-48
EXECUTE member procedure, 174-8, 174-21
EXECUTE procedure, 27-28
EXECUTE_ALL_ERRORS procedure, 15-26
EXECUTE_AND_FETCH function, 90-49
EXECUTE_ERROR procedure, 15-27
EXECUTE_TUNING_TASK procedure, 91-19
execution flow

in dynamic SQL, 90-7
EXISTSNODE function, 182-9
EXISTSRESOURCE function, 108-18
EXPAND_MESSAGE function, 84-12
EXPONENTIAL_DIST_FIT procedure, 92-3
EXPORT_COLUMN_STATS procedure, 93-36
EXPORT_DATABASE_STATS procedure, 93-37
EXPORT_DICTIONARY_STATS procedure, 93-38
EXPORT_FIXED_OBJECTS_STATS

procedure, 93-39
EXPORT_INDEX_STATS procedure, 93-40
EXPORT_MODEL procedure, 23-41
EXPORT_SCHEMA_STATS procedure, 93-41
EXPORT_SYSTEM_STATS procedure, 93-42
EXPORT_TABLE_STATS procedure, 93-43
extend window

to create a new view, 21-2
EXTRACT function, 182-10

F
FCLOSE procedure, 155-10
FCLOSE_ALL procedure, 155-11
FCOPY procedure, 155-12
features, new, 1-xxxiii
FETCH_ROWS function, 90-50
FFLUSH procedure, 155-13
fga_log$, 34-5

FGETATTR procedure, 155-14
FGETPOS function, 155-15
FI_HORIZONTAL function, 37-8
FI_TRANSACTIONAL function, 37-3
FILE type, 99-3
FILE_SET type, 99-4
FINDENTITY function, 113-55
FINDNOTATION function, 113-56
fine-grained access control

DBMS_RLS package, 79-1
FINISH_REDEF_TABLE procedure, 68-9
FIX_CORRUPT_BLOCKS procedure, 70-12
FLUSH procedure, 165-12
FLUSH_DATA function and procedure, 64-9
FLUSH_DATABASE_MONITORING_INFO

procedure, 93-44
FONTCLOSE function

of HTF package, 123-52
FONTCLOSE procedure

of HTP package, 128-51
FONTOPEN function

of HTF package, 123-53
FONTOPEN procedure

of HTP package, 128-52
FOPEN function, 155-16
FOPEN_NCHAR function, 155-18
FORCE parameter

and job-to-instance affinity, 41-3
FORMAT_CELL function

of HTF package, 123-54
FORMAT_ERROR_BACKTRACE function, 104-22
FORMAT_ERROR_STACK function, 104-26
FORMCHECKBOX function

of HTF package, 123-55
FORMCHECKBOX procedure

of HTP package, 128-53
FORMCLOSE function

of HTF package, 123-56
FORMCLOSE procedure

of HTP package, 128-54
FORMFILE function

of HTF package, 123-57
FORMFILE procedure

of HTP package, 128-56
FORMHIDDEN function

Index-19

of HTF package, 123-58
FORMHIDDEN procedure

of HTP package, 128-57
FORMIMAGE function

of HTF package, 123-59
FORMIMAGE procedure

of HTP package, 128-58
FORMOPEN function

of HTF package, 123-60
FORMOPEN procedure

of HTP package, 128-55
FORMPASSWORD function

of HTF package, 123-61
FORMPASSWORD procedure

of HTP package, 128-59
FORMRADIO function

of HTF package, 123-62
FORMRADIO procedure

of HTP package, 128-60
FORMRESET function

of HTF package, 123-63
FORMRESET procedure

of HTP package, 128-61
FORMSELECTCLOSE function

of HTF package, 123-64
FORMSELECTCLOSE procedure

of HTP package, 128-62
FORMSELECTOPEN function

of HTF package, 123-65
FORMSELECTOPEN procedure

of HTP package, 128-63
FORMSELECTOPTION function

of HTF package, 123-67
FORMSELECTOPTION procedure

of HTP package, 128-65
FORMSUBMIT function

of HTF package, 123-68
FORMSUBMIT procedure

of HTP package, 128-66
FORMTEXT function

of HTF package, 123-69
FORMTEXT procedure

of HTP package, 128-67
FORMTEXTAREA function

of HTF package, 123-70

FORMTEXTAREA procedure
of HTP package, 128-68

FORMTEXTAREA2 function
of HTF package, 123-71

FORMTEXTAREA2 procedure
of HTP package, 128-69

FORMTEXTAREACLOSE function
of HTF package, 123-72

FORMTEXTAREACLOSE procedure
of HTP package, 128-70

FORMTEXTAREAOPEN function
of HTF package, 123-73

FORMTEXTAREAOPEN procedure
of HTP package, 128-71

FORMTEXTAREAOPEN2 function
of HTF package, 123-74

FORMTEXTAREAOPEN2 procedure
of HTP package, 128-72

FRAME function
of HTF package, 123-75

FRAME procedure
of HTP package, 128-73

FRAMESETCLOSE function
of HTF package, 123-76

FRAMESETCLOSE procedure
of HTP package, 128-74

FRAMESETOPEN function
of HTF package, 123-77

FRAMESETOPEN procedure
of HTP package, 128-75

FREE_BLOCKS procedure, 88-7
FREEDOCFRAG procedure, 113-57, 113-58
FREEDOCUMENT procedure, 113-59
FREENODE procedure, 113-60
FREEPARSER procedure, 115-2
FREEPROCESSOR procedure, 121-3
FREESTYLESHEET procedure, 121-3
FREMOVE procedure, 155-19
FRENAME procedure, 155-20
FSEEK procedure, 155-21

G
GATHER_DATABASE_STATS procedures, 93-45
GATHER_DICTIONARY_STATS procedure, 93-50

Index-20

GATHER_FIXED_OBJECTS_STATS
procedure, 93-55

GATHER_SCHEMA_STATS procedures, 93-59
GATHER_SYSTEM_STATS procedure, 93-64
GATHER_TABLE_STATS procedure, 93-67
GENERATE_SIGNATURE procedure, 60-6
GENERATE_STATS procedure, 93-71
GENERATEBEAN procedure, 118-10
GENERATESCHEMA function, 118-11
GENERATESCHEMAS function, 118-12
GET function

of OWA_COOKIE package, 130-4
GET* member functions

of ANYDATA TYPE, 168-8
of ANYDATASET TYPE, 169-7

GET_ACLOID function, 112-5
GET_ALL procedure, 130-5
GET_ALL_NAMES member function, 181-8
GET_ASSOCIATION_RULES function, 23-45
GET_AUTHENTICATION procedure, 156-45
GET_BASE_TABLE_NAME member

function, 174-8
GET_BASE_TABLE_OWNER member

function, 174-9
GET_BODY_CHARSET procedure, 156-47
GET_CATEGORY function, 105-6
GET_CGI_ENV function, 137-14
GET_CLIENT_HOSTNAME function, 135-4
GET_CLIENT_IP function, 135-5
GET_COLUMN_STATS procedures, 93-72
GET_COMMAND_TYPE member function, 174-34
GET_COMMIT_SCN member function, 174-35
GET_COMPATIBLE member function, 174-35
GET_COOKIE_COUNT function, 156-48
GET_COOKIE_SUPPORT procedure, 156-49
GET_COOKIES function, 156-50
GET_CPU_TIME function, 104-28
GET_CURRENT_SCHEMA member

function, 174-9
GET_DEFAULT_SETTINGS function, 23-48
GET_DEPENDENCY procedure, 104-29
GET_DETAILED_EXCP_SUPPORT

procedure, 156-51
GET_DETAILED_SQLCODE function, 156-52
GET_DETAILED_SQLERRM function, 156-53

GET_ERROR_MESSAGE function, 15-28
GET_ETAG function, 129-5
GET_EXTRA_ATTRIBUTE member

function, 174-36
GET_FILE procedure, 35-5
GET_FOLLOW_REDIRECT procedure, 156-54
GET_FREQUENT_ITEMSETS function, 23-50
GET_HASH_VALUE function, 104-30
GET_HEADER procedure, 156-55
GET_HEADER_BY_NAME procedure, 156-56
GET_HEADER_COUNT function, 156-57
GET_HOST_ADDRESS function, 158-4
GET_HOST_NAME function, 158-5
GET_IN_PARAMETER_TYPES function, 153-6
GET_INDEX_STATS procedures, 93-74
GET_INDEXES function, 27-31
GET_INFORMATION function, 95-8
GET_LEVEL function, 129-6
GET_LINE function, 165-13
GET_LINE procedure, 61-10, 155-22
GET_LINE_MAP function, 27-33
GET_LINE_NCHAR procedure, 155-24
GET_LINES procedure, 61-11
GET_LOB_INFORMATION member

function, 174-22
GET_LOB_OFFSET member function, 174-23
GET_LOB_OPERATION_SIZE member

procedure, 174-23
GET_LOGON_USER member function, 174-10
GET_LONG_INFORMATION member

function, 174-25
GET_MODEL_DETAILS_ABN function, 23-52
GET_MODEL_DETAILS_KM function, 23-54
GET_MODEL_DETAILS_NB function, 23-58
GET_MODEL_DETAILS_NMF function, 23-60
GET_MODEL_DETAILS_SVM function, 23-62
GET_MODEL_SETTINGS function, 23-64
GET_MODEL_SIGNATURE function, 23-66
GET_MORE_SOURCE procedure, 27-32
GET_NEXT_HIT function, 81-10
GET_OBJECT_NAME member function, 174-38
GET_OBJECT_OWNER member function, 174-38
GET_OBJECT_TYPE member function, 174-10
GET_OUT_PARAMETER_TYPES function, 153-7
GET_OUTPUT_VALUES function, 153-8

Index-21

GET_OWA_SERVICE_PATH function, 137-15
GET_PARAM function, 93-78
GET_PARAMETER_VALUE function, 104-31
GET_PASSWORD function, 135-6
GET_PERSISTENT_CONN_COUNT

function, 156-58
GET_PERSISTENT_CONN_SUPPORT

procedure, 156-59
GET_PERSISTENT_CONNS procedure, 156-60
GET_PORTS function, 153-9
GET_PROCEDURE function, 137-16
GET_PROPERTY function, 153-10
GET_PROXY procedure, 156-61
GET_RAW function, 155-25, 165-14
GET_RESPONSE function, 156-62
GET_RESPONSE_ERROR_CHECK

procedure, 156-63
GET_RETURN_TYPE function, 153-11
GET_ROWID function, 133-5
GET_RUNTIME_INFO function, 27-34
GET_SCN member function, 174-38
GET_SCN_MAPPING procedure, 96-70
GET_SERVICES function, 153-12
GET_SESSION_TIMEOUT function, 78-5
GET_SOURCE_DATABASE_NAME member

function, 174-38
GET_STATS_HISTORY_AVAILABILITY

function, 93-79
GET_STATS_HISTORY_RETENTION

function, 93-80
GET_STREAMS_NAME function, 95-9
GET_STREAMS_TYPE function, 95-10
GET_SYSTEM_STATS procedure, 93-81
GET_TABLE_STATS procedure, 93-84
GET_TAG function, 95-11
GET_TAG member function, 174-38
GET_TEXT function, 165-16
GET_THRESHOLD procedure, 84-13
GET_TIME function, 104-33
GET_TIMEOUT function, 78-6
GET_TIMEOUT_BEHAVIOUR function, 27-35
GET_TRANSACTION_ID member

function, 174-39
GET_TRANSFER_TIMEOUT procedure, 156-64
GET_USER_ID function, 135-7

GET_USERID function, 112-6
GET_VALUE function, 27-36
GET_VALUE member function, 174-25, 181-8
GET_VALUES member function, 174-26
GET_VERSION procedure, 64-10
GET_WARNING_SETTING_CAT function, 105-7
GET_WARNING_SETTING_NUM function, 105-8
GET_WARNING_SETTING_STRING

function, 105-9
GET_X function, 132-4
GET_Y function, 132-5
GETACLDOCUMENT function, 108-19
GETATTRELEMINFO member function

of ANYTYPE TYPE, 170-12
GETATTRIBUTE function, 113-61
GETATTRIBUTENODE function, 113-63
GETATTRIBUTES function, 113-62
GETBLOB function, 172-3, 172-11, 172-21, 172-29
GETBLOBVAL function, 182-11
GETBUBLICID function, 113-93
GETCHILDNODES function, 113-64
GETCHILDRENBYTAGNAME function, 113-65
GETCLOB function, 172-4, 172-12, 172-22, 172-30
GETCLOBVAL function, 182-12
GETCONTENTSBLOBBYRESID function, 109-5
GETCONTENTSCLOBBYRESID function, 109-6
GETCONTENTSXMLBYRESID function, 109-7
GETCONTENTTYPE function, 172-5, 172-13,

172-23, 172-31
GETCOUNT member function

of ANYDATASET TYPE, 169-11
GETDATA function, 113-66
GETDCHARSET function, 113-67
GETDOCTYPE function, 113-67, 115-3
GETDOCUMENT function, 115-3
GETDOCUMENTELEMENT function, 113-68
GETDTD function, 116-5
GETDTD procedure, 116-5
GETELEMENTSBYTAGNAME function, 113-69,

113-70
GETENTITIES function, 113-70
GETEXCEPTIONCONTENT procedure, 116-5,

117-6
GETEXPANDEDNAME function, 113-72
GETEXPANDEDNAME procedure, 113-71

Index-22

GETEXTERNALURL function, 172-6, 172-14,
172-24, 172-32

GETFIRSTCHILD function, 113-72
GETIMPLEMENTATION function, 113-73
GETINFO member function

of ANYTYPE TYPE, 170-10
GETLASTCHILD function, 113-74
GETLENGTH function, 113-75, 113-76
GETLOCKTOKEN procedure, 108-20
GETNAME function, 113-77, 113-78
GETNAMEDITEM function, 113-78
GETNAMESPACE function, 113-80
GETNAMESPACE procedure, 113-79
GETNEXTSIBLING function, 113-80
GETNODENAME function, 113-81
GETNODETYPE function, 113-82
GETNODEVALUE function, 113-83
GETNOTATIONNAME function, 113-84
GETNOTATIONS function, 113-85
GETNUMBERVAL function, 182-14
GETNUMROWSPROCESSED function, 114-6
GETNUMROWSPROCESSED procedure, 116-6
GETOWNERDOCUMENT function, 113-87
GETOWNERELEMENT function, 113-88
GETPARENTNODE function, 113-89
GETPAT procedure, 134-10
GETPERSISTENT static function

of ANYTYPE TYPE, 170-9
GETPREDECESSORS function, 109-8
GETPREDSBYRESID function, 109-9
GETPREFIX function, 113-90
GETPREVIOUSSIBLING function, 113-91
GETPRIVILEGES function, 108-21
GETPUBLICID function, 113-92, 113-93
GETQUALIFIEDNAME function, 113-93, 113-94
GETRELEASEVERSION function, 115-4
GETRESOID function, 108-22
GETRESOURCEBYRESID function, 109-10
GETROOTELEMENT function, 182-15
GETRUL function, 172-15
GETSCHEMANODE function, 113-94
GETSCHEMAURL function, 182-16
GETSPECIFIED function, 113-95
GETSTANDALONE function, 113-96
GETSTRINGVAL function, 182-17

GETSUCCESSORS function, 109-11
GETSUCCSBYRESID function, 109-12
GETSYSTEMID function, 113-97, 113-98
GETTAGNAME function, 113-98
GETTARGET function, 113-86
GETTYPE member function

of ANYDATA TYPE, 168-12
of ANYDATASET TYPE, 169-13

GETTYPENAME member function
of ANYDATA TYPE, 168-13
of ANYDATASET TYPE, 169-14

GETURL function, 172-7, 172-25, 172-33, 172-37
GETVALIDATIONMODE function, 115-4
GETVALUE function, 113-99
GETVERSION function, 113-100
GETVERSION procedure, 116-6
GETXDB_TABLESPACE function, 108-23
GETXML function, 114-7, 116-7, 172-8, 172-16,

172-26, 172-34
GETXML procedure, 116-7
GETXMLTYPE function, 113-101, 114-9
GRANT_ADMIN_PRIVILEGE procedure, 97-3
GRANT_OBJECT_PRIVILEGE procedure, 82-18
GRANT_REMOTE_ADMIN_ACCESS

procedure, 97-6
GRANT_SWITCH_CONSUMER_GROUP

procedure, 77-3
GRANT_SYSTEM_PRIVILEGE procedure, 77-5,

82-20

H
HASATTRIBUTE function, 113-102
HASCHILDNODES function, 113-104
HASFEATURE function, 113-105
HEADCLOSE function

of HTF package, 123-78
HEADCLOSE procedure

of HTP package, 128-76
HEADER function

of HTF package, 123-80
HEADER procedure

of HTP package, 128-78
HEADOPEN function

of HTF package, 123-79

Index-23

HEADOPEN procedure
of HTP package, 128-77

HELO function and procedure, 164-20
HELP function, 164-22
HR function

of HTF package, 123-81
HR procedure

of HTP package, 128-79
HTF package, 123-1
HTML tags

applet tags
functions, 123-4
procedures, 128-4

atags tags
procedures, 128-5

character formatting tags
functions, 123-7
procedures, 128-7

form tags
functions, 123-5
procedures, 128-5

frame tags
functions, 123-7
procedures, 128-7

list tags
functions, 123-4
procedures, 128-4

paragraph formatting tags
functions, 123-6
procedures, 128-6

table tags
functions, 123-5

HTMLCLOSE function
of HTF package, 123-82

HTMLCLOSE procedure
of HTP package, 128-80

HTMLDB_APPLICATION package
documentation, 125-2

HTMLDB_CUSTOM_AUTH package
documentation, 124-2

HTMLDB_ITEM package documentation, 126-2
HTMLDB_UTIL package documentation, 127-2
HTMLOPEN function

of HTF package, 123-83
HTMLOPEN procedure

of HTP package, 128-81
HTP package, 128-1
HTTP_HEADER_CLOSE procedure, 137-17
HttpUriType, 172-9
HTTPURITYPE function, 172-17
HttpUriType subtype, 172-9

CREATEURI function, 172-10
GETBLOB function, 172-11
GETCLOB function, 172-12
GETCONTENTTYPE function, 172-13
GETEXTERNALURL function, 172-14
GETRUL function, 172-15
GETXML function, 172-16
HTTPURITYPE function, 172-17
methods, 172-9

I
IMG function

of HTF package, 123-84
IMG procedure

of HTP package, 128-82
IMG2 procedure

of HTP package, 128-83
IMPORT_COLUMN_STATS procedure, 93-86
IMPORT_DATABASE_STATS procedure, 93-88
IMPORT_DICTIONARY_STATS procedure, 93-90
IMPORT_FIXED_OBJECTS_STATS

procedure, 93-92
IMPORT_INDEX_STATS procedure, 93-94
IMPORT_MODEL procedure, 23-68
IMPORT_SCHEMA_STATS procedure, 93-96
IMPORT_SYSTEM_STATS procedure, 93-98
IMPORT_TABLE_STATS procedure, 93-99
IMPORTNODE function, 113-41, 113-106
INCLUDE_EXTRA_ATTRIBUTES

procedure, 19-25
INITIALIZE function, 27-39
INITIALIZE procedure, 66-4
INSERT_BIN_CAT_FREQ procedure, 24-14
INSERT_BIN_NUM_EQWIDTH procedure, 24-16
INSERT_BIN_NUM_QTILE procedure, 24-18
INSERT_CLIP_TRIM_TAIL procedure, 24-20
INSERT_CLIP_WINSOR_TAIL procedure, 24-22
INSERT_NORM_LIN_MINMAX procedure, 24-26

Index-24

INSERT_NORM_LIN_ZSCORE procedure, 24-24
INSERTBEFORE function, 113-107
INSERTDATA procedure, 113-108
INSERTXML function, 117-6, 119-8
INSTANCE procedure, 41-9
instantiation

aborting database preparation, 19-4
aborting schema preparation, 19-5
aborting table preparation, 19-6
global SCN, 15-40
preparing a database for, 19-27
preparing a schema for, 19-28
preparing a table for, 19-29
schema SCN, 15-49
table SCN, 15-52

INTERNAL_VERSION_CHECK function, 64-11
internet addressing

using UTL_INADDR, 158-1
INTERRUPT_TUNING_TASK procedure, 91-20
INTERVAL procedure, 41-10
INVOKE function, 153-13
IS_CLUSTER_DATABASE function, 104-34
IS_HIERARCHY_ENABLED function, 112-7
IS_LOCATOR function, 151-3
IS_NULL_TAG member function, 174-39
IS_OPEN function, 90-51, 155-26
IS_TRIGGER_FIRE_ONCE function, 26-8
ISFRAGMENT function, 182-18
ISINDEX function

of HTF package, 123-86
ISINDEX procedure

of HTP package, 128-84
ISNULL function, 113-109, 113-113
ISOPEN function, 152-5
ISSCHEMABASED function, 182-19
ISSCHEMAVALID function, 182-20
ISSCHEMAVALIDATED function, 182-21
ITALIC function

of HTF package, 123-87
ITALIC procedure

of HTP package, 128-85
ITEM function, 113-113

K
KBD function

of HTF package, 123-88
KBD procedure

of HTP package, 128-86
KEEP procedure, 87-5
KEYBOARD function

of HTF package, 123-89
KEYBOARD procedure

of HTP package, 128-87

L
LAST_ERROR_POSITION function, 90-52
LAST_ROW_COUNT function, 90-53
LAST_ROW_ID function, 90-54
LAST_SQL_FUNCTION_CODE function, 90-55
LCR$_DDL_RECORD type, 174-3
LCR$_ROW_LIST type, 174-44
LCR$_ROW_RECORD type, 174-14
LCR$_ROW_UNIT type, 174-45

GET_LOB_INFORMATION member
function, 174-22

GET_LOB_OPERATION_SIZE member
procedure, 174-23

GET_LONG_INFORMATION member
function, 174-25

SET_LOB_INFORMATION member
procedure, 174-28

SET_LOB_OPERATION_SIZE member
procedure, 174-30

LENGTH function, 161-29
LINE function

of HTF package, 123-90
LINE procedure

of HTP package, 128-88
LINK procedure, 108-24
LINKREL function

of HTF package, 123-91
LINKREL procedure

of HTP package, 128-89
LINKREV function

of HTF package, 123-92
LINKREV procedure

of HTP package, 128-90

Index-25

LISTHEADER function
of HTF package, 123-93

LISTHEADER procedure
of HTP package, 128-91

LISTINGCLOSE function
of HTF package, 123-94

LISTINGCLOSE procedure
of HTP package, 128-92

LISTINGOPEN function
of HTF package, 123-95

LISTINGOPEN procedure
of HTP package, 128-93

LISTITEM function
of HTF package, 123-96

LISTITEM procedure
of HTP package, 128-94

LISTPRINT procedure, 137-18
LOAD_SQLSET procedure, 91-21
LOBs

DBMS_LOB package, 45-1
LOCAL_TRANSACTION_ID function, 101-12
LOCK_MAP procedure, 94-8
LOCK_OBJECT procedure, 163-9
LOCK_SCHEMA_STATS procedure, 93-101
LOCK_TABLE_STATS procedure, 93-102
LOCKRESOURCE function, 108-25
log apply services

managing initialization parameters for logical
standby databases, 49-2

logical change records (LCRs)
DDL LCRs, 174-3

getting base table name, 174-8
getting base table owner, 174-9
getting current schema, 174-9
getting logon user name, 174-10
getting object type, 174-10
setting base table name, 174-10
setting base table owner, 174-11
setting current schema, 174-11
setting DDL text, 174-12
setting logon user, 174-12
setting object type, 174-13

determining if tag is NULL, 174-39
executing, 174-8, 174-21
extra attributes

excluding, 19-25
including, 19-25

getting command type, 174-34
getting commit SCN, 174-35
getting compatibility information, 174-35
getting extra attributes, 174-36
getting object name, 174-38
getting object owner, 174-38
getting SCN, 174-38
getting source database name, 174-38
getting tag, 174-38
getting transaction identifier, 174-39
LCR$_DDL_RECORD type, 174-3
LCR$_ROW_LIST type, 174-44
LCR$_ROW_RECORD type, 174-14
LCR$_ROW_UNIT type, 174-45
row LCRs, 174-14

adding value to column, 174-19
converting LONG to LOB, 174-20
deleting value to column, 174-20
getting column value, 174-25
getting list of column values, 174-26
getting LOB offset, 174-23
renaming column, 174-28
setting column value, 174-31
setting list of column values, 174-32
setting LOB offset, 174-29

setting command type, 174-40
setting extra attributes, 174-40
setting object name, 174-41
setting object owner, 174-42
setting source database name, 174-42
setting tag, 174-43
types, 174-1

LZ_COMPRESS functions and procedures, 152-6
LZ_COMPRESS_ADD procedure, 152-8
LZ_COMPRESS_CLOSE procedure, 152-9
LZ_COMPRESS_OPEN function, 152-10
LZ_UNCOMPRESS functions and

procedures, 152-11
LZ_UNCOMPRESS_CLOSE procedure, 152-15
LZ_UNCOMPRESS_EXTRACT procedure, 152-13
LZ_UNCOMPRESS_OPEN function, 152-14

Index-26

M
MAIL function and procedure, 164-23
MAILTO function

of HTF package, 123-97
MAILTO procedure

of HTP package, 128-95
MAINTAIN_SIMPLE_TABLESPACE

procedure, 96-72
MAINTAIN_TABLESPACES procedure, 96-78
MAKE_DATA_BLOCK_ADDRESS

function, 104-35
MAKEATTR function, 113-114
MAKECDATASECTION function, 113-115
MAKECHARACTERDATA function, 113-116
MAKECOMMENT function, 113-117
MAKEDOCUMENT function, 113-118
MAKEDOCUMENTFRAGMENT

function, 113-119
MAKEDOCUMENTTYPE function, 113-120
MAKEELEMENT function, 113-121
MAKEENTITY function, 113-122
MAKEENTITYREFERENCE function, 113-123
MAKENODE function, 113-124, 113-127
MAKENOTATION function, 113-127
MAKEPROCESSINGINSTRUCTION

function, 113-128
MAKETEXT function, 113-129
MAKEVERSIONED function, 109-13
MAP_ALL function, 94-9
MAP_ELEMENT function, 94-10
MAP_FILE function, 94-11
MAP_OBJECT function, 94-13
MAPCLOSE function

of HTF package, 123-98
MAPCLOSE procedure

of HTP package, 128-96
MAPOPEN function

of HTF package, 123-99
MAPOPEN procedure

of HTP package, 128-97
MATCH function, 134-11
materialized view logs

master table
purging, 54-14, 54-15, 54-16

materialized views
refreshing, 54-18, 54-21, 54-23

MENULISTCLOSE function
of HTF package, 123-100

MENULISTCLOSE procedure
of HTP package, 128-98

MENULISTOPEN function
of HTF package, 123-101

MENULISTOPEN procedure
of HTP package, 128-99

META function
of HTF package, 123-102

META procedure
of HTP package, 128-100

methodology
transformation, 24-6

MG2 function
of HTF package, 123-85

migration
post-migration actions, 55-1

MIME_HEADER procedure, 137-20
MIMEHEADER_DECODE function, 154-5
MIMEHEADER_ENCODE function, 154-7
min-max normalization, 24-4
MODIFY_SNAPSHOT_SETTINGS

procedure, 106-9
MODIFY_TRANSFORMATION procedure, 102-6
MOVEXDB_TABLESPACE procedure, 108-26

N
NAME_RESOLVE procedure, 104-36
NAME_TOKENIZE procedure, 104-38
NAMESPACE function, 182-13
new features, 1-xxxiii
NEW_LINE procedure, 61-12, 155-27
NEW_ROW_LIST function and procedure, 136-5
NEWCONTEXT function, 114-10, 116-8, 117-7,

119-9
NEWDOMDOCUMENT function, 113-130
NEWPARSER function, 115-4
NEWPROCESSOR function, 121-4
NEWSTYLESHEET function, 121-4
NEXT_DATE procedure, 41-11
NEXT_ITEM_TYPE function, 63-28

Index-27

NL function
of HTF package, 123-103

NL procedure
of HTP package, 128-101

NOBR function
of HTF package, 123-104

NOBR procedure
of HTP package, 128-102

NOFRAMESCLOSE function
of HTF package, 123-105

NOFRAMESCLOSE procedure
of HTP package, 128-103

NOFRAMESOPEN function
of HTF package, 123-106

NOFRAMESOPEN procedure
of HTP package, 128-104

NOOP function and procedure, 164-25
NORMAL function, 66-5
NORMAL_DIST_FIT procedure, 92-4
normalization, 24-4

min-max, 24-4
z-score, 24-4

NORMALIZE procedure, 113-131
numerical binning, 24-3

O
OBJECT_DEPENDENT_SEGMENTS

function, 88-10
OBJECT_GROWTH_TREND function, 88-13
OLISTCLOSE function

of HTF package, 123-107
OLISTCLOSE procedure

of HTP package, 128-105
OLISTOPEN function

of HTF package, 123-108
OLISTOPEN procedure

of HTP package, 128-106
OPEN_CONNECTION function, 165-18
OPEN_CONNECTION functions, 164-26
OPEN_CURSOR function, 90-56
OPEN_DATA function and procedure, 164-28
OR REPLACE clause

for creating packages, 1-3
Oracle Streams

administrator
granting privileges, 97-3
revoking privileges, 97-7

compatibility, 95-4, 95-5, 174-35
creating queues, 96-107
data dictionary

removing information, 96-92
messaging

notification, 96-100
Oracle-supplied types

logical change record (LCR) types, 174-1
rule types, 181-1

ORMAT_CALL_STACK function, 104-27
OUTLN_PKG package, 59-1
OVERLAY function, 161-30
OWA_CACHE package, 129-1
OWA_COOKIE package, 130-1
OWA_CUSTOM package, 131-1
OWA_IMAGE package, 132-1
OWA_OPT_LOCK package, 133-1
OWA_PATTERN package, 134-1
OWA_SEC package, 135-1
OWA_TEXT package, 136-1
OWA_UTIL package, 137-1

P
PACK_MESSAGE procedures, 63-21
package

DBMS_ODCI, 56-1
DBMS_XDB, 108-1
DBMS_XDB_VERSION, 109-1
DBMS_XDBT, 111-1
DBMS_XMLDOM, 113-1
DBMS_XMLGEN, 114-1
DBMS_XMLPARSER, 115-1
DBMS_XMLQUERY, 116-1
DBMS_XMLSAVE, 117-1
DBMS_XMLSCHEMA, 118-1
DBMS_XMLSTORE, 119-1
DBMS_XSLPROCESSOR, 121-1
UriFactory, 172-36

Package - UriFactory, 172-36
package DBMS_XDBZ, 112-1
package overview, 1-2

Index-28

package variables
i_am_a_refresh, 54-12

packages
creating, 1-3
referencing, 1-6
where documented, 1-7

PARA function
of HTF package, 123-109

PARA procedure
of HTP package, 128-107

PARAGRAPH function
of HTF package, 123-110

PARAGRAPH procedure
of HTP package, 128-108

PARAM function
of HTF package, 123-111

PARAM procedure
of HTP package, 128-109

PARSE procedure, 90-57, 115-4
PARSEBUFFER procedure, 115-5
PARSECLOB procedure, 115-6
PARSEDTD procedure, 115-6
PARSEDTDBUFFER procedure, 115-7
PARSEDTDCLOB procedure, 115-7
PAUSE_PROFILER function and procedure, 64-12
PGRADE_STAT_TABLE procedure, 93-134
PIECEWISE member procedure

of ANYDATA TYPE, 168-14
of ANYDATASET TYPE, 169-15

PING procedure, 27-41
PLAINTEXT function

of HTF package, 123-112
PLAINTEXT procedure

of HTP package, 128-110
plan stability, 59-2
PL/SQL

datatypes, 31-4
numeric codes for, 31-7

functions
DBMS_MGWADM package

subprograms, 51-29
DBMS_MGWMSG package

subprograms, 52-24
procedures

DBMS_MGWADM package

subprograms, 51-29
DBMS_MGWMSG package

subprograms, 52-24
PLSQL_TRACE_VERSION procedure, 100-9
pointer to

CTX_ADM package, 2-1
point-in-time recovery

Oracle Streams, 96-70
POISSON_DIST_FIT procedure, 92-5
PORT_STRING function, 104-39
PRECLOSE function

of HTF package, 123-113
PRECLOSE procedure

of HTP package, 128-111
PREOPEN function

of HTF package, 123-114
PREOPEN procedure

of HTP package, 128-112
PREPARE_COLUMN_VALUES

procedures, 93-103
PREPARE_COLUMN_VALUES_NVARCHAR2

procedure, 93-106
PREPARE_COLUMN_VALUES_ROWID

procedure, 93-108
PREPARE_GLOBAL_INSTANTIATION

procedure, 19-27
PREPARE_SCHEMA_INSTANTIATION

procedure, 19-28
PREPARE_TABLE_INSTANTIATION

procedure, 19-29
PRINT function

of HTF package, 123-115
PRINT procedure

of HTP package, 128-113
PRINT_BACKTRACE procedure, 27-42
PRINT_CGI_ENV procedure, 137-21
PRINT_INSTANTIATIONS procedure, 27-43
PRINT_MULTI procedure, 136-6
PRINT_ROW_LIST procedure, 136-7
PRINTS procedure

of HTP package, 128-114
prior probabilities, 23-17
privileges

Oracle Streams administrator, 97-3, 97-7
PRN function

Index-29

of HTF package, 123-116
PRN procedure

of HTP package, 128-115
PROBE_VERSION procedure, 27-44
PROCESSXSL function, 121-5
PROPAGATEORIGINALEXCEPTION

procedure, 116-8, 117-7
propagations

altering, 65-3
creating, 65-6, 96-14, 96-34, 96-46, 96-58
DBMS_PROPAGATION_ADM package, 65-1
dropping, 65-11
rules

defining global, 96-14
defining schema, 96-34
defining subset, 96-46
defining table, 96-58

PS procedure
of HTP package, 128-116

PULL_SIMPLE_TABLESPACE procedure, 99-22
PULL_TABLESPACES procedure, 99-25
PURGE procedure, 63-33
PURGE_LOST_DB_ENTRY procedure, 101-13
PURGE_MIXED procedure, 101-16
PURGE_SOURCE_CATALOG procedure, 96-92
PURGE_STATS procedure, 93-110
PURGELDAPCACHE function, 112-8
purging

the subscription window, 21-2
PUT procedure, 155-28
PUT procedures, 61-13
PUT_FILE procedure, 35-7
PUT_LINE procedure, 155-33
PUT_LINE procedures, 61-15
PUT_LINE_NCHAR procedure, 155-34
PUT_NCHAR procedure, 155-31
PUT_RAW function, 155-32
PUTF procedure, 155-29
PUTF_NCHAR procedure, 155-35

Q
quantile numerical binning, 24-3
query generation, 24-6
queues

AnyData
creating, 96-107
removing, 96-94

QUIT function and procedure, 164-30
QUOTED_PRINTABLE_DECODE function, 154-9
QUOTED_PRINTABLE_ENCODE

function, 154-10

R
RANDOM procedure, 66-6
RANK_APPLY procedure, 23-72
RCPT function, 164-32
RE$ATTRIBUTE_VALUE type, 181-4
RE$ATTRIBUTE_VALUE_LIST type, 181-4
RE$COLUMN_VALUE type, 181-5, 181-9
RE$COLUMN_VALUE_LIST type, 181-6
RE$NAME_ARRAY type, 181-6
RE$NV_ARRAY type, 181-6
RE$NV_LIST type, 181-6

ADD_PAIR member procedure, 181-7
GET_ALL_NAMES member function, 181-8
GET_VALUE member function, 181-8
REMOVE_PAIR member procedure, 181-8

RE$RULE_HIT type, 181-10
RE$RULE_HIT_LIST type, 181-10
RE$TABLE_ALIAS type, 181-11
RE$TABLE_ALIAS_LIST type, 181-12
RE$TABLE_VALUE type, 181-12
RE$TABLE_VALUE_LIST type, 181-12
RE$VARIABLE_TYPE type, 181-13
RE$VARIABLE_TYPE_LIST type, 181-15
RE$VARIABLE_VALUE type, 181-16
RE$VARIABLE_VALUE_LIST type, 181-16
READ_CLIENT_INFO procedure, 14-5
READ_LINE function, 165-21
READ_LINE procedure

of UTL_HTTP, 156-65
READ_MODULE procedure, 14-6
READ_ONLY procedure, 101-17
READ_RAW function, 165-23
READ_RAW procedure

of UTL_HTTP, 156-67
READ_TEXT function, 165-25
READ_TEXT procedure

Index-30

of UTL_HTTP, 156-68
READ_WRITE procedure, 101-18
READ2CLOB function, 121-7
REBUILD_FREELISTS procedure, 70-14
REBUILDHIERARCHICALINDEX

procedure, 108-27
RECEIVE_MESSAGE function, 63-26
RECOMP_PARALLEL procedure, 162-5
RECOMP_SERIAL procedure, 162-6
REDIRECT_URL procedure, 137-22
refresh

materialized views, 54-18, 54-21, 54-23
REFRESH_PRIVATE_OUTLINE procedure, 60-7
REGISTER procedure, 13-7
REGISTER_DEPENDENT_OBJECT

procedure, 68-10
REGISTERSCHEMA procedure, 118-13
REGISTERURI procedure, 118-16
REGISTERURLHANDLER procedure, 172-40
RELEASE function, 46-10
RELEASE_ALL_SERVICES procedure, 153-14
RELEASE_CALL procedure, 153-15
RELEASE_SERVICE procedure, 153-16
REMOVE procedure

of DBMS_ALERT package, 13-8
of DBMS_JOB package, 41-12
of OWA_COOKIE package, 130-6

REMOVE_PAIR member procedure, 181-8
REMOVE_PIPE function, 63-31
REMOVE_PROPERTY procedure, 153-17
REMOVE_QUEUE procedure, 96-94
REMOVE_RULE procedure, 82-22, 96-96
REMOVE_SQLSET_REFERENCE procedure, 91-22
REMOVE_STREAMS_CONFIGURATION

procedure, 96-98
REMOVEALL procedure, 13-9
REMOVEATTRIBUTE procedure, 113-132
REMOVEATTRIBUTENODE function, 113-133
REMOVENAMEDITEM function, 113-135
REMOVEPARAM procedure, 121-7
REMOVEXSLTPARAM procedure, 116-9, 117-8
RENAME_COLUMN member procedure, 174-28
RENAME_MODEL procedure, 23-75
RENAMERESOURCE procedure, 108-28
REPLACECHILD function, 113-136

REPLACEDATA procedure, 113-137
replication

datetime datatypes
abbreviations, 1-7

interval datatypes
abbreviations, 1-7

REPLY, REPLIES record types, 164-4
REPORT_TUNING_TASK function, 91-23
REQUEST function, 46-11, 156-70
REQUEST_PIECES function, 156-73
RESET_BUFFER procedure, 63-34
RESET_TUNING_TASK procedure, 91-24
RESETPARAMS procedure, 121-8
RESOLVENAMESPACEPREFIX function, 113-138
RESTARTQUERY procedure, 114-11
RESTORE function, 94-14
RESTORE_DATBASE_STATS procedure, 93-111
RESTORE_DICTIONARY_STATS

procedure, 93-112
RESTORE_FIXED_OBJECTS_STATS

procedure, 93-113
RESTORE_SCHEMA_STATS procedure, 93-114
RESTORE_SYSTEM_STATS procedure, 93-115
RESTORE_TABLE_STATS procedure, 93-116
RESUME_PROFILER function and

procedure, 64-13
RESUME_TUNING_TASK procedure, 91-25
REVERSE function, 161-32
REVOKE_ADMIN_PRIVILEGE procedure, 97-7
REVOKE_OBJECT_PRIVILEGE procedure, 82-24
REVOKE_REMOTE_ADMIN_ACCESS

procedure, 97-9
REVOKE_SWITCH_CONSUMER_GROUP

procedure, 77-6
REVOKE_SYSTEM_PRIVILEGE procedure, 77-8,

82-25
ROLLBACK procedure, 101-19
ROLLBACK_FORCE procedure, 101-20
ROLLBACK_SAVEPOINT procedure, 101-21
row migration, 96-46, 96-52
ROWID datatype

extended format, 80-17
ROWID_BLOCK_NUMBER function, 80-7
ROWID_CREATE function, 80-8
ROWID_INFO procedure, 80-10

Index-31

ROWID_OBJECT function, 80-12
ROWID_RELATIVE_FNO function, 80-13
ROWID_ROW_NUMBER function, 80-14
ROWID_TO_ABSOLUTE_FNO function, 80-15
ROWID_TO_EXTENDED function, 80-17
ROWID_TO_RESTRICTED function, 80-19
ROWID_TYPE function, 80-20
ROWID_VERIFY function, 80-21
rule sets

adding rules to, 82-4
creating, 82-13
dropping, 82-17
removing rules from, 82-22

rule-based transformations
setting, 96-105

rules
action contexts

adding name-value pairs, 181-7
getting name-value pairs, 181-8
getting value for name, 181-8
removing name-value pairs, 181-8
transformations, 96-105

altering, 82-6
creating, 82-11
DBMS_RULE package, 81-1
DBMS_RULE_ADM package, 82-1
dropping, 82-16
evaluation, 81-5

iterators, 81-4, 81-10
evaluation contexts

creating, 82-9
dropping, 82-15

object privileges
granting, 82-18
revoking, 82-24

propagations
removing, 96-96

RE$ATTRIBUTE_VALUE type, 181-4
RE$ATTRIBUTE_VALUE_LIST type, 181-4
RE$COLUMN_VALUE type, 181-5, 181-9
RE$COLUMN_VALUE_LIST type, 181-6
RE$NAME_ARRAY type, 181-6
RE$NV_ARRAY type, 181-6
RE$NV_LIST type, 181-6
RE$RULE_HIT type, 181-10

RE$RULE_HIT_LIST type, 181-10
RE$TABLE_ALIAS type, 181-11
RE$TABLE_ALIAS_LIST type, 181-12
RE$TABLE_VALUE type, 181-12
RE$TABLE_VALUE_LIST type, 181-12
RE$VARIABLE_TYPE type, 181-13
RE$VARIABLE_TYPE_LIST type, 181-15
RE$VARIABLE_VALUE type, 181-16
RE$VARIABLE_VALUE_LIST type, 181-16
subset

defining, 96-46, 96-52
system privileges

granting, 82-20
revoking, 82-25

system-created
global apply, 96-19
global capture, 96-19
global propagation, 96-14
global schema, 96-39
removing, 96-96
schema capture, 96-39
schema propagation, 96-34
subset apply, 96-52
subset capture, 96-52
subset propagation, 96-46
table apply, 96-63
table capture, 96-63
table propagation, 96-58

types, 181-1
RUN procedure, 41-13

S
S function

of HTF package, 123-117
S procedure

of HTP package, 128-117
SAMPLE function

of HTF package, 123-118
SAMPLE procedure

of HTP package, 128-118
SAVE function, 94-15
SAVEPOINT procedure, 101-22
SCHEMAVALIDATE procedure, 182-22
SCN_TO_TIMESTAMP function, 36-13

Index-32

SCRIPT function
of HTF package, 123-119

SCRIPT procedure
of HTP package, 128-119

SDO_CS package documentation, 138-2
SDO_GCDR package documentation, 139-2
SDO_GEOM package documentation, 140-2
SDO_GEOR package documentation, 141-2
SDO_GEOR_UTL package documentation, 142-2
SDO_LRS package documentation, 143-2
SDO_MIGRATE package documentation, 144-2
SDO_NET package documentation, 145-2
SDO_SAM package documentation, 146-2
SDO_TOPO package documentation, 147-2
SDO_TOPO_MAP package documentation, 148-2
SDO_TUNE package documentation, 149-2
SDO_UTIL package documentation, 150-2
SEED procedures, 66-7
SEGMENT_CORRUPT procedure, 89-5
SEGMENT_DROP_CORRUPT procedure, 89-6
SEGMENT_DUMP procedure, 89-7
SEGMENT_FIX_STATUS procedure, 70-15
SEGMENT_VERIFY procedure, 89-8
SELECT_OBJECT procedure, 163-10
SELECT_SQLSET function, 91-26
SELECT_WORKLOAD_REPOSITORY

functions, 91-27
SELECTNODES function, 121-8
SELECTSINGLENODE function, 121-8
SELF_CHECK procedure, 27-45
SEND procedure, 130-7, 160-4
SEND_ATTACH_RAW procedure, 160-5
SEND_ATTACH_VARCHAR2 procedure, 160-7
SEND_MESSAGE function, 63-23
SERV_MOD_ACT_STAT_DISABLE

procedure, 53-7
SERV_MOD_ACT_STAT_ENABLE

procedure, 53-8
SERV_MOD_ACT_TRACE_DISABLE

procedure, 53-10
SERV_MOD_ACT_TRACE_ENABLE

procedure, 53-12
SESSION_TRACE_DISABLE procedure, 53-14
SESSION_TRACE_ENABLE procedure, 53-15
SET* member procedures

of ANYDATA TYPE, 168-15
of ANYDATASET TYPE, 169-16

SET_ACTION procedure, 14-8
SET_AUTHENTICATION procedure, 156-77
SET_AUTHORIZATION procedure, 135-8
SET_BASE_TABLE_NAME member

procedure, 174-10
SET_BASE_TABLE_OWNER member

procedure, 174-11
SET_BODY_CHARSET procedures, 156-78
SET_BREAKPOINT function, 27-46
SET_CLIENT_INFO procedure, 14-10
SET_COLUMN_STATS procedures, 93-117
SET_COMMAND_TYPE member

procedure, 174-40
SET_CONSUMER_GROUP_MAPPING

procedure, 76-24
SET_CONSUMER_GROUP_MAPPING_PRI

procedure, 76-25
SET_COOKIE_SUPPORT procedures, 156-80
SET_CURRENT_SCHEMA member

procedure, 174-11
SET_DDL_TEXT member procedure, 174-12
SET_DEFAULTS procedure, 13-10
SET_DETAILED_EXCP_SUPPORT

procedure, 156-82
SET_DML_HANDLER procedure, 15-30
SET_ENQUEUE_DESTINATION procedure, 15-36
SET_EXECUTE procedure, 15-38
SET_EXTRA_ATTRIBUTE member

procedure, 174-40
SET_FOLLOW_REDIRECT procedures, 156-83
SET_GLOBAL_INSTANTIATION

procedure, 15-40
SET_HEADER procedure, 156-85
SET_INDEX_STATS procedures, 93-120
SET_INITIAL_CONSUMER_GROUP

procedure, 76-27
SET_KEY_COLUMNS procedure, 15-43
SET_LOB_INFORMATION member

procedure, 174-28
SET_LOB_OFFSET member procedure, 174-29
SET_LOB_OPERATION_SIZE member

procedure, 174-30
SET_LOGON_USER member procedure, 174-12

Index-33

SET_MESSAGE_NOTIFICATION
procedure, 96-100

SET_MODULE procedure, 14-11
SET_OBJECT_NAME member procedure, 174-41
SET_OBJECT_OWNER member procedure, 174-42
SET_OBJECT_TYPE member procedure, 174-13
SET_OER_BREAKPOINT function, 27-48
SET_PARAM procedure, 93-124
SET_PARAMETER procedure, 19-30

apply process, 15-45
SET_PERSISTENT_CONN_SUPPORT

procedure, 156-87
SET_PLSQL_TRACE procedure, 100-10
SET_PROPERTY procedure, 153-18
SET_PROTECTION_REALM procedure, 135-10
SET_PROXY procedure, 156-90
SET_RESPONSE_ERROR_CHECK

procedure, 156-92
SET_RULE_TRANSFORM_FUNCTION

procedure, 96-105
SET_SCHEMA_INSTANTIATION

procedure, 15-49
SET_SESSION_LONGOPS procedure, 14-13
SET_SESSION_TIMEOUT procedure, 78-7
SET_SOURCE_DATABASE_NAME member

procedure, 174-42
SET_SYSTEM_STATS procedure, 93-126
SET_TABLE_INSTANTIATION procedure, 15-52
SET_TABLE_STATS procedure, 93-129
SET_TAG member procedure, 174-43
SET_TAG procedure, 95-12
SET_THRESHOLD procedure, 84-14
SET_TIMEOUT function, 27-49
SET_TIMEOUT procedure, 78-8
SET_TIMEOUT_BEHAVIOUR procedure, 27-50
SET_TRANSFER_TIMEOUT procedure, 156-93
SET_TRIGGER_FIRING_PROPERTY

procedure, 26-9
SET_UP_QUEUE procedure, 96-107
SET_UPDATE_CONFLICT_HANDLER

procedure, 15-54
SET_VALUE function, 27-51
SET_VALUE member procedure, 174-31
SET_VALUES member procedure, 174-32
SET_WALLET procedure, 156-94

SET_WARNING_SETTING_STRING
procedure, 105-10

SETACL procedure, 108-29
SETATTRIBUTE procedure, 113-139
SETATTRIBUTENODE function, 113-140
SETBASEDIR procedure, 115-8
SETBATCHSIZE procedure, 117-8
SETBINDVALUE procedure, 116-9
SETCOLLIDATTRNAME procedure, 116-10
SETCOMMITBATCH procedure, 117-9
SETCONVERTSPECIALCHARS procedure, 114-12
SETDATA procedure, 113-141
SETDATAHEADER procedure, 116-10
SETDATEFORMAT procedure, 116-11, 117-9
SETDCHARSET procedure, 113-145
SETDOCTYPE procedure, 115-8
SETDVERSION procedure, 113-147
SETENCODINGTAG procedure, 116-11
SETERRORLOG procedure, 115-8, 121-9
SETERRORTAG procedure, 116-12
SETIGNORECASE procedure, 117-10
SETINFO member procedure

of ANYTYPE TYPE, 170-4
SETKEYCOLUMN procedure, 117-10, 119-10
SETMAXROWS procedure, 114-13, 116-12
SETMETAHEADER procedure, 116-13
SETNAMEDITEM function, 113-142
SETNODEVALUE procedure, 113-143
SETPARAM procedure, 121-9
SETPREFIX procedure, 113-144
SETPRESERVEWHITESPACE procedure, 115-9,

117-11
SETRAISEEXCEPTION procedure, 116-13
SETRAISENOROWSEXCEPTION

procedure, 116-14
SETROWIDATTRNAME procedure, 116-14
SETROWIDATTRVALUE procedure, 116-15
SETROWSETTAG procedure, 114-15, 116-15
SETROWTAG procedure, 116-15, 117-11, 119-11
SETSCHEMAVALIDATED procedure, 182-23
SETSKIPROWS procedure, 114-17, 116-16
SETSQLTOXMLNAMEESCAPING

procedure, 116-16, 117-11
SETSTANDALONE procedure, 113-145
SETSTYLESHEETHEADER procedure, 116-17

Index-34

SETTAGCASE procedure, 116-17
SETUPDATECOLUMN procedure, 117-12, 119-12
SETVALIDATIONMODE procedure, 115-9
SETVALUE procedure, 113-146
SETXSLT procedure, 116-18, 117-12
SETXSLTPARAM procedure, 116-19, 117-13
SHOW_BREAKPOINTS procedures, 27-53
SHOW_FRAME_SOURCE procedure, 27-54
SHOW_SOURCE procedures, 27-55
SHOWPAGE procedure, 137-23
SHOWSOURCE procedure, 137-24
SHOWWARNINGS procedure, 115-10, 121-10
SIGNAL procedure, 13-11
SIGNATURE procedure, 137-25
SIZES procedure, 87-7
SKIP_CORRUPT_BLOCKS procedure, 70-17
SLEEP procedure, 46-13
SMALL function

of HTF package, 123-120
SMALL procedure

of HTP package, 128-120
snapshot. See DBMS_MVIEW, 54-1
SPACE_ERROR_INFO function, 78-9
SPACE_USAGE procedure, 88-15
SPLITTEXT function, 113-148
SQL statements

larger than 32 KB, 90-59
SQL*Plus

creating a sequence, 1-6
staging

queues
creating, 96-107
removing, 96-94

START_APPLY procedure, 15-58
START_CAPTURE procedure, 19-33
START_PROFILER functions and

procedures, 64-14
START_REDEF_TABLE procedure, 68-11
START_SERVICE procedure, 85-7
STARTUP_EXTPROC_AGENT procedure, 122-5
STATUS_LINE procedure, 137-26
STEP_ID function, 101-23
STOP_APPLY procedure, 15-59
STOP_CAPTURE procedure, 19-34
STOP_PROFILER function and procedure, 64-15

STOP_SERVICE procedure, 85-8
STORE_VALUES procedure, 133-6
stored outlines

DBMS_OUTLN, 59-1
OUTLN_PKG package, 59-1

STREAM2MULTI procedure, 136-8
Streams

removing configuration, 96-98
STREAMS$_TRANSFORM_FUNCTION, 15-36,

15-38, 96-106
STRIKE function

of HTF package, 123-121
STRIKE procedure

of HTP package, 128-121
STRING function, 66-8
STRONG function

of HTF package, 123-122
STRONG procedure

of HTP package, 128-122
STYLE function

of HTF package, 123-123
STYLE procedure

of HTP package, 128-123
SUB procedure

of HTP package, 128-124
SUBMIT procedure, 41-14
SUBMIT_PENDING_AREA procedure, 76-29
subscribers

drop the subscription, 21-2
extend the window to create a new view, 21-2
purging the subscription window, 21-2
retrieve change data from the subscriber

views, 21-2
subscription window

purging, 21-2
SUBSTR function, 161-33
SUBSTRINGDATA function, 113-149
SUMMARY procedure, 92-6
SUP function

of HTF package, 123-125
SUP procedure

of HTP package, 128-125
SWITCH_CONSUMER_GROUP_FOR_SESS

procedure, 76-30
SWITCH_CONSUMER_GROUP_FOR_USER

Index-35

procedure, 76-31
SWITCH_PLAN procedure, 76-32
SYNC_INTERIM_TABLE procedure, 68-13
SYNCHRONIZE function, 27-57

T
TABLE_TO_COMMA procedures, 104-40
TABLECAPTION function

of HTF package, 123-126
TABLECAPTION procedure

of HTP package, 128-126
TABLECLOSE function

of HTF package, 123-129
TABLECLOSE procedure

of HTP package, 128-129
TABLEDATA function

of HTF package, 123-127
TABLEDATA procedure

of HTP package, 128-127
TABLEHEADER function

of HTF package, 123-128
TABLEHEADER procedure

of HTP package, 128-128
TABLEOPEN function

of HTF package, 123-130
TABLEOPEN procedure

of HTP package, 128-130
TABLEPRINT function, 137-27
TABLEROWCLOSE function

of HTF package, 123-131
TABLEROWCLOSE procedure

of HTP package, 128-131
TABLEROWOPEN function

of HTF package, 123-132
TABLEROWOPEN procedure

of HTP package, 128-132
tables

table items as arrays, 90-28, 90-32
TABLESPACE_FIX_BITMAPS procedure, 89-10
TABLESPACE_FIX_SEGMENT_STATES

procedure, 89-11
TABLESPACE_MIGRATE_FROM_LOCAL

procedure, 89-12
TABLESPACE_MIGRATE_TO_LOCAL

procedure, 89-13
TABLESPACE_REBUILD_BITMAPS

procedure, 89-15
TABLESPACE_REBUILD_QUOTAS

procedure, 89-16
TABLESPACE_RELOCATE_BITMAPS

procedure, 89-17
TABLESPACE_SET type, 99-4
TABLESPACE_VERIFY procedure, 89-19
tablespaces

change tables and, 20-25
tags

GET_TAG function, 95-11
SET_TAG procedure, 95-12

TARGET_PROGRAM_RUNNING
procedure, 27-58

TELETYPE function
of HTF package, 123-133

TELETYPE procedure
of HTP package, 128-133

TERMINATE procedure, 66-9
TEXT_DECODE function, 154-11
TEXT_ENCODE function, 154-13
TIMESTAMP_TO_SCN function, 36-14
TITLE function

of HTF package, 123-134
TITLE procedure

of HTP package, 128-134
TODATE function, 137-31
TOOBJECT procedure, 182-24
top-N frequency binning, 24-3
TRACETAB.SQL, 100-4
transform definition table, 24-5
TRANSFORM function, 182-25
transformation methodology, 24-6
transformations

binning, 24-3
equi-width binning, 24-3
normalization, 24-4
Oracle Streams

setting, 96-105
rule-based

setting, 96-105
STREAMS$_TRANSFORM_

FUNCTION, 15-36, 15-38, 96-106

Index-36

supported, 24-3
trimming, 24-4
winsorizing, 24-4

TRANSFORMNODE function, 121-10
TRANSLATE function, 161-35
TRANSPORT_SET_CHECK procedure, 110-5
trimming, 24-4

U
ULISTCLOSE function

of HTF package, 123-135
ULISTCLOSE procedure

of HTP package, 128-135
ULISTOPEN function

of HTF package, 123-136
ULISTOPEN procedure

of HTP package, 128-136
UNCHECKOUT function, 109-14
UNDERLINE function

of HTF package, 123-137
UNDERLINE procedure

of HTP package, 128-137
UNESCAPE function, 166-7
UNESCAPEURI function, 172-39
UNIFORM_DIST_FIT procedure, 92-8
UNIQUE_SESSION_NAME function, 63-35
UNKEEP procedure, 87-8
UNLOCK_MAP procedure, 94-16
UNLOCK_SCHEMA_STATS procedure, 93-132
UNLOCK_TABLE_STATS procedure, 93-133
UNLOCKRESOURCE function, 108-30
UNPACK_MESSAGE procedures, 63-29
UNREGISTER_DEPENDENT_OBJECT

procedure, 68-14
UNREGISTERURLHANDLER procedure, 172-41
UNUSED_SPACE procedure, 88-18
UPDATE_BY_CAT procedure, 59-9
UPDATE_CONSUMER_GROUP procedure, 76-33
UPDATE_OBJECT procedure, 163-11
UPDATE_PLAN procedure, 76-34
UPDATE_PLAN_DIRECTIVE procedure, 76-35
UPDATE_SIGNATURES procedure, 59-10
UPDATE_SQLSET procedures, 91-29
UPDATEXML function, 117-14, 119-13

upgrading
post-upgrade actions, 55-1

URI Types
description, 172-1

UriFactory package, 172-36
ESCAPEURI function, 172-38
GETURL function, 172-37
methods, 172-36
REGISTERURLHANDLER procedure, 172-40
UNESCAPEURI function, 172-39
UNREGISTERURLHANDLER

procedure, 172-41
UriType supertype, 172-2

GETBLOB function, 172-3
GETCLOB function, 172-4
GETCONTENTTYPE function, 172-5
GETEXTERNALURL function, 172-6
GETURL function, 172-7
GETXML function, 172-8
methods, 172-2

USE_ROLLBACK_SEGMENT procedure, 101-24
USEITEMTAGSFORCOLL procedure, 114-18
USENULLATTRIBUTEINDICATOR

procedure, 114-19, 116-19
user views

DBMS_DATA_MINING, 23-10
USER_EXPORT procedures, 41-16
USER_XML_SCHEMAS catalog view, 118-19
USER_XML_TAB_COLS catalog view, 118-26
USER_XML_TABLES catalog view, 118-23
USER_XML_VIEW_COLS catalog view, 118-32
USER_XML_VIEWS catalog view, 118-29
USETYPEFORCOLLELEMTAG procedure, 116-20
UTL_COLL package, 151-1
UTL_COMPRESS package, 152-1
UTL_DBWS package, 153-1
UTL_ENCODE package, 154-1
UTL_FILE package, 155-1
UTL_HTTP package, 156-1
UTL_I18N package, 157-1

ESCAPE_REFERENCE function, 157-4
GET_DEFAULT_CHARSET function, 157-5
MAP_CHARSET function, 157-7
MAP_LANGUAGE_FROM_ISO

function, 157-10

Index-37

MAP_LOCALE_TO_ISO function, 157-11
MAP_TERRITORY_FROM_ISO

function, 157-12
RAW_TO_CHAR function, 157-13
RAW_TO_NCHAR function, 157-16
UNESCAPE_REFERENCE function, 157-20

UTL_INADDR package, 158-1
UTL_LMS package, 159-1

FORMAT_MESSAGE function, 159-4
GET_MESSAGE function, 159-6

UTL_MAIL package, 160-1
UTL_RAW package, 161-1
UTL_RECOMP package, 162-1
UTL_REF package, 163-1
UTL_TCP package, 165-1
UTL_URL package, 166-1
UUDECODE function, 154-15
UUENCODE function, 154-16

V
v$vpd_policies, 79-3
VALIDATE procedure, 104-41
VALIDATE_DIMENSION procedure, 32-5
VALIDATE_PENDING_AREA procedure, 76-38
VALUE functions, 66-10
VALUEOF procedure, 121-11
VARIABLE function

of HTF package, 123-138
VARIABLE procedure

of HTP package, 128-138
VARIABLE_VALUE procedures, 90-60
VERIFY_VALUES function, 133-7
views

summary, 51-22
Virtual Private Database. See VPD
VPD

column masking, 79-6
enabling column-level, 79-6
viewing current cursors and policy

predicates, 79-3
VPD use of DBMS_RLS, 79-1
VRFY function, 164-36

W
WAITANY procedure, 13-12
WAITONE procedure, 13-13
WBR function

of HTF package, 123-139
WBR procedure

of HTP package, 128-139
WEIBULL_DIST_FIT procedure, 92-9
WHAT procedure, 41-17
WHO_CALLED_ME procedure, 137-32
winsorizing, 24-4
WPG_DOCLOAD package, 167-1
WRITE_DATA procedure, 164-37
WRITE_LINE function, 165-27
WRITE_LINE procedure, 156-96
WRITE_RAW function, 165-28
WRITE_RAW procedure, 156-98
WRITE_RAW_DATA procedure, 164-39
WRITE_TEXT function, 165-29
WRITE_TEXT procedure, 156-99
WRITETOBUFFER procedure, 113-150
WRITETOCLOB procedure, 113-151
WRITETOFILE procedure, 113-152

X
XDBUriType, 172-27
XDBURITYPE function, 172-35
XDBUriType subtype, 172-27

CREATEURI function, 172-28
GETBLOB function, 172-29
GETCLOB function, 172-30
GETCONTENTTYPE function, 172-31
GETEXTERNALURL function, 172-32
GETURL function, 172-33
GETXML function, 172-34
methods, 172-27
XDBURITYPE function, 172-35

XFORM_BIN_CAT procedure, 24-28
XFORM_BIN_NUM procedure, 24-31
XFORM_CLIP procedure, 24-34
XFORM_NORM_LIN procedure, 24-36
XMLType

CREATENONSCHEMABASEDXML
function, 182-4

Index-38

CREATESCHEMABASEDXML function, 182-5
CREATEXML function, 182-6
description, 182-1
EXISTSNODE function, 182-9
EXTRACT function, 182-10
GETBLOBVAL function, 182-11
GETCLOBVAL function, 182-12
GETNUMBERVAL function, 182-14
GETROOTELEMENT function, 182-15
GETSCHEMAURL function, 182-16
GETSTRINGVAL function, 182-17
ISFRAGMENT function, 182-18
ISSCHEMABASED function, 182-19
ISSCHEMAVALID function, 182-20
ISSCHEMAVALIDATED function, 182-21
NAMESPACE function, 182-13
SCHEMAVALIDATE procedure, 182-22
SETSCHEMAVALIDATED procedure, 182-23
TOOBJECT procedure, 182-24
TRANSFORM function, 182-25
XMLTYPE function, 182-26

XMLTYPE function, 182-26
XRANGE function, 161-39

Z
z-score normalization, 24-4

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What's New in PL/SQL Packages and Types Reference?
	Oracle Database 10g Release 1 (10.1) New Features
	Oracle9i Release 2 (9.2) New Features
	Oracle9i Release 1 (9.0.1) New Features
	Oracle8i Release 2 (8.1.6) New Features
	Oracle8i Release 1 (8.1.5) New Features
	This book was new for release 8.1.5.

	1 Introduction
	Package Overview
	Package Components
	Using Oracle Supplied Packages
	Creating New Packages
	Referencing Package Contents

	Abbreviations for Datetime and Interval Datatypes
	Summary of Oracle Supplied PL/SQL Packages

	2 CTX_ADM
	Documentation of CTX_ADM

	3 CTX_CLS
	Documentation of CTX_CLS

	4 CTX_DDL
	Documentation of CTX_DDL

	5 CTX_DOC
	Documentation of CTX_DOC

	6 CTX_OUTPUT
	Documentation of CTX_OUTPUT

	7 CTX_QUERY
	Documentation of CTX_QUERY

	8 CTX_REPORT
	Documentation of CTX_REPORT

	9 CTX_THES
	Documentation of CTX_THES

	10 CTX_ULEXER
	Documentation of CTX_ULEXER

	11 DBMS_ADVANCED_REWRITE
	Using DBMS_ADVANCED_REWRITE
	Security Model

	Summary of DBMS_ADVANCED_REWRITE Subprograms
	ALTER_REWRITE_EQUIVALENCE Procedure
	DECLARE_REWRITE_EQUIVALENCE Procedures
	DROP_REWRITE_EQUIVALENCE Procedure
	VALIDATE_REWRITE_EQUIVALENCE Procedure

	12 DBMS_ADVISOR
	Using DBMS_ADVISOR
	Security Model
	Subprograms Used in All Advisors
	Subprograms Used in SQLAccess Advisor
	Parameters

	Summary of DBMS_ADVISOR Subprograms
	ADD_SQLWKLD_REF Procedure
	ADD_SQLWKLD_STATEMENT Procedure
	CANCEL_TASK Procedure
	CREATE_FILE Procedure
	CREATE_OBJECT Procedure
	CREATE_SQLWKLD Procedure
	CREATE_TASK Procedures
	DELETE_SQLWKLD Procedure
	DELETE_SQLWKLD_REF Procedure
	DELETE_SQLWKLD_STATEMENT Procedure
	DELETE_TASK Procedure
	EXECUTE_TASK Procedure
	GET_REC_ATTRIBUTES Procedure
	GET_TASK_REPORT Procedure
	GET_TASK_SCRIPT Procedure
	IMPORT_SQLWKLD_SCHEMA Procedure
	IMPORT_SQLWKLD_SQLCACHE Procedure
	IMPORT_SQLWKLD_STS Procedure
	IMPORT_SQLWKLD_SUMADV Procedure
	IMPORT_SQLWKLD_USER Procedure
	INTERRUPT_TASK Procedure
	MARK_RECOMMENDATION Procedure
	QUICK_TUNE Procedure
	RESET_SQLWKLD Procedure
	RESET_TASK Procedure
	SET_DEFAULT_SQLWKLD_PARAMETER Procedure
	SET_DEFAULT_TASK_PARAMETER Procedures
	SET_SQLWKLD_PARAMETER Procedure
	SET_TASK_PARAMETER Procedures
	TUNE_MVIEW Procedure
	UPDATE_OBJECT Procedure
	UPDATE_REC_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_STATEMENT Procedure
	UPDATE_TASK_ATTRIBUTES Procedure

	13 DBMS_ALERT
	Using DBMS_ALERT
	Overview
	Security Model
	Constants
	Restrictions
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ALERT Subprograms
	REGISTER Procedure
	REMOVE Procedure
	REMOVEALL Procedure
	SET_DEFAULTS Procedure
	SIGNAL Procedure
	WAITANY Procedure
	WAITONE Procedure

	14 DBMS_APPLICATION_INFO
	Using DBMS_APPLICATION_INFO
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_APPLICATION_INFO Subprograms
	READ_CLIENT_INFO Procedure
	READ_MODULE Procedure
	SET_ACTION Procedure
	SET_CLIENT_INFO Procedure
	SET_MODULE Procedure
	SET_SESSION_LONGOPS Procedure

	15 DBMS_APPLY_ADM
	Summary of DBMS_APPLY_ADM Subprograms
	ALTER_APPLY Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_APPLY Procedure
	DELETE_ALL_ERRORS Procedure
	DELETE_ERROR Procedure
	DROP_APPLY Procedure
	EXECUTE_ALL_ERRORS Procedure
	EXECUTE_ERROR Procedure
	GET_ERROR_MESSAGE Functions
	SET_DML_HANDLER Procedure
	SET_ENQUEUE_DESTINATION Procedure
	SET_EXECUTE Procedure
	SET_GLOBAL_INSTANTIATION_SCN Procedure
	SET_KEY_COLUMNS Procedures
	SET_PARAMETER Procedure
	SET_SCHEMA_INSTANTIATION_SCN Procedure
	SET_TABLE_INSTANTIATION_SCN Procedure
	SET_UPDATE_CONFLICT_HANDLER Procedure
	START_APPLY Procedure
	STOP_APPLY Procedure

	16 DBMS_AQ
	Using DBMS_AQ
	Constants
	Data Structures
	Operational Notes

	Summary of DBMS_AQ Subprograms
	BIND_AGENT Procedure
	DEQUEUE Procedure
	DEQUEUE_ARRAY Function
	ENQUEUE Procedure
	ENQUEUE_ARRAY Function
	LISTEN Procedure
	POST Procedure
	REGISTER Procedure
	UNBIND_AGENT Procedure
	UNREGISTER Procedure

	17 DBMS_AQADM
	Using DBMS_AQADM
	Constants
	Queue Table Subprograms
	Privilege Subprograms
	Queue Subprograms
	Subscriber Subprograms
	Notification Subprograms
	Propagation Subprograms
	Oracle Streams AQ Agent Subprograms
	Alias Subprograms

	Summary of DBMS_AQADM Subprograms
	ADD_ALIAS_TO_LDAP Procedure
	ADD_SUBSCRIBER Procedure
	ALTER_AQ_AGENT Procedure
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_QUEUE Procedure
	ALTER_QUEUE_TABLE Procedure
	ALTER_SUBSCRIBER Procedure
	CREATE_AQ_AGENT Procedure
	CREATE_NP_QUEUE Procedure
	CREATE_QUEUE Procedure
	CREATE_QUEUE_TABLE Procedure
	DEL_ALIAS_FROM_LDAP Procedure
	DISABLE_DB_ACCESS Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	DROP_AQ_AGENT Procedure
	DROP_QUEUE Procedure
	DROP_QUEUE_TABLE Procedure
	ENABLE_DB_ACCESS Procedure
	ENABLE_JMS_TYPES Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	GET_WATERMARK Procedure
	GRANT_QUEUE_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	MIGRATE_QUEUE_TABLE Procedure
	PURGE_QUEUE_TABLE Procedure
	QUEUE_SUBSCRIBERS Function
	REMOVE_SUBSCRIBER Procedure
	REVOKE_QUEUE_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure
	SCHEDULE_PROPAGATION Procedure
	SET_WATERMARK Procedure
	START_QUEUE Procedure
	STOP_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure
	VERIFY_QUEUE_TYPES Procedure

	18 DBMS_AQELM
	Summary of DBMS_AQELM Subprograms
	GET_MAILHOST Procedure
	GET_MAILPORT Procedure
	GET_PROXY Procedure
	GET_SENDFROM Procedure
	SET_MAILHOST Procedure
	SET_MAILPORT Procedure
	SET_PROXY Procedure
	SET_SENDFROM Procedure

	19 DBMS_CAPTURE_ADM
	Summary of DBMS_CAPTURE_ADM Subprograms
	ABORT_GLOBAL_INSTANTIATION Procedure
	ABORT_SCHEMA_INSTANTIATION Procedure
	ABORT_TABLE_INSTANTIATION Procedure
	ALTER_CAPTURE Procedure
	BUILD Procedure
	CREATE_CAPTURE Procedure
	DROP_CAPTURE Procedure
	INCLUDE_EXTRA_ATTRIBUTE Procedure
	PREPARE_GLOBAL_INSTANTIATION Procedure
	PREPARE_SCHEMA_INSTANTIATION Procedure
	PREPARE_TABLE_INSTANTIATION Procedure
	SET_PARAMETER Procedure
	START_CAPTURE Procedure
	STOP_CAPTURE Procedure

	20 DBMS_CDC_PUBLISH
	Using DBMS_CDC_PUBLISH
	Overview
	Security Model
	Deprecated Subprograms

	Summary of DBMS_CDC_PUBLISH Subprograms
	ALTER_AUTOLOG_CHANGE_SOURCE Procedure
	ALTER_CHANGE_SET Procedure
	ALTER_CHANGE_TABLE Procedure
	CREATE_AUTOLOG_CHANGE_SOURCE Procedure
	CREATE_CHANGE_SET Procedure
	CREATE_CHANGE_TABLE Procedure
	DROP_CHANGE_SET Procedure
	DROP_CHANGE_SOURCE Procedure
	DROP_CHANGE_TABLE Procedure
	DROP_SUBSCRIPTION Procedure
	PURGE Procedure
	PURGE_CHANGE_SET Procedure
	PURGE_CHANGE_TABLE Procedure

	21 DBMS_CDC_SUBSCRIBE
	Using DBMS_CDC_SUBSCRIBE
	Overview
	Deprecated Subprograms

	Summary of DBMS_CDC_SUBSCRIBE Subprograms
	ACTIVATE_SUBSCRIPTION Procedure
	CREATE_SUBSCRIPTION Procedure
	DROP_SUBSCRIPTION Procedure
	EXTEND_WINDOW Procedure
	PURGE_WINDOW Procedure
	SUBSCRIBE Procedure

	22 DBMS_CRYPTO
	Using the DBMS_CRYPTO Subprograms
	Overview
	Security Model
	Types
	Algorithms
	Restrictions
	Exceptions
	Operational Notes

	Summary of DBMS_CRYPTO Subprograms
	DECRYPT Function
	DECRYPT Procedures
	ENCRYPT Function
	ENCRYPT Procedures
	HASH Function
	MAC Function
	RANDOMBYTES Function
	RANDOMINTEGER Function
	RANDOMNUMBER Function

	23 DBMS_DATA_MINING
	Using DBMS_DATA_MINING
	Overview
	Constants
	Data Types
	Exceptions
	User Views
	Operational Notes

	Summary of DBMS_DATA_MINING Subprograms
	APPLY Procedure
	CREATE_MODEL Procedure
	COMPUTE_CONFUSION_MATRIX Procedure
	COMPUTE_LIFT Procedure
	COMPUTE_ROC Procedure
	DROP_MODEL Procedure
	EXPORT_MODEL Procedure
	GET_ASSOCIATION_RULES Function
	GET_DEFAULT_SETTINGS Function
	GET_FREQUENT_ITEMSETS Function
	GET_MODEL_DETAILS_ABN Function
	GET_MODEL_DETAILS_KM Function
	GET_MODEL_DETAILS_NB Function
	GET_MODEL_DETAILS_NMF Function
	GET_MODEL_DETAILS_SVM Function
	GET_MODEL_SETTINGS Function
	GET_MODEL_SIGNATURE Function
	IMPORT_MODEL Procedure
	RANK_APPLY Procedure
	RENAME_MODEL Procedure

	24 DBMS_DATA_MINING_TRANSFORM
	Using DBMS_DATA_MINING_TRANSFORM
	Overview
	Types
	Supported Transformation Methods
	Transformation Operations
	Transformation Methodology

	Summary of DBMS_DATA_MINING_TRANSFORM Subprograms
	CREATE_BIN_CAT Procedure
	CREATE_BIN_NUM Procedure
	CREATE_CLIP Procedure
	CREATE_NORM_LIN Procedure
	INSERT_BIN_CAT_FREQ Procedure
	INSERT_BIN_NUM_EQWIDTH Procedure
	INSERT_BIN_NUM_QTILE Procedure
	INSERT_CLIP_TRIM_TAIL Procedure
	INSERT_CLIP_WINSOR_TAIL Procedure
	INSERT_NORM_LIN_ZSCORE Procedure
	INSERT_NORM_LIN_MINMAX Procedure
	XFORM_BIN_CAT Procedure
	XFORM_BIN_NUM Procedure
	XFORM_CLIP Procedure
	XFORM_NORM_LIN Procedure

	25 DBMS_DATAPUMP
	Using DBMS_DATAPUMP
	Overview
	Security Model
	Constants
	Types

	Summary of DBMS_DATAPUMP Subprograms
	ADD_FILE Procedure
	ATTACH Function
	DATA_FILTER Procedures
	DETACH Procedure
	GET_STATUS Procedure
	LOG_ENTRY Procedure
	METADATA_FILTER Procedure
	METADATA_REMAP Procedure
	METADATA_TRANSFORM Procedure
	OPEN Function
	SET_PARALLEL Procedure
	SET_PARAMETER Procedures
	START_JOB Procedure
	STOP_JOB Procedure

	26 DBMS_DDL
	Using DBMS_DDL
	Security Model
	Operational Notes

	Summary of DBMS_DDL Subprograms
	ALTER_COMPILE Procedure
	ALTER_TABLE_NOT_REFERENCEABLE Procedure
	ALTER_TABLE_REFERENCEABLE Procedure
	IS_TRIGGER_FIRE_ONCE Function
	SET_TRIGGER_FIRING_PROPERTY Procedure

	27 DBMS_DEBUG
	Using DBMS_DEBUG
	Overview
	Constants
	Variables
	Types
	Exceptions
	Operational Notes

	Summary of DBMS_DEBUG Subprograms
	ATTACH_SESSION Procedure
	CONTINUE Function
	DEBUG_OFF Procedure
	DEBUG_ON Procedure
	DELETE_BREAKPOINT Function
	DELETE_OER_BREAKPOINT Function
	DETACH_SESSION Procedure
	DISABLE_BREAKPOINT Function
	ENABLE_BREAKPOINT Function
	EXECUTE Procedure
	GET_INDEXES Function
	GET_MORE_SOURCE Procedure
	GET_LINE_MAP Function
	GET_RUNTIME_INFO Function
	GET_TIMEOUT_BEHAVIOUR Function
	GET_VALUE Function
	INITIALIZE Function
	PING Procedure
	PRINT_BACKTRACE Procedure
	PRINT_INSTANTIATIONS Procedure
	PROBE_VERSION Procedure
	SELF_CHECK Procedure
	SET_BREAKPOINT Function
	SET_OER_BREAKPOINT Function
	SET_TIMEOUT Function
	SET_TIMEOUT_BEHAVIOUR Procedure
	SET_VALUE Function
	SHOW_BREAKPOINTS Procedures
	SHOW_FRAME_SOURCE Procedure
	SHOW_SOURCE Procedures
	SYNCHRONIZE Function
	TARGET_PROGRAM_RUNNING Procedure

	28 DBMS_DEFER
	Documentation of DBMS_DEFER

	29 DBMS_DEFER_QUERY
	Documentation of DBMS_DEFER_QUERY

	30 DBMS_DEFER_SYS
	Documentation of DBMS_DEFER_SYS

	31 DBMS_DESCRIBE
	Using DBMS_DESCRIBE
	Overview
	Security Model
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_DESCRIBE Subprograms
	DESCRIBE_PROCEDURE Procedure

	32 DBMS_DIMENSION
	Using DBMS_DIMENSION
	Security Model

	Summary of DBMS_DIMENSION Subprograms
	DESCRIBE_DIMENSION Procedure
	VALIDATE_DIMENSION Procedure

	33 DBMS_DISTRIBUTED_TRUST_ADMIN
	Using DBMS_DISTRIBUTED_TRUST_ADMIN
	Overview
	Security Model
	Examples

	Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
	ALLOW_ALL Procedure
	ALLOW_SERVER Procedure
	DENY_ALL Procedure
	DENY_SERVER Procedure

	34 DBMS_FGA
	Using DBMS_FGA
	Security Model
	Operational Notes

	Summary of DBMS_FGA Subprograms
	ADD_POLICY Procedure
	DISABLE_POLICY Procedure
	DROP_POLICY Procedure
	ENABLE_POLICY Procedure

	35 DBMS_FILE_TRANSFER
	Summary of DBMS_FILE_TRANSFER Subprograms
	COPY_FILE Procedure
	GET_FILE Procedure
	PUT_FILE Procedure

	36 DBMS_FLASHBACK
	Using DBMS_FLASHBACK
	Overview
	Security Model
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_FLASHBACK Subprograms
	DISABLE Procedure
	ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure
	ENABLE_AT_TIME Procedure
	GET_SYSTEM_CHANGE_NUMBER Function
	SCN_TO_TIMESTAMP Function
	TIMESTAMP_TO_SCN Function

	37 DBMS_FREQUENT_ITEMSET
	Summary of DBMS_FREQUENT_ITEMSET Subprograms
	FI_TRANSACTIONAL Function
	FI_HORIZONTAL Function

	38 DBMS_HS_PASSTHROUGH
	Summary of DBMS_HS_PASSTHROUGH Subprograms
	BIND_VARIABLE Procedure
	BIND_VARIABLE_RAW Procedure
	BIND_OUT_VARIABLE Procedure
	BIND_OUT_VARIABLE_RAW Procedure
	BIND_INOUT_VARIABLE Procedure
	BIND_INOUT_VARIABLE_RAW Procedure
	CLOSE_CURSOR Procedure
	EXECUTE_IMMEDIATE Procedure
	EXECUTE_NON_QUERY Function
	FETCH_ROW Function
	GET_VALUE Procedure
	GET_VALUE_RAW Procedure
	OPEN_CURSOR Function
	PARSE Procedure

	39 DBMS_IOT
	Summary of DBMS_IOT Subprograms
	BUILD_CHAIN_ROWS_TABLE Procedure
	BUILD_EXCEPTIONS_TABLE Procedure

	40 DBMS_JAVA
	Documentation of DBMS_JAVA

	41 DBMS_JOB
	Using DBMS_JOB
	Security Model
	Operational Notes

	Summary of DBMS_JOB Subprograms
	BROKEN Procedure
	CHANGE Procedure
	INSTANCE Procedure
	INTERVAL Procedure
	NEXT_DATE Procedure
	REMOVE Procedure
	RUN Procedure
	SUBMIT Procedure
	USER_EXPORT Procedures
	WHAT Procedure

	42 DBMS_LDAP
	Documentation of DBMS_LDAP

	43 DBMS_LDAP_UTL
	Documentation of DBMS_LDAP_UTL

	44 DBMS_LIBCACHE
	Using DBMS_LIBCACHE
	Overview
	Security Model

	Summary of DBMS_LIBCACHE Subprograms
	COMPILE_FROM_REMOTE Procedure

	45 DBMS_LOB
	Using DBMS_LOB
	Overview
	Security Model
	Constants
	Types
	Rules and Limits
	Operational Notes
	Exceptions

	Summary of DBMS_LOB Subprograms
	APPEND Procedure
	CLOSE Procedure
	COMPARE Function
	CONVERTTOBLOB Procedure
	CONVERTTOCLOB Procedure
	COPY Procedure
	CREATETEMPORARY Procedure
	ERASE Procedure
	FILECLOSE Procedure
	FILECLOSEALL Procedure
	FILEEXISTS Function
	FILEGETNAME Procedure
	FILEISOPEN Function
	FILEOPEN Procedure
	FREETEMPORARY Procedure
	GET_STORAGE_LIMIT
	GETCHUNKSIZE Function
	GETLENGTH Function
	INSTR Function
	ISOPEN Function
	ISTEMPORARY Function
	LOADFROMFILE Procedure
	LOADBLOBFROMFILE Procedure
	LOADCLOBFROMFILE Procedure
	OPEN Procedure
	READ Procedure
	SUBSTR Function
	TRIM Procedure
	WRITE Procedure
	WRITEAPPEND Procedure

	46 DBMS_LOCK
	Using DBMS_LOCK
	Overview
	Security Model
	Constants
	Rules and Limits
	Operational Notes

	Summary of DBMS_LOCK Subprograms
	ALLOCATE_UNIQUE Procedure
	CONVERT Function
	RELEASE Function
	REQUEST Function
	SLEEP Procedure

	47 DBMS_LOGMNR
	Using DBMS_LOGMNR
	Security Model
	Constants
	Operational Notes

	Summary of DBMS_LOGMNR Subprograms
	ADD_LOGFILE Procedure
	COLUMN_PRESENT Function
	END_LOGMNR Procedure
	MINE_VALUE Function
	REMOVE_LOGFILE Procedure
	START_LOGMNR Procedure

	48 DBMS_LOGMNR_D
	Using DBMS_LOGMNR_D
	Overview
	Security Model

	Summary of DBMS_LOGMNR_D Subprograms
	BUILD Procedure
	SET_TABLESPACE Procedure

	49 DBMS_LOGSTDBY
	Using DBMS_LOGSTBY
	Overview
	Operational Notes

	Summary of DBMS_LOGSTDBY Subprograms
	APPLY_SET Procedure
	APPLY_UNSET Procedure
	BUILD Procedure
	INSTANTIATE_TABLE Procedure
	SKIP Procedure
	SKIP_ERROR Procedure
	SKIP_TRANSACTION Procedure
	UNSKIP Procedure
	UNSKIP_ERROR Procedure
	UNSKIP_TRANSACTION Procedure

	50 DBMS_METADATA
	Using DBMS_METADATA
	Overview
	Security Model
	Types
	Rules and Limits
	Organization of Subprograms

	Summary of DBMS_METADATA Subprograms
	ADD_TRANSFORM Function
	CLOSE Procedure
	CONVERT Function
	FETCH_xxx Functions
	The GET_xxx Functions
	GET_QUERY Procedure
	OPEN Procedure
	OPENW Procedure
	PUT Function
	SET_COUNT Procedure
	SET_FILTER Procedure
	SET_PARSE_ITEM Procedure
	SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

	51 DBMS_MGWADM
	Using DBMS_MGWADM
	Constants
	Types
	Properties
	Database Views

	Summary of DBMS_MGWADM Subprograms
	ADD_SUBSCRIBER Procedure
	ALTER_AGENT Procedure
	ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous
	ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_SUBSCRIBER Procedure
	CLEANUP_GATEWAY Procedure
	CREATE_MSGSYSTEM_LINK Procedure for TIB/Rendezvous
	CREATE_MSGSYSTEM_LINK Procedure for WebSphere MQ
	DB_CONNECT_INFO Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	REGISTER_FOREIGN_QUEUE Procedure
	REMOVE_MSGSYSTEM_LINK Procedure
	REMOVE_SUBSCRIBER Procedure
	RESET_SUBSCRIBER Procedure
	SET_LOG_LEVEL Procedure
	SCHEDULE_PROPAGATION Procedure
	SHUTDOWN Procedure
	STARTUP Procedure
	UNREGISTER_FOREIGN_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure

	52 DBMS_MGWMSG
	Using DBMS_MGWMSG
	Security Model
	Constants
	Types

	Summary of DBMS_MGWMSG Subprograms
	NVARRAY_ADD Procedure
	NVARRAY_GET Function
	NVARRAY_GET_BOOLEAN Function
	NVARRAY_GET_BYTE Function
	NVARRAY_GET_SHORT Function
	NVARRAY_GET_INTEGER Function
	NVARRAY_GET_LONG Function
	NVARRAY_GET_FLOAT Function
	NVARRAY_GET_DOUBLE Function
	NVARRAY_GET_TEXT Function
	NVARRAY_GET_RAW Function
	NVARRAY_GET_DATE Function
	NVARRAY_FIND_NAME Function
	NVARRAY_FIND_NAME_TYPE Function

	53 DBMS_MONITOR
	Summary of DBMS_MONITOR Subprograms
	CLIENT_ID_STAT_DISABLE Procedure
	CLIENT_ID_STAT_ENABLE Procedure
	CLIENT_ID_TRACE_DISABLE Procedure
	CLIENT_ID_TRACE_ENABLE Procedure
	SERV_MOD_ACT_STAT_DISABLE Procedure
	SERV_MOD_ACT_STAT_ENABLE Procedure
	SERV_MOD_ACT_TRACE_DISABLE Procedure
	SERV_MOD_ACT_TRACE_ENABLE Procedure
	SESSION_TRACE_DISABLE Procedure
	SESSION_TRACE_ENABLE Procedure

	54 DBMS_MVIEW
	Using DBMS_MVIEW
	Operational Notes
	Rules and Limits

	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	ESTIMATE_MVIEW_SIZE Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedures
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedure
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedure
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

	55 DBMS_OBFUSCATION_TOOLKIT
	Using DBMS_OBFUSCATION_TOOLKIT
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_OBFUSCATION Subprograms
	DES3DECRYPT Procedures and Functions
	DES3ENCRYPT Procedures and Functions
	DES3GETKEY Procedures and Functions
	DESDECRYPT Procedures and Functions
	DESENCRYPT Procedures and Functions
	DESGETKEY Procedures and Functions
	MD5 Procedures and Functions

	56 DBMS_ODCI
	Summary of DBMS_ODCI Subprograms
	ESTIMATE_CPU_UNITS Function

	57 DBMS_OFFLINE_OG
	Documentation of DBMS_OFFLINE_OG

	58 DBMS_OLAP
	Using DBMS_OLAP
	Overview
	Views
	Deprecated Subprograms

	Summary of DBMS_OLAP Subprograms
	ADD_FILTER_ITEM Procedure
	CREATE_ID Procedure
	ESTIMATE_MVIEW_SIZE Procedure
	EVALUATE_MVIEW_STRATEGY Procedure
	GENERATE_MVIEW_REPORT Procedure
	GENERATE_MVIEW_SCRIPT Procedure
	LOAD_WORKLOAD_CACHE Procedure
	LOAD_WORKLOAD_TRACE Procedure
	LOAD_WORKLOAD_USER Procedure
	PURGE_FILTER Procedure
	PURGE_RESULTS Procedure
	PURGE_WORKLOAD Procedure
	RECOMMEND_MVIEW_STRATEGY Procedure
	SET_CANCELLED Procedure
	VALIDATE_DIMENSION Procedure
	VALIDATE_WORKLOAD_CACHE Procedure
	VALIDATE_WORKLOAD_TRACE Procedure
	VALIDATE_WORKLOAD_USER Procedure

	59 DBMS_OUTLN
	Using DBMS_OUTLN
	Overview
	Security Model

	Summary of DBMS_OUTLN Subprograms
	CLEAR_USED Procedure
	CREATE_OUTLINE Procedure
	DROP_BY_CAT Procedure
	DROP_UNUSED Procedure
	EXACT_TEXT_SIGNATURES Procedure
	UPDATE_BY_CAT Procedure
	UPDATE_SIGNATURES Procedure

	60 DBMS_OUTLN_EDIT
	Summary of DBMS_OUTLN_EDIT Subprograms
	CHANGE_JOIN_POS Procedure
	CREATE_EDIT_TABLES Procedure
	DROP_EDIT_TABLES Procedure
	GENERATE_SIGNATURE Procedure
	REFRESH_PRIVATE_OUTLINE Procedure

	61 DBMS_OUTPUT
	Using DBMS_OUTPUT
	Security Model
	Types
	Operational Notes
	Exceptions
	Deprecated Subprograms
	Examples

	Summary of DBMS_OUTPUT Subprograms
	DISABLE Procedure
	ENABLE Procedure
	GET_LINE Procedure
	GET_LINES Procedure
	NEW_LINE Procedure
	PUT Procedures
	PUT_LINE Procedures

	62 DBMS_PCLXUTIL
	Using DBMS_PCLXUTIL
	Overview
	Operational Notes
	Rules and Limits

	Summary of DBMS_PCLXUTIL Subprograms
	BUILD_PART_INDEX Procedure

	63 DBMS_PIPE
	Using DBMS_PIPE
	Overview
	Security Model
	Constants
	Operational Notes
	Exceptions
	Examples

	Summary of DBMS_PIPE Subprograms
	CREATE_PIPE Function
	PACK_MESSAGE Procedures
	SEND_MESSAGE Function
	RECEIVE_MESSAGE Function
	NEXT_ITEM_TYPE Function
	UNPACK_MESSAGE Procedures
	REMOVE_PIPE Function
	PURGE Procedure
	RESET_BUFFER Procedure
	UNIQUE_SESSION_NAME Function

	64 DBMS_PROFILER
	Using DBMS_PROFILER
	Overview
	Security Model
	Operational Notes
	Exceptions

	Summary of DBMS_PROFILER Subprograms
	FLUSH_DATA Function and Procedure
	GET_VERSION Procedure
	INTERNAL_VERSION_CHECK Function
	PAUSE_PROFILER Function and Procedure
	RESUME_PROFILER Function and Procedure
	START_PROFILER Functions and Procedures
	STOP_PROFILER Function and Procedure

	65 DBMS_PROPAGATION_ADM
	Summary of DBMS_PROPAGATION_ADM Subprograms
	ALTER_PROPAGATION Procedure
	CREATE_PROPAGATION Procedure
	DROP_PROPAGATION Procedure

	66 DBMS_RANDOM
	Using DBMS_RANDOM
	Security Model
	Operational Notes

	Summary of DBMS_RANDOM Subprograms
	INITIALIZE Procedure
	NORMAL Function
	RANDOM Procedure
	SEED Procedures
	STRING Function
	TERMINATE Procedure
	VALUE Functions

	67 DBMS_RECTIFIER_DIFF
	Documentation of DBMS_RECTIFIER_DIFF

	68 DBMS_REDEFINITION
	Using DBMS_REDEFINITION
	Overview
	Constants
	Operational Notes

	Summary of DBMS_REDEFINITION Subprograms
	ABORT_REDEF_TABLE Procedure
	CAN_REDEF_TABLE Procedure
	COPY_TABLE_DEPENDENTS Procedure
	FINISH_REDEF_TABLE Procedure
	REGISTER_DEPENDENT_OBJECT Procedure
	START_REDEF_TABLE Procedure
	SYNC_INTERIM_TABLE Procedure
	UNREGISTER_DEPENDENT_OBJECT Procedure

	69 DBMS_REFRESH
	Documentation of DBMS_REFRESH

	70 DBMS_REPAIR
	Using DBMS_REPAIR
	Overview
	Security Model
	Constants
	Exceptions
	Examples

	Summary of DBMS_REPAIR Subprograms
	ADMIN_TABLES Procedure
	CHECK_OBJECT Procedure
	DUMP_ORPHAN_KEYS Procedure
	FIX_CORRUPT_BLOCKS Procedure
	REBUILD_FREELISTS Procedure
	SEGMENT_FIX_STATUS Procedure
	SKIP_CORRUPT_BLOCKS Procedure

	71 DBMS_REPCAT
	Documentation of DBMS_REPCAT

	72 DBMS_REPCAT_ADMIN
	Documentation of DBMS_REPCAT_ADMIN

	73 DBMS_REPCAT_INSTANTIATE
	Documentation of DBMS_REPCAT_INSTANTIATE

	74 DBMS_REPCAT_RGT
	Documentation of DBMS_REPCAT_RGT

	75 DBMS_REPUTIL
	Documentation of DBMS_REPUTIL

	76 DBMS_RESOURCE_MANAGER
	Using DBMS_RESOURCE_MANAGER
	Security Model
	Constants
	Examples

	Summary of DBMS_RESOURCE_MANAGER Subprograms
	CLEAR_PENDING_AREA Procedure
	CREATE_CONSUMER_GROUP Procedure
	CREATE_PENDING_AREA Procedure
	CREATE_PLAN Procedure
	CREATE_PLAN_DIRECTIVE Procedure
	CREATE_SIMPLE_PLAN Procedure
	DELETE_CONSUMER_GROUP Procedure
	DELETE_PLAN Procedure
	DELETE_PLAN_DIRECTIVE Procedure
	DELETE_PLAN_CASCADE Procedure
	SET_CONSUMER_GROUP_MAPPING Procedure
	SET_CONSUMER_GROUP_MAPPING_PRI Procedure
	SET_INITIAL_CONSUMER_GROUP Procedure
	SUBMIT_PENDING_AREA Procedure
	SWITCH_CONSUMER_GROUP_FOR_SESS Procedure
	SWITCH_CONSUMER_GROUP_FOR_USER Procedure
	SWITCH_PLAN Procedure
	UPDATE_CONSUMER_GROUP Procedure
	UPDATE_PLAN Procedure
	UPDATE_PLAN_DIRECTIVE Procedure
	VALIDATE_PENDING_AREA Procedure

	77 DBMS_RESOURCE_MANAGER_PRIVS
	Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
	GRANT_SWITCH_CONSUMER_GROUP Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SWITCH_CONSUMER_GROUP Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

	78 DBMS_RESUMABLE
	Using DBMS_RESUMABLE
	Operational Notes

	Summary of DBMS_RESUMABLE Subprograms
	ABORT Procedure
	GET_SESSION_TIMEOUT Function
	GET_TIMEOUT Function
	SET_SESSION_TIMEOUT Procedure
	SET_TIMEOUT Procedure
	SPACE_ERROR_INFO Function

	79 DBMS_RLS
	Using DBMS_RLS
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_RLS Subprograms
	ADD_POLICY Procedure
	DROP_POLICY Procedure
	REFRESH_POLICY Procedure
	ENABLE_POLICY Procedure
	CREATE_POLICY_GROUP Procedure
	ADD_GROUPED_POLICY Procedure
	ADD_POLICY_CONTEXT Procedure
	DELETE_POLICY_GROUP Procedure
	DROP_GROUPED_POLICY Procedure
	DROP_POLICY_CONTEXT Procedure
	ENABLE_GROUPED_POLICY Procedure
	DISABLE_GROUPED_POLICY Procedure
	REFRESH_GROUPED_POLICY Procedure

	80 DBMS_ROWID
	Using DBMS_ROWID
	Security Model
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ROWID Subprograms
	ROWID_BLOCK_NUMBER Function
	ROWID_CREATE Function
	ROWID_INFO Procedure
	ROWID_OBJECT Function
	ROWID_RELATIVE_FNO Function
	ROWID_ROW_NUMBER Function
	ROWID_TO_ABSOLUTE_FNO Function
	ROWID_TO_EXTENDED Function
	ROWID_TO_RESTRICTED Function
	ROWID_TYPE Function
	ROWID_VERIFY Function

	81 DBMS_RULE
	Using DBMS_RULE
	Security Model

	Summary of DBMS_RULE Subprograms
	CLOSE_ITERATOR Procedure
	EVALUATE Procedures
	GET_NEXT_HIT Function

	82 DBMS_RULE_ADM
	Using DBMS_RULE_ADM
	Security Model

	Summary of DBMS_RULE_ADM Subprograms
	ADD_RULE Procedure
	ALTER_RULE Procedure
	CREATE_EVALUATION_CONTEXT Procedure
	CREATE_RULE Procedure
	CREATE_RULE_SET Procedure
	DROP_EVALUATION_CONTEXT Procedure
	DROP_RULE Procedure
	DROP_RULE_SET Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REMOVE_RULE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

	83 DBMS_SCHEDULER
	Using DBMS_SCHEDULER
	Rules and Limits

	Summary of DBMS_SCHEDULER Subprograms
	ADD_WINDOW_GROUP_MEMBER Procedure
	CLOSE_WINDOW Procedure
	COPY_JOB Procedure
	CREATE_JOB Procedures
	CREATE_JOB_CLASS Procedure
	CREATE_PROGRAM Procedure
	CREATE_SCHEDULE Procedure
	CREATE_WINDOW Procedures
	CREATE_WINDOW_GROUP Procedure
	DEFINE_ANYDATA_ARGUMENT Procedure
	DEFINE_METADATA_ARGUMENT Procedure
	DEFINE_PROGRAM_ARGUMENT Procedure
	DISABLE Procedure
	DROP_JOB Procedure
	DROP_JOB_CLASS Procedure
	DROP_PROGRAM Procedure
	DROP_PROGRAM_ARGUMENT Procedures
	DROP_SCHEDULE Procedure
	DROP_WINDOW Procedure
	DROP_WINDOW_GROUP Procedure
	ENABLE Procedure
	EVALUATE_CALENDAR_STRING Procedure
	GENERATE_JOB_NAME Function
	GET_ATTRIBUTE Procedure
	GET_SCHEDULER_ATTRIBUTE Procedure
	OPEN_WINDOW Procedure
	PURGE_LOG Procedure
	REMOVE_WINDOW_GROUP_MEMBER Procedure
	RESET_JOB_ARGUMENT_VALUE Procedures
	RUN_JOB Procedure
	SET_ATTRIBUTE Procedure
	SET_ATTRIBUTE_NULL Procedure
	SET_JOB_ANYDATA_VALUE Procedures
	SET_JOB_ARGUMENT_VALUE Procedures
	SET_SCHEDULER_ATTRIBUTE Procedure
	STOP_JOB Procedure

	84 DBMS_SERVER_ALERT
	Using DBMS_SERVER_ALERT
	Object Types Defined as Constants
	Relational Operators Defined as Constants
	Supported Metrics

	Summary of DBMS_SERVER_ALERT Subprograms
	EXPAND_MESSAGE Function
	GET_THRESHOLD Procedure
	SET_THRESHOLD Procedure

	85 DBMS_SERVICE
	Using DBMS_SERVICE
	Security Model

	Summary of DBMS_SERVICE Subprograms
	CREATE_SERVICE Procedure
	DELETE_SERVICE Procedure
	DISCONNECT_SESSION Procedure
	START_SERVICE Procedure
	STOP_SERVICE Procedure

	86 DBMS_SESSION
	Using DBMS_SESSION
	Security Model
	Operational Notes

	Summary of DBMS_SESSION Subprograms
	CLEAR_CONTEXT Procedure
	CLEAR_ALL_CONTEXT Procedure
	CLEAR_IDENTIFIER Procedure
	CLOSE_DATABASE_LINK Procedure
	FREE_UNUSED_USER_MEMORY Procedure
	IS_ROLE_ENABLED Function
	IS_SESSION_ALIVE Function
	LIST_CONTEXT Procedures
	MODIFY_PACKAGE_STATE Procedure
	RESET_PACKAGE Procedure
	SET_CONTEXT Procedure
	SET_IDENTIFIER
	SET_NLS Procedure
	SET_ROLE Procedure
	SET_SQL_TRACE Procedure
	SWITCH_CURRENT_CONSUMER_GROUP Procedure
	UNIQUE_SESSION_ID Function

	87 DBMS_SHARED_POOL
	Using DBMS_SHARED_POOL
	Overview
	Operational Notes

	Summary of DBMS_SHARED_POOL Subprograms
	ABORTED_REQUEST_THRESHOLD Procedure
	KEEP Procedure
	SIZES Procedure
	UNKEEP Procedure

	88 DBMS_SPACE
	Using DBMS_SPACE
	Security Model

	Summary of DBMS_SPACE Subprograms
	CREATE_INDEX_COST Procedure
	CREATE_TABLE_COST Procedures
	FREE_BLOCKS Procedure
	OBJECT_DEPENDENT_SEGMENTS Function
	OBJECT_GROWTH_TREND Function
	SPACE_USAGE Procedure
	UNUSED_SPACE Procedure

	89 DBMS_SPACE_ADMIN
	Using DBMS_SPACE_ADMIN
	Security Model
	Constants
	Operational Notes

	Summary of DBMS_SPACE_ADMIN Subprograms
	SEGMENT_CORRUPT Procedure
	SEGMENT_DROP_CORRUPT Procedure
	SEGMENT_DUMP Procedure
	SEGMENT_VERIFY Procedure
	TABLESPACE_FIX_BITMAPS Procedure
	TABLESPACE_FIX_SEGMENT_STATES Procedure
	TABLESPACE_MIGRATE_FROM_LOCAL Procedure
	TABLESPACE_MIGRATE_TO_LOCAL Procedure
	TABLESPACE_REBUILD_BITMAPS Procedure
	TABLESPACE_REBUILD_QUOTAS Procedure
	TABLESPACE_RELOCATE_BITMAPS Procedure
	TABLESPACE_VERIFY Procedure

	90 DBMS_SQL
	Using DBMS_SQL
	Overview
	Security Model
	Constants
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_SQL Subprograms
	BIND_ARRAY Procedures
	BIND_VARIABLE Procedures
	CLOSE_CURSOR Procedure
	COLUMN_VALUE Procedure
	COLUMN_VALUE_LONG Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN Procedure
	DEFINE_COLUMN_LONG Procedure
	DESCRIBE_COLUMNS Procedure
	DESCRIBE_COLUMNS2 Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	IS_OPEN Function
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function
	OPEN_CURSOR Function
	PARSE Procedure
	VARIABLE_VALUE Procedures

	91 DBMS_SQLTUNE
	Using DBMS_SQLTUNE
	Overview
	Types
	Operational Notes

	Summary of DBMS_SQLTUNE Subprograms
	ACCEPT_SQL_PROFILE Procedure
	ADD_SQLSET_REFERENCE Function
	ALTER_SQL_PROFILE Procedure
	CANCEL_TUNING_TASK Procedure
	CREATE_SQLSET Procedure
	CREATE_TUNING_TASK Functions
	DELETE_SQLSET Procedure
	DROP_SQL_PROFILE Procedure
	DROP_SQLSET Procedure
	DROP_TUNING_TASK Procedure
	EXECUTE_TUNING_TASK Procedure
	INTERRUPT_TUNING_TASK Procedure
	LOAD_SQLSET Procedure
	REMOVE_SQLSET_REFERENCE Procedure
	REPORT_TUNING_TASK Function
	RESET_TUNING_TASK Procedure
	RESUME_TUNING_TASK Procedure
	SELECT_SQLSET Function
	SELECT_WORKLOAD_REPOSITORY Functions
	UPDATE_SQLSET Procedures

	92 DBMS_STAT_FUNCS
	Summary of DBMS_STAT_FUNCS Subprograms
	EXPONENTIAL_DIST_FIT Procedure
	NORMAL_DIST_FIT Procedure
	POISSON_DIST_FIT Procedure
	SUMMARY Procedure
	UNIFORM_DIST_FIT Procedure
	WEIBULL_DIST_FIT Procedure

	93 DBMS_STATS
	Using DBMS_STATS
	Overview
	Types
	Constants
	Operational Notes
	Deprecated Subprograms
	Examples

	Summary of DBMS_STATS Subprograms
	ALTER_DATABASE_TAB_MONITORING Procedure
	ALTER_SCHEMA_TAB_MONITORING Procedure
	ALTER_STATS_HISTORY_RETENTION Procedure
	CONVERT_RAW_VALUE Procedures
	CONVERT_RAW_VALUE_NVARCHAR Procedure
	CONVERT_RAW_VALUE_ROWID Procedure
	CREATE_STAT_TABLE Procedure
	DELETE_COLUMN_STATS Procedure
	DELETE_DATABASE_STATS Procedure
	DELETE_DICTIONARY_STATS Procedure
	DELETE_FIXED_OBJECTS_STATS Procedure
	DELETE_INDEX_STATS Procedure
	DELETE_SCHEMA_STATS Procedure
	DELETE_SYSTEM_STATS Procedure
	DELETE_TABLE_STATS Procedure
	DROP_STAT_TABLE Procedure
	EXPORT_COLUMN_STATS Procedure
	EXPORT_DATABASE_STATS Procedure
	EXPORT_DICTIONARY_STATS Procedure
	EXPORT_FIXED_OBJECTS_STATS Procedure
	EXPORT_INDEX_STATS Procedure
	EXPORT_SCHEMA_STATS Procedure
	EXPORT_SYSTEM_STATS Procedure
	EXPORT_TABLE_STATS Procedure
	FLUSH_DATABASE_MONITORING_INFO Procedure
	GATHER_DATABASE_STATS Procedures
	GATHER_DICTIONARY_STATS Procedure
	GATHER_FIXED_OBJECTS_STATS Procedure
	GATHER_INDEX_STATS Procedure
	GATHER_SCHEMA_STATS Procedures
	GATHER_SYSTEM_STATS Procedure
	GATHER_TABLE_STATS Procedure
	GENERATE_STATS Procedure
	GET_COLUMN_STATS Procedures
	GET_INDEX_STATS Procedures
	GET_PARAM Function
	GET_STATS_HISTORY_AVAILABILITY Function
	GET_STATS_HISTORY_RETENTION Function
	GET_SYSTEM_STATS Procedure
	GET_TABLE_STATS Procedure
	IMPORT_COLUMN_STATS Procedure
	IMPORT_DATABASE_STATS Procedure
	IMPORT_DICTIONARY_STATS Procedure
	IMPORT_FIXED_OBJECTS_STATS Procedure
	IMPORT_INDEX_STATS Procedure
	IMPORT_SCHEMA_STATS Procedure
	IMPORT_SYSTEM_STATS Procedure
	IMPORT_TABLE_STATS Procedure
	LOCK_SCHEMA_STATS Procedure
	LOCK_TABLE_STATS Procedure
	PREPARE_COLUMN_VALUES Procedures
	PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure
	PREPARE_COLUMN_VALUES_ROWID Procedure
	PURGE_STATS Procedure
	RESTORE_DATBASE_STATS Procedure
	RESTORE_DICTIONARY_STATS Procedure
	RESTORE_FIXED_OBJECTS_STATS Procedure
	RESTORE_SCHEMA_STATS Procedure
	RESTORE_SYSTEM_STATS Procedure
	RESTORE_TABLE_STATS Procedure
	SET_COLUMN_STATS Procedures
	SET_INDEX_STATS Procedures
	SET_PARAM Procedure
	SET_SYSTEM_STATS Procedure
	SET_TABLE_STATS Procedure
	UNLOCK_SCHEMA_STATS Procedure
	UNLOCK_TABLE_STATS Procedure
	UPGRADE_STAT_TABLE Procedure

	94 DBMS_STORAGE_MAP
	Using DBMS_STORAGE_MAP
	Overview
	Operational Notes

	Summary of DBMS_STORAGE_MAP Subprograms
	DROP_ALL Function
	DROP_ELEMENT Function
	DROP_FILE Function
	LOCK_MAP Procedure
	MAP_ALL Function
	MAP_ELEMENT Function
	MAP_FILE Function
	MAP_OBJECT Function
	RESTORE Function
	SAVE Function
	UNLOCK_MAP Procedure

	95 DBMS_STREAMS
	Using DBMS_STREAMS
	Security Model

	Summary of DBMS_STREAMS Subprograms
	COMPATIBLE_10_1 Function
	COMPATIBLE_9_2 Function
	CONVERT_ANYDATA_TO_LCR_DDL Function
	CONVERT_ANYDATA_TO_LCR_ROW Function
	GET_INFORMATION Function
	GET_STREAMS_NAME Function
	GET_STREAMS_TYPE Function
	GET_TAG Function
	SET_TAG Procedure

	96 DBMS_STREAMS_ADM
	Using DBMS_STREAMS_ADM
	Overview
	Rules
	Users

	Summary of DBMS_STREAMS_ADM Subprograms
	ADD_GLOBAL_PROPAGATION_RULES Procedures
	ADD_GLOBAL_RULES Procedures
	ADD_MESSAGE_PROPAGATION_RULE Procedures
	ADD_MESSAGE_RULE Procedures
	ADD_SCHEMA_PROPAGATION_RULES Procedures
	ADD_SCHEMA_RULES Procedures
	ADD_SUBSET_PROPAGATION_RULES Procedures
	ADD_SUBSET_RULES Procedures
	ADD_TABLE_PROPAGATION_RULES Procedure
	ADD_TABLE_RULES Procedures
	GET_SCN_MAPPING Procedure
	MAINTAIN_SIMPLE_TABLESPACE Procedure
	MAINTAIN_TABLESPACES Procedure
	PURGE_SOURCE_CATALOG Procedure
	REMOVE_QUEUE Procedure
	REMOVE_RULE Procedure
	REMOVE_STREAMS_CONFIGURATION Procedure
	SET_MESSAGE_NOTIFICATION Procedure
	SET_RULE_TRANSFORM_FUNCTION Procedure
	SET_UP_QUEUE Procedure

	97 DBMS_STREAMS_AUTH
	Summary of DBMS_STREAMS_AUTH Subprograms
	GRANT_ADMIN_PRIVILEGE Procedure
	GRANT_REMOTE_ADMIN_ACCESS Procedure
	REVOKE_ADMIN_PRIVILEGE Procedure
	REVOKE_REMOTE_ADMIN_ACCESS Procedure

	98 DBMS_STREAMS_MESSAGING
	Summary of DBMS_STREAMS_MESSAGING Subprograms
	DEQUEUE Procedures
	ENQUEUE Procedures

	99 DBMS_STREAMS_TABLESPACE_ADM
	Using DBMS_STREAMS_TABLESPACE_ADM
	Overview
	Types

	Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms
	ATTACH_SIMPLE_TABLESPACE Procedure
	ATTACH_TABLESPACES Procedure
	CLONE_SIMPLE_TABLESPACE Procedure
	CLONE_TABLESPACES Procedure
	DETACH_SIMPLE_TABLESPACE Procedure
	DETACH_TABLESPACES Procedure
	PULL_SIMPLE_TABLESPACE Procedure
	PULL_TABLESPACES Procedure

	100 DBMS_TRACE
	Using DBMS_TRACE
	Overview
	Security Model
	Constants
	Restrictions
	Operational Notes

	Summary of DBMS_TRACE Subprograms
	CLEAR_PLSQL_TRACE Procedure
	PLSQL_TRACE_VERSION Procedure
	SET_PLSQL_TRACE Procedure

	101 DBMS_TRANSACTION
	Using DBMS_TRANSACTION
	Security Model

	Summary of DBMS_TRANSACTION Subprograms
	ADVISE_COMMIT Procedure
	ADVISE_NOTHING Procedure
	ADVISE_ROLLBACK Procedure
	BEGIN_DISCRETE_TRANSACTION Procedure
	COMMIT Procedure
	COMMIT_COMMENT Procedure
	COMMIT_FORCE Procedure
	LOCAL_TRANSACTION_ID Function
	PURGE_LOST_DB_ENTRY Procedure
	PURGE_MIXED Procedure
	READ_ONLY Procedure
	READ_WRITE Procedure
	ROLLBACK Procedure
	ROLLBACK_FORCE Procedure
	ROLLBACK_SAVEPOINT Procedure
	SAVEPOINT Procedure
	STEP_ID Function
	USE_ROLLBACK_SEGMENT Procedure

	102 DBMS_TRANSFORM
	Summary of DBMS_TRANSFORM Subprograms
	CREATE_TRANSFORMATION Procedure
	DROP_TRANSFORMATION Procedure
	MODIFY_TRANSFORMATION Procedure

	103 DBMS_TYPES
	Using DBMS_TYPES
	Constants
	Exceptions

	104 DBMS_UTILITY
	Using DBMS_UTILITY
	Security Model
	Types
	Deprecated Subprograms

	Summary of DBMS_UTILITY Subprograms
	ANALYZE_DATABASE Procedure
	ACTIVE_INSTANCES Procedure
	ANALYZE_PART_OBJECT Procedure
	ANALYZE_SCHEMA Procedure
	CANONICALIZE Procedure
	COMMA_TO_TABLE Procedures
	COMPILE_SCHEMA Procedure
	CREATE_ALTER_TYPE_ERROR_TABLE Procedure
	CURRENT_INSTANCE Function
	DATA_BLOCK_ADDRESS_BLOCK Function
	DATA_BLOCK_ADDRESS_FILE Function
	DB_VERSION Procedure
	EXEC_DDL_STATEMENT Procedure
	FORMAT_ERROR_BACKTRACE Function
	FORMAT_ERROR_STACK Function
	FORMAT_CALL_STACK Function
	GET_CPU_TIME Function
	GET_DEPENDENCY Procedure
	GET_HASH_VALUE Function
	GET_PARAMETER_VALUE Function
	GET_TIME Function
	IS_CLUSTER_DATABASE Function
	MAKE_DATA_BLOCK_ADDRESS Function
	NAME_RESOLVE Procedure
	NAME_TOKENIZE Procedure
	PORT_STRING Function
	TABLE_TO_COMMA Procedures
	VALIDATE Procedure

	105 DBMS_WARNING
	Using DBMS_WARNING
	Security Model

	Summary of DBMS_WARNING Subprograms
	ADD_WARNING_SETTING_CAT Procedure
	ADD_WARNING_SETTING_NUM Procedure
	GET_CATEGORY Function
	GET_WARNING_SETTING_CAT Function
	GET_WARNING_SETTING_NUM Function
	GET_WARNING_SETTING_STRING Function
	SET_WARNING_SETTING_STRING Procedure

	106 DBMS_WORKLOAD_REPOSITORY
	Summary of DBMS_WORKLOAD_REPOSITORY Subprograms
	AWR_REPORT_HTML Function
	AWR_REPORT_TEXT Function
	CREATE_BASELINE Function and Procedure
	CREATE_SNAPSHOT Function and Procedure
	DROP_BASELINE Procedure
	DROP_SNAPSHOT_RANGE Procedure
	MODIFY_SNAPSHOT_SETTINGS Procedure

	107 DBMS_WM
	Documentation of DBMS_WM

	108 DBMS_XDB
	Using DBMS_XDB
	Overview
	Constants

	Summary of DBMS_XDB Subprograms
	ACLCHECKPRIVILEGES Function
	CFG_GET Function
	CFG_REFRESH Procedure
	CFG_UPDATE Procedure
	CHANGEPRIVILEGES Function
	CHECKPRIVILEGES Function
	CREATEFOLDER Function
	CREATEOIDPATH Function
	CREATERESOURCE Functions
	DELETERESOURCE Procedure
	EXISTSRESOURCE Function
	GETACLDOCUMENT Procedure
	GETLOCKTOKEN Procedure
	GETPRIVILEGES Function
	GETRESOID Function
	GETXDB_TABLESPACE Function
	LINK Procedure
	LOCKRESOURCE Function
	MOVEXDB_TABLESPACE Procedure
	REBUILDHIERARCHICALINDEX Procedure
	RENAMERESOURCE Procedure
	SETACL Procedure
	UNLOCKRESOURCE Function

	109 DBMS_XDB_VERSION
	Summary of DBMS_XDB_VERSION Subprograms
	CHECKIN Function
	CHECKOUT Procedure
	GETCONTENTSBLOBBYRESID Function
	GETCONTENTSCLOBBYRESID Function
	GETCONTENTSXMLBYRESID Function
	GETPREDECESSORS Function
	GETPREDSBYRESID Function
	GETRESOURCEBYRESID Function
	GETSUCCESSORS Function
	GETSUCCSBYRESID Function
	MAKEVERSIONED Function
	UNCHECKOUT Function

	110 DBMS_TTS
	Using DBMS_TTS
	Security Model
	Exceptions
	Operational Notes

	Summary of DBMS_TTS Subprograms
	DOWNGRADE Procedure
	TRANSPORT_SET_CHECK Procedure

	111 DBMS_XDBT
	Using DBMS_XDBT
	Overview
	Operational Notes

	Summary of DBMS_XDBT Subprograms
	CONFIGUREAUTOSYNC Procedure
	CREATEDATASTOREPREF Procedure
	CREATEFILTERPREF Procedure
	CREATEINDEX Procedure
	CREATELEXERPREF Procedure
	CREATEPREFERENCES Procedure
	CREATESECTIONGROUPPREF Procedure
	CREATESTOPLISTPREF Procedure
	CREATESTORAGEPREF Procedure
	CREATEWORLDLISTPREF Procedure
	DROPPREFERENCES Procedure

	112 DBMS_XDBZ
	Summary of DBMS_XDBZ Subprograms
	DISABLE_HIERARCHY Procedure
	ENABLE_HIERARCHY Procedure
	GET_ACLOID Function
	GET_USERID Function
	IS_HIERARCHY_ENABLED Function
	PURGELDAPCACHE Function

	113 DBMS_XMLDOM
	Using DBMS_XMLDOM
	Overview
	Constants
	Types
	Exceptions

	Subprogram Groups
	DOMNode Subprograms
	DOMAttr Subprograms
	DOMCDataSection Subprograms
	DOMCharacterData Subprograms
	DOMComment Subprograms
	DOMDocument Subprograms
	DOMDocumentFragment Subprograms
	DOMDocumentType Subprograms
	DOMElement Subprograms
	DOMEntity Subprograms
	DOMEntityReference Subprograms
	DOMImplementation Subprograms
	DOMNamedNodeMap Subprograms
	DOMNodeList Subprograms
	DOMNotation Subprograms
	DOMProcessingInstruction Subprograms
	DOMText Subprograms

	Summary of DBMS_XMLDOM Subprograms
	ADOPTNODE Procedure
	APPENDCHILD Function
	APPENDDATA Procedure
	CLONENODE Function
	CREATEATTRIBUTE Functions
	CREATECDATASECTION Function
	CREATECOMMENT Function
	CREATEDOCUMENT Function
	CREATEDOCUMENTFRAGMENT Function
	CREATEELEMENT Functions
	CREATEENTITYREFERENCE Function
	CREATEPROCESSINGINSTRUCTION Function
	CREATETEXTNODE Function
	DELETEDATA Procedure
	FINDENTITY Function
	FINDNOTATION Function
	FREEDOCFRAG Procedure
	FREEDOCFRAG Procedure
	FREEDOCUMENT Procedure
	FREENODE Procedure
	GETATTRIBUTE Functions
	GETATTRIBUTES Function
	GETATTRIBUTENODE Functions
	GETCHILDNODES Function
	GETCHILDRENBYTAGNAME Functions
	GETDATA Functions
	GETDOCTYPE Function
	GETDOCUMENTELEMENT Function
	GETELEMENTSBYTAGNAME Functions
	GETENTITIES Function
	GETEXPANDEDNAME Procedure and Functions
	GETFIRSTCHILD Function
	GETIMPLEMENTATION Function
	GETLASTCHILD Function
	GETLENGTH Functions
	GETLOCALNAME Procedure and Functions
	GETNAME Functions
	GETNAMEDITEM Function
	GETNAMESPACE Procedure and Functions
	GETNEXTSIBLING Function
	GETNODENAME Function
	GETNODETYPE Function
	GETNODEVALUE Function
	GETNOTATIONNAME Function
	GETNOTATIONS Function
	GETTARGET Function
	GETOWNERDOCUMENT Function
	GETOWNERELEMENT Function
	GETPARENTNODE Function
	GETPREFIX Function
	GETPREVIOUSSIBLING Function
	GETPUBLICID Functions
	GETQUALIFIEDNAME Functions
	GETSCHEMANODE Function
	GETSPECIFIED Function
	GETSTANDALONE Function
	GETSYSTEMID Functions
	GETTAGNAME Function
	GETVALUE Function
	GETVERSION Function
	GETXMLTYPE Function
	HASATTRIBUTE Functions
	HASATTRIBUTES Function
	HASCHILDNODES Function
	HASFEATURE Function
	IMPORTNODE Function
	INSERTBEFORE Function
	INSERTDATA Procedure
	ISNULL Functions
	IITEM Functions
	MAKEATTR Function
	MAKECDATASECTION Function
	MAKECHARACTERDATA Function
	MAKECOMMENT Function
	MAKEDOCUMENT Function
	MAKEDOCUMENTFRAGMENT Function
	MAKEDOCUMENTTYPE Function
	MAKEELEMENT Function
	MAKEENTITY Function
	MAKEENTITYREFERENCE Function
	MAKENODE Functions
	MAKENOTATION Function
	MAKEPROCESSINGINSTRUCTION Function
	MAKETEXT Function
	NEWDOMDOCUMENT Functions
	NORMALIZE Procedure
	REMOVEATTRIBUTE Procedures
	REMOVEATTRIBUTENODE Function
	REMOVECHILD Function
	REMOVENAMEDITEM Function
	REPLACECHILD Function
	REPLACEDATA Procedure
	RESOLVENAMESPACEPREFIX Function
	SETATTRIBUTE Procedures
	SETATTRIBUTENODE Functions
	SETDATA Procedures
	SETNAMEDITEM Function
	SETNODEVALUE Procedure
	SETPREFIX Procedure
	SETSTANDALONE Procedure
	SETVALUE Procedure
	SETVERSION Procedure
	SPLITTEXT Function
	SUBSTRINGDATA Function
	WRITETOBUFFER Procedures
	WRITETOCLOB Procedures
	WRITETOFILE Procedures

	114 DBMS_XMLGEN
	Summary of DBMS_XMLGEN Subprograms
	CLOSECONTEXT Procedure
	CONVERT Functions
	GETNUMROWSPROCESSED Function
	GETXML Functions
	GETXMLTYPE Functions
	NEWCONTEXT Functions
	RESTARTQUERY Procedure
	SETCONVERTSPECIALCHARS Procedure
	SETMAXROWS Procedure
	SETNULLHANDLING Procedure
	SETROWSETTAG Procedure
	SETROWTAG Procedure
	SETSKIPROWS Procedure
	USEITEMTAGSFORCOLL Procedure
	USENULLATTRIBUTEINDICATOR Procedure

	115 DBMS_XMLPARSER
	Summary of DBMS_XMLPARSER Subprograms
	FREEPARSER
	GETDOCTYPE
	GETDOCUMENT
	GETRELEASEVERSION
	GETVALIDATIONMODE
	NEWPARSER
	PARSE
	PARSEBUFFER
	PARSECLOB
	PARSEDTD
	PARSEDTDBUFFER
	PARSEDTDCLOB
	SETBASEDIR
	SETDOCTYPE
	SETERRORLOG
	SETPRESERVEWHITESPACE
	SETVALIDATIONMODE
	SHOWWARNINGS

	116 DBMS_XMLQUERY
	Using DBMS_XMLQUERY
	Constants
	Types

	Summary of DBMS_XMLQUERY Subprograms
	CLOSECONTEXT
	GETDTD
	GETEXCEPTIONCONTENT
	GETNUMROWSPROCESSED
	GETVERSION
	GETXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBINDVALUE
	SETCOLLIDATTRNAME
	SETDATAHEADER
	SETDATEFORMAT
	SETENCODINGTAG
	SETERRORTAG
	SETMAXROWS
	SETMETAHEADER
	SETRAISEEXCEPTION
	SETRAISENOROWSEXCEPTION
	SETROWIDATTRNAME
	SETROWIDATTRVALUE
	SETROWSETTAG
	SETROWTAG
	SETSKIPROWS
	SETSQLTOXMLNAMEESCAPING
	SETSTYLESHEETHEADER
	SETTAGCASE
	SETXSLT
	SETXSLTPARAM
	USENULLATTRIBUTEINDICATOR
	USETYPEFORCOLLELEMTAG

	117 DBMS_XMLSAVE
	Using DBMS_XMLSAVE
	Constants
	Types

	Summary of DBMS_XMLSAVE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	GETEXCEPTIONCONTENT
	INSERTXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBATCHSIZE
	SETCOMMITBATCH
	SETDATEFORMAT
	SETIGNORECASE
	SETKEYCOLUMN
	SETPRESERVEWHITESPACE
	SETROWTAG
	SETSQLTOXMLNAMEESCAPING
	SETUPDATECOLUMN
	SETXSLT
	SETXSLTPARAM
	UPDATEXML

	118 DBMS_XMLSCHEMA
	Constants of DBMS_XMLSCHEMA
	Summary of DBMS_XMLSCHEMA Subprograms
	COMPILESCHEMA
	COPYEVOLVE
	DELETESCHEMA
	GENERATEBEAN
	GENERATESCHEMA
	GENERATESCHEMAS
	REGISTERSCHEMA
	REGISTERURI

	Catalog Views of the DBMS_XMLSCHEMA
	USER_XML_SCHEMAS
	ALL_XML_SCHEMAS
	DBA_XML_SCHEMAS
	DBA_XML_TABLES
	USER_XML_TABLES
	ALL_XML_TABLES
	DBA_XML_TAB_COLS
	USER_XML_TAB_COLS
	ALL_XML_TAB_COLS
	DBA_XML_VIEWS
	USER_XML_VIEWS
	ALL_XML_VIEWS
	DBA_XML_VIEW_COLS
	USER_XML_VIEW_COLS
	ALL_XML_VIEW_COLS

	119 DBMS_XMLSTORE
	Using DBMS_XMLSTORE
	Types

	Summary of DBMS_XMLSTORE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	INSERTXML
	NEWCONTEXT
	SETKEYCOLUMN
	SETROWTAG
	SETUPDATECOLUMN
	UPDATEXML

	120 DBMS_XPLAN
	Using DBMS_XPLAN
	Overview
	Security Model
	Examples

	Summary of DBMS_XPLAN Subprograms
	DISPLAY_AWR Function
	DISPLAY Function
	DISPLAY_CURSOR Function

	121 DBMS_XSLPROCESSOR
	Summary of DBMS_XSLPROCESSOR Subprograms
	CLOB2FILE
	FREEPROCESSOR
	FREESTYLESHEET
	NEWPROCESSOR
	NEWSTYLESHEET
	PROCESSXSL
	READ2CLOB
	REMOVEPARAM
	RESETPARAMS
	SELECTNODES
	SELECTSINGLENODE
	SETERRORLOG
	SETPARAM
	SHOWWARNINGS
	TRANSFORMNODE
	VALUEOF

	122 DEBUG_EXTPROC
	Using DEBUG_EXTPROC
	Security Model
	Operational Notes
	Rules and Limits

	Summary of DEBUG_EXTPROC Subprograms
	STARTUP_EXTPROC_AGENT Procedure

	123 HTF
	Using HTF
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTF Subprograms
	ADDRESS Function
	ANCHOR Function
	ANCHOR2 Function
	APPLETCLOSE Function
	APPLETOPEN Function
	AREA Function
	BASE Function
	BASEFONT Function
	BGSOUND Function
	BIG Function
	BLOCKQUOTECLOSE Function
	BLOCKQUOTEOPEN Function
	BODYCLOSE Function
	BODYOPEN Function
	BOLD Function
	BR Function
	CENTER Function
	CENTERCLOSE Function
	CENTEROPEN Function
	CITE Function
	CODE Function
	COMMENT Function
	DFN Function
	DIRLISTCLOSE Function
	DIRLISTOPEN Function
	DIV Function
	DLISTCLOSE Function
	DLISTOPEN Function
	DLISTDEF Function
	DLISTTERM Function
	EM Function
	EMPHASIS Function
	ESCAPE_SC Function
	ESCAPE_URL Function
	FONTCLOSE Function
	FONTOPEN Function
	FORMAT_CELL Function
	FORMCHECKBOX Function
	FORMCLOSE Function
	FORMFILE Function
	FORMHIDDEN Function
	FORMIMAGE Function
	FORMOPEN Function
	FORMPASSWORD Function
	FORMRADIO Function
	FORMRESET Function
	FORMSELECTCLOSE Function
	FORMSELECTOPEN Function
	FORMSELECTOPTION Function
	FORMSUBMIT Function
	FORMTEXT Function
	FORMTEXTAREA Function
	FORMTEXTAREA2 Function
	FORMTEXTAREACLOSE Function
	FORMTEXTAREAOPEN Function
	FORMTEXTAREAOPEN2 Function
	FRAME Function
	FRAMESETCLOSE Function
	FRAMESETOPEN Function
	HEADCLOSE Function
	HEADOPEN Function
	HEADER Function
	HR Function
	HTMLCLOSE Function
	HTMLOPEN Function
	IMG Function
	IMG2 Function
	ISINDEX Function
	ITALIC Function
	KBD Function
	KEYBOARD Function
	LINE Function
	LINKREL Function
	LINKREV Function
	LISTHEADER Function
	LISTINGCLOSE Function
	LISTINGOPEN Function
	LISTITEM Function
	MAILTO Function
	MAPCLOSE Function
	MAPOPEN Function
	MENULISTCLOSE Function
	MENULISTOPEN Function
	META Function
	NL Function
	NOBR Function
	NOFRAMESCLOSE Function
	NOFRAMESOPEN Function
	OLISTCLOSE Function
	OLISTOPEN Function
	PARA Function
	PARAGRAPH Function
	PARAM Function
	PLAINTEXT Function
	PRECLOSE Function
	PREOPEN Function
	PRINT Functions
	PRN Functions
	S Function
	SAMPLE Function
	SCRIPT Function
	SMALL Function
	STRIKE Function
	STRONG Function
	STYLE Function
	SUB Function
	SUP Function
	TABLECAPTION Function
	TABLEDATA Function
	TABLEHEADER Function
	TABLECLOSE Function
	TABLEOPEN Function
	TABLEROWCLOSE Function
	TABLEROWOPEN Function
	TELETYPE Function
	TITLE Function
	ULISTCLOSE Function
	ULISTOPEN Function
	UNDERLINE Function
	VARIABLE Function
	WBR Function

	124 HTMLDB_CUSTOM_AUTH
	Documentation of HTMLDB_CUSTOM_AUTH

	125 HTMLDB_APPLICATION
	Documentation of HTMLDB_APPLICATION

	126 HTMLDB_ITEM
	Documentation of HTMLDB_ITEM

	127 HTMLDB_UTIL
	Documentation of HTMLDB_UTIL

	128 HTP
	Using HTP
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTP Subprograms
	ADDRESS Procedure
	ANCHOR Procedure
	ANCHOR2 Procedure
	APPLETCLOSE Procedure
	APPLETOPEN Procedure
	AREA Procedure
	BASE Procedure
	BASEFONT Procedure
	BGSOUND Procedure
	BIG Procedure
	BLOCKQUOTECLOSE Procedure
	BLOCKQUOTEOPEN Procedure
	BODYCLOSE Procedure
	BODYOPEN Procedure
	BOLD Procedure
	BR Procedure
	CENTER Procedure
	CENTERCLOSE Procedure
	CENTEROPEN Procedure
	CITE Procedure
	CODE Procedure
	COMMENT Procedure
	DFN Procedure
	DIRLISTCLOSE Procedure
	DIRLISTOPEN Procedure
	DIV Procedure
	DLISTCLOSE Procedure
	DLISTOPEN Procedure
	DLISTDEF Procedure
	DLISTTERM Procedure
	EM Procedure
	EMPHASIS Procedure
	ESCAPE_SC Procedure
	FONTCLOSE Procedure
	FONTOPEN Procedure
	FORMCHECKBOX Procedure
	FORMCLOSE Procedure
	FORMOPEN Procedure
	FORMFILE Procedure
	FORMHIDDEN Procedure
	FORMIMAGE Procedure
	FORMPASSWORD Procedure
	FORMRADIO Procedure
	FORMRESET Procedure
	FORMSELECTCLOSE Procedure
	FORMSELECTOPEN Procedure
	FORMSELECTOPTION Procedure
	FORMSUBMIT Procedure
	FORMTEXT Procedure
	FORMTEXTAREA Procedure
	FORMTEXTAREA2 Procedure
	FORMTEXTAREACLOSE Procedure
	FORMTEXTAREAOPEN Procedure
	FORMTEXTAREAOPEN2 Procedure
	FRAME Procedure
	FRAMESETCLOSE Procedure
	FRAMESETOPEN Procedure
	HEADCLOSE Procedure
	HEADOPEN Procedure
	HEADER Procedure
	HR Procedure
	HTMLCLOSE Procedure
	HTMLOPEN Procedure
	IMG Procedure
	IMG2 Procedure
	ISINDEX Procedure
	ITALIC Procedure
	KBD Procedure
	KEYBOARD Procedure
	LINE Procedure
	LINKREL Procedure
	LINKREV Procedure
	LISTHEADER Procedure
	LISTINGCLOSE Procedure
	LISTINGOPEN Procedure
	LISTITEM Procedure
	MAILTO Procedure
	MAPCLOSE Procedure
	MAPOPEN Procedure
	MENULISTCLOSE Procedure
	MENULISTOPEN Procedure
	META Procedure
	NL Procedure
	NOBR Procedure
	NOFRAMESCLOSE Procedure
	NOFRAMESOPEN Procedure
	OLISTCLOSE Procedure
	OLISTOPEN Procedure
	PARA Procedure
	PARAGRAPH Procedure
	PARAM Procedure
	PLAINTEXT Procedure
	PRECLOSE Procedure
	PREOPEN Procedure
	PRINT Procedures
	PRINTS Procedure
	PRN Procedures
	PS Procedure
	S Procedure
	SAMPLE Procedure
	SCRIPT Procedure
	SMALL Procedure
	STRIKE Procedure
	STRONG Procedure
	STYLE Procedure
	SUB Procedure
	SUP Procedure
	TABLECAPTION Procedure
	TABLEDATA Procedure
	TABLEHEADER Procedure
	TABLECLOSE Procedure
	TABLEOPEN Procedure
	TABLEROWCLOSE Procedure
	TABLEROWOPEN Procedure
	TELETYPE Procedure
	TITLE Procedure
	ULISTCLOSE Procedure
	ULISTOPEN Procedure
	UNDERLINE Procedure
	VARIABLE Procedure
	WBR Procedure

	129 OWA_CACHE
	Using OWA_CACHE
	Constants

	Summary of OWA_CACHE Subprograms
	DISABLE Procedure
	GET_ETAG Function
	GET_LEVEL Function
	SET_CACHE Procedure
	SET_EXPIRES Procedure
	SET_NOT_MODIFIED Procedure
	SET_SURROGATE_CONTROL Procedure

	130 OWA_COOKIE
	Using OWA_COOKIE
	Overview
	Types
	Rules and Limits

	Summary of OWA_COOKIE Subprograms
	GET Function
	GET_ALL Procedure
	REMOVE Procedure
	SEND procedure

	131 OWA_CUSTOM
	Using OWA_CUSTOM
	Constants

	Summary of OWA_CUSTOM Subprograms
	AUTHORIZE Function

	132 OWA_IMAGE
	Using OWA_IMAGE
	Overview
	Types
	Variables
	Examples

	Summary of OWA_IMAGE Subprograms
	GET_X Function
	GET_Y Function

	133 OWA_OPT_LOCK
	Using OWA_OPT_LOCK
	Overview
	Types

	Summary of OWA_OPT_LOCK Subprograms
	CHECKSUM Functions
	GET_ROWID Function
	STORE_VALUES Procedure
	VERIFY_VALUES Function

	134 OWA_PATTERN
	Using OWA_PATTERN
	Types
	Operational Notes

	Summary of OWA_PATTERN Subprograms
	AMATCH Function
	CHANGE Functions and Procedures
	GETPAT Procedure
	MATCH Function

	135 OWA_SEC
	Using OWA_SEC
	Operational Notes

	Summary of OWA_SEC Subprograms
	GET_CLIENT_HOSTNAME Function
	GET_CLIENT_IP Function
	GET_PASSWORD Function
	GET_USER_ID Function
	SET_AUTHORIZATION Procedure
	SET_PROTECTION_REALM Procedure

	136 OWA_TEXT
	Using OWA_TEXT
	Types

	Summary of OWA_TEXT Subprograms
	ADD2MULTI Procedure
	NEW_ROW_LIST Function and Procedure
	PRINT_MULTI Procedure
	PRINT_ROW_LIST Procedure
	STREAM2MULTI Procedure

	137 OWA_UTIL
	Using OWA_UTIL
	Overview
	Types

	Summary of OWA_UTIL Subprograms
	BIND_VARIABLES Function
	CALENDARPRINT Procedures
	CELLSPRINT Procedures
	CHOOSE_DATE Procedure
	GET_CGI_ENV Function
	GET_OWA_SERVICE_PATH Function
	GET_PROCEDURE Function
	HTTP_HEADER_CLOSE Procedure
	LISTPRINT Procedure
	MIME_HEADER Procedure
	PRINT_CGI_ENV Procedure
	REDIRECT_URL Procedure
	SHOWPAGE Procedure
	SHOWSOURCE Procedure
	SIGNATURE procedure
	STATUS_LINE Procedure
	TABLEPRINT Function
	TODATE Function
	WHO_CALLED_ME Procedure

	138 SDO_CS
	Documentation of SDO_CS

	139 SDO_GCDR
	Documentation of SDO_GCDR

	140 SDO_GEOM
	Documentation of SDO_GEOM

	141 SDO_GEOR
	Documentation of SDO_GEOR

	142 SDO_GEOR_UTL
	Documentation of SDO_GEOR_UTL

	143 SDO_LRS
	Documentation of SDO_LRS

	144 SDO_MIGRATE
	Documentation of SDO_MIGRATE

	145 SDO_NET
	Documentation of SDO_NET

	146 SDO_SAM
	Documentation of SDO_SAM

	147 SDO_TOPO
	Documentation of SDO_TOPO

	148 SDO_TOPO_MAP
	Documentation of SDO_TOPO_MAP

	149 SDO_TUNE
	Documentation of SDO_TUNE

	150 SDO_UTIL
	Documentation of SDO_UTIL

	151 UTL_COLL
	Summary of UTL_COLL Subprograms
	IS_LOCATOR Function

	152 UTL_COMPRESS
	Using UTL_COMPRESS
	Constants
	Exceptions
	Operational Notes

	Summary of UTL_COMPRESS Subprograms
	ISOPEN Function
	LZ_COMPRESS Functions and Procedures
	LZ_COMPRESS_ADD Procedure
	LZ_COMPRESS_CLOSE
	LZ_COMPRESS_OPEN
	LZ_UNCOMPRESS Functions and Procedures
	LZ_UNCOMPRESS_EXTRACT Procedure
	LZ_UNCOMPRESS_OPEN Function
	LZ_UNCOMPRESS_CLOSE Procedure

	153 UTL_DBWS
	Using UTL_DBWS
	Supported Keys and Default Settings for Standard Call Properties

	Summary of UTL_DBWS Subprograms
	CREATE_CALL Function
	CREATE_SERVICE Function
	GET_IN_PARAMETER_TYPES Function
	GET_OUT_PARAMETER_TYPES Function
	GET_OUTPUT_VALUES Function
	GET_PORTS Function
	GET_PROPERTY Function
	GET_RETURN_TYPE Function
	GET_SERVICES Function
	INVOKE Function
	RELEASE_ALL_SERVICES Procedure
	RELEASE_CALL Procedure
	RELEASE_SERVICE Procedure
	REMOVE_PROPERTY Procedure
	SET_PROPERTY Procedure

	154 UTL_ENCODE
	Summary of UTL_ENCODE Subprograms
	BASE64_DECODE Function
	BASE64_ENCODE Function
	MIMEHEADER_DECODE Function
	MIMEHEADER_ENCODE Function
	QUOTED_PRINTABLE_DECODE Function
	QUOTED_PRINTABLE_ENCODE Function
	TEXT_DECODE Function
	TEXT_ENCODE Function
	UUDECODE Function
	UUENCODE Function

	155 UTL_FILE
	Using UTL_FILE
	Security Model
	Types
	Operational Notes
	Rules and Limits
	Exceptions
	Examples

	Summary of UTL_FILE Subprograms
	FCLOSE Procedure
	FCLOSE_ALL Procedure
	FCOPY Procedure
	FFLUSH Procedure
	FGETATTR Procedure
	FGETPOS Function
	FOPEN Function
	FOPEN_NCHAR Function
	FREMOVE Procedure
	FRENAME Procedure
	FSEEK Procedure
	GET_LINE Procedure
	GET_LINE_NCHAR Procedure
	GET_RAW Function
	IS_OPEN Function
	NEW_LINE Procedure
	PUT Procedure
	PUTF Procedure
	PUT_NCHAR Procedure
	PUT_RAW Function
	PUT_LINE Procedure
	PUT_LINE_NCHAR Procedure
	PUTF_NCHAR Procedure

	156 UTL_HTTP
	Using UTL_HTTP
	Overview
	Constants
	Types
	Operational Notes
	Exceptions
	Examples

	Subprogram Groups
	Simple HTTP Fetches in a Single Call Subprograms
	Session Settings Subprograms
	HTTP Requests Subprograms
	HTTP Responses Subprograms
	HTTP Cookies Subprograms
	HTTP Persistent Connections Subprograms
	Error Conditions Subprograms

	Summary of UTL_HTTP Subprograms
	ADD_COOKIES Procedure
	BEGIN_REQUEST Function
	CLEAR_COOKIES Procedure
	CLOSE_PERSISTENT_CONN Procedure
	CLOSE_PERSISTENT_CONNS Procedure
	END_REQUEST Procedure
	END_RESPONSE Procedure
	GET_AUTHENTICATION Procedure
	GET_BODY_CHARSET Procedure
	GET_COOKIE_COUNT Function
	GET_COOKIE_SUPPORT Procedure
	GET_COOKIES Function
	GET_DETAILED_EXCP_SUPPORT Procedure
	GET_DETAILED_SQLCODE Function
	GET_DETAILED_SQLERRM Function
	GET_FOLLOW_REDIRECT Procedure
	GET_HEADER Procedure
	GET_HEADER_BY_NAME Procedure
	GET_HEADER_COUNT Function
	GET_PERSISTENT_CONN_COUNT Function
	GET_PERSISTENT_CONN_SUPPORT Procedure
	GET_PERSISTENT_CONNS Procedure
	GET_PROXY Procedure
	GET_RESPONSE Function
	GET_RESPONSE_ERROR_CHECK Procedure
	GET_TRANSFER_TIMEOUT Procedure
	READ_LINE Procedure
	READ_RAW Procedure
	READ_TEXT Procedure
	REQUEST Function
	REQUEST_PIECES Function
	SET_AUTHENTICATION Procedure
	SET_BODY_CHARSET Procedures
	SET_COOKIE_SUPPORT Procedures
	SET_DETAILED_EXCP_SUPPORT Procedure
	SET_FOLLOW_REDIRECT Procedures
	SET_HEADER Procedure
	SET_PERSISTENT_CONN_SUPPORT Procedure
	SET_PROXY Procedure
	SET_RESPONSE_ERROR_CHECK Procedure
	SET_TRANSFER_TIMEOUT Procedure
	SET_WALLET Procedure
	WRITE_LINE Procedure
	WRITE_RAW Procedure
	WRITE_TEXT Procedure

	157 UTL_I18N
	Using UTL_I18n
	Overview
	Constants
	Flags

	Summary of UTL_I18N Subprograms
	ESCAPE_REFERENCE Function
	GET_DEFAULT_CHARSET Function
	MAP_CHARSET Function
	MAP_LANGUAGE_FROM_ISO Function
	MAP_LOCALE_TO_ISO Function
	MAP_TERRITORY_FROM_ISO Function
	RAW_TO_CHAR Functions
	RAW_TO_NCHAR Functions
	STRING_TO_RAW Function
	UNESCAPE_REFERENCE Function

	158 UTL_INADDR
	Using UTL_INADDR
	Exceptions
	Examples

	Summary of UTL_INADDR Subprograms
	GET_HOST_ADDRESS Function
	GET_HOST_NAME Function

	159 UTL_LMS
	Using UTL_LMS
	Security Model

	Summary of UTL_LMS Subprograms
	FORMAT_MESSAGE Function
	GET_MESSAGE Function

	160 UTL_MAIL
	Using UTL_MAIL
	Security Model
	Operational Notes

	Summary of UTL_MAIL Subprograms
	SEND Procedure
	SEND_ATTACH_RAW Procedure
	SEND_ATTACH_VARCHAR2 Procedure

	161 UTL_RAW
	Using UTL_RAW
	Overview
	Operational Notes

	Summary of UTL_RAW Subprograms
	BIT_AND Function
	BIT_COMPLEMENT Function
	BIT_OR Function
	BIT_XOR Function
	CAST_FROM_BINARY_DOUBLE Function
	CAST_FROM_BINARY_FLOAT Function
	CAST_FROM_BINARY_INTEGER Function
	CAST_FROM_NUMBER Function
	CAST_TO_BINARY_DOUBLE Function
	CAST_TO_BINARY_FLOAT Function
	CAST_TO_BINARY_INTEGER Function
	CAST_TO_NUMBER Function
	CAST_TO_RAW Function
	CAST_TO_VARCHAR2 Function
	CAST_TO_NVARCHAR2 Function
	COMPARE Function
	CONCAT Function
	CONVERT Function
	COPIES Function
	LENGTH Function
	OVERLAY Function
	REVERSE Function
	SUBSTR Function
	TRANSLATE Function
	TRANSLITERATE Function
	XRANGE Function

	162 UTL_RECOMP
	Using UTL_RECOMP
	Overview
	Operational Notes
	Examples

	Summary of UTL_RECOMP Subprograms
	RECOMP_PARALLEL Procedure
	RECOMP_SERIAL Procedure

	163 UTL_REF
	Using UTL_REF
	Overview
	Security Model
	Types
	Exceptions

	Summary of UTL_REF Subprograms
	DELETE_OBJECT Procedure
	LOCK_OBJECT Procedure
	SELECT_OBJECT Procedure
	UPDATE_OBJECT Procedure

	164 UTL_SMTP
	Using UTL_SMTP
	Overview
	Types
	Reply Codes
	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_SMTP Subprograms
	CLOSE_DATA Function and Procedure
	COMMAND Function and Procedure
	COMMAND_REPLIES Function
	DATA Function and Procedure
	EHLO Function and Procedure
	HELO Function and Procedure
	HELP Function
	MAIL Function and Procedure
	NOOP Function and Procedure
	OPEN_CONNECTION Functions
	OPEN_DATA Function and Procedure
	QUIT Function and Procedure
	RCPT Function
	RSET Function and Procedure
	VRFY Function
	WRITE_DATA Procedure
	WRITE_RAW_DATA Procedure

	165 UTL_TCP
	Using UTL_TCP
	Overview
	Types
	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_TCP Subprograms
	AVAILABLE Function
	CLOSE_ALL_CONNECTIONS Procedure
	CLOSE_CONNECTION Procedure
	FLUSH Procedure
	GET_LINE Function
	GET_RAW Function
	GET_TEXT Function
	OPEN_CONNECTION Function
	READ_LINE Function
	READ_RAW Function
	READ_TEXT Function
	WRITE_LINE Function
	WRITE_RAW Function
	WRITE_TEXT Function

	166 UTL_URL
	Using UTL_URL
	Overview
	Exceptions
	Examples

	Summary of UTL_URL Subprograms
	ESCAPE Function
	UNESCAPE Function

	167 WPG_DOCLOAD
	Using WPG_DOCLOAD
	Constants

	Summary of WPG_DOCLOAD Subprograms
	DOWNLOAD_FILE Procedures

	168 ANYDATA TYPE
	Using ANYDATA TYPE
	Restrictions
	Operational Notes

	Summary of ANYDATA Subprograms
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

	169 ANYDATASET TYPE
	Construction
	Summary of ANYDATASET TYPE Subprograms
	ADDINSTANCE Member Procedure
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETCOUNT Member Function
	GETINSTANCE Member Function
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

	170 ANYTYPE TYPE
	Summary of ANYTYPE Subprograms
	BEGINCREATE Static Procedure
	SETINFO Member Procedure
	ADDATTR Member Procedure
	ENDCREATE Member Procedure
	GETPERSISTENT Static Function
	GETINFO Member Function
	GETATTRELEMINFO Member Function

	171 Oracle Streams AQ TYPEs
	Summary of Types
	AQ$_AGENT Type
	AQ$_AGENT_LIST_T Type
	AQ$_DESCRIPTOR Type
	AQ$_POST_INFO Type
	AQ$_POST_INFO_LIST Type
	AQ$_PURGE_OPTIONS_T Type
	AQ$_RECIPIENT_LIST_T Type
	AQ$_REG_INFO Type
	AQ$_REG_INFO_LIST Type
	AQ$_SUBSCRIBER_LIST_T Type
	DEQUEUE_OPTIONS_T Type
	ENQUEUE_OPTIONS_T Type
	MESSAGE_PROPERTIES_T Type
	MESSAGE_PROPERTIES_ARRAY_T Type
	MSGID_ARRAY_T Type

	172 Database URI TYPEs
	Summary of URITYPE Supertype Subprograms
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of HTTPURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETRUL
	GETXML
	HTTPURITYPE

	Summary of DBURITYPE Subtype Subprogams
	CREATEURI
	DBURITYPE
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of XDBURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML
	XDBURITYPE

	Summary of URIFACTORY Package Subprograms
	GETURL
	ESCAPEURI
	UNESCAPEURI
	REGISTERURLHANDLER
	UNREGISTERURLHANDLER

	173 JMS Types
	Using JMS Types
	Overview
	Java Versus PL/SQL Data Types
	More on Bytes, Stream and Map Messages
	Upcasting and Downcasting Between General and Specific Messages
	JMS Types Error Reporting
	Oracle JMS Type Constants
	CONVERT_JMS_SELECTOR

	Summary of JMS Types
	SYS.AQ$_JMS_MESSAGE Type
	SYS.AQ$_JMS_TEXT_MESSAGE Type
	SYS.AQ$_JMS_BYTES_MESSAGE Type
	SYS.AQ$_JMS_MAP_MESSAGE Type
	SYS.AQ$_JMS_STREAM_MESSAGE Type
	SYS.AQ$_JMS_OBJECT_MESSAGE Type
	SYS.AQ$_JMS_NAMESARRAY Type
	SYS.AQ$_JMS_VALUE Type
	SYS.AQ$_JMS_EXCEPTION Type

	174 Logical Change Record TYPEs
	Summary of Logical Change Record Types
	LCR$_DDL_RECORD Type
	LCR$_ROW_RECORD Type

	Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD
	LCR$_ROW_LIST Type
	LCR$_ROW_UNIT Type

	175 interMedia ORDAudio TYPE
	Documentation of ORDAudio

	176 interMedia ORDDoc TYPE
	Documentation of ORDDoc

	177 interMedia ORDImage TYPE
	Documentation of ORDImage

	178 interMedia ORDImageSignature TYPE
	Documentation of ORDImageSignature

	179 interMedia SQL/MM Still Image TYPE
	Documentation of SQL/MM Still Image

	180 interMedia ORDVideo TYPE
	Documentation of ORDVideo

	181 Rule TYPEs
	Summary of Rule Types
	RE$ATTRIBUTE_VALUE Type
	RE$ATTRIBUTE_VALUE_LIST Type
	RE$COLUMN_VALUE Type
	RE$COLUMN_VALUE_LIST Type
	RE$NAME_ARRAY Type
	RE$NV_ARRAY Type
	RE$NV_LIST Type
	RE$NV_NODE Type
	RE$RULE_HIT Type
	RE$RULE_HIT_LIST Type
	RE$TABLE_ALIAS Type
	RE$TABLE_ALIAS_LIST Type
	RE$TABLE_VALUE Type
	RE$TABLE_VALUE_LIST Type
	RE$VARIABLE_TYPE Type
	RE$VARIABLE_TYPE_LIST Type
	RE$VARIABLE_VALUE Type
	RE$VARIABLE_VALUE_LIST Type

	182 XMLTYPE
	Summary of XMLType Subprograms
	CREATENONSCHEMABASEDXML
	CREATESCHEMABASEDXML
	CREATEXML
	EXISTSNODE
	EXTRACT
	GETBLOBVAL
	GETCLOBVAL
	GETNAMESPACE
	GETNUMBERVAL
	GETROOTELEMENT
	GETSCHEMAURL
	GETSTRINGVAL
	ISFRAGMENT
	ISSCHEMABASED
	ISSCHEMAVALID
	ISSCHEMAVALIDATED
	SCHEMAVALIDATE
	SETSCHEMAVALIDATED
	TOOBJECT
	TRANSFORM
	XMLTYPE

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

